1# Copyright 2019 The TensorFlow Authors. All Rights Reserved. 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================== 15"""Test configs for identity.""" 16import numpy as np 17import tensorflow.compat.v1 as tf 18from tensorflow.lite.testing.zip_test_utils import create_tensor_data 19from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests 20from tensorflow.lite.testing.zip_test_utils import register_make_test_function 21from tensorflow.python.ops import array_ops 22 23 24@register_make_test_function() 25def make_identity_tests(options): 26 """Make a set of tests to do identity.""" 27 28 # Chose a set of parameters 29 test_parameters = [{ 30 "input_shape": [[], [1], [3, 3]], 31 "op_to_use": [ 32 "identity", "identity_n", "snapshot", "identity_n_with_2_inputs" 33 ], 34 }] 35 36 def build_graph(parameters): 37 """Make a set of tests to do identity.""" 38 39 input_tensors = [] 40 input_count = (2 if parameters["op_to_use"] == "identity_n_with_2_inputs" 41 else 1) 42 input_tensors = [ 43 tf.compat.v1.placeholder( 44 dtype=tf.float32, name="input", shape=parameters["input_shape"]) 45 for _ in range(input_count) 46 ] 47 48 # We add the Multiply before Identity just as a walk-around to make the test 49 # pass when input_shape is scalar. 50 # During graph transformation, converter will replace the Identity op with 51 # Reshape when input has shape. However, currently converter can't 52 # distinguish between missing shape and scalar shape. As a result, when 53 # input has scalar shape, this conversion still fails. 54 inputs_doubled = [input_tensor * 2.0 for input_tensor in input_tensors] 55 if parameters["op_to_use"] == "identity": 56 identity_outputs = [tf.identity(inputs_doubled[0])] 57 elif parameters["op_to_use"] == "snapshot": 58 identity_outputs = [array_ops.snapshot(inputs_doubled[0])] 59 elif parameters["op_to_use"] in ("identity_n", "identity_n_with_2_inputs"): 60 identity_outputs = tf.identity_n(inputs_doubled) 61 return input_tensors, identity_outputs 62 63 def build_inputs(parameters, sess, inputs, outputs): 64 input_values = [ 65 create_tensor_data( 66 np.float32, parameters["input_shape"], min_value=-4, max_value=10) 67 for _ in range(len(inputs)) 68 ] 69 70 return input_values, sess.run( 71 outputs, feed_dict=dict(zip(inputs, input_values))) 72 73 make_zip_of_tests(options, test_parameters, build_graph, build_inputs) 74