• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Test configs for shape."""
16import numpy as np
17import tensorflow.compat.v1 as tf
18from tensorflow.lite.testing.zip_test_utils import create_tensor_data
19from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests
20from tensorflow.lite.testing.zip_test_utils import register_make_test_function
21
22
23@register_make_test_function()
24def make_shape_tests(options):
25  """Make a set of tests to do shape."""
26
27  test_parameters = [{
28      "input_dtype": [tf.float32, tf.int32],
29      "input_shape": [[1, 4]],
30      "new_shape": [[1, 4], [4, 1], [2, 2]],
31      "out_type": [tf.int32, tf.int64],
32  }]
33
34  def build_graph(parameters):
35    """Build the shape op testing graph."""
36    # Note that we intentionally leave out the shape from the input placeholder
37    # to prevent the Shape operation from being optimized out during conversion.
38    # TODO(haoliang): Test shape op directly after we have better support for
39    # dynamic input. Currently we need to introduce a Reshape op to prevent
40    # shape being constant-folded.
41    input_value = tf.compat.v1.placeholder(
42        dtype=parameters["input_dtype"],
43        shape=parameters["input_shape"],
44        name="input")
45    shape_of_new_shape = [len(parameters["new_shape"])]
46    new_shape = tf.compat.v1.placeholder(
47        dtype=tf.int32, shape=shape_of_new_shape, name="new_shape")
48    reshaped = tf.reshape(input_value, shape=new_shape)
49    out = tf.shape(reshaped, out_type=parameters["out_type"])
50    return [input_value, new_shape], [out]
51
52  def build_inputs(parameters, sess, inputs, outputs):
53    input_value = create_tensor_data(parameters["input_dtype"],
54                                     parameters["input_shape"])
55    new_shape = np.array(parameters["new_shape"])
56    return [input_value, new_shape], sess.run(
57        outputs, feed_dict=dict(zip(inputs, [input_value, new_shape])))
58
59  make_zip_of_tests(options, test_parameters, build_graph, build_inputs)
60