• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Test configs for less_equal."""
16import tensorflow.compat.v1 as tf
17from tensorflow.lite.testing.zip_test_utils import create_tensor_data
18from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests
19from tensorflow.lite.testing.zip_test_utils import register_make_test_function
20
21
22@register_make_test_function()
23def make_less_equal_tests(options):
24  """Make a set of tests to do less_equal."""
25
26  test_parameters = [{
27      "input_dtype": [tf.float32, tf.int32, tf.int64],
28      "input_shape_pair": [([1, 1, 1, 3], [1, 1, 1, 3]),
29                           ([2, 3, 4, 5], [2, 3, 4, 5]), ([2, 3, 3], [2, 3]),
30                           ([5, 5], [1]), ([10], [2, 4, 10])],
31      "fully_quantize": [False],
32  }, {
33      "input_dtype": [tf.float32],
34      "input_shape_pair": [([1, 1, 1, 3], [1, 1, 1, 3]), ([2, 3, 3], [2, 3])],
35      "fully_quantize": [True],
36  }]
37
38  # High dimension broadcasting support in MLIR converter.
39  # Note(b/204360746): XNNPack delegate don't support high dimension.
40  if not options.skip_high_dimension_inputs:
41    test_parameters = test_parameters + [
42        {
43            "input_dtype": [tf.float32, tf.int32],
44            "input_shape_pair": [([6, 5, 4, 3, 2, 1], [4, 3, 2, 1]),
45                                 ([6, 5, 4, 3, 2, 1], [None, 3, 2, 1]),
46                                 ([6, 5, None, 3, 2, 1], [None, 3, 2, 1])],
47            "fully_quantize": [False],
48            "dynamic_size_value": [4, 1],
49        },
50    ]
51
52  def populate_dynamic_shape(parameters, input_shape):
53    return [
54        parameters["dynamic_size_value"] if x is None else x
55        for x in input_shape
56    ]
57
58  def build_graph(parameters):
59    """Build the less_equal op testing graph."""
60    input_value1 = tf.compat.v1.placeholder(
61        dtype=parameters["input_dtype"],
62        name="input1",
63        shape=parameters["input_shape_pair"][0])
64    input_value2 = tf.compat.v1.placeholder(
65        dtype=parameters["input_dtype"],
66        name="input2",
67        shape=parameters["input_shape_pair"][1])
68    out = tf.less_equal(input_value1, input_value2)
69    return [input_value1, input_value2], [out]
70
71  def build_inputs(parameters, sess, inputs, outputs):
72    input_shape_1 = populate_dynamic_shape(parameters,
73                                           parameters["input_shape_pair"][0])
74    input_shape_2 = populate_dynamic_shape(parameters,
75                                           parameters["input_shape_pair"][1])
76
77    input_value1 = create_tensor_data(parameters["input_dtype"], input_shape_1)
78    input_value2 = create_tensor_data(parameters["input_dtype"], input_shape_2)
79    return [input_value1, input_value2], sess.run(
80        outputs, feed_dict=dict(zip(inputs, [input_value1, input_value2])))
81
82  make_zip_of_tests(
83      options,
84      test_parameters,
85      build_graph,
86      build_inputs,
87      expected_tf_failures=4)
88