• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2014 Connor Abbott
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Connor Abbott (cwabbott0@gmail.com)
25  *
26  */
27 
28 #ifndef NIR_H
29 #define NIR_H
30 
31 #include "compiler/glsl_types.h"
32 #include "compiler/glsl/list.h"
33 #include "compiler/shader_enums.h"
34 #include "compiler/shader_info.h"
35 #include "util/bitscan.h"
36 #include "util/bitset.h"
37 #include "util/compiler.h"
38 #include "util/enum_operators.h"
39 #include "util/format/u_format.h"
40 #include "util/hash_table.h"
41 #include "util/list.h"
42 #include "util/log.h"
43 #include "util/macros.h"
44 #include "util/ralloc.h"
45 #include "util/set.h"
46 #include "util/u_printf.h"
47 #define XXH_INLINE_ALL
48 #include <stdio.h>
49 #include "util/xxhash.h"
50 
51 #ifndef NDEBUG
52 #include "util/u_debug.h"
53 #endif /* NDEBUG */
54 
55 #include "nir_opcodes.h"
56 
57 #ifdef __cplusplus
58 extern "C" {
59 #endif
60 
61 extern uint32_t nir_debug;
62 extern bool nir_debug_print_shader[MESA_SHADER_KERNEL + 1];
63 
64 #ifndef NDEBUG
65 #define NIR_DEBUG(flag) unlikely(nir_debug &(NIR_DEBUG_##flag))
66 #else
67 #define NIR_DEBUG(flag) false
68 #endif
69 
70 #define NIR_DEBUG_CLONE                  (1u << 0)
71 #define NIR_DEBUG_SERIALIZE              (1u << 1)
72 #define NIR_DEBUG_NOVALIDATE             (1u << 2)
73 #define NIR_DEBUG_VALIDATE_SSA_DOMINANCE (1u << 3)
74 #define NIR_DEBUG_TGSI                   (1u << 4)
75 #define NIR_DEBUG_PRINT_VS               (1u << 5)
76 #define NIR_DEBUG_PRINT_TCS              (1u << 6)
77 #define NIR_DEBUG_PRINT_TES              (1u << 7)
78 #define NIR_DEBUG_PRINT_GS               (1u << 8)
79 #define NIR_DEBUG_PRINT_FS               (1u << 9)
80 #define NIR_DEBUG_PRINT_CS               (1u << 10)
81 #define NIR_DEBUG_PRINT_TS               (1u << 11)
82 #define NIR_DEBUG_PRINT_MS               (1u << 12)
83 #define NIR_DEBUG_PRINT_RGS              (1u << 13)
84 #define NIR_DEBUG_PRINT_AHS              (1u << 14)
85 #define NIR_DEBUG_PRINT_CHS              (1u << 15)
86 #define NIR_DEBUG_PRINT_MHS              (1u << 16)
87 #define NIR_DEBUG_PRINT_IS               (1u << 17)
88 #define NIR_DEBUG_PRINT_CBS              (1u << 18)
89 #define NIR_DEBUG_PRINT_KS               (1u << 19)
90 #define NIR_DEBUG_PRINT_NO_INLINE_CONSTS (1u << 20)
91 #define NIR_DEBUG_PRINT_INTERNAL         (1u << 21)
92 #define NIR_DEBUG_PRINT_PASS_FLAGS       (1u << 22)
93 
94 #define NIR_DEBUG_PRINT (NIR_DEBUG_PRINT_VS |  \
95                          NIR_DEBUG_PRINT_TCS | \
96                          NIR_DEBUG_PRINT_TES | \
97                          NIR_DEBUG_PRINT_GS |  \
98                          NIR_DEBUG_PRINT_FS |  \
99                          NIR_DEBUG_PRINT_CS |  \
100                          NIR_DEBUG_PRINT_TS |  \
101                          NIR_DEBUG_PRINT_MS |  \
102                          NIR_DEBUG_PRINT_RGS | \
103                          NIR_DEBUG_PRINT_AHS | \
104                          NIR_DEBUG_PRINT_CHS | \
105                          NIR_DEBUG_PRINT_MHS | \
106                          NIR_DEBUG_PRINT_IS |  \
107                          NIR_DEBUG_PRINT_CBS | \
108                          NIR_DEBUG_PRINT_KS)
109 
110 #define NIR_FALSE              0u
111 #define NIR_TRUE               (~0u)
112 #define NIR_MAX_VEC_COMPONENTS 16
113 #define NIR_MAX_MATRIX_COLUMNS 4
114 #define NIR_STREAM_PACKED      (1 << 8)
115 typedef uint16_t nir_component_mask_t;
116 
117 static inline bool
nir_num_components_valid(unsigned num_components)118 nir_num_components_valid(unsigned num_components)
119 {
120    return (num_components >= 1 &&
121            num_components <= 5) ||
122           num_components == 8 ||
123           num_components == 16;
124 }
125 
126 static inline nir_component_mask_t
nir_component_mask(unsigned num_components)127 nir_component_mask(unsigned num_components)
128 {
129    assert(nir_num_components_valid(num_components));
130    return (1u << num_components) - 1;
131 }
132 
133 void
134 nir_process_debug_variable(void);
135 
136 bool nir_component_mask_can_reinterpret(nir_component_mask_t mask,
137                                         unsigned old_bit_size,
138                                         unsigned new_bit_size);
139 nir_component_mask_t
140 nir_component_mask_reinterpret(nir_component_mask_t mask,
141                                unsigned old_bit_size,
142                                unsigned new_bit_size);
143 
144 /** Defines a cast function
145  *
146  * This macro defines a cast function from in_type to out_type where
147  * out_type is some structure type that contains a field of type out_type.
148  *
149  * Note that you have to be a bit careful as the generated cast function
150  * destroys constness.
151  */
152 #define NIR_DEFINE_CAST(name, in_type, out_type, field,   \
153                         type_field, type_value)           \
154    static inline out_type *                               \
155    name(const in_type *parent)                            \
156    {                                                      \
157       assert(parent && parent->type_field == type_value); \
158       return exec_node_data(out_type, parent, field);     \
159    }
160 
161 struct nir_function;
162 struct nir_shader;
163 struct nir_instr;
164 struct nir_builder;
165 struct nir_xfb_info;
166 
167 /**
168  * Description of built-in state associated with a uniform
169  *
170  * :c:member:`nir_variable.state_slots`
171  */
172 typedef struct {
173    gl_state_index16 tokens[STATE_LENGTH];
174 } nir_state_slot;
175 
176 /* clang-format off */
177 typedef enum {
178    nir_var_system_value          = (1 << 0),
179    nir_var_uniform               = (1 << 1),
180    nir_var_shader_in             = (1 << 2),
181    nir_var_shader_out            = (1 << 3),
182    nir_var_image                 = (1 << 4),
183    /** Incoming call or ray payload data for ray-tracing shaders */
184    nir_var_shader_call_data      = (1 << 5),
185    /** Ray hit attributes */
186    nir_var_ray_hit_attrib        = (1 << 6),
187 
188    /* Modes named nir_var_mem_* have explicit data layout */
189    nir_var_mem_ubo               = (1 << 7),
190    nir_var_mem_push_const        = (1 << 8),
191    nir_var_mem_ssbo              = (1 << 9),
192    nir_var_mem_constant          = (1 << 10),
193    nir_var_mem_task_payload      = (1 << 11),
194    nir_var_mem_node_payload      = (1 << 12),
195    nir_var_mem_node_payload_in   = (1 << 13),
196 
197    /* Generic modes intentionally come last. See encode_dref_modes() in
198     * nir_serialize.c for more details.
199     */
200    nir_var_shader_temp           = (1 << 14),
201    nir_var_function_temp         = (1 << 15),
202    nir_var_mem_shared            = (1 << 16),
203    nir_var_mem_global            = (1 << 17),
204 
205    nir_var_mem_generic           = (nir_var_shader_temp |
206                                     nir_var_function_temp |
207                                     nir_var_mem_shared |
208                                     nir_var_mem_global),
209 
210    nir_var_read_only_modes       = nir_var_shader_in | nir_var_uniform |
211                                    nir_var_system_value | nir_var_mem_constant |
212                                    nir_var_mem_ubo,
213    /* Modes where vector derefs can be indexed as arrays. nir_var_shader_out
214     * is only for mesh stages. nir_var_system_value is only for kernel stages.
215     */
216    nir_var_vec_indexable_modes   = nir_var_shader_temp | nir_var_function_temp |
217                                  nir_var_mem_ubo | nir_var_mem_ssbo |
218                                  nir_var_mem_shared | nir_var_mem_global |
219                                  nir_var_mem_push_const | nir_var_mem_task_payload |
220                                  nir_var_shader_out | nir_var_system_value,
221    nir_num_variable_modes        = 18,
222    nir_var_all                   = (1 << nir_num_variable_modes) - 1,
223 } nir_variable_mode;
224 MESA_DEFINE_CPP_ENUM_BITFIELD_OPERATORS(nir_variable_mode)
225 /* clang-format on */
226 
227 /**
228  * Rounding modes.
229  */
230 typedef enum {
231    nir_rounding_mode_undef = 0,
232    nir_rounding_mode_rtne = 1, /* round to nearest even */
233    nir_rounding_mode_ru = 2,   /* round up */
234    nir_rounding_mode_rd = 3,   /* round down */
235    nir_rounding_mode_rtz = 4,  /* round towards zero */
236 } nir_rounding_mode;
237 
238 /**
239  * Ray query values that can read from a RayQueryKHR object.
240  */
241 typedef enum {
242    nir_ray_query_value_intersection_type,
243    nir_ray_query_value_intersection_t,
244    nir_ray_query_value_intersection_instance_custom_index,
245    nir_ray_query_value_intersection_instance_id,
246    nir_ray_query_value_intersection_instance_sbt_index,
247    nir_ray_query_value_intersection_geometry_index,
248    nir_ray_query_value_intersection_primitive_index,
249    nir_ray_query_value_intersection_barycentrics,
250    nir_ray_query_value_intersection_front_face,
251    nir_ray_query_value_intersection_object_ray_direction,
252    nir_ray_query_value_intersection_object_ray_origin,
253    nir_ray_query_value_intersection_object_to_world,
254    nir_ray_query_value_intersection_world_to_object,
255    nir_ray_query_value_intersection_candidate_aabb_opaque,
256    nir_ray_query_value_tmin,
257    nir_ray_query_value_flags,
258    nir_ray_query_value_world_ray_direction,
259    nir_ray_query_value_world_ray_origin,
260    nir_ray_query_value_intersection_triangle_vertex_positions
261 } nir_ray_query_value;
262 
263 /**
264  * Intel resource flags
265  */
266 typedef enum {
267    nir_resource_intel_bindless = 1u << 0,
268    nir_resource_intel_pushable = 1u << 1,
269    nir_resource_intel_sampler = 1u << 2,
270    nir_resource_intel_non_uniform = 1u << 3,
271 } nir_resource_data_intel;
272 
273 /**
274  * Which components to interpret as signed in cmat_muladd.
275  * See 'Cooperative Matrix Operands' in SPV_KHR_cooperative_matrix.
276  */
277 typedef enum {
278    NIR_CMAT_A_SIGNED = 1u << 0,
279    NIR_CMAT_B_SIGNED = 1u << 1,
280    NIR_CMAT_C_SIGNED = 1u << 2,
281    NIR_CMAT_RESULT_SIGNED = 1u << 3,
282 } nir_cmat_signed;
283 
284 typedef union {
285    bool b;
286    float f32;
287    double f64;
288    int8_t i8;
289    uint8_t u8;
290    int16_t i16;
291    uint16_t u16;
292    int32_t i32;
293    uint32_t u32;
294    int64_t i64;
295    uint64_t u64;
296 } nir_const_value;
297 
298 #define nir_const_value_to_array(arr, c, components, m) \
299    do {                                                 \
300       for (unsigned i = 0; i < components; ++i)         \
301          arr[i] = c[i].m;                               \
302    } while (false)
303 
304 static inline nir_const_value
nir_const_value_for_raw_uint(uint64_t x,unsigned bit_size)305 nir_const_value_for_raw_uint(uint64_t x, unsigned bit_size)
306 {
307    nir_const_value v;
308    memset(&v, 0, sizeof(v));
309 
310    /* clang-format off */
311    switch (bit_size) {
312    case 1:  v.b   = x;  break;
313    case 8:  v.u8  = x;  break;
314    case 16: v.u16 = x;  break;
315    case 32: v.u32 = x;  break;
316    case 64: v.u64 = x;  break;
317    default:
318       unreachable("Invalid bit size");
319    }
320    /* clang-format on */
321 
322    return v;
323 }
324 
325 static inline nir_const_value
nir_const_value_for_int(int64_t i,unsigned bit_size)326 nir_const_value_for_int(int64_t i, unsigned bit_size)
327 {
328    assert(bit_size <= 64);
329    if (bit_size < 64) {
330       assert(i >= (-(1ll << (bit_size - 1))));
331       assert(i < (1ll << (bit_size - 1)));
332    }
333 
334    return nir_const_value_for_raw_uint(i, bit_size);
335 }
336 
337 static inline nir_const_value
nir_const_value_for_uint(uint64_t u,unsigned bit_size)338 nir_const_value_for_uint(uint64_t u, unsigned bit_size)
339 {
340    assert(bit_size <= 64);
341    if (bit_size < 64)
342       assert(u < (1ull << bit_size));
343 
344    return nir_const_value_for_raw_uint(u, bit_size);
345 }
346 
347 static inline nir_const_value
nir_const_value_for_bool(bool b,unsigned bit_size)348 nir_const_value_for_bool(bool b, unsigned bit_size)
349 {
350    /* Booleans use a 0/-1 convention */
351    return nir_const_value_for_int(-(int)b, bit_size);
352 }
353 
354 /* This one isn't inline because it requires half-float conversion */
355 nir_const_value nir_const_value_for_float(double b, unsigned bit_size);
356 
357 static inline int64_t
nir_const_value_as_int(nir_const_value value,unsigned bit_size)358 nir_const_value_as_int(nir_const_value value, unsigned bit_size)
359 {
360    /* clang-format off */
361    switch (bit_size) {
362    /* int1_t uses 0/-1 convention */
363    case 1:  return -(int)value.b;
364    case 8:  return value.i8;
365    case 16: return value.i16;
366    case 32: return value.i32;
367    case 64: return value.i64;
368    default:
369       unreachable("Invalid bit size");
370    }
371    /* clang-format on */
372 }
373 
374 static inline uint64_t
nir_const_value_as_uint(nir_const_value value,unsigned bit_size)375 nir_const_value_as_uint(nir_const_value value, unsigned bit_size)
376 {
377    /* clang-format off */
378    switch (bit_size) {
379    case 1:  return value.b;
380    case 8:  return value.u8;
381    case 16: return value.u16;
382    case 32: return value.u32;
383    case 64: return value.u64;
384    default:
385       unreachable("Invalid bit size");
386    }
387    /* clang-format on */
388 }
389 
390 static inline bool
nir_const_value_as_bool(nir_const_value value,unsigned bit_size)391 nir_const_value_as_bool(nir_const_value value, unsigned bit_size)
392 {
393    int64_t i = nir_const_value_as_int(value, bit_size);
394 
395    /* Booleans of any size use 0/-1 convention */
396    assert(i == 0 || i == -1);
397 
398    return i;
399 }
400 
401 /* This one isn't inline because it requires half-float conversion */
402 double nir_const_value_as_float(nir_const_value value, unsigned bit_size);
403 
404 typedef struct nir_constant {
405    /**
406     * Value of the constant.
407     *
408     * The field used to back the values supplied by the constant is determined
409     * by the type associated with the ``nir_variable``.  Constants may be
410     * scalars, vectors, or matrices.
411     */
412    nir_const_value values[NIR_MAX_VEC_COMPONENTS];
413 
414    /* Indicates all the values are 0s which can enable some optimizations */
415    bool is_null_constant;
416 
417    /* we could get this from the var->type but makes clone *much* easier to
418     * not have to care about the type.
419     */
420    unsigned num_elements;
421 
422    /* Array elements / Structure Fields */
423    struct nir_constant **elements;
424 } nir_constant;
425 
426 /**
427  * Layout qualifiers for gl_FragDepth.
428  *
429  * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
430  * with a layout qualifier.
431  */
432 typedef enum {
433    /** No depth layout is specified. */
434    nir_depth_layout_none,
435    nir_depth_layout_any,
436    nir_depth_layout_greater,
437    nir_depth_layout_less,
438    nir_depth_layout_unchanged
439 } nir_depth_layout;
440 
441 /**
442  * Enum keeping track of how a variable was declared.
443  */
444 typedef enum {
445    /**
446     * Normal declaration.
447     */
448    nir_var_declared_normally = 0,
449 
450    /**
451     * Variable is an implicitly declared built-in that has not been explicitly
452     * re-declared by the shader.
453     */
454    nir_var_declared_implicitly,
455 
456    /**
457     * Variable is implicitly generated by the compiler and should not be
458     * visible via the API.
459     */
460    nir_var_hidden,
461 } nir_var_declaration_type;
462 
463 /**
464  * Either a uniform, global variable, shader input, or shader output. Based on
465  * ir_variable - it should be easy to translate between the two.
466  */
467 
468 typedef struct nir_variable {
469    struct exec_node node;
470 
471    /**
472     * Declared type of the variable
473     */
474    const struct glsl_type *type;
475 
476    /**
477     * Declared name of the variable
478     */
479    char *name;
480 
481    struct nir_variable_data {
482       /**
483        * Storage class of the variable.
484        *
485        * :c:struct:`nir_variable_mode`
486        */
487       unsigned mode : 18;
488 
489       /**
490        * Is the variable read-only?
491        *
492        * This is set for variables declared as ``const``, shader inputs,
493        * and uniforms.
494        */
495       unsigned read_only : 1;
496       unsigned centroid : 1;
497       unsigned sample : 1;
498       unsigned patch : 1;
499       unsigned invariant : 1;
500 
501       /**
502        * Was an 'invariant' qualifier explicitly set in the shader?
503        *
504        * This is used to cross validate glsl qualifiers.
505        */
506       unsigned explicit_invariant:1;
507 
508       /**
509        * Is the variable a ray query?
510        */
511       unsigned ray_query : 1;
512 
513       /**
514        * Precision qualifier.
515        *
516        * In desktop GLSL we do not care about precision qualifiers at all, in
517        * fact, the spec says that precision qualifiers are ignored.
518        *
519        * To make things easy, we make it so that this field is always
520        * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
521        * have the same precision value and the checks we add in the compiler
522        * for this field will never break a desktop shader compile.
523        */
524       unsigned precision : 2;
525 
526       /**
527        * Has this variable been statically assigned?
528        *
529        * This answers whether the variable was assigned in any path of
530        * the shader during ast_to_hir.  This doesn't answer whether it is
531        * still written after dead code removal, nor is it maintained in
532        * non-ast_to_hir.cpp (GLSL parsing) paths.
533        */
534       unsigned assigned : 1;
535 
536       /**
537        * Can this variable be coalesced with another?
538        *
539        * This is set by nir_lower_io_to_temporaries to say that any
540        * copies involving this variable should stay put. Propagating it can
541        * duplicate the resulting load/store, which is not wanted, and may
542        * result in a load/store of the variable with an indirect offset which
543        * the backend may not be able to handle.
544        */
545       unsigned cannot_coalesce : 1;
546 
547       /**
548        * When separate shader programs are enabled, only input/outputs between
549        * the stages of a multi-stage separate program can be safely removed
550        * from the shader interface. Other input/outputs must remains active.
551        *
552        * This is also used to make sure xfb varyings that are unused by the
553        * fragment shader are not removed.
554        */
555       unsigned always_active_io : 1;
556 
557       /**
558        * Interpolation mode for shader inputs / outputs
559        *
560        * :c:enum:`glsl_interp_mode`
561        */
562       unsigned interpolation : 3;
563 
564       /**
565        * If non-zero, then this variable may be packed along with other variables
566        * into a single varying slot, so this offset should be applied when
567        * accessing components.  For example, an offset of 1 means that the x
568        * component of this variable is actually stored in component y of the
569        * location specified by ``location``.
570        */
571       unsigned location_frac : 2;
572 
573       /**
574        * If true, this variable represents an array of scalars that should
575        * be tightly packed.  In other words, consecutive array elements
576        * should be stored one component apart, rather than one slot apart.
577        */
578       unsigned compact : 1;
579 
580       /**
581        * Whether this is a fragment shader output implicitly initialized with
582        * the previous contents of the specified render target at the
583        * framebuffer location corresponding to this shader invocation.
584        */
585       unsigned fb_fetch_output : 1;
586 
587       /**
588        * Non-zero if this variable is considered bindless as defined by
589        * ARB_bindless_texture.
590        */
591       unsigned bindless : 1;
592 
593       /**
594        * Was an explicit binding set in the shader?
595        */
596       unsigned explicit_binding : 1;
597 
598       /**
599        * Was the location explicitly set in the shader?
600        *
601        * If the location is explicitly set in the shader, it **cannot** be changed
602        * by the linker or by the API (e.g., calls to ``glBindAttribLocation`` have
603        * no effect).
604        */
605       unsigned explicit_location : 1;
606 
607       /**
608        * Is this varying used by transform feedback?
609        *
610        * This is used by the linker to decide if it's safe to pack the varying.
611        */
612       unsigned is_xfb : 1;
613 
614       /**
615        * Is this varying used only by transform feedback?
616        *
617        * This is used by the linker to decide if its safe to pack the varying.
618        */
619       unsigned is_xfb_only : 1;
620 
621       /**
622        * Was a transfer feedback buffer set in the shader?
623        */
624       unsigned explicit_xfb_buffer : 1;
625 
626       /**
627        * Was a transfer feedback stride set in the shader?
628        */
629       unsigned explicit_xfb_stride : 1;
630 
631       /**
632        * Was an explicit offset set in the shader?
633        */
634       unsigned explicit_offset : 1;
635 
636       /**
637        * Layout of the matrix.  Uses glsl_matrix_layout values.
638        */
639       unsigned matrix_layout : 2;
640 
641       /**
642        * Non-zero if this variable was created by lowering a named interface
643        * block.
644        */
645       unsigned from_named_ifc_block : 1;
646 
647       /**
648        * Non-zero if the variable must be a shader input. This is useful for
649        * constraints on function parameters.
650        */
651       unsigned must_be_shader_input : 1;
652 
653       /**
654        * Has this variable been used for reading or writing?
655        *
656        * Several GLSL semantic checks require knowledge of whether or not a
657        * variable has been used.  For example, it is an error to redeclare a
658        * variable as invariant after it has been used.
659        */
660       unsigned used:1;
661 
662       /**
663        * How the variable was declared.  See nir_var_declaration_type.
664        *
665        * This is used to detect variables generated by the compiler, so should
666        * not be visible via the API.
667        */
668       unsigned how_declared : 2;
669 
670       /**
671        * Is this variable per-view?  If so, we know it must be an array with
672        * size corresponding to the number of views.
673        */
674       unsigned per_view : 1;
675 
676       /**
677        * Whether the variable is per-primitive.
678        * Can be use by Mesh Shader outputs and corresponding Fragment Shader inputs.
679        */
680       unsigned per_primitive : 1;
681 
682       /**
683        * Whether the variable is declared to indicate that a fragment shader
684        * input will not have interpolated values.
685        */
686       unsigned per_vertex : 1;
687 
688       /**
689        * Layout qualifier for gl_FragDepth. See nir_depth_layout.
690        *
691        * This is not equal to ``ir_depth_layout_none`` if and only if this
692        * variable is ``gl_FragDepth`` and a layout qualifier is specified.
693        */
694       unsigned depth_layout : 3;
695 
696       /**
697        * Vertex stream output identifier.
698        *
699        * For packed outputs, NIR_STREAM_PACKED is set and bits [2*i+1,2*i]
700        * indicate the stream of the i-th component.
701        */
702       unsigned stream : 9;
703 
704       /**
705        * See gl_access_qualifier.
706        *
707        * Access flags for memory variables (SSBO/global), image uniforms, and
708        * bindless images in uniforms/inputs/outputs.
709        */
710       unsigned access : 9;
711 
712       /**
713        * Descriptor set binding for sampler or UBO.
714        */
715       unsigned descriptor_set : 5;
716 
717       /**
718        * output index for dual source blending.
719        */
720       unsigned index;
721 
722       /**
723        * Initial binding point for a sampler or UBO.
724        *
725        * For array types, this represents the binding point for the first element.
726        */
727       unsigned binding;
728 
729       /**
730        * Storage location of the base of this variable
731        *
732        * The precise meaning of this field depends on the nature of the variable.
733        *
734        *   - Vertex shader input: one of the values from ``gl_vert_attrib``.
735        *   - Vertex shader output: one of the values from ``gl_varying_slot``.
736        *   - Geometry shader input: one of the values from ``gl_varying_slot``.
737        *   - Geometry shader output: one of the values from ``gl_varying_slot``.
738        *   - Fragment shader input: one of the values from ``gl_varying_slot``.
739        *   - Fragment shader output: one of the values from ``gl_frag_result``.
740        *   - Task shader output: one of the values from ``gl_varying_slot``.
741        *   - Mesh shader input: one of the values from ``gl_varying_slot``.
742        *   - Mesh shader output: one of the values from ``gl_varying_slot``.
743        *   - Uniforms: Per-stage uniform slot number for default uniform block.
744        *   - Uniforms: Index within the uniform block definition for UBO members.
745        *   - Non-UBO Uniforms: uniform slot number.
746        *   - Other: This field is not currently used.
747        *
748        * If the variable is a uniform, shader input, or shader output, and the
749        * slot has not been assigned, the value will be -1.
750        */
751       int location;
752 
753       /** Required alignment of this variable */
754       unsigned alignment;
755 
756       /**
757        * The actual location of the variable in the IR. Only valid for inputs,
758        * outputs, uniforms (including samplers and images), and for UBO and SSBO
759        * variables in GLSL.
760        */
761       unsigned driver_location;
762 
763       /**
764        * Location an atomic counter or transform feedback is stored at.
765        */
766       unsigned offset;
767 
768       union {
769          struct {
770             /** Image internal format if specified explicitly, otherwise PIPE_FORMAT_NONE. */
771             enum pipe_format format;
772          } image;
773 
774          struct {
775             /**
776              * For OpenCL inline samplers. See cl_sampler_addressing_mode and cl_sampler_filter_mode
777              */
778             unsigned is_inline_sampler : 1;
779             unsigned addressing_mode : 3;
780             unsigned normalized_coordinates : 1;
781             unsigned filter_mode : 1;
782          } sampler;
783 
784          struct {
785             /**
786              * Transform feedback buffer.
787              */
788             uint16_t buffer : 2;
789 
790             /**
791              * Transform feedback stride.
792              */
793             uint16_t stride;
794          } xfb;
795       };
796 
797       /** Name of the node this payload will be enqueued to. */
798       const char *node_name;
799    } data;
800 
801    /**
802     * Identifier for this variable generated by nir_index_vars() that is unique
803     * among other variables in the same exec_list.
804     */
805    unsigned index;
806 
807    /* Number of nir_variable_data members */
808    uint16_t num_members;
809 
810    /**
811     * Built-in state that backs this uniform
812     *
813     * Once set at variable creation, ``state_slots`` must remain invariant.
814     * This is because, ideally, this array would be shared by all clones of
815     * this variable in the IR tree.  In other words, we'd really like for it
816     * to be a fly-weight.
817     *
818     * If the variable is not a uniform, ``num_state_slots`` will be zero and
819     * ``state_slots`` will be ``NULL``.
820     *
821     * Number of state slots used.
822     */
823    uint16_t num_state_slots;
824    /** State descriptors. */
825    nir_state_slot *state_slots;
826 
827    /**
828     * Constant expression assigned in the initializer of the variable
829     *
830     * This field should only be used temporarily by creators of NIR shaders
831     * and then nir_lower_variable_initializers can be used to get rid of them.
832     * Most of the rest of NIR ignores this field or asserts that it's NULL.
833     */
834    nir_constant *constant_initializer;
835 
836    /**
837     * Global variable assigned in the initializer of the variable
838     * This field should only be used temporarily by creators of NIR shaders
839     * and then nir_lower_variable_initializers can be used to get rid of them.
840     * Most of the rest of NIR ignores this field or asserts that it's NULL.
841     */
842    struct nir_variable *pointer_initializer;
843 
844    /**
845     * For variables that are in an interface block or are an instance of an
846     * interface block, this is the ``GLSL_TYPE_INTERFACE`` type for that block.
847     *
848     * ``ir_variable.location``
849     */
850    const struct glsl_type *interface_type;
851 
852    /**
853     * Description of per-member data for per-member struct variables
854     *
855     * This is used for variables which are actually an amalgamation of
856     * multiple entities such as a struct of built-in values or a struct of
857     * inputs each with their own layout specifier.  This is only allowed on
858     * variables with a struct or array of array of struct type.
859     */
860    struct nir_variable_data *members;
861 } nir_variable;
862 
863 static inline bool
_nir_shader_variable_has_mode(nir_variable * var,unsigned modes)864 _nir_shader_variable_has_mode(nir_variable *var, unsigned modes)
865 {
866    /* This isn't a shader variable */
867    assert(!(modes & nir_var_function_temp));
868    return var->data.mode & modes;
869 }
870 
871 #define nir_foreach_variable_in_list(var, var_list) \
872    foreach_list_typed(nir_variable, var, node, var_list)
873 
874 #define nir_foreach_variable_in_list_safe(var, var_list) \
875    foreach_list_typed_safe(nir_variable, var, node, var_list)
876 
877 #define nir_foreach_variable_in_shader(var, shader) \
878    nir_foreach_variable_in_list(var, &(shader)->variables)
879 
880 #define nir_foreach_variable_in_shader_safe(var, shader) \
881    nir_foreach_variable_in_list_safe(var, &(shader)->variables)
882 
883 #define nir_foreach_variable_with_modes(var, shader, modes) \
884    nir_foreach_variable_in_shader(var, shader)              \
885       if (_nir_shader_variable_has_mode(var, modes))
886 
887 #define nir_foreach_variable_with_modes_safe(var, shader, modes) \
888    nir_foreach_variable_in_shader_safe(var, shader)              \
889       if (_nir_shader_variable_has_mode(var, modes))
890 
891 #define nir_foreach_shader_in_variable(var, shader) \
892    nir_foreach_variable_with_modes(var, shader, nir_var_shader_in)
893 
894 #define nir_foreach_shader_in_variable_safe(var, shader) \
895    nir_foreach_variable_with_modes_safe(var, shader, nir_var_shader_in)
896 
897 #define nir_foreach_shader_out_variable(var, shader) \
898    nir_foreach_variable_with_modes(var, shader, nir_var_shader_out)
899 
900 #define nir_foreach_shader_out_variable_safe(var, shader) \
901    nir_foreach_variable_with_modes_safe(var, shader, nir_var_shader_out)
902 
903 #define nir_foreach_uniform_variable(var, shader) \
904    nir_foreach_variable_with_modes(var, shader, nir_var_uniform)
905 
906 #define nir_foreach_uniform_variable_safe(var, shader) \
907    nir_foreach_variable_with_modes_safe(var, shader, nir_var_uniform)
908 
909 #define nir_foreach_image_variable(var, shader) \
910    nir_foreach_variable_with_modes(var, shader, nir_var_image)
911 
912 #define nir_foreach_image_variable_safe(var, shader) \
913    nir_foreach_variable_with_modes_safe(var, shader, nir_var_image)
914 
915 static inline bool
nir_variable_is_global(const nir_variable * var)916 nir_variable_is_global(const nir_variable *var)
917 {
918    return var->data.mode != nir_var_function_temp;
919 }
920 
921 typedef enum ENUM_PACKED {
922    nir_instr_type_alu,
923    nir_instr_type_deref,
924    nir_instr_type_call,
925    nir_instr_type_tex,
926    nir_instr_type_intrinsic,
927    nir_instr_type_load_const,
928    nir_instr_type_jump,
929    nir_instr_type_undef,
930    nir_instr_type_phi,
931    nir_instr_type_parallel_copy,
932 } nir_instr_type;
933 
934 typedef struct nir_instr {
935    struct exec_node node;
936    struct nir_block *block;
937    nir_instr_type type;
938 
939    /* A temporary for optimization and analysis passes to use for storing
940     * flags.  For instance, DCE uses this to store the "dead/live" info.
941     */
942    uint8_t pass_flags;
943 
944    /** generic instruction index. */
945    uint32_t index;
946 } nir_instr;
947 
948 static inline nir_instr *
nir_instr_next(nir_instr * instr)949 nir_instr_next(nir_instr *instr)
950 {
951    struct exec_node *next = exec_node_get_next(&instr->node);
952    if (exec_node_is_tail_sentinel(next))
953       return NULL;
954    else
955       return exec_node_data(nir_instr, next, node);
956 }
957 
958 static inline nir_instr *
nir_instr_prev(nir_instr * instr)959 nir_instr_prev(nir_instr *instr)
960 {
961    struct exec_node *prev = exec_node_get_prev(&instr->node);
962    if (exec_node_is_head_sentinel(prev))
963       return NULL;
964    else
965       return exec_node_data(nir_instr, prev, node);
966 }
967 
968 static inline bool
nir_instr_is_first(const nir_instr * instr)969 nir_instr_is_first(const nir_instr *instr)
970 {
971    return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
972 }
973 
974 static inline bool
nir_instr_is_last(const nir_instr * instr)975 nir_instr_is_last(const nir_instr *instr)
976 {
977    return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
978 }
979 
980 typedef struct nir_def {
981    /** Instruction which produces this SSA value. */
982    nir_instr *parent_instr;
983 
984    /** set of nir_instrs where this register is used (read from) */
985    struct list_head uses;
986 
987    /** generic SSA definition index. */
988    unsigned index;
989 
990    uint8_t num_components;
991 
992    /* The bit-size of each channel; must be one of 1, 8, 16, 32, or 64 */
993    uint8_t bit_size;
994 
995    /**
996     * True if this SSA value may have different values in different SIMD
997     * invocations of the shader.  This is set by nir_divergence_analysis.
998     */
999    bool divergent;
1000 } nir_def;
1001 
1002 struct nir_src;
1003 struct nir_if;
1004 
1005 typedef struct nir_src {
1006    /* Instruction or if-statement that consumes this value as a source. This
1007     * should only be accessed through nir_src_* helpers.
1008     *
1009     * Internally, it is a tagged pointer to a nir_instr or nir_if.
1010     */
1011    uintptr_t _parent;
1012 
1013    struct list_head use_link;
1014    nir_def *ssa;
1015 } nir_src;
1016 
1017 /* Layout of the _parent pointer. Bottom bit is set for nir_if parents (clear
1018  * for nir_instr parents). Remaining bits are the pointer.
1019  */
1020 #define NIR_SRC_PARENT_IS_IF (0x1)
1021 #define NIR_SRC_PARENT_MASK (~((uintptr_t) NIR_SRC_PARENT_IS_IF))
1022 
1023 static inline bool
nir_src_is_if(const nir_src * src)1024 nir_src_is_if(const nir_src *src)
1025 {
1026    return src->_parent & NIR_SRC_PARENT_IS_IF;
1027 }
1028 
1029 static inline nir_instr *
nir_src_parent_instr(const nir_src * src)1030 nir_src_parent_instr(const nir_src *src)
1031 {
1032    assert(!nir_src_is_if(src));
1033 
1034    /* Because it is not an if, the tag is 0, therefore we do not need to mask */
1035    return (nir_instr *)(src->_parent);
1036 }
1037 
1038 static inline struct nir_if *
nir_src_parent_if(const nir_src * src)1039 nir_src_parent_if(const nir_src *src)
1040 {
1041    assert(nir_src_is_if(src));
1042 
1043    /* Because it is an if, the tag is 1, so we need to mask */
1044    return (struct nir_if *)(src->_parent & NIR_SRC_PARENT_MASK);
1045 }
1046 
1047 static inline void
_nir_src_set_parent(nir_src * src,void * parent,bool is_if)1048 _nir_src_set_parent(nir_src *src, void *parent, bool is_if)
1049 {
1050     uintptr_t ptr = (uintptr_t) parent;
1051     assert((ptr & ~NIR_SRC_PARENT_MASK) == 0 && "pointer must be aligned");
1052 
1053     if (is_if)
1054        ptr |= NIR_SRC_PARENT_IS_IF;
1055 
1056     src->_parent = ptr;
1057 }
1058 
1059 static inline void
nir_src_set_parent_instr(nir_src * src,nir_instr * parent_instr)1060 nir_src_set_parent_instr(nir_src *src, nir_instr *parent_instr)
1061 {
1062    _nir_src_set_parent(src, parent_instr, false);
1063 }
1064 
1065 static inline void
nir_src_set_parent_if(nir_src * src,struct nir_if * parent_if)1066 nir_src_set_parent_if(nir_src *src, struct nir_if *parent_if)
1067 {
1068    _nir_src_set_parent(src, parent_if, true);
1069 }
1070 
1071 static inline nir_src
nir_src_init(void)1072 nir_src_init(void)
1073 {
1074    nir_src src = { 0 };
1075    return src;
1076 }
1077 
1078 #define NIR_SRC_INIT nir_src_init()
1079 
1080 #define nir_foreach_use_including_if(src, reg_or_ssa_def) \
1081    list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
1082 
1083 #define nir_foreach_use_including_if_safe(src, reg_or_ssa_def) \
1084    list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
1085 
1086 #define nir_foreach_use(src, reg_or_ssa_def)         \
1087    nir_foreach_use_including_if(src, reg_or_ssa_def) \
1088       if (!nir_src_is_if(src))
1089 
1090 #define nir_foreach_use_safe(src, reg_or_ssa_def)         \
1091    nir_foreach_use_including_if_safe(src, reg_or_ssa_def) \
1092       if (!nir_src_is_if(src))
1093 
1094 #define nir_foreach_if_use(src, reg_or_ssa_def)      \
1095    nir_foreach_use_including_if(src, reg_or_ssa_def) \
1096       if (nir_src_is_if(src))
1097 
1098 #define nir_foreach_if_use_safe(src, reg_or_ssa_def)      \
1099    nir_foreach_use_including_if_safe(src, reg_or_ssa_def) \
1100       if (nir_src_is_if(src))
1101 
1102 static inline bool
nir_def_used_by_if(const nir_def * def)1103 nir_def_used_by_if(const nir_def *def)
1104 {
1105    nir_foreach_if_use(_, def)
1106       return true;
1107 
1108    return false;
1109 }
1110 
1111 static inline nir_src
nir_src_for_ssa(nir_def * def)1112 nir_src_for_ssa(nir_def *def)
1113 {
1114    nir_src src = NIR_SRC_INIT;
1115 
1116    src.ssa = def;
1117 
1118    return src;
1119 }
1120 
1121 static inline unsigned
nir_src_bit_size(nir_src src)1122 nir_src_bit_size(nir_src src)
1123 {
1124    return src.ssa->bit_size;
1125 }
1126 
1127 static inline unsigned
nir_src_num_components(nir_src src)1128 nir_src_num_components(nir_src src)
1129 {
1130    return src.ssa->num_components;
1131 }
1132 
1133 static inline bool
nir_src_is_const(nir_src src)1134 nir_src_is_const(nir_src src)
1135 {
1136    return src.ssa->parent_instr->type == nir_instr_type_load_const;
1137 }
1138 
1139 static inline bool
nir_src_is_undef(nir_src src)1140 nir_src_is_undef(nir_src src)
1141 {
1142    return src.ssa->parent_instr->type == nir_instr_type_undef;
1143 }
1144 
1145 static inline bool
nir_src_is_divergent(nir_src src)1146 nir_src_is_divergent(nir_src src)
1147 {
1148    return src.ssa->divergent;
1149 }
1150 
1151 /* Are all components the same, ie. .xxxx */
1152 static inline bool
nir_is_same_comp_swizzle(uint8_t * swiz,unsigned nr_comp)1153 nir_is_same_comp_swizzle(uint8_t *swiz, unsigned nr_comp)
1154 {
1155    for (unsigned i = 1; i < nr_comp; i++)
1156       if (swiz[i] != swiz[0])
1157          return false;
1158    return true;
1159 }
1160 
1161 /* Are all components sequential, ie. .yzw */
1162 static inline bool
nir_is_sequential_comp_swizzle(uint8_t * swiz,unsigned nr_comp)1163 nir_is_sequential_comp_swizzle(uint8_t *swiz, unsigned nr_comp)
1164 {
1165    for (unsigned i = 1; i < nr_comp; i++)
1166       if (swiz[i] != (swiz[0] + i))
1167          return false;
1168    return true;
1169 }
1170 
1171 /***/
1172 typedef struct nir_alu_src {
1173    /** Base source */
1174    nir_src src;
1175 
1176    /**
1177     * For each input component, says which component of the register it is
1178     * chosen from.
1179     *
1180     * Note that which elements of the swizzle are used and which are ignored
1181     * are based on the write mask for most opcodes - for example, a statement
1182     * like "foo.xzw = bar.zyx" would have a writemask of 1101b and a swizzle
1183     * of {2, 1, x, 0} where x means "don't care."
1184     */
1185    uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
1186 } nir_alu_src;
1187 
1188 /** NIR sized and unsized types
1189  *
1190  * The values in this enum are carefully chosen so that the sized type is
1191  * just the unsized type OR the number of bits.
1192  */
1193 /* clang-format off */
1194 typedef enum ENUM_PACKED {
1195    nir_type_invalid =   0, /* Not a valid type */
1196    nir_type_int =       2,
1197    nir_type_uint =      4,
1198    nir_type_bool =      6,
1199    nir_type_float =     128,
1200    nir_type_bool1 =     1  | nir_type_bool,
1201    nir_type_bool8 =     8  | nir_type_bool,
1202    nir_type_bool16 =    16 | nir_type_bool,
1203    nir_type_bool32 =    32 | nir_type_bool,
1204    nir_type_int1 =      1  | nir_type_int,
1205    nir_type_int8 =      8  | nir_type_int,
1206    nir_type_int16 =     16 | nir_type_int,
1207    nir_type_int32 =     32 | nir_type_int,
1208    nir_type_int64 =     64 | nir_type_int,
1209    nir_type_uint1 =     1  | nir_type_uint,
1210    nir_type_uint8 =     8  | nir_type_uint,
1211    nir_type_uint16 =    16 | nir_type_uint,
1212    nir_type_uint32 =    32 | nir_type_uint,
1213    nir_type_uint64 =    64 | nir_type_uint,
1214    nir_type_float16 =   16 | nir_type_float,
1215    nir_type_float32 =   32 | nir_type_float,
1216    nir_type_float64 =   64 | nir_type_float,
1217 } nir_alu_type;
1218 /* clang-format on */
1219 
1220 #define NIR_ALU_TYPE_SIZE_MASK      0x79
1221 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
1222 
1223 static inline unsigned
nir_alu_type_get_type_size(nir_alu_type type)1224 nir_alu_type_get_type_size(nir_alu_type type)
1225 {
1226    return type & NIR_ALU_TYPE_SIZE_MASK;
1227 }
1228 
1229 static inline nir_alu_type
nir_alu_type_get_base_type(nir_alu_type type)1230 nir_alu_type_get_base_type(nir_alu_type type)
1231 {
1232    return (nir_alu_type)(type & NIR_ALU_TYPE_BASE_TYPE_MASK);
1233 }
1234 
1235 nir_alu_type
1236 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type);
1237 
1238 static inline nir_alu_type
nir_get_nir_type_for_glsl_type(const struct glsl_type * type)1239 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
1240 {
1241    return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
1242 }
1243 
1244 enum glsl_base_type
1245 nir_get_glsl_base_type_for_nir_type(nir_alu_type base_type);
1246 
1247 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
1248                               nir_rounding_mode rnd);
1249 
1250 /**
1251  * Atomic intrinsics perform different operations depending on the value of
1252  * their atomic_op constant index. nir_atomic_op defines the operations.
1253  */
1254 typedef enum {
1255    nir_atomic_op_iadd,
1256    nir_atomic_op_imin,
1257    nir_atomic_op_umin,
1258    nir_atomic_op_imax,
1259    nir_atomic_op_umax,
1260    nir_atomic_op_iand,
1261    nir_atomic_op_ior,
1262    nir_atomic_op_ixor,
1263    nir_atomic_op_xchg,
1264    nir_atomic_op_fadd,
1265    nir_atomic_op_fmin,
1266    nir_atomic_op_fmax,
1267    nir_atomic_op_cmpxchg,
1268    nir_atomic_op_fcmpxchg,
1269    nir_atomic_op_inc_wrap,
1270    nir_atomic_op_dec_wrap,
1271 } nir_atomic_op;
1272 
1273 static inline nir_alu_type
nir_atomic_op_type(nir_atomic_op op)1274 nir_atomic_op_type(nir_atomic_op op)
1275 {
1276    switch (op) {
1277    case nir_atomic_op_imin:
1278    case nir_atomic_op_imax:
1279       return nir_type_int;
1280 
1281    case nir_atomic_op_fadd:
1282    case nir_atomic_op_fmin:
1283    case nir_atomic_op_fmax:
1284    case nir_atomic_op_fcmpxchg:
1285       return nir_type_float;
1286 
1287    case nir_atomic_op_iadd:
1288    case nir_atomic_op_iand:
1289    case nir_atomic_op_ior:
1290    case nir_atomic_op_ixor:
1291    case nir_atomic_op_xchg:
1292    case nir_atomic_op_cmpxchg:
1293    case nir_atomic_op_umin:
1294    case nir_atomic_op_umax:
1295    case nir_atomic_op_inc_wrap:
1296    case nir_atomic_op_dec_wrap:
1297       return nir_type_uint;
1298    }
1299 
1300    unreachable("Invalid nir_atomic_op");
1301 }
1302 
1303 /** Returns nir_op_vec<num_components> or nir_op_mov if num_components == 1
1304  *
1305  * This is subtly different from nir_op_is_vec() which returns false for
1306  * nir_op_mov.  Returning nir_op_mov from nir_op_vec() when num_components == 1
1307  * makes sense under the assumption that the num_components of the resulting
1308  * nir_def will same as what is passed in here because a single-component mov
1309  * is effectively a vec1.  However, if alu->def.num_components > 1, nir_op_mov
1310  * has different semantics from nir_op_vec* so so code which detects "is this
1311  * a vec?" typically needs to handle nir_op_mov separate from nir_op_vecN.
1312  *
1313  * In the unlikely case where you can handle nir_op_vecN and nir_op_mov
1314  * together, use nir_op_is_vec_or_mov().
1315  */
1316 nir_op
1317 nir_op_vec(unsigned num_components);
1318 
1319 /** Returns true if this op is one of nir_op_vec*
1320  *
1321  * Returns false for nir_op_mov.  See nir_op_vec() for more details.
1322  */
1323 bool
1324 nir_op_is_vec(nir_op op);
1325 
1326 static inline bool
nir_op_is_vec_or_mov(nir_op op)1327 nir_op_is_vec_or_mov(nir_op op)
1328 {
1329    return op == nir_op_mov || nir_op_is_vec(op);
1330 }
1331 
1332 static inline bool
nir_is_float_control_signed_zero_preserve(unsigned execution_mode,unsigned bit_size)1333 nir_is_float_control_signed_zero_preserve(unsigned execution_mode, unsigned bit_size)
1334 {
1335    return (16 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_PRESERVE_FP16) ||
1336           (32 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_PRESERVE_FP32) ||
1337           (64 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_PRESERVE_FP64);
1338 }
1339 
1340 static inline bool
nir_is_float_control_inf_preserve(unsigned execution_mode,unsigned bit_size)1341 nir_is_float_control_inf_preserve(unsigned execution_mode, unsigned bit_size)
1342 {
1343    return (16 == bit_size && execution_mode & FLOAT_CONTROLS_INF_PRESERVE_FP16) ||
1344           (32 == bit_size && execution_mode & FLOAT_CONTROLS_INF_PRESERVE_FP32) ||
1345           (64 == bit_size && execution_mode & FLOAT_CONTROLS_INF_PRESERVE_FP64);
1346 }
1347 
1348 static inline bool
nir_is_float_control_nan_preserve(unsigned execution_mode,unsigned bit_size)1349 nir_is_float_control_nan_preserve(unsigned execution_mode, unsigned bit_size)
1350 {
1351    return (16 == bit_size && execution_mode & FLOAT_CONTROLS_NAN_PRESERVE_FP16) ||
1352           (32 == bit_size && execution_mode & FLOAT_CONTROLS_NAN_PRESERVE_FP32) ||
1353           (64 == bit_size && execution_mode & FLOAT_CONTROLS_NAN_PRESERVE_FP64);
1354 }
1355 
1356 static inline bool
nir_is_float_control_signed_zero_inf_nan_preserve(unsigned execution_mode,unsigned bit_size)1357 nir_is_float_control_signed_zero_inf_nan_preserve(unsigned execution_mode, unsigned bit_size)
1358 {
1359    return (16 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16) ||
1360           (32 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32) ||
1361           (64 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
1362 }
1363 
1364 static inline bool
nir_is_denorm_flush_to_zero(unsigned execution_mode,unsigned bit_size)1365 nir_is_denorm_flush_to_zero(unsigned execution_mode, unsigned bit_size)
1366 {
1367    return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16) ||
1368           (32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32) ||
1369           (64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
1370 }
1371 
1372 static inline bool
nir_is_denorm_preserve(unsigned execution_mode,unsigned bit_size)1373 nir_is_denorm_preserve(unsigned execution_mode, unsigned bit_size)
1374 {
1375    return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP16) ||
1376           (32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP32) ||
1377           (64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP64);
1378 }
1379 
1380 static inline bool
nir_is_rounding_mode_rtne(unsigned execution_mode,unsigned bit_size)1381 nir_is_rounding_mode_rtne(unsigned execution_mode, unsigned bit_size)
1382 {
1383    return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
1384           (32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
1385           (64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
1386 }
1387 
1388 static inline bool
nir_is_rounding_mode_rtz(unsigned execution_mode,unsigned bit_size)1389 nir_is_rounding_mode_rtz(unsigned execution_mode, unsigned bit_size)
1390 {
1391    return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
1392           (32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
1393           (64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
1394 }
1395 
1396 static inline bool
nir_has_any_rounding_mode_rtz(unsigned execution_mode)1397 nir_has_any_rounding_mode_rtz(unsigned execution_mode)
1398 {
1399    return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
1400           (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
1401           (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
1402 }
1403 
1404 static inline bool
nir_has_any_rounding_mode_rtne(unsigned execution_mode)1405 nir_has_any_rounding_mode_rtne(unsigned execution_mode)
1406 {
1407    return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
1408           (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
1409           (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
1410 }
1411 
1412 static inline nir_rounding_mode
nir_get_rounding_mode_from_float_controls(unsigned execution_mode,nir_alu_type type)1413 nir_get_rounding_mode_from_float_controls(unsigned execution_mode,
1414                                           nir_alu_type type)
1415 {
1416    if (nir_alu_type_get_base_type(type) != nir_type_float)
1417       return nir_rounding_mode_undef;
1418 
1419    unsigned bit_size = nir_alu_type_get_type_size(type);
1420 
1421    if (nir_is_rounding_mode_rtz(execution_mode, bit_size))
1422       return nir_rounding_mode_rtz;
1423    if (nir_is_rounding_mode_rtne(execution_mode, bit_size))
1424       return nir_rounding_mode_rtne;
1425    return nir_rounding_mode_undef;
1426 }
1427 
1428 static inline bool
nir_has_any_rounding_mode_enabled(unsigned execution_mode)1429 nir_has_any_rounding_mode_enabled(unsigned execution_mode)
1430 {
1431    bool result =
1432       nir_has_any_rounding_mode_rtne(execution_mode) ||
1433       nir_has_any_rounding_mode_rtz(execution_mode);
1434    return result;
1435 }
1436 
1437 typedef enum {
1438    /**
1439     * Operation where the first two sources are commutative.
1440     *
1441     * For 2-source operations, this just mathematical commutativity.  Some
1442     * 3-source operations, like ffma, are only commutative in the first two
1443     * sources.
1444     */
1445    NIR_OP_IS_2SRC_COMMUTATIVE = (1 << 0),
1446 
1447    /**
1448     * Operation is associative
1449     */
1450    NIR_OP_IS_ASSOCIATIVE = (1 << 1),
1451 
1452    /**
1453     * Operation where src[0] is used to select src[1] on true or src[2] false.
1454     * src[0] may be Boolean, or it may be another type used in an implicit
1455     * comparison.
1456     */
1457    NIR_OP_IS_SELECTION = (1 << 2),
1458 
1459    /**
1460     * Operation where a screen-space derivative is taken of src[0]. Must not be
1461     * moved into non-uniform control flow.
1462     */
1463    NIR_OP_IS_DERIVATIVE = (1 << 3),
1464 } nir_op_algebraic_property;
1465 
1466 /* vec16 is the widest ALU op in NIR, making the max number of input of ALU
1467  * instructions to be the same as NIR_MAX_VEC_COMPONENTS.
1468  */
1469 #define NIR_ALU_MAX_INPUTS NIR_MAX_VEC_COMPONENTS
1470 
1471 /***/
1472 typedef struct nir_op_info {
1473    /** Name of the NIR ALU opcode */
1474    const char *name;
1475 
1476    /** Number of inputs (sources) */
1477    uint8_t num_inputs;
1478 
1479    /**
1480     * The number of components in the output
1481     *
1482     * If non-zero, this is the size of the output and input sizes are
1483     * explicitly given; swizzle and writemask are still in effect, but if
1484     * the output component is masked out, then the input component may
1485     * still be in use.
1486     *
1487     * If zero, the opcode acts in the standard, per-component manner; the
1488     * operation is performed on each component (except the ones that are
1489     * masked out) with the input being taken from the input swizzle for
1490     * that component.
1491     *
1492     * The size of some of the inputs may be given (i.e. non-zero) even
1493     * though output_size is zero; in that case, the inputs with a zero
1494     * size act per-component, while the inputs with non-zero size don't.
1495     */
1496    uint8_t output_size;
1497 
1498    /**
1499     * The type of vector that the instruction outputs. Note that the
1500     * staurate modifier is only allowed on outputs with the float type.
1501     */
1502    nir_alu_type output_type;
1503 
1504    /**
1505     * The number of components in each input
1506     *
1507     * See nir_op_infos::output_size for more detail about the relationship
1508     * between input and output sizes.
1509     */
1510    uint8_t input_sizes[NIR_ALU_MAX_INPUTS];
1511 
1512    /**
1513     * The type of vector that each input takes.
1514     */
1515    nir_alu_type input_types[NIR_ALU_MAX_INPUTS];
1516 
1517    /** Algebraic properties of this opcode */
1518    nir_op_algebraic_property algebraic_properties;
1519 
1520    /** Whether this represents a numeric conversion opcode */
1521    bool is_conversion;
1522 } nir_op_info;
1523 
1524 /** Metadata for each nir_op, indexed by opcode */
1525 extern const nir_op_info nir_op_infos[nir_num_opcodes];
1526 
1527 static inline bool
nir_op_is_selection(nir_op op)1528 nir_op_is_selection(nir_op op)
1529 {
1530    return (nir_op_infos[op].algebraic_properties & NIR_OP_IS_SELECTION) != 0;
1531 }
1532 
1533 static inline bool
nir_op_is_derivative(nir_op op)1534 nir_op_is_derivative(nir_op op)
1535 {
1536    return (nir_op_infos[op].algebraic_properties & NIR_OP_IS_DERIVATIVE) != 0;
1537 }
1538 
1539 /***/
1540 typedef struct nir_alu_instr {
1541    /** Base instruction */
1542    nir_instr instr;
1543 
1544    /** Opcode */
1545    nir_op op;
1546 
1547    /** Indicates that this ALU instruction generates an exact value
1548     *
1549     * This is kind of a mixture of GLSL "precise" and "invariant" and not
1550     * really equivalent to either.  This indicates that the value generated by
1551     * this operation is high-precision and any code transformations that touch
1552     * it must ensure that the resulting value is bit-for-bit identical to the
1553     * original.
1554     */
1555    bool exact : 1;
1556 
1557    /**
1558     * Indicates that this instruction doese not cause signed integer wrapping
1559     * to occur, in the form of overflow or underflow.
1560     */
1561    bool no_signed_wrap : 1;
1562 
1563    /**
1564     * Indicates that this instruction does not cause unsigned integer wrapping
1565     * to occur, in the form of overflow or underflow.
1566     */
1567    bool no_unsigned_wrap : 1;
1568 
1569    /** Destination */
1570    nir_def def;
1571 
1572    /** Sources
1573     *
1574     * The size of the array is given by :c:member:`nir_op_info.num_inputs`.
1575     */
1576    nir_alu_src src[];
1577 } nir_alu_instr;
1578 
1579 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src);
1580 
1581 nir_component_mask_t
1582 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src);
1583 /**
1584  * Get the number of channels used for a source
1585  */
1586 unsigned
1587 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src);
1588 
1589 /* is this source channel used? */
1590 static inline bool
nir_alu_instr_channel_used(const nir_alu_instr * instr,unsigned src,unsigned channel)1591 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
1592                            unsigned channel)
1593 {
1594    return channel < nir_ssa_alu_instr_src_components(instr, src);
1595 }
1596 
1597 bool
1598 nir_alu_instr_is_comparison(const nir_alu_instr *instr);
1599 
1600 bool nir_const_value_negative_equal(nir_const_value c1, nir_const_value c2,
1601                                     nir_alu_type full_type);
1602 
1603 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
1604                         unsigned src1, unsigned src2);
1605 
1606 bool nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
1607                                  const nir_alu_instr *alu2,
1608                                  unsigned src1, unsigned src2);
1609 
1610 bool nir_alu_src_is_trivial_ssa(const nir_alu_instr *alu, unsigned srcn);
1611 
1612 typedef enum {
1613    nir_deref_type_var,
1614    nir_deref_type_array,
1615    nir_deref_type_array_wildcard,
1616    nir_deref_type_ptr_as_array,
1617    nir_deref_type_struct,
1618    nir_deref_type_cast,
1619 } nir_deref_type;
1620 
1621 typedef struct {
1622    nir_instr instr;
1623 
1624    /** The type of this deref instruction */
1625    nir_deref_type deref_type;
1626 
1627    /** Bitmask what modes the underlying variable might be
1628     *
1629     * For OpenCL-style generic pointers, we may not know exactly what mode it
1630     * is at any given point in time in the compile process.  This bitfield
1631     * contains the set of modes which it MAY be.
1632     *
1633     * Generally, this field should not be accessed directly.  Use one of the
1634     * nir_deref_mode_ helpers instead.
1635     */
1636    nir_variable_mode modes;
1637 
1638    /** The dereferenced type of the resulting pointer value */
1639    const struct glsl_type *type;
1640 
1641    union {
1642       /** Variable being dereferenced if deref_type is a deref_var */
1643       nir_variable *var;
1644 
1645       /** Parent deref if deref_type is not deref_var */
1646       nir_src parent;
1647    };
1648 
1649    /** Additional deref parameters */
1650    union {
1651       struct {
1652          nir_src index;
1653          bool in_bounds;
1654       } arr;
1655 
1656       struct {
1657          unsigned index;
1658       } strct;
1659 
1660       struct {
1661          unsigned ptr_stride;
1662          unsigned align_mul;
1663          unsigned align_offset;
1664       } cast;
1665    };
1666 
1667    /** Destination to store the resulting "pointer" */
1668    nir_def def;
1669 } nir_deref_instr;
1670 
1671 /**
1672  * Returns true if the cast is trivial, i.e. the source and destination type is
1673  * the same.
1674  */
1675 bool nir_deref_cast_is_trivial(nir_deref_instr *cast);
1676 
1677 /** Returns true if deref might have one of the given modes
1678  *
1679  * For multi-mode derefs, this returns true if any of the possible modes for
1680  * the deref to have any of the specified modes.  This function returning true
1681  * does NOT mean that the deref definitely has one of those modes.  It simply
1682  * means that, with the best information we have at the time, it might.
1683  */
1684 static inline bool
nir_deref_mode_may_be(const nir_deref_instr * deref,nir_variable_mode modes)1685 nir_deref_mode_may_be(const nir_deref_instr *deref, nir_variable_mode modes)
1686 {
1687    assert(!(modes & ~nir_var_all));
1688    assert(deref->modes != 0);
1689    return deref->modes & modes;
1690 }
1691 
1692 /** Returns true if deref must have one of the given modes
1693  *
1694  * For multi-mode derefs, this returns true if NIR can prove that the given
1695  * deref has one of the specified modes.  This function returning false does
1696  * NOT mean that deref doesn't have one of the given mode.  It very well may
1697  * have one of those modes, we just don't have enough information to prove
1698  * that it does for sure.
1699  */
1700 static inline bool
nir_deref_mode_must_be(const nir_deref_instr * deref,nir_variable_mode modes)1701 nir_deref_mode_must_be(const nir_deref_instr *deref, nir_variable_mode modes)
1702 {
1703    assert(!(modes & ~nir_var_all));
1704    assert(deref->modes != 0);
1705    return !(deref->modes & ~modes);
1706 }
1707 
1708 /** Returns true if deref has the given mode
1709  *
1710  * This returns true if the deref has exactly the mode specified.  If the
1711  * deref may have that mode but may also have a different mode (i.e. modes has
1712  * multiple bits set), this will assert-fail.
1713  *
1714  * If you're confused about which nir_deref_mode_ helper to use, use this one
1715  * or nir_deref_mode_is_one_of below.
1716  */
1717 static inline bool
nir_deref_mode_is(const nir_deref_instr * deref,nir_variable_mode mode)1718 nir_deref_mode_is(const nir_deref_instr *deref, nir_variable_mode mode)
1719 {
1720    assert(util_bitcount(mode) == 1 && (mode & nir_var_all));
1721    assert(deref->modes != 0);
1722 
1723    /* This is only for "simple" cases so, if modes might interact with this
1724     * deref then the deref has to have a single mode.
1725     */
1726    if (nir_deref_mode_may_be(deref, mode)) {
1727       assert(util_bitcount(deref->modes) == 1);
1728       assert(deref->modes == mode);
1729    }
1730 
1731    return deref->modes == mode;
1732 }
1733 
1734 /** Returns true if deref has one of the given modes
1735  *
1736  * This returns true if the deref has exactly one possible mode and that mode
1737  * is one of the modes specified.  If the deref may have one of those modes
1738  * but may also have a different mode (i.e. modes has multiple bits set), this
1739  * will assert-fail.
1740  */
1741 static inline bool
nir_deref_mode_is_one_of(const nir_deref_instr * deref,nir_variable_mode modes)1742 nir_deref_mode_is_one_of(const nir_deref_instr *deref, nir_variable_mode modes)
1743 {
1744    /* This is only for "simple" cases so, if modes might interact with this
1745     * deref then the deref has to have a single mode.
1746     */
1747    if (nir_deref_mode_may_be(deref, modes)) {
1748       assert(util_bitcount(deref->modes) == 1);
1749       assert(nir_deref_mode_must_be(deref, modes));
1750    }
1751 
1752    return nir_deref_mode_may_be(deref, modes);
1753 }
1754 
1755 /** Returns true if deref's possible modes lie in the given set of modes
1756  *
1757  * This returns true if the deref's modes lie in the given set of modes.  If
1758  * the deref's modes overlap with the specified modes but aren't entirely
1759  * contained in the specified set of modes, this will assert-fail.  In
1760  * particular, if this is used in a generic pointers scenario, the specified
1761  * modes has to contain all or none of the possible generic pointer modes.
1762  *
1763  * This is intended mostly for mass-lowering of derefs which might have
1764  * generic pointers.
1765  */
1766 static inline bool
nir_deref_mode_is_in_set(const nir_deref_instr * deref,nir_variable_mode modes)1767 nir_deref_mode_is_in_set(const nir_deref_instr *deref, nir_variable_mode modes)
1768 {
1769    if (nir_deref_mode_may_be(deref, modes))
1770       assert(nir_deref_mode_must_be(deref, modes));
1771 
1772    return nir_deref_mode_may_be(deref, modes);
1773 }
1774 
1775 static inline nir_deref_instr *nir_src_as_deref(nir_src src);
1776 
1777 static inline nir_deref_instr *
nir_deref_instr_parent(const nir_deref_instr * instr)1778 nir_deref_instr_parent(const nir_deref_instr *instr)
1779 {
1780    if (instr->deref_type == nir_deref_type_var)
1781       return NULL;
1782    else
1783       return nir_src_as_deref(instr->parent);
1784 }
1785 
1786 static inline nir_variable *
nir_deref_instr_get_variable(const nir_deref_instr * instr)1787 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1788 {
1789    while (instr->deref_type != nir_deref_type_var) {
1790       if (instr->deref_type == nir_deref_type_cast)
1791          return NULL;
1792 
1793       instr = nir_deref_instr_parent(instr);
1794    }
1795 
1796    return instr->var;
1797 }
1798 
1799 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1800 bool nir_deref_instr_is_known_out_of_bounds(nir_deref_instr *instr);
1801 
1802 typedef enum {
1803    nir_deref_instr_has_complex_use_allow_memcpy_src = (1 << 0),
1804    nir_deref_instr_has_complex_use_allow_memcpy_dst = (1 << 1),
1805    nir_deref_instr_has_complex_use_allow_atomics = (1 << 2),
1806 } nir_deref_instr_has_complex_use_options;
1807 
1808 bool nir_deref_instr_has_complex_use(nir_deref_instr *instr,
1809                                      nir_deref_instr_has_complex_use_options opts);
1810 
1811 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1812 
1813 unsigned nir_deref_instr_array_stride(nir_deref_instr *instr);
1814 
1815 typedef struct {
1816    nir_instr instr;
1817 
1818    struct nir_function *callee;
1819 
1820    unsigned num_params;
1821    nir_src params[];
1822 } nir_call_instr;
1823 
1824 #include "nir_intrinsics.h"
1825 
1826 #define NIR_INTRINSIC_MAX_CONST_INDEX 8
1827 
1828 /** Represents an intrinsic
1829  *
1830  * An intrinsic is an instruction type for handling things that are
1831  * more-or-less regular operations but don't just consume and produce SSA
1832  * values like ALU operations do.  Intrinsics are not for things that have
1833  * special semantic meaning such as phi nodes and parallel copies.
1834  * Examples of intrinsics include variable load/store operations, system
1835  * value loads, and the like.  Even though texturing more-or-less falls
1836  * under this category, texturing is its own instruction type because
1837  * trying to represent texturing with intrinsics would lead to a
1838  * combinatorial explosion of intrinsic opcodes.
1839  *
1840  * By having a single instruction type for handling a lot of different
1841  * cases, optimization passes can look for intrinsics and, for the most
1842  * part, completely ignore them.  Each intrinsic type also has a few
1843  * possible flags that govern whether or not they can be reordered or
1844  * eliminated.  That way passes like dead code elimination can still work
1845  * on intrisics without understanding the meaning of each.
1846  *
1847  * Each intrinsic has some number of constant indices, some number of
1848  * variables, and some number of sources.  What these sources, variables,
1849  * and indices mean depends on the intrinsic and is documented with the
1850  * intrinsic declaration in nir_intrinsics.h.  Intrinsics and texture
1851  * instructions are the only types of instruction that can operate on
1852  * variables.
1853  */
1854 typedef struct {
1855    nir_instr instr;
1856 
1857    nir_intrinsic_op intrinsic;
1858 
1859    nir_def def;
1860 
1861    /** number of components if this is a vectorized intrinsic
1862     *
1863     * Similarly to ALU operations, some intrinsics are vectorized.
1864     * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1865     * For vectorized intrinsics, the num_components field specifies the
1866     * number of destination components and the number of source components
1867     * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1868     */
1869    uint8_t num_components;
1870 
1871    int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1872 
1873    nir_src src[];
1874 } nir_intrinsic_instr;
1875 
1876 static inline nir_variable *
nir_intrinsic_get_var(const nir_intrinsic_instr * intrin,unsigned i)1877 nir_intrinsic_get_var(const nir_intrinsic_instr *intrin, unsigned i)
1878 {
1879    return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1880 }
1881 
1882 typedef enum {
1883    /* Memory ordering. */
1884    NIR_MEMORY_ACQUIRE = 1 << 0,
1885    NIR_MEMORY_RELEASE = 1 << 1,
1886    NIR_MEMORY_ACQ_REL = NIR_MEMORY_ACQUIRE | NIR_MEMORY_RELEASE,
1887 
1888    /* Memory visibility operations. */
1889    NIR_MEMORY_MAKE_AVAILABLE = 1 << 2,
1890    NIR_MEMORY_MAKE_VISIBLE = 1 << 3,
1891 } nir_memory_semantics;
1892 
1893 /**
1894  * NIR intrinsics semantic flags
1895  *
1896  * information about what the compiler can do with the intrinsics.
1897  *
1898  * :c:member:`nir_intrinsic_info.flags`
1899  */
1900 typedef enum {
1901    /**
1902     * whether the intrinsic can be safely eliminated if none of its output
1903     * value is not being used.
1904     */
1905    NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1906 
1907    /**
1908     * Whether the intrinsic can be reordered with respect to any other
1909     * intrinsic, i.e. whether the only reordering dependencies of the
1910     * intrinsic are due to the register reads/writes.
1911     */
1912    NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1913 } nir_intrinsic_semantic_flag;
1914 
1915 /**
1916  * Maximum valid value for a nir align_mul value (in intrinsics or derefs).
1917  *
1918  * Offsets can be signed, so this is the largest power of two in int32_t.
1919  */
1920 #define NIR_ALIGN_MUL_MAX 0x40000000
1921 
1922 typedef struct nir_io_semantics {
1923    unsigned location : 7;  /* gl_vert_attrib, gl_varying_slot, or gl_frag_result */
1924    unsigned num_slots : 6; /* max 32, may be pessimistic with const indexing */
1925    unsigned dual_source_blend_index : 1;
1926    unsigned fb_fetch_output : 1;  /* for GL_KHR_blend_equation_advanced */
1927    unsigned gs_streams : 8;       /* xxyyzzww: 2-bit stream index for each component */
1928    unsigned medium_precision : 1; /* GLSL mediump qualifier */
1929    unsigned per_view : 1;
1930    unsigned high_16bits : 1; /* whether accessing low or high half of the slot */
1931    unsigned invariant : 1;   /* The variable has the invariant flag set */
1932    unsigned high_dvec2 : 1; /* whether accessing the high half of dvec3/dvec4 */
1933    /* CLIP_DISTn, LAYER, VIEWPORT, and TESS_LEVEL_* have up to 3 uses:
1934     * - an output consumed by the next stage
1935     * - a system value output affecting fixed-func hardware, e.g. the clipper
1936     * - a transform feedback output written to memory
1937     * The following fields disable the first two. Transform feedback is disabled
1938     * by transform feedback info.
1939     */
1940    unsigned no_varying : 1;       /* whether this output isn't consumed by the next stage */
1941    unsigned no_sysval_output : 1; /* whether this system value output has no
1942                                      effect due to current pipeline states */
1943    unsigned _pad : 2;
1944 } nir_io_semantics;
1945 
1946 /* Transform feedback info for 2 outputs. nir_intrinsic_store_output contains
1947  * this structure twice to support up to 4 outputs. The structure is limited
1948  * to 32 bits because it's stored in nir_intrinsic_instr::const_index[].
1949  */
1950 typedef struct nir_io_xfb {
1951    struct {
1952       /* start_component is equal to the index of out[]; add 2 for io_xfb2 */
1953       /* start_component is not relative to nir_intrinsic_component */
1954       /* get the stream index from nir_io_semantics */
1955       uint8_t num_components : 4; /* max 4; if this is 0, xfb is disabled */
1956       uint8_t buffer : 4;         /* buffer index, max 3 */
1957       uint8_t offset;             /* transform feedback buffer offset in dwords,
1958                                      max (1K - 4) bytes */
1959    } out[2];
1960 } nir_io_xfb;
1961 
1962 unsigned
1963 nir_instr_xfb_write_mask(nir_intrinsic_instr *instr);
1964 
1965 #define NIR_INTRINSIC_MAX_INPUTS 11
1966 
1967 typedef struct {
1968    const char *name;
1969 
1970    /** number of register/SSA inputs */
1971    uint8_t num_srcs;
1972 
1973    /** number of components of each input register
1974     *
1975     * If this value is 0, the number of components is given by the
1976     * num_components field of nir_intrinsic_instr.  If this value is -1, the
1977     * intrinsic consumes however many components are provided and it is not
1978     * validated at all.
1979     */
1980    int8_t src_components[NIR_INTRINSIC_MAX_INPUTS];
1981 
1982    bool has_dest;
1983 
1984    /** number of components of the output register
1985     *
1986     * If this value is 0, the number of components is given by the
1987     * num_components field of nir_intrinsic_instr.
1988     */
1989    uint8_t dest_components;
1990 
1991    /** bitfield of legal bit sizes */
1992    uint8_t dest_bit_sizes;
1993 
1994    /** source which the destination bit size must match
1995     *
1996     * Some intrinsics, such as subgroup intrinsics, are data manipulation
1997     * intrinsics and they have similar bit-size rules to ALU ops. This enables
1998     * validation to validate a bit more and enables auto-generated builder code
1999     * to properly determine destination bit sizes automatically.
2000     */
2001    int8_t bit_size_src;
2002 
2003    /** the number of constant indices used by the intrinsic */
2004    uint8_t num_indices;
2005 
2006    /** list of indices */
2007    uint8_t indices[NIR_INTRINSIC_MAX_CONST_INDEX];
2008 
2009    /** indicates the usage of intr->const_index[n] */
2010    uint8_t index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
2011 
2012    /** semantic flags for calls to this intrinsic */
2013    nir_intrinsic_semantic_flag flags;
2014 } nir_intrinsic_info;
2015 
2016 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
2017 
2018 unsigned
2019 nir_intrinsic_src_components(const nir_intrinsic_instr *intr, unsigned srcn);
2020 
2021 unsigned
2022 nir_intrinsic_dest_components(nir_intrinsic_instr *intr);
2023 
2024 nir_alu_type
2025 nir_intrinsic_instr_src_type(const nir_intrinsic_instr *intrin, unsigned src);
2026 
2027 nir_alu_type
2028 nir_intrinsic_instr_dest_type(const nir_intrinsic_instr *intrin);
2029 
2030 /**
2031  * Helper to copy const_index[] from src to dst, without assuming they
2032  * match in order.
2033  */
2034 void nir_intrinsic_copy_const_indices(nir_intrinsic_instr *dst, nir_intrinsic_instr *src);
2035 
2036 #include "nir_intrinsics_indices.h"
2037 
2038 static inline void
nir_intrinsic_set_align(nir_intrinsic_instr * intrin,unsigned align_mul,unsigned align_offset)2039 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
2040                         unsigned align_mul, unsigned align_offset)
2041 {
2042    assert(util_is_power_of_two_nonzero(align_mul));
2043    assert(align_offset < align_mul);
2044    nir_intrinsic_set_align_mul(intrin, align_mul);
2045    nir_intrinsic_set_align_offset(intrin, align_offset);
2046 }
2047 
2048 /** Returns a simple alignment for an align_mul/offset pair
2049  *
2050  * This helper converts from the full mul+offset alignment scheme used by
2051  * most NIR intrinsics to a simple alignment.  The returned value is the
2052  * largest power of two which divides both align_mul and align_offset.
2053  * For any offset X which satisfies the complex alignment described by
2054  * align_mul/offset, X % align == 0.
2055  */
2056 static inline uint32_t
nir_combined_align(uint32_t align_mul,uint32_t align_offset)2057 nir_combined_align(uint32_t align_mul, uint32_t align_offset)
2058 {
2059    assert(util_is_power_of_two_nonzero(align_mul));
2060    assert(align_offset < align_mul);
2061    return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
2062 }
2063 
2064 /** Returns a simple alignment for a load/store intrinsic offset
2065  *
2066  * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
2067  * and ALIGN_OFFSET parameters, this helper takes both into account and
2068  * provides a single simple alignment parameter.  The offset X is guaranteed
2069  * to satisfy X % align == 0.
2070  */
2071 static inline unsigned
nir_intrinsic_align(const nir_intrinsic_instr * intrin)2072 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
2073 {
2074    return nir_combined_align(nir_intrinsic_align_mul(intrin),
2075                              nir_intrinsic_align_offset(intrin));
2076 }
2077 
2078 static inline bool
nir_intrinsic_has_align(const nir_intrinsic_instr * intrin)2079 nir_intrinsic_has_align(const nir_intrinsic_instr *intrin)
2080 {
2081    return nir_intrinsic_has_align_mul(intrin) &&
2082           nir_intrinsic_has_align_offset(intrin);
2083 }
2084 
2085 unsigned
2086 nir_image_intrinsic_coord_components(const nir_intrinsic_instr *instr);
2087 
2088 /* Converts a image_deref_* intrinsic into a image_* one */
2089 void nir_rewrite_image_intrinsic(nir_intrinsic_instr *instr,
2090                                  nir_def *handle, bool bindless);
2091 
2092 /* Determine if an intrinsic can be arbitrarily reordered and eliminated. */
2093 static inline bool
nir_intrinsic_can_reorder(nir_intrinsic_instr * instr)2094 nir_intrinsic_can_reorder(nir_intrinsic_instr *instr)
2095 {
2096    if (nir_intrinsic_has_access(instr) &&
2097        nir_intrinsic_access(instr) & ACCESS_VOLATILE)
2098       return false;
2099 
2100    if (instr->intrinsic == nir_intrinsic_load_deref) {
2101       nir_deref_instr *deref = nir_src_as_deref(instr->src[0]);
2102       return nir_deref_mode_is_in_set(deref, nir_var_read_only_modes) ||
2103              (nir_intrinsic_access(instr) & ACCESS_CAN_REORDER);
2104    } else if (instr->intrinsic == nir_intrinsic_load_ssbo ||
2105               instr->intrinsic == nir_intrinsic_bindless_image_load ||
2106               instr->intrinsic == nir_intrinsic_image_deref_load ||
2107               instr->intrinsic == nir_intrinsic_image_load ||
2108               instr->intrinsic == nir_intrinsic_ald_nv ||
2109               instr->intrinsic == nir_intrinsic_load_sysval_nv) {
2110       return nir_intrinsic_access(instr) & ACCESS_CAN_REORDER;
2111    } else {
2112       const nir_intrinsic_info *info =
2113          &nir_intrinsic_infos[instr->intrinsic];
2114       return (info->flags & NIR_INTRINSIC_CAN_ELIMINATE) &&
2115              (info->flags & NIR_INTRINSIC_CAN_REORDER);
2116    }
2117 }
2118 
2119 bool nir_intrinsic_writes_external_memory(const nir_intrinsic_instr *instr);
2120 
2121 static inline bool
nir_intrinsic_is_ray_query(nir_intrinsic_op intrinsic)2122 nir_intrinsic_is_ray_query(nir_intrinsic_op intrinsic)
2123 {
2124    switch (intrinsic) {
2125    case nir_intrinsic_rq_confirm_intersection:
2126    case nir_intrinsic_rq_generate_intersection:
2127    case nir_intrinsic_rq_initialize:
2128    case nir_intrinsic_rq_load:
2129    case nir_intrinsic_rq_proceed:
2130    case nir_intrinsic_rq_terminate:
2131       return true;
2132    default:
2133       return false;
2134    }
2135 }
2136 
2137 /** Texture instruction source type */
2138 typedef enum nir_tex_src_type {
2139    /** Texture coordinate
2140     *
2141     * Must have :c:member:`nir_tex_instr.coord_components` components.
2142     */
2143    nir_tex_src_coord,
2144 
2145    /** Projector
2146     *
2147     * The texture coordinate (except for the array component, if any) is
2148     * divided by this value before LOD computation and sampling.
2149     *
2150     * Must be a float scalar.
2151     */
2152    nir_tex_src_projector,
2153 
2154    /** Shadow comparator
2155     *
2156     * For shadow sampling, the fetched texel values are compared against the
2157     * shadow comparator using the compare op specified by the sampler object
2158     * and converted to 1.0 if the comparison succeeds and 0.0 if it fails.
2159     * Interpolation happens after this conversion so the actual result may be
2160     * anywhere in the range [0.0, 1.0].
2161     *
2162     * Only valid if :c:member:`nir_tex_instr.is_shadow` and must be a float
2163     * scalar.
2164     */
2165    nir_tex_src_comparator,
2166 
2167    /** Coordinate offset
2168     *
2169     * An integer value that is added to the texel address before sampling.
2170     * This is only allowed with operations that take an explicit LOD as it is
2171     * applied in integer texel space after LOD selection and not normalized
2172     * coordinate space.
2173     */
2174    nir_tex_src_offset,
2175 
2176    /** LOD bias
2177     *
2178     * This value is added to the computed LOD before mip-mapping.
2179     */
2180    nir_tex_src_bias,
2181 
2182    /** Explicit LOD */
2183    nir_tex_src_lod,
2184 
2185    /** Min LOD
2186     *
2187     * The computed LOD is clamped to be at least as large as min_lod before
2188     * mip-mapping.
2189     */
2190    nir_tex_src_min_lod,
2191 
2192    /** MSAA sample index */
2193    nir_tex_src_ms_index,
2194 
2195    /** Intel-specific MSAA compression data */
2196    nir_tex_src_ms_mcs_intel,
2197 
2198    /** Explicit horizontal (X-major) coordinate derivative */
2199    nir_tex_src_ddx,
2200 
2201    /** Explicit vertical (Y-major) coordinate derivative */
2202    nir_tex_src_ddy,
2203 
2204    /** Texture variable dereference */
2205    nir_tex_src_texture_deref,
2206 
2207    /** Sampler variable dereference */
2208    nir_tex_src_sampler_deref,
2209 
2210    /** Texture index offset
2211     *
2212     * This is added to :c:member:`nir_tex_instr.texture_index`.  Unless
2213     * :c:member:`nir_tex_instr.texture_non_uniform` is set, this is guaranteed
2214     * to be dynamically uniform.
2215     */
2216    nir_tex_src_texture_offset,
2217 
2218    /** Dynamically uniform sampler index offset
2219     *
2220     * This is added to :c:member:`nir_tex_instr.sampler_index`.  Unless
2221     * :c:member:`nir_tex_instr.sampler_non_uniform` is set, this is guaranteed to be
2222     * dynamically uniform.  This should not be present until GLSL ES 3.20, GLSL
2223     * 4.00, or ARB_gpu_shader5, because in ES 3.10 and GL 3.30 samplers said
2224     * "When aggregated into arrays within a shader, samplers can only be indexed
2225     * with a constant integral expression."
2226     */
2227    nir_tex_src_sampler_offset,
2228 
2229    /** Bindless texture handle
2230     *
2231     * This is, unfortunately, a bit overloaded at the moment.  There are
2232     * generally two types of bindless handles:
2233     *
2234     *  1. For GL_ARB_bindless bindless handles. These are part of the
2235     *     GL/Gallium-level API and are always a 64-bit integer.
2236     *
2237     *  2. HW-specific handles.  GL_ARB_bindless handles may be lowered to
2238     *     these.  Also, these are used by many Vulkan drivers to implement
2239     *     descriptor sets, especially for UPDATE_AFTER_BIND descriptors.
2240     *     The details of hardware handles (bit size, format, etc.) is
2241     *     HW-specific.
2242     *
2243     * Because of this overloading and the resulting ambiguity, we currently
2244     * don't validate anything for these.
2245     */
2246    nir_tex_src_texture_handle,
2247 
2248    /** Bindless sampler handle
2249     *
2250     * See nir_tex_src_texture_handle,
2251     */
2252    nir_tex_src_sampler_handle,
2253 
2254    /** Plane index for multi-plane YCbCr textures */
2255    nir_tex_src_plane,
2256 
2257    /**
2258     * Backend-specific vec4 tex src argument.
2259     *
2260     * Can be used to have NIR optimization (copy propagation, lower_vec_to_regs)
2261     * apply to the packing of the tex srcs.  This lowering must only happen
2262     * after nir_lower_tex().
2263     *
2264     * The nir_tex_instr_src_type() of this argument is float, so no lowering
2265     * will happen if nir_lower_int_to_float is used.
2266     */
2267    nir_tex_src_backend1,
2268 
2269    /** Second backend-specific vec4 tex src argument, see nir_tex_src_backend1. */
2270    nir_tex_src_backend2,
2271 
2272    nir_num_tex_src_types
2273 } nir_tex_src_type;
2274 
2275 /** A texture instruction source */
2276 typedef struct nir_tex_src {
2277    /** Base source */
2278    nir_src src;
2279 
2280    /** Type of this source */
2281    nir_tex_src_type src_type;
2282 } nir_tex_src;
2283 
2284 /** Texture instruction opcode */
2285 typedef enum nir_texop {
2286    /** Regular texture look-up */
2287    nir_texop_tex,
2288    /** Texture look-up with LOD bias */
2289    nir_texop_txb,
2290    /** Texture look-up with explicit LOD */
2291    nir_texop_txl,
2292    /** Texture look-up with partial derivatives */
2293    nir_texop_txd,
2294    /** Texel fetch with explicit LOD */
2295    nir_texop_txf,
2296    /** Multisample texture fetch */
2297    nir_texop_txf_ms,
2298    /** Multisample texture fetch from framebuffer */
2299    nir_texop_txf_ms_fb,
2300    /** Multisample compression value fetch */
2301    nir_texop_txf_ms_mcs_intel,
2302    /** Texture size */
2303    nir_texop_txs,
2304    /** Texture lod query */
2305    nir_texop_lod,
2306    /** Texture gather */
2307    nir_texop_tg4,
2308    /** Texture levels query */
2309    nir_texop_query_levels,
2310    /** Texture samples query */
2311    nir_texop_texture_samples,
2312    /** Query whether all samples are definitely identical. */
2313    nir_texop_samples_identical,
2314    /** Regular texture look-up, eligible for pre-dispatch */
2315    nir_texop_tex_prefetch,
2316    /** Multisample fragment color texture fetch */
2317    nir_texop_fragment_fetch_amd,
2318    /** Multisample fragment mask texture fetch */
2319    nir_texop_fragment_mask_fetch_amd,
2320    /** Returns a buffer or image descriptor. */
2321    nir_texop_descriptor_amd,
2322    /** Returns a sampler descriptor. */
2323    nir_texop_sampler_descriptor_amd,
2324    /** Returns the sampler's LOD bias */
2325    nir_texop_lod_bias_agx,
2326    /** Maps to TXQ.DIMENSION */
2327    nir_texop_hdr_dim_nv,
2328    /** Maps to TXQ.TEXTURE_TYPE */
2329    nir_texop_tex_type_nv,
2330 } nir_texop;
2331 
2332 /** Represents a texture instruction */
2333 typedef struct nir_tex_instr {
2334    /** Base instruction */
2335    nir_instr instr;
2336 
2337    /** Dimensionality of the texture operation
2338     *
2339     * This will typically match the dimensionality of the texture deref type
2340     * if a nir_tex_src_texture_deref is present.  However, it may not if
2341     * texture lowering has occurred.
2342     */
2343    enum glsl_sampler_dim sampler_dim;
2344 
2345    /** ALU type of the destination
2346     *
2347     * This is the canonical sampled type for this texture operation and may
2348     * not exactly match the sampled type of the deref type when a
2349     * nir_tex_src_texture_deref is present.  For OpenCL, the sampled type of
2350     * the texture deref will be GLSL_TYPE_VOID and this is allowed to be
2351     * anything.  With SPIR-V, the signedness of integer types is allowed to
2352     * differ.  For all APIs, the bit size may differ if the driver has done
2353     * any sort of mediump or similar lowering since texture types always have
2354     * 32-bit sampled types.
2355     */
2356    nir_alu_type dest_type;
2357 
2358    /** Texture opcode */
2359    nir_texop op;
2360 
2361    /** Destination */
2362    nir_def def;
2363 
2364    /** Array of sources
2365     *
2366     * This array has :c:member:`nir_tex_instr.num_srcs` elements
2367     */
2368    nir_tex_src *src;
2369 
2370    /** Number of sources */
2371    unsigned num_srcs;
2372 
2373    /** Number of components in the coordinate, if any */
2374    unsigned coord_components;
2375 
2376    /** True if the texture instruction acts on an array texture */
2377    bool is_array;
2378 
2379    /** True if the texture instruction performs a shadow comparison
2380     *
2381     * If this is true, the texture instruction must have a
2382     * nir_tex_src_comparator.
2383     */
2384    bool is_shadow;
2385 
2386    /**
2387     * If is_shadow is true, whether this is the old-style shadow that outputs
2388     * 4 components or the new-style shadow that outputs 1 component.
2389     */
2390    bool is_new_style_shadow;
2391 
2392    /**
2393     * True if this texture instruction should return a sparse residency code.
2394     * The code is in the last component of the result.
2395     */
2396    bool is_sparse;
2397 
2398    /** nir_texop_tg4 component selector
2399     *
2400     * This determines which RGBA component is gathered.
2401     */
2402    unsigned component : 2;
2403 
2404    /** Validation needs to know this for gradient component count */
2405    unsigned array_is_lowered_cube : 1;
2406 
2407    /** True if this tg4 instruction has an implicit LOD or LOD bias, instead of using level 0 */
2408    unsigned is_gather_implicit_lod : 1;
2409 
2410    /** Gather offsets */
2411    int8_t tg4_offsets[4][2];
2412 
2413    /** True if the texture index or handle is not dynamically uniform */
2414    bool texture_non_uniform;
2415 
2416    /** True if the sampler index or handle is not dynamically uniform.
2417     *
2418     * This may be set when VK_EXT_descriptor_indexing is supported and the
2419     * appropriate capability is enabled.
2420     *
2421     * This should always be false in GLSL (GLSL ES 3.20 says "When aggregated
2422     * into arrays within a shader, opaque types can only be indexed with a
2423     * dynamically uniform integral expression", and GLSL 4.60 says "When
2424     * aggregated into arrays within a shader, [texture, sampler, and
2425     * samplerShadow] types can only be indexed with a dynamically uniform
2426     * expression, or texture lookup will result in undefined values.").
2427     */
2428    bool sampler_non_uniform;
2429 
2430    /** The texture index
2431     *
2432     * If this texture instruction has a nir_tex_src_texture_offset source,
2433     * then the texture index is given by texture_index + texture_offset.
2434     */
2435    unsigned texture_index;
2436 
2437    /** The sampler index
2438     *
2439     * The following operations do not require a sampler and, as such, this
2440     * field should be ignored:
2441     *
2442     *    - nir_texop_txf
2443     *    - nir_texop_txf_ms
2444     *    - nir_texop_txs
2445     *    - nir_texop_query_levels
2446     *    - nir_texop_texture_samples
2447     *    - nir_texop_samples_identical
2448     *
2449     * If this texture instruction has a nir_tex_src_sampler_offset source,
2450     * then the sampler index is given by sampler_index + sampler_offset.
2451     */
2452    unsigned sampler_index;
2453 
2454    /* Back-end specific flags, intended to be used in combination with
2455     * nir_tex_src_backend1/2 to provide additional hw-specific information
2456     * to the back-end compiler.
2457     */
2458    uint32_t backend_flags;
2459 } nir_tex_instr;
2460 
2461 /**
2462  * Returns true if the texture operation requires a sampler as a general rule
2463  *
2464  * Note that the specific hw/driver backend could require to a sampler
2465  * object/configuration packet in any case, for some other reason.
2466  *
2467  * See also :c:member:`nir_tex_instr.sampler_index`.
2468  */
2469 bool nir_tex_instr_need_sampler(const nir_tex_instr *instr);
2470 
2471 /** Returns the number of components returned by this nir_tex_instr
2472  *
2473  * Useful for code building texture instructions when you don't want to think
2474  * about how many components a particular texture op returns.  This does not
2475  * include the sparse residency code.
2476  */
2477 unsigned
2478 nir_tex_instr_result_size(const nir_tex_instr *instr);
2479 
2480 /**
2481  * Returns the destination size of this nir_tex_instr including the sparse
2482  * residency code, if any.
2483  */
2484 static inline unsigned
nir_tex_instr_dest_size(const nir_tex_instr * instr)2485 nir_tex_instr_dest_size(const nir_tex_instr *instr)
2486 {
2487    /* One more component is needed for the residency code. */
2488    return nir_tex_instr_result_size(instr) + instr->is_sparse;
2489 }
2490 
2491 /**
2492  * Returns true if this texture operation queries something about the texture
2493  * rather than actually sampling it.
2494  */
2495 bool
2496 nir_tex_instr_is_query(const nir_tex_instr *instr);
2497 
2498 /** Returns true if this texture instruction does implicit derivatives
2499  *
2500  * This is important as there are extra control-flow rules around derivatives
2501  * and texture instructions which perform them implicitly.
2502  */
2503 bool
2504 nir_tex_instr_has_implicit_derivative(const nir_tex_instr *instr);
2505 
2506 /** Returns the ALU type of the given texture instruction source */
2507 nir_alu_type
2508 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src);
2509 
2510 /**
2511  * Returns the number of components required by the given texture instruction
2512  * source
2513  */
2514 unsigned
2515 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src);
2516 
2517 /**
2518  * Returns the index of the texture instruction source with the given
2519  * nir_tex_src_type or -1 if no such source exists.
2520  */
2521 static inline int
nir_tex_instr_src_index(const nir_tex_instr * instr,nir_tex_src_type type)2522 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
2523 {
2524    for (unsigned i = 0; i < instr->num_srcs; i++)
2525       if (instr->src[i].src_type == type)
2526          return (int)i;
2527 
2528    return -1;
2529 }
2530 
2531 /** Adds a source to a texture instruction */
2532 void nir_tex_instr_add_src(nir_tex_instr *tex,
2533                            nir_tex_src_type src_type,
2534                            nir_def *src);
2535 
2536 /** Removes a source from a texture instruction */
2537 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
2538 
2539 bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex);
2540 
2541 typedef struct {
2542    nir_instr instr;
2543 
2544    nir_def def;
2545 
2546    nir_const_value value[];
2547 } nir_load_const_instr;
2548 
2549 typedef enum {
2550    /** Return from a function
2551     *
2552     * This instruction is a classic function return.  It jumps to
2553     * nir_function_impl::end_block.  No return value is provided in this
2554     * instruction.  Instead, the function is expected to write any return
2555     * data to a deref passed in from the caller.
2556     */
2557    nir_jump_return,
2558 
2559    /** Immediately exit the current shader
2560     *
2561     * This instruction is roughly the equivalent of C's "exit()" in that it
2562     * immediately terminates the current shader invocation.  From a CFG
2563     * perspective, it looks like a jump to nir_function_impl::end_block but
2564     * it actually jumps to the end block of the shader entrypoint.  A halt
2565     * instruction in the shader entrypoint itself is semantically identical
2566     * to a return.
2567     *
2568     * For shaders with built-in I/O, any outputs written prior to a halt
2569     * instruction remain written and any outputs not written prior to the
2570     * halt have undefined values.  It does NOT cause an implicit discard of
2571     * written results.  If one wants discard results in a fragment shader,
2572     * for instance, a discard or demote intrinsic is required.
2573     */
2574    nir_jump_halt,
2575 
2576    /** Break out of the inner-most loop
2577     *
2578     * This has the same semantics as C's "break" statement.
2579     */
2580    nir_jump_break,
2581 
2582    /** Jump back to the top of the inner-most loop
2583     *
2584     * This has the same semantics as C's "continue" statement assuming that a
2585     * NIR loop is implemented as "while (1) { body }".
2586     */
2587    nir_jump_continue,
2588 
2589    /** Jumps for unstructured CFG.
2590     *
2591     * As within an unstructured CFG we can't rely on block ordering we need to
2592     * place explicit jumps at the end of every block.
2593     */
2594    nir_jump_goto,
2595    nir_jump_goto_if,
2596 } nir_jump_type;
2597 
2598 typedef struct {
2599    nir_instr instr;
2600    nir_jump_type type;
2601    nir_src condition;
2602    struct nir_block *target;
2603    struct nir_block *else_target;
2604 } nir_jump_instr;
2605 
2606 /* creates a new SSA variable in an undefined state */
2607 
2608 typedef struct {
2609    nir_instr instr;
2610    nir_def def;
2611 } nir_undef_instr;
2612 
2613 typedef struct {
2614    struct exec_node node;
2615 
2616    /* The predecessor block corresponding to this source */
2617    struct nir_block *pred;
2618 
2619    nir_src src;
2620 } nir_phi_src;
2621 
2622 #define nir_foreach_phi_src(phi_src, phi) \
2623    foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
2624 #define nir_foreach_phi_src_safe(phi_src, phi) \
2625    foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
2626 
2627 typedef struct {
2628    nir_instr instr;
2629 
2630    /** list of nir_phi_src */
2631    struct exec_list srcs;
2632 
2633    nir_def def;
2634 } nir_phi_instr;
2635 
2636 static inline nir_phi_src *
nir_phi_get_src_from_block(nir_phi_instr * phi,struct nir_block * block)2637 nir_phi_get_src_from_block(nir_phi_instr *phi, struct nir_block *block)
2638 {
2639    nir_foreach_phi_src(src, phi) {
2640       if (src->pred == block)
2641          return src;
2642    }
2643 
2644    assert(!"Block is not a predecessor of phi.");
2645    return NULL;
2646 }
2647 
2648 typedef struct {
2649    struct exec_node node;
2650    bool src_is_reg;
2651    bool dest_is_reg;
2652    nir_src src;
2653    union {
2654       nir_def def;
2655       nir_src reg;
2656    } dest;
2657 } nir_parallel_copy_entry;
2658 
2659 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
2660    foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
2661 
2662 typedef struct {
2663    nir_instr instr;
2664 
2665    /* A list of nir_parallel_copy_entrys.  The sources of all of the
2666     * entries are copied to the corresponding destinations "in parallel".
2667     * In other words, if we have two entries: a -> b and b -> a, the values
2668     * get swapped.
2669     */
2670    struct exec_list entries;
2671 } nir_parallel_copy_instr;
2672 
2673 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
2674                 type, nir_instr_type_alu)
2675 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
2676                 type, nir_instr_type_deref)
2677 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
2678                 type, nir_instr_type_call)
2679 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
2680                 type, nir_instr_type_jump)
2681 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
2682                 type, nir_instr_type_tex)
2683 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
2684                 type, nir_instr_type_intrinsic)
2685 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
2686                 type, nir_instr_type_load_const)
2687 NIR_DEFINE_CAST(nir_instr_as_undef, nir_instr, nir_undef_instr, instr,
2688                 type, nir_instr_type_undef)
2689 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
2690                 type, nir_instr_type_phi)
2691 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
2692                 nir_parallel_copy_instr, instr,
2693                 type, nir_instr_type_parallel_copy)
2694 
2695 #define NIR_DEFINE_SRC_AS_CONST(type, suffix)                 \
2696    static inline type                                         \
2697       nir_src_comp_as_##suffix(nir_src src, unsigned comp)    \
2698    {                                                          \
2699       assert(nir_src_is_const(src));                          \
2700       nir_load_const_instr *load =                            \
2701          nir_instr_as_load_const(src.ssa->parent_instr);      \
2702       assert(comp < load->def.num_components);                \
2703       return nir_const_value_as_##suffix(load->value[comp],   \
2704                                          load->def.bit_size); \
2705    }                                                          \
2706                                                               \
2707    static inline type                                         \
2708       nir_src_as_##suffix(nir_src src)                        \
2709    {                                                          \
2710       assert(nir_src_num_components(src) == 1);               \
2711       return nir_src_comp_as_##suffix(src, 0);                \
2712    }
2713 
2714 NIR_DEFINE_SRC_AS_CONST(int64_t, int)
2715 NIR_DEFINE_SRC_AS_CONST(uint64_t, uint)
2716 NIR_DEFINE_SRC_AS_CONST(bool, bool)
2717 NIR_DEFINE_SRC_AS_CONST(double, float)
2718 
2719 #undef NIR_DEFINE_SRC_AS_CONST
2720 
2721 typedef struct {
2722    nir_def *def;
2723    unsigned comp;
2724 } nir_scalar;
2725 
2726 static inline bool
nir_scalar_is_const(nir_scalar s)2727 nir_scalar_is_const(nir_scalar s)
2728 {
2729    return s.def->parent_instr->type == nir_instr_type_load_const;
2730 }
2731 
2732 static inline bool
nir_scalar_is_undef(nir_scalar s)2733 nir_scalar_is_undef(nir_scalar s)
2734 {
2735    return s.def->parent_instr->type == nir_instr_type_undef;
2736 }
2737 
2738 static inline nir_const_value
nir_scalar_as_const_value(nir_scalar s)2739 nir_scalar_as_const_value(nir_scalar s)
2740 {
2741    assert(s.comp < s.def->num_components);
2742    nir_load_const_instr *load = nir_instr_as_load_const(s.def->parent_instr);
2743    return load->value[s.comp];
2744 }
2745 
2746 #define NIR_DEFINE_SCALAR_AS_CONST(type, suffix)         \
2747    static inline type                                    \
2748       nir_scalar_as_##suffix(nir_scalar s)               \
2749    {                                                     \
2750       return nir_const_value_as_##suffix(                \
2751          nir_scalar_as_const_value(s), s.def->bit_size); \
2752    }
2753 
NIR_DEFINE_SCALAR_AS_CONST(int64_t,int)2754 NIR_DEFINE_SCALAR_AS_CONST(int64_t, int)
2755 NIR_DEFINE_SCALAR_AS_CONST(uint64_t, uint)
2756 NIR_DEFINE_SCALAR_AS_CONST(bool, bool)
2757 NIR_DEFINE_SCALAR_AS_CONST(double, float)
2758 
2759 #undef NIR_DEFINE_SCALAR_AS_CONST
2760 
2761 static inline bool
2762 nir_scalar_is_alu(nir_scalar s)
2763 {
2764    return s.def->parent_instr->type == nir_instr_type_alu;
2765 }
2766 
2767 static inline nir_op
nir_scalar_alu_op(nir_scalar s)2768 nir_scalar_alu_op(nir_scalar s)
2769 {
2770    return nir_instr_as_alu(s.def->parent_instr)->op;
2771 }
2772 
2773 static inline bool
nir_scalar_is_intrinsic(nir_scalar s)2774 nir_scalar_is_intrinsic(nir_scalar s)
2775 {
2776    return s.def->parent_instr->type == nir_instr_type_intrinsic;
2777 }
2778 
2779 static inline nir_intrinsic_op
nir_scalar_intrinsic_op(nir_scalar s)2780 nir_scalar_intrinsic_op(nir_scalar s)
2781 {
2782    return nir_instr_as_intrinsic(s.def->parent_instr)->intrinsic;
2783 }
2784 
2785 static inline nir_scalar
nir_scalar_chase_alu_src(nir_scalar s,unsigned alu_src_idx)2786 nir_scalar_chase_alu_src(nir_scalar s, unsigned alu_src_idx)
2787 {
2788    nir_scalar out = { NULL, 0 };
2789 
2790    nir_alu_instr *alu = nir_instr_as_alu(s.def->parent_instr);
2791    assert(alu_src_idx < nir_op_infos[alu->op].num_inputs);
2792 
2793    /* Our component must be written */
2794    assert(s.comp < s.def->num_components);
2795 
2796    out.def = alu->src[alu_src_idx].src.ssa;
2797 
2798    if (nir_op_infos[alu->op].input_sizes[alu_src_idx] == 0) {
2799       /* The ALU src is unsized so the source component follows the
2800        * destination component.
2801        */
2802       out.comp = alu->src[alu_src_idx].swizzle[s.comp];
2803    } else {
2804       /* This is a sized source so all source components work together to
2805        * produce all the destination components.  Since we need to return a
2806        * scalar, this only works if the source is a scalar.
2807        */
2808       assert(nir_op_infos[alu->op].input_sizes[alu_src_idx] == 1);
2809       out.comp = alu->src[alu_src_idx].swizzle[0];
2810    }
2811    assert(out.comp < out.def->num_components);
2812 
2813    return out;
2814 }
2815 
2816 nir_scalar nir_scalar_chase_movs(nir_scalar s);
2817 
2818 static inline nir_scalar
nir_get_scalar(nir_def * def,unsigned channel)2819 nir_get_scalar(nir_def *def, unsigned channel)
2820 {
2821    nir_scalar s = { def, channel };
2822    return s;
2823 }
2824 
2825 /** Returns a nir_scalar where we've followed the bit-exact mov/vec use chain to the original definition */
2826 static inline nir_scalar
nir_scalar_resolved(nir_def * def,unsigned channel)2827 nir_scalar_resolved(nir_def *def, unsigned channel)
2828 {
2829    return nir_scalar_chase_movs(nir_get_scalar(def, channel));
2830 }
2831 
2832 static inline bool
nir_scalar_equal(nir_scalar s1,nir_scalar s2)2833 nir_scalar_equal(nir_scalar s1, nir_scalar s2)
2834 {
2835    return s1.def == s2.def && s1.comp == s2.comp;
2836 }
2837 
2838 static inline uint64_t
nir_alu_src_as_uint(nir_alu_src src)2839 nir_alu_src_as_uint(nir_alu_src src)
2840 {
2841    nir_scalar scalar = nir_get_scalar(src.src.ssa, src.swizzle[0]);
2842    return nir_scalar_as_uint(scalar);
2843 }
2844 
2845 typedef struct {
2846    bool success;
2847 
2848    nir_variable *var;
2849    unsigned desc_set;
2850    unsigned binding;
2851    unsigned num_indices;
2852    nir_src indices[4];
2853    bool read_first_invocation;
2854 } nir_binding;
2855 
2856 nir_binding nir_chase_binding(nir_src rsrc);
2857 nir_variable *nir_get_binding_variable(struct nir_shader *shader, nir_binding binding);
2858 
2859 /*
2860  * Control flow
2861  *
2862  * Control flow consists of a tree of control flow nodes, which include
2863  * if-statements and loops. The leaves of the tree are basic blocks, lists of
2864  * instructions that always run start-to-finish. Each basic block also keeps
2865  * track of its successors (blocks which may run immediately after the current
2866  * block) and predecessors (blocks which could have run immediately before the
2867  * current block). Each function also has a start block and an end block which
2868  * all return statements point to (which is always empty). Together, all the
2869  * blocks with their predecessors and successors make up the control flow
2870  * graph (CFG) of the function. There are helpers that modify the tree of
2871  * control flow nodes while modifying the CFG appropriately; these should be
2872  * used instead of modifying the tree directly.
2873  */
2874 
2875 typedef enum {
2876    nir_cf_node_block,
2877    nir_cf_node_if,
2878    nir_cf_node_loop,
2879    nir_cf_node_function
2880 } nir_cf_node_type;
2881 
2882 typedef struct nir_cf_node {
2883    struct exec_node node;
2884    nir_cf_node_type type;
2885    struct nir_cf_node *parent;
2886 } nir_cf_node;
2887 
2888 typedef struct nir_block {
2889    nir_cf_node cf_node;
2890 
2891    /** list of nir_instr */
2892    struct exec_list instr_list;
2893 
2894    /** generic block index; generated by nir_index_blocks */
2895    unsigned index;
2896 
2897    /*
2898     * Each block can only have up to 2 successors, so we put them in a simple
2899     * array - no need for anything more complicated.
2900     */
2901    struct nir_block *successors[2];
2902 
2903    /* Set of nir_block predecessors in the CFG */
2904    struct set *predecessors;
2905 
2906    /*
2907     * this node's immediate dominator in the dominance tree - set to NULL for
2908     * the start block.
2909     */
2910    struct nir_block *imm_dom;
2911 
2912    /* This node's children in the dominance tree */
2913    unsigned num_dom_children;
2914    struct nir_block **dom_children;
2915 
2916    /* Set of nir_blocks on the dominance frontier of this block */
2917    struct set *dom_frontier;
2918 
2919    /*
2920     * These two indices have the property that dom_{pre,post}_index for each
2921     * child of this block in the dominance tree will always be between
2922     * dom_pre_index and dom_post_index for this block, which makes testing if
2923     * a given block is dominated by another block an O(1) operation.
2924     */
2925    uint32_t dom_pre_index, dom_post_index;
2926 
2927    /**
2928     * Value just before the first nir_instr->index in the block, but after
2929     * end_ip that of any predecessor block.
2930     */
2931    uint32_t start_ip;
2932    /**
2933     * Value just after the last nir_instr->index in the block, but before the
2934     * start_ip of any successor block.
2935     */
2936    uint32_t end_ip;
2937 
2938    /* SSA def live in and out for this block; used for liveness analysis.
2939     * Indexed by ssa_def->index
2940     */
2941    BITSET_WORD *live_in;
2942    BITSET_WORD *live_out;
2943 } nir_block;
2944 
2945 static inline bool
nir_block_is_reachable(nir_block * b)2946 nir_block_is_reachable(nir_block *b)
2947 {
2948    /* See also nir_block_dominates */
2949    return b->dom_post_index != 0;
2950 }
2951 
2952 static inline nir_instr *
nir_block_first_instr(nir_block * block)2953 nir_block_first_instr(nir_block *block)
2954 {
2955    struct exec_node *head = exec_list_get_head(&block->instr_list);
2956    return exec_node_data(nir_instr, head, node);
2957 }
2958 
2959 static inline nir_instr *
nir_block_last_instr(nir_block * block)2960 nir_block_last_instr(nir_block *block)
2961 {
2962    struct exec_node *tail = exec_list_get_tail(&block->instr_list);
2963    return exec_node_data(nir_instr, tail, node);
2964 }
2965 
2966 static inline bool
nir_block_ends_in_jump(nir_block * block)2967 nir_block_ends_in_jump(nir_block *block)
2968 {
2969    return !exec_list_is_empty(&block->instr_list) &&
2970           nir_block_last_instr(block)->type == nir_instr_type_jump;
2971 }
2972 
2973 static inline bool
nir_block_ends_in_return_or_halt(nir_block * block)2974 nir_block_ends_in_return_or_halt(nir_block *block)
2975 {
2976    if (exec_list_is_empty(&block->instr_list))
2977       return false;
2978 
2979    nir_instr *instr = nir_block_last_instr(block);
2980    if (instr->type != nir_instr_type_jump)
2981       return false;
2982 
2983    nir_jump_instr *jump_instr = nir_instr_as_jump(instr);
2984    return jump_instr->type == nir_jump_return ||
2985           jump_instr->type == nir_jump_halt;
2986 }
2987 
2988 static inline bool
nir_block_ends_in_break(nir_block * block)2989 nir_block_ends_in_break(nir_block *block)
2990 {
2991    if (exec_list_is_empty(&block->instr_list))
2992       return false;
2993 
2994    nir_instr *instr = nir_block_last_instr(block);
2995    return instr->type == nir_instr_type_jump &&
2996           nir_instr_as_jump(instr)->type == nir_jump_break;
2997 }
2998 
2999 #define nir_foreach_instr(instr, block) \
3000    foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
3001 #define nir_foreach_instr_reverse(instr, block) \
3002    foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
3003 #define nir_foreach_instr_safe(instr, block) \
3004    foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
3005 #define nir_foreach_instr_reverse_safe(instr, block) \
3006    foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
3007 
3008 /* Phis come first in the block */
3009 static inline nir_phi_instr *
nir_first_phi_in_block(nir_block * block)3010 nir_first_phi_in_block(nir_block *block)
3011 {
3012    nir_foreach_instr(instr, block) {
3013       if (instr->type == nir_instr_type_phi)
3014          return nir_instr_as_phi(instr);
3015       else
3016          return NULL;
3017    }
3018 
3019    return NULL;
3020 }
3021 
3022 static inline nir_phi_instr *
nir_next_phi(nir_phi_instr * phi)3023 nir_next_phi(nir_phi_instr *phi)
3024 {
3025    nir_instr *next = nir_instr_next(&phi->instr);
3026 
3027    if (next && next->type == nir_instr_type_phi)
3028       return nir_instr_as_phi(next);
3029    else
3030       return NULL;
3031 }
3032 
3033 #define nir_foreach_phi(instr, block)                                        \
3034    for (nir_phi_instr *instr = nir_first_phi_in_block(block); instr != NULL; \
3035         instr = nir_next_phi(instr))
3036 
3037 #define nir_foreach_phi_safe(instr, block)                          \
3038    for (nir_phi_instr *instr = nir_first_phi_in_block(block),       \
3039                       *__next = instr ? nir_next_phi(instr) : NULL; \
3040         instr != NULL;                                              \
3041         instr = __next, __next = instr ? nir_next_phi(instr) : NULL)
3042 
3043 static inline nir_phi_instr *
nir_block_last_phi_instr(nir_block * block)3044 nir_block_last_phi_instr(nir_block *block)
3045 {
3046    nir_phi_instr *last_phi = NULL;
3047    nir_foreach_phi(instr, block)
3048       last_phi = instr;
3049 
3050    return last_phi;
3051 }
3052 
3053 typedef enum {
3054    nir_selection_control_none = 0x0,
3055 
3056    /**
3057     * Defined by SPIR-V spec 3.22 "Selection Control".
3058     * The application prefers to remove control flow.
3059     */
3060    nir_selection_control_flatten = 0x1,
3061 
3062    /**
3063     * Defined by SPIR-V spec 3.22 "Selection Control".
3064     * The application prefers to keep control flow.
3065     */
3066    nir_selection_control_dont_flatten = 0x2,
3067 
3068    /**
3069     * May be applied by the compiler stack when it knows
3070     * that a branch is divergent, and:
3071     * - either both the if and else are always taken
3072     * - the if or else is empty and the other is always taken
3073     */
3074    nir_selection_control_divergent_always_taken = 0x3,
3075 } nir_selection_control;
3076 
3077 typedef struct nir_if {
3078    nir_cf_node cf_node;
3079    nir_src condition;
3080    nir_selection_control control;
3081 
3082    /** list of nir_cf_node */
3083    struct exec_list then_list;
3084 
3085    /** list of nir_cf_node */
3086    struct exec_list else_list;
3087 } nir_if;
3088 
3089 typedef struct {
3090    nir_if *nif;
3091 
3092    /** Instruction that generates nif::condition. */
3093    nir_instr *conditional_instr;
3094 
3095    /** Block within ::nif that has the break instruction. */
3096    nir_block *break_block;
3097 
3098    /** Last block for the then- or else-path that does not contain the break. */
3099    nir_block *continue_from_block;
3100 
3101    /** True when ::break_block is in the else-path of ::nif. */
3102    bool continue_from_then;
3103    bool induction_rhs;
3104 
3105    /* This is true if the terminators exact trip count is unknown. For
3106     * example:
3107     *
3108     *    for (int i = 0; i < imin(x, 4); i++)
3109     *       ...
3110     *
3111     * Here loop analysis would have set a max_trip_count of 4 however we dont
3112     * know for sure that this is the exact trip count.
3113     */
3114    bool exact_trip_count_unknown;
3115 
3116    struct list_head loop_terminator_link;
3117 } nir_loop_terminator;
3118 
3119 typedef struct {
3120    /* Induction variable. */
3121    nir_def *def;
3122 
3123    /* Init statement with only uniform. */
3124    nir_src *init_src;
3125 
3126    /* Update statement with only uniform. */
3127    nir_alu_src *update_src;
3128 } nir_loop_induction_variable;
3129 
3130 typedef struct {
3131    /* Estimated cost (in number of instructions) of the loop */
3132    unsigned instr_cost;
3133 
3134    /* Contains fp64 ops that will be lowered */
3135    bool has_soft_fp64;
3136 
3137    /* Guessed trip count based on array indexing */
3138    unsigned guessed_trip_count;
3139 
3140    /* Maximum number of times the loop is run (if known) */
3141    unsigned max_trip_count;
3142 
3143    /* Do we know the exact number of times the loop will be run */
3144    bool exact_trip_count_known;
3145 
3146    /* Unroll the loop regardless of its size */
3147    bool force_unroll;
3148 
3149    /* Does the loop contain complex loop terminators, continues or other
3150     * complex behaviours? If this is true we can't rely on
3151     * loop_terminator_list to be complete or accurate.
3152     */
3153    bool complex_loop;
3154 
3155    nir_loop_terminator *limiting_terminator;
3156 
3157    /* A list of loop_terminators terminating this loop. */
3158    struct list_head loop_terminator_list;
3159 
3160    /* array of induction variables for this loop */
3161    nir_loop_induction_variable *induction_vars;
3162    unsigned num_induction_vars;
3163 } nir_loop_info;
3164 
3165 typedef enum {
3166    nir_loop_control_none = 0x0,
3167    nir_loop_control_unroll = 0x1,
3168    nir_loop_control_dont_unroll = 0x2,
3169 } nir_loop_control;
3170 
3171 typedef struct {
3172    nir_cf_node cf_node;
3173 
3174    /** list of nir_cf_node */
3175    struct exec_list body;
3176 
3177    /** (optional) list of nir_cf_node */
3178    struct exec_list continue_list;
3179 
3180    nir_loop_info *info;
3181    nir_loop_control control;
3182    bool partially_unrolled;
3183    bool divergent;
3184 } nir_loop;
3185 
3186 /**
3187  * Various bits of metadata that can may be created or required by
3188  * optimization and analysis passes
3189  */
3190 typedef enum {
3191    nir_metadata_none = 0x0,
3192 
3193    /** Indicates that nir_block::index values are valid.
3194     *
3195     * The start block has index 0 and they increase through a natural walk of
3196     * the CFG.  nir_function_impl::num_blocks is the number of blocks and
3197     * every block index is in the range [0, nir_function_impl::num_blocks].
3198     *
3199     * A pass can preserve this metadata type if it doesn't touch the CFG.
3200     */
3201    nir_metadata_block_index = 0x1,
3202 
3203    /** Indicates that block dominance information is valid
3204     *
3205     * This includes:
3206     *
3207     *   - nir_block::num_dom_children
3208     *   - nir_block::dom_children
3209     *   - nir_block::dom_frontier
3210     *   - nir_block::dom_pre_index
3211     *   - nir_block::dom_post_index
3212     *
3213     * A pass can preserve this metadata type if it doesn't touch the CFG.
3214     */
3215    nir_metadata_dominance = 0x2,
3216 
3217    /** Indicates that SSA def data-flow liveness information is valid
3218     *
3219     * This includes:
3220     *
3221     *   - nir_block::live_in
3222     *   - nir_block::live_out
3223     *
3224     * A pass can preserve this metadata type if it never adds or removes any
3225     * SSA defs or uses of SSA defs (most passes shouldn't preserve this
3226     * metadata type).
3227     */
3228    nir_metadata_live_defs = 0x4,
3229 
3230    /** A dummy metadata value to track when a pass forgot to call
3231     * nir_metadata_preserve.
3232     *
3233     * A pass should always clear this value even if it doesn't make any
3234     * progress to indicate that it thought about preserving metadata.
3235     */
3236    nir_metadata_not_properly_reset = 0x8,
3237 
3238    /** Indicates that loop analysis information is valid.
3239     *
3240     * This includes everything pointed to by nir_loop::info.
3241     *
3242     * A pass can preserve this metadata type if it is guaranteed to not affect
3243     * any loop metadata.  However, since loop metadata includes things like
3244     * loop counts which depend on arithmetic in the loop, this is very hard to
3245     * determine.  Most passes shouldn't preserve this metadata type.
3246     */
3247    nir_metadata_loop_analysis = 0x10,
3248 
3249    /** Indicates that nir_instr::index values are valid.
3250     *
3251     * The start instruction has index 0 and they increase through a natural
3252     * walk of instructions in blocks in the CFG.  The indices my have holes
3253     * after passes such as DCE.
3254     *
3255     * A pass can preserve this metadata type if it never adds or moves any
3256     * instructions (most passes shouldn't preserve this metadata type), but
3257     * can preserve it if it only removes instructions.
3258     */
3259    nir_metadata_instr_index = 0x20,
3260 
3261    /** All metadata
3262     *
3263     * This includes all nir_metadata flags except not_properly_reset.  Passes
3264     * which do not change the shader in any way should call
3265     *
3266     *    nir_metadata_preserve(impl, nir_metadata_all);
3267     */
3268    nir_metadata_all = ~nir_metadata_not_properly_reset,
3269 } nir_metadata;
3270 MESA_DEFINE_CPP_ENUM_BITFIELD_OPERATORS(nir_metadata)
3271 
3272 typedef struct {
3273    nir_cf_node cf_node;
3274 
3275    /** pointer to the function of which this is an implementation */
3276    struct nir_function *function;
3277 
3278    /**
3279     * For entrypoints, a pointer to a nir_function_impl which runs before
3280     * it, once per draw or dispatch, communicating via store_preamble and
3281     * load_preamble intrinsics. If NULL then there is no preamble.
3282     */
3283    struct nir_function *preamble;
3284 
3285    /** list of nir_cf_node */
3286    struct exec_list body;
3287 
3288    nir_block *end_block;
3289 
3290    /** list for all local variables in the function */
3291    struct exec_list locals;
3292 
3293    /** next available SSA value index */
3294    unsigned ssa_alloc;
3295 
3296    /* total number of basic blocks, only valid when block_index_dirty = false */
3297    unsigned num_blocks;
3298 
3299    /** True if this nir_function_impl uses structured control-flow
3300     *
3301     * Structured nir_function_impls have different validation rules.
3302     */
3303    bool structured;
3304 
3305    nir_metadata valid_metadata;
3306 } nir_function_impl;
3307 
3308 #define nir_foreach_function_temp_variable(var, impl) \
3309    foreach_list_typed(nir_variable, var, node, &(impl)->locals)
3310 
3311 #define nir_foreach_function_temp_variable_safe(var, impl) \
3312    foreach_list_typed_safe(nir_variable, var, node, &(impl)->locals)
3313 
3314 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
nir_start_block(nir_function_impl * impl)3315 nir_start_block(nir_function_impl *impl)
3316 {
3317    return (nir_block *)impl->body.head_sentinel.next;
3318 }
3319 
3320 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
nir_impl_last_block(nir_function_impl * impl)3321 nir_impl_last_block(nir_function_impl *impl)
3322 {
3323    return (nir_block *)impl->body.tail_sentinel.prev;
3324 }
3325 
3326 static inline nir_cf_node *
nir_cf_node_next(nir_cf_node * node)3327 nir_cf_node_next(nir_cf_node *node)
3328 {
3329    struct exec_node *next = exec_node_get_next(&node->node);
3330    if (exec_node_is_tail_sentinel(next))
3331       return NULL;
3332    else
3333       return exec_node_data(nir_cf_node, next, node);
3334 }
3335 
3336 static inline nir_cf_node *
nir_cf_node_prev(nir_cf_node * node)3337 nir_cf_node_prev(nir_cf_node *node)
3338 {
3339    struct exec_node *prev = exec_node_get_prev(&node->node);
3340    if (exec_node_is_head_sentinel(prev))
3341       return NULL;
3342    else
3343       return exec_node_data(nir_cf_node, prev, node);
3344 }
3345 
3346 static inline bool
nir_cf_node_is_first(const nir_cf_node * node)3347 nir_cf_node_is_first(const nir_cf_node *node)
3348 {
3349    return exec_node_is_head_sentinel(node->node.prev);
3350 }
3351 
3352 static inline bool
nir_cf_node_is_last(const nir_cf_node * node)3353 nir_cf_node_is_last(const nir_cf_node *node)
3354 {
3355    return exec_node_is_tail_sentinel(node->node.next);
3356 }
3357 
NIR_DEFINE_CAST(nir_cf_node_as_block,nir_cf_node,nir_block,cf_node,type,nir_cf_node_block)3358 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
3359                 type, nir_cf_node_block)
3360 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
3361                 type, nir_cf_node_if)
3362 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
3363                 type, nir_cf_node_loop)
3364 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
3365                 nir_function_impl, cf_node, type, nir_cf_node_function)
3366 
3367 static inline nir_block *
3368 nir_if_first_then_block(nir_if *if_stmt)
3369 {
3370    struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
3371    return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
3372 }
3373 
3374 static inline nir_block *
nir_if_last_then_block(nir_if * if_stmt)3375 nir_if_last_then_block(nir_if *if_stmt)
3376 {
3377    struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
3378    return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
3379 }
3380 
3381 static inline nir_block *
nir_if_first_else_block(nir_if * if_stmt)3382 nir_if_first_else_block(nir_if *if_stmt)
3383 {
3384    struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
3385    return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
3386 }
3387 
3388 static inline nir_block *
nir_if_last_else_block(nir_if * if_stmt)3389 nir_if_last_else_block(nir_if *if_stmt)
3390 {
3391    struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
3392    return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
3393 }
3394 
3395 static inline nir_block *
nir_loop_first_block(nir_loop * loop)3396 nir_loop_first_block(nir_loop *loop)
3397 {
3398    struct exec_node *head = exec_list_get_head(&loop->body);
3399    return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
3400 }
3401 
3402 static inline nir_block *
nir_loop_last_block(nir_loop * loop)3403 nir_loop_last_block(nir_loop *loop)
3404 {
3405    struct exec_node *tail = exec_list_get_tail(&loop->body);
3406    return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
3407 }
3408 
3409 static inline bool
nir_loop_has_continue_construct(const nir_loop * loop)3410 nir_loop_has_continue_construct(const nir_loop *loop)
3411 {
3412    return !exec_list_is_empty(&loop->continue_list);
3413 }
3414 
3415 static inline nir_block *
nir_loop_first_continue_block(nir_loop * loop)3416 nir_loop_first_continue_block(nir_loop *loop)
3417 {
3418    assert(nir_loop_has_continue_construct(loop));
3419    struct exec_node *head = exec_list_get_head(&loop->continue_list);
3420    return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
3421 }
3422 
3423 static inline nir_block *
nir_loop_last_continue_block(nir_loop * loop)3424 nir_loop_last_continue_block(nir_loop *loop)
3425 {
3426    assert(nir_loop_has_continue_construct(loop));
3427    struct exec_node *tail = exec_list_get_tail(&loop->continue_list);
3428    return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
3429 }
3430 
3431 /**
3432  * Return the target block of a nir_jump_continue statement
3433  */
3434 static inline nir_block *
nir_loop_continue_target(nir_loop * loop)3435 nir_loop_continue_target(nir_loop *loop)
3436 {
3437    if (nir_loop_has_continue_construct(loop))
3438       return nir_loop_first_continue_block(loop);
3439    else
3440       return nir_loop_first_block(loop);
3441 }
3442 
3443 /**
3444  * Return true if this list of cf_nodes contains a single empty block.
3445  */
3446 static inline bool
nir_cf_list_is_empty_block(struct exec_list * cf_list)3447 nir_cf_list_is_empty_block(struct exec_list *cf_list)
3448 {
3449    if (exec_list_is_singular(cf_list)) {
3450       struct exec_node *head = exec_list_get_head(cf_list);
3451       nir_block *block =
3452          nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
3453       return exec_list_is_empty(&block->instr_list);
3454    }
3455    return false;
3456 }
3457 
3458 typedef struct {
3459    uint8_t num_components;
3460    uint8_t bit_size;
3461 } nir_parameter;
3462 
3463 typedef struct nir_function {
3464    struct exec_node node;
3465 
3466    const char *name;
3467    struct nir_shader *shader;
3468 
3469    unsigned num_params;
3470    nir_parameter *params;
3471 
3472    /** The implementation of this function.
3473     *
3474     * If the function is only declared and not implemented, this is NULL.
3475     *
3476     * Unless setting to NULL or NIR_SERIALIZE_FUNC_HAS_IMPL, set with
3477     * nir_function_set_impl to maintain IR invariants.
3478     */
3479    nir_function_impl *impl;
3480 
3481    bool is_entrypoint;
3482    /* from SPIR-V linkage, only for libraries */
3483    bool is_exported;
3484    bool is_preamble;
3485    /* from SPIR-V function control */
3486    bool should_inline;
3487    bool dont_inline; /* from SPIR-V */
3488 } nir_function;
3489 
3490 typedef enum {
3491    nir_lower_imul64 = (1 << 0),
3492    nir_lower_isign64 = (1 << 1),
3493    /** Lower all int64 modulus and division opcodes */
3494    nir_lower_divmod64 = (1 << 2),
3495    /** Lower all 64-bit umul_high and imul_high opcodes */
3496    nir_lower_imul_high64 = (1 << 3),
3497    nir_lower_bcsel64 = (1 << 4),
3498    nir_lower_icmp64 = (1 << 5),
3499    nir_lower_iadd64 = (1 << 6),
3500    nir_lower_iabs64 = (1 << 7),
3501    nir_lower_ineg64 = (1 << 8),
3502    nir_lower_logic64 = (1 << 9),
3503    nir_lower_minmax64 = (1 << 10),
3504    nir_lower_shift64 = (1 << 11),
3505    nir_lower_imul_2x32_64 = (1 << 12),
3506    nir_lower_extract64 = (1 << 13),
3507    nir_lower_ufind_msb64 = (1 << 14),
3508    nir_lower_bit_count64 = (1 << 15),
3509    nir_lower_subgroup_shuffle64 = (1 << 16),
3510    nir_lower_scan_reduce_bitwise64 = (1 << 17),
3511    nir_lower_scan_reduce_iadd64 = (1 << 18),
3512    nir_lower_vote_ieq64 = (1 << 19),
3513    nir_lower_usub_sat64 = (1 << 20),
3514    nir_lower_iadd_sat64 = (1 << 21),
3515    nir_lower_find_lsb64 = (1 << 22),
3516    nir_lower_conv64 = (1 << 23),
3517 } nir_lower_int64_options;
3518 
3519 typedef enum {
3520    nir_lower_drcp = (1 << 0),
3521    nir_lower_dsqrt = (1 << 1),
3522    nir_lower_drsq = (1 << 2),
3523    nir_lower_dtrunc = (1 << 3),
3524    nir_lower_dfloor = (1 << 4),
3525    nir_lower_dceil = (1 << 5),
3526    nir_lower_dfract = (1 << 6),
3527    nir_lower_dround_even = (1 << 7),
3528    nir_lower_dmod = (1 << 8),
3529    nir_lower_dsub = (1 << 9),
3530    nir_lower_ddiv = (1 << 10),
3531    nir_lower_dsign = (1 << 11),
3532    nir_lower_dminmax = (1 << 12),
3533    nir_lower_dsat = (1 << 13),
3534    nir_lower_fp64_full_software = (1 << 14),
3535 } nir_lower_doubles_options;
3536 
3537 typedef enum {
3538    nir_divergence_single_prim_per_subgroup = (1 << 0),
3539    nir_divergence_single_patch_per_tcs_subgroup = (1 << 1),
3540    nir_divergence_single_patch_per_tes_subgroup = (1 << 2),
3541    nir_divergence_view_index_uniform = (1 << 3),
3542    nir_divergence_single_frag_shading_rate_per_subgroup = (1 << 4),
3543    nir_divergence_multiple_workgroup_per_compute_subgroup = (1 << 5),
3544    nir_divergence_shader_record_ptr_uniform = (1 << 6),
3545 } nir_divergence_options;
3546 
3547 typedef enum {
3548    /**
3549     * Whether a fragment shader can interpolate the same input multiple times
3550     * with different modes (smooth, noperspective) and locations (pixel,
3551     * centroid, sample, at_offset, at_sample), excluding the flat mode.
3552     *
3553     * This matches AMD GPU flexibility and limitations and is a superset of
3554     * the GL4 requirement that each input can be interpolated at its specified
3555     * location, and then also as centroid, at_offset, and at_sample.
3556     */
3557    nir_io_has_flexible_input_interpolation_except_flat = BITFIELD_BIT(0),
3558 
3559    /* Options affecting the GLSL compiler are below. */
3560 
3561    /**
3562     * Lower load_deref/store_deref to load_input/store_output/etc. intrinsics.
3563     * This is only affects GLSL compilation.
3564     */
3565    nir_io_glsl_lower_derefs = BITFIELD_BIT(16),
3566 } nir_io_options;
3567 
3568 /** An instruction filtering callback
3569  *
3570  * Returns true if the instruction should be processed and false otherwise.
3571  */
3572 typedef bool (*nir_instr_filter_cb)(const nir_instr *, const void *);
3573 
3574 /** A vectorization width callback
3575  *
3576  * Returns the maximum vectorization width per instruction.
3577  * 0, if the instruction must not be modified.
3578  *
3579  * The vectorization width must be a power of 2.
3580  */
3581 typedef uint8_t (*nir_vectorize_cb)(const nir_instr *, const void *);
3582 
3583 typedef struct nir_shader_compiler_options {
3584    bool lower_fdiv;
3585    bool lower_ffma16;
3586    bool lower_ffma32;
3587    bool lower_ffma64;
3588    bool fuse_ffma16;
3589    bool fuse_ffma32;
3590    bool fuse_ffma64;
3591    bool lower_flrp16;
3592    bool lower_flrp32;
3593    /** Lowers flrp when it does not support doubles */
3594    bool lower_flrp64;
3595    bool lower_fpow;
3596    bool lower_fsat;
3597    bool lower_fsqrt;
3598    bool lower_sincos;
3599    bool lower_fmod;
3600    /** Lowers ibitfield_extract/ubitfield_extract. */
3601    bool lower_bitfield_extract;
3602    /** Lowers bitfield_insert. */
3603    bool lower_bitfield_insert;
3604    /** Lowers bitfield_reverse to shifts. */
3605    bool lower_bitfield_reverse;
3606    /** Lowers bit_count to shifts. */
3607    bool lower_bit_count;
3608    /** Lowers ifind_msb. */
3609    bool lower_ifind_msb;
3610    /** Lowers ufind_msb. */
3611    bool lower_ufind_msb;
3612    /** Lowers find_lsb to ufind_msb and logic ops */
3613    bool lower_find_lsb;
3614    bool lower_uadd_carry;
3615    bool lower_usub_borrow;
3616    /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
3617    bool lower_mul_high;
3618    /** lowers fneg to fmul(x, -1.0). Driver must call nir_opt_algebraic_late() */
3619    bool lower_fneg;
3620    /** lowers ineg to isub. Driver must call nir_opt_algebraic_late(). */
3621    bool lower_ineg;
3622    /** lowers fisnormal to alu ops. */
3623    bool lower_fisnormal;
3624 
3625    /* lower {slt,sge,seq,sne} to {flt,fge,feq,fneu} + b2f: */
3626    bool lower_scmp;
3627 
3628    /* lower b/fall_equalN/b/fany_nequalN (ex:fany_nequal4 to sne+fdot4+fsat) */
3629    bool lower_vector_cmp;
3630 
3631    /** enable rules to avoid bit ops */
3632    bool lower_bitops;
3633 
3634    /** enables rules to lower isign to imin+imax */
3635    bool lower_isign;
3636 
3637    /** enables rules to lower fsign to fsub and flt */
3638    bool lower_fsign;
3639 
3640    /** enables rules to lower iabs to ineg+imax */
3641    bool lower_iabs;
3642 
3643    /** enable rules that avoid generating umax from signed integer ops */
3644    bool lower_umax;
3645 
3646    /** enable rules that avoid generating umin from signed integer ops */
3647    bool lower_umin;
3648 
3649    /* lower fdph to fdot4 */
3650    bool lower_fdph;
3651 
3652    /** lower fdot to fmul and fsum/fadd. */
3653    bool lower_fdot;
3654 
3655    /* Does the native fdot instruction replicate its result for four
3656     * components?  If so, then opt_algebraic_late will turn all fdotN
3657     * instructions into fdotN_replicated instructions.
3658     */
3659    bool fdot_replicates;
3660 
3661    /** lowers ffloor to fsub+ffract: */
3662    bool lower_ffloor;
3663 
3664    /** lowers ffract to fsub+ffloor: */
3665    bool lower_ffract;
3666 
3667    /** lowers fceil to fneg+ffloor+fneg: */
3668    bool lower_fceil;
3669 
3670    bool lower_ftrunc;
3671 
3672    /** Lowers fround_even to ffract+feq+csel.
3673     *
3674     * Not correct in that it doesn't correctly handle the "_even" part of the
3675     * rounding, but good enough for DX9 array indexing handling on DX9-class
3676     * hardware.
3677     */
3678    bool lower_fround_even;
3679 
3680    bool lower_ldexp;
3681 
3682    bool lower_pack_half_2x16;
3683    bool lower_pack_unorm_2x16;
3684    bool lower_pack_snorm_2x16;
3685    bool lower_pack_unorm_4x8;
3686    bool lower_pack_snorm_4x8;
3687    bool lower_pack_64_2x32;
3688    bool lower_pack_64_4x16;
3689    bool lower_pack_32_2x16;
3690    bool lower_pack_64_2x32_split;
3691    bool lower_pack_32_2x16_split;
3692    bool lower_unpack_half_2x16;
3693    bool lower_unpack_unorm_2x16;
3694    bool lower_unpack_snorm_2x16;
3695    bool lower_unpack_unorm_4x8;
3696    bool lower_unpack_snorm_4x8;
3697    bool lower_unpack_64_2x32_split;
3698    bool lower_unpack_32_2x16_split;
3699 
3700    bool lower_pack_split;
3701 
3702    bool lower_extract_byte;
3703    bool lower_extract_word;
3704    bool lower_insert_byte;
3705    bool lower_insert_word;
3706 
3707    bool lower_all_io_to_temps;
3708    bool lower_all_io_to_elements;
3709 
3710    /* Indicates that the driver only has zero-based vertex id */
3711    bool vertex_id_zero_based;
3712 
3713    /**
3714     * If enabled, gl_BaseVertex will be lowered as:
3715     * is_indexed_draw (~0/0) & firstvertex
3716     */
3717    bool lower_base_vertex;
3718 
3719    /**
3720     * If enabled, gl_HelperInvocation will be lowered as:
3721     *
3722     *   !((1 << sample_id) & sample_mask_in))
3723     *
3724     * This depends on some possibly hw implementation details, which may
3725     * not be true for all hw.  In particular that the FS is only executed
3726     * for covered samples or for helper invocations.  So, do not blindly
3727     * enable this option.
3728     *
3729     * Note: See also issue #22 in ARB_shader_image_load_store
3730     */
3731    bool lower_helper_invocation;
3732 
3733    /**
3734     * Convert gl_SampleMaskIn to gl_HelperInvocation as follows:
3735     *
3736     *   gl_SampleMaskIn == 0 ---> gl_HelperInvocation
3737     *   gl_SampleMaskIn != 0 ---> !gl_HelperInvocation
3738     */
3739    bool optimize_sample_mask_in;
3740 
3741    /**
3742     * Optimize boolean reductions of quad broadcasts. This should only be enabled if
3743     * nir_intrinsic_reduce supports INCLUDE_HELPERS.
3744     */
3745    bool optimize_quad_vote_to_reduce;
3746 
3747    bool lower_cs_local_index_to_id;
3748    bool lower_cs_local_id_to_index;
3749 
3750    /* Prevents lowering global_invocation_id to be in terms of workgroup_id */
3751    bool has_cs_global_id;
3752 
3753    bool lower_device_index_to_zero;
3754 
3755    /* Set if nir_lower_pntc_ytransform() should invert gl_PointCoord.
3756     * Either when frame buffer is flipped or GL_POINT_SPRITE_COORD_ORIGIN
3757     * is GL_LOWER_LEFT.
3758     */
3759    bool lower_wpos_pntc;
3760 
3761    /**
3762     * Set if nir_op_[iu]hadd and nir_op_[iu]rhadd instructions should be
3763     * lowered to simple arithmetic.
3764     *
3765     * If this flag is set, the lowering will be applied to all bit-sizes of
3766     * these instructions.
3767     *
3768     * :c:member:`lower_hadd64`
3769     */
3770    bool lower_hadd;
3771 
3772    /**
3773     * Set if only 64-bit nir_op_[iu]hadd and nir_op_[iu]rhadd instructions
3774     * should be lowered to simple arithmetic.
3775     *
3776     * If this flag is set, the lowering will be applied to only 64-bit
3777     * versions of these instructions.
3778     *
3779     * :c:member:`lower_hadd`
3780     */
3781    bool lower_hadd64;
3782 
3783    /**
3784     * Set if nir_op_uadd_sat should be lowered to simple arithmetic.
3785     *
3786     * If this flag is set, the lowering will be applied to all bit-sizes of
3787     * these instructions.
3788     */
3789    bool lower_uadd_sat;
3790 
3791    /**
3792     * Set if nir_op_usub_sat should be lowered to simple arithmetic.
3793     *
3794     * If this flag is set, the lowering will be applied to all bit-sizes of
3795     * these instructions.
3796     */
3797    bool lower_usub_sat;
3798 
3799    /**
3800     * Set if nir_op_iadd_sat and nir_op_isub_sat should be lowered to simple
3801     * arithmetic.
3802     *
3803     * If this flag is set, the lowering will be applied to all bit-sizes of
3804     * these instructions.
3805     */
3806    bool lower_iadd_sat;
3807 
3808    /**
3809     * Set if imul_32x16 and umul_32x16 should be lowered to simple
3810     * arithmetic.
3811     */
3812    bool lower_mul_32x16;
3813 
3814    /**
3815     * Should IO be re-vectorized?  Some scalar ISAs still operate on vec4's
3816     * for IO purposes and would prefer loads/stores be vectorized.
3817     */
3818    bool vectorize_io;
3819    bool vectorize_tess_levels;
3820    bool lower_to_scalar;
3821    nir_instr_filter_cb lower_to_scalar_filter;
3822 
3823    /**
3824     * Disables potentially harmful algebraic transformations for architectures
3825     * with SIMD-within-a-register semantics.
3826     *
3827     * Note, to actually vectorize 16bit instructions, use nir_opt_vectorize()
3828     * with a suitable callback function.
3829     */
3830    bool vectorize_vec2_16bit;
3831 
3832    /**
3833     * Should the linker unify inputs_read/outputs_written between adjacent
3834     * shader stages which are linked into a single program?
3835     */
3836    bool unify_interfaces;
3837 
3838    /**
3839     * Should nir_lower_io() create load_interpolated_input intrinsics?
3840     *
3841     * If not, it generates regular load_input intrinsics and interpolation
3842     * information must be inferred from the list of input nir_variables.
3843     */
3844    bool use_interpolated_input_intrinsics;
3845 
3846    /**
3847     * Whether nir_lower_io() will lower interpolateAt functions to
3848     * load_interpolated_input intrinsics.
3849     *
3850     * Unlike use_interpolated_input_intrinsics this will only lower these
3851     * functions and leave input load intrinsics untouched.
3852     */
3853    bool lower_interpolate_at;
3854 
3855    /* Lowers when 32x32->64 bit multiplication is not supported */
3856    bool lower_mul_2x32_64;
3857 
3858    /* Indicates that urol and uror are supported */
3859    bool has_rotate8;
3860    bool has_rotate16;
3861    bool has_rotate32;
3862 
3863    /** Backend supports ternary addition */
3864    bool has_iadd3;
3865 
3866    /**
3867     * Backend supports imul24, and would like to use it (when possible)
3868     * for address/offset calculation.  If true, driver should call
3869     * nir_lower_amul().  (If not set, amul will automatically be lowered
3870     * to imul.)
3871     */
3872    bool has_imul24;
3873 
3874    /** Backend supports umul24, if not set  umul24 will automatically be lowered
3875     * to imul with masked inputs */
3876    bool has_umul24;
3877 
3878    /** Backend supports 32-bit imad */
3879    bool has_imad32;
3880 
3881    /** Backend supports umad24, if not set  umad24 will automatically be lowered
3882     * to imul with masked inputs and iadd */
3883    bool has_umad24;
3884 
3885    /* Backend supports fused comapre against zero and csel */
3886    bool has_fused_comp_and_csel;
3887 
3888    /** Backend supports fsub, if not set fsub will automatically be lowered to
3889     * fadd(x, fneg(y)). If true, driver should call nir_opt_algebraic_late(). */
3890    bool has_fsub;
3891 
3892    /** Backend supports isub, if not set isub will automatically be lowered to
3893     * iadd(x, ineg(y)). If true, driver should call nir_opt_algebraic_late(). */
3894    bool has_isub;
3895 
3896    /** Backend supports pack_32_4x8 or pack_32_4x8_split. */
3897    bool has_pack_32_4x8;
3898 
3899    /** Backend supports nir_load_texture_scale and prefers it over txs for nir
3900     * lowerings. */
3901    bool has_texture_scaling;
3902 
3903    /** Backend supports sdot_4x8_iadd. */
3904    bool has_sdot_4x8;
3905 
3906    /** Backend supports udot_4x8_uadd. */
3907    bool has_udot_4x8;
3908 
3909    /** Backend supports sudot_4x8_iadd. */
3910    bool has_sudot_4x8;
3911 
3912    /** Backend supports sdot_4x8_iadd_sat. */
3913    bool has_sdot_4x8_sat;
3914 
3915    /** Backend supports udot_4x8_uadd_sat. */
3916    bool has_udot_4x8_sat;
3917 
3918    /** Backend supports sudot_4x8_iadd_sat. */
3919    bool has_sudot_4x8_sat;
3920 
3921    /** Backend supports sdot_2x16 and udot_2x16 opcodes. */
3922    bool has_dot_2x16;
3923 
3924    /** Backend supports fmulz (and ffmaz if lower_ffma32=false) */
3925    bool has_fmulz;
3926 
3927    /**
3928     * Backend supports fmulz (and ffmaz if lower_ffma32=false) but only if
3929     * FLOAT_CONTROLS_DENORM_PRESERVE_FP32 is not set
3930     */
3931    bool has_fmulz_no_denorms;
3932 
3933    /** Backend supports 32bit ufind_msb_rev and ifind_msb_rev. */
3934    bool has_find_msb_rev;
3935 
3936    /** Backend supports pack_half_2x16_rtz_split. */
3937    bool has_pack_half_2x16_rtz;
3938 
3939    /** Backend supports bitz/bitnz. */
3940    bool has_bit_test;
3941 
3942    /** Backend supports ubfe/ibfe. */
3943    bool has_bfe;
3944 
3945    /** Backend supports bfm. */
3946    bool has_bfm;
3947 
3948    /** Backend supports bfi. */
3949    bool has_bfi;
3950 
3951    /** Backend supports bitfield_select. */
3952    bool has_bitfield_select;
3953 
3954    /** Backend supports uclz. */
3955    bool has_uclz;
3956 
3957    /** Backend support msad_u4x8. */
3958    bool has_msad;
3959 
3960    /**
3961     * Is this the Intel vec4 backend?
3962     *
3963     * Used to inhibit algebraic optimizations that are known to be harmful on
3964     * the Intel vec4 backend.  This is generally applicable to any
3965     * optimization that might cause more immediate values to be used in
3966     * 3-source (e.g., ffma and flrp) instructions.
3967     */
3968    bool intel_vec4;
3969 
3970    /**
3971     * For most Intel GPUs, all ternary operations such as FMA and BFE cannot
3972     * have immediates, so two to three instructions may eventually be needed.
3973     */
3974    bool avoid_ternary_with_two_constants;
3975 
3976    /** Whether 8-bit ALU is supported. */
3977    bool support_8bit_alu;
3978 
3979    /** Whether 16-bit ALU is supported. */
3980    bool support_16bit_alu;
3981 
3982    unsigned max_unroll_iterations;
3983    unsigned max_unroll_iterations_aggressive;
3984    unsigned max_unroll_iterations_fp64;
3985 
3986    bool lower_uniforms_to_ubo;
3987 
3988    /* If the precision is ignored, backends that don't handle
3989     * different precisions when passing data between stages and use
3990     * vectorized IO can pack more varyings when linking. */
3991    bool linker_ignore_precision;
3992 
3993    /* Specifies if indirect sampler array access will trigger forced loop
3994     * unrolling.
3995     */
3996    bool force_indirect_unrolling_sampler;
3997 
3998    /* Some older drivers don't support GLSL versions with the concept of flat
3999     * varyings and also don't support integers. This setting helps us avoid
4000     * marking varyings as flat and potentially having them changed to ints via
4001     * varying packing.
4002     */
4003    bool no_integers;
4004 
4005    /**
4006     * Specifies which type of indirectly accessed variables should force
4007     * loop unrolling.
4008     */
4009    nir_variable_mode force_indirect_unrolling;
4010 
4011    bool driver_functions;
4012 
4013    nir_lower_int64_options lower_int64_options;
4014    nir_lower_doubles_options lower_doubles_options;
4015    nir_divergence_options divergence_analysis_options;
4016 
4017    /**
4018     * The masks of shader stages that support indirect indexing with
4019     * load_input and store_output intrinsics. It's used by
4020     * nir_lower_io_passes.
4021     */
4022    uint8_t support_indirect_inputs;
4023    uint8_t support_indirect_outputs;
4024 
4025    /**
4026     * Remove varying loaded from uniform, let fragment shader load the
4027     * uniform directly. GPU passing varying by memory can benifit from it
4028     * for sure; but GPU passing varying by on chip resource may not.
4029     * Because it saves on chip resource but may increase memory pressure when
4030     * fragment task is far more than vertex one, so better left it disabled.
4031     */
4032    bool lower_varying_from_uniform;
4033 
4034    /** store the variable offset into the instrinsic range_base instead
4035     *  of adding it to the image index.
4036     */
4037    bool lower_image_offset_to_range_base;
4038 
4039    /** store the variable offset into the instrinsic range_base instead
4040     *  of adding it to the atomic source
4041     */
4042    bool lower_atomic_offset_to_range_base;
4043 
4044    /** Don't convert medium-precision casts (e.g. f2fmp) into concrete
4045     *  type casts (e.g. f2f16).
4046     */
4047    bool preserve_mediump;
4048 
4049    /** lowers fquantize2f16 to alu ops. */
4050    bool lower_fquantize2f16;
4051 
4052    /** Lower f2f16 to f2f16_rtz when execution mode is not rtne. */
4053    bool force_f2f16_rtz;
4054 
4055    /** Lower VARYING_SLOT_LAYER in FS to SYSTEM_VALUE_LAYER_ID. */
4056    bool lower_layer_fs_input_to_sysval;
4057 
4058    /** Options determining lowering and behavior of inputs and outputs. */
4059    nir_io_options io_options;
4060 
4061    /** Driver callback where drivers can define how to lower mediump.
4062     *  Used by nir_lower_io_passes.
4063     */
4064    void (*lower_mediump_io)(struct nir_shader *nir);
4065 } nir_shader_compiler_options;
4066 
4067 typedef struct nir_shader {
4068    gc_ctx *gctx;
4069 
4070    /** list of uniforms (nir_variable) */
4071    struct exec_list variables;
4072 
4073    /** Set of driver-specific options for the shader.
4074     *
4075     * The memory for the options is expected to be kept in a single static
4076     * copy by the driver.
4077     */
4078    const struct nir_shader_compiler_options *options;
4079 
4080    /** Various bits of compile-time information about a given shader */
4081    struct shader_info info;
4082 
4083    /** list of nir_function */
4084    struct exec_list functions;
4085 
4086    /**
4087     * The size of the variable space for load_input_*, load_uniform_*, etc.
4088     * intrinsics.  This is in back-end specific units which is likely one of
4089     * bytes, dwords, or vec4s depending on context and back-end.
4090     */
4091    unsigned num_inputs, num_uniforms, num_outputs;
4092 
4093    /** Size in bytes of required implicitly bound global memory */
4094    unsigned global_mem_size;
4095 
4096    /** Size in bytes of required scratch space */
4097    unsigned scratch_size;
4098 
4099    /** Constant data associated with this shader.
4100     *
4101     * Constant data is loaded through load_constant intrinsics (as compared to
4102     * the NIR load_const instructions which have the constant value inlined
4103     * into them).  This is usually generated by nir_opt_large_constants (so
4104     * shaders don't have to load_const into a temporary array when they want
4105     * to indirect on a const array).
4106     */
4107    void *constant_data;
4108    /** Size of the constant data associated with the shader, in bytes */
4109    unsigned constant_data_size;
4110 
4111    struct nir_xfb_info *xfb_info;
4112 
4113    unsigned printf_info_count;
4114    u_printf_info *printf_info;
4115 } nir_shader;
4116 
4117 #define nir_foreach_function(func, shader) \
4118    foreach_list_typed(nir_function, func, node, &(shader)->functions)
4119 
4120 #define nir_foreach_function_safe(func, shader) \
4121    foreach_list_typed_safe(nir_function, func, node, &(shader)->functions)
4122 
4123 static inline nir_function *
nir_foreach_function_with_impl_first(const nir_shader * shader)4124 nir_foreach_function_with_impl_first(const nir_shader *shader)
4125 {
4126    foreach_list_typed(nir_function, func, node, &shader->functions) {
4127       if (func->impl != NULL)
4128          return func;
4129    }
4130 
4131    return NULL;
4132 }
4133 
4134 static inline nir_function_impl *
nir_foreach_function_with_impl_next(nir_function ** it)4135 nir_foreach_function_with_impl_next(nir_function **it)
4136 {
4137    foreach_list_typed_from(nir_function, func, node, _, (*it)->node.next) {
4138       if (func->impl != NULL) {
4139          *it = func;
4140          return func->impl;
4141       }
4142    }
4143 
4144    return NULL;
4145 }
4146 
4147 #define nir_foreach_function_with_impl(it, impl_it, shader)              \
4148    for (nir_function *it = nir_foreach_function_with_impl_first(shader); \
4149         it != NULL;                                                      \
4150         it = NULL)                                                       \
4151                                                                          \
4152       for (nir_function_impl *impl_it = it->impl;                        \
4153            impl_it != NULL;                                              \
4154            impl_it = nir_foreach_function_with_impl_next(&it))
4155 
4156 /* Equivalent to
4157  *
4158  *    nir_foreach_function(func, shader) {
4159  *       if (func->impl != NULL) {
4160  *             ...
4161  *       }
4162  *    }
4163  *
4164  * Carefully written to ensure break/continue work in the user code.
4165  */
4166 
4167 #define nir_foreach_function_impl(it, shader) \
4168    nir_foreach_function_with_impl(_func_##it, it, shader)
4169 
4170 static inline nir_function_impl *
nir_shader_get_entrypoint(const nir_shader * shader)4171 nir_shader_get_entrypoint(const nir_shader *shader)
4172 {
4173    nir_function *func = NULL;
4174 
4175    nir_foreach_function(function, shader) {
4176       assert(func == NULL);
4177       if (function->is_entrypoint) {
4178          func = function;
4179 #ifndef NDEBUG
4180          break;
4181 #endif
4182       }
4183    }
4184 
4185    if (!func)
4186       return NULL;
4187 
4188    assert(func->num_params == 0);
4189    assert(func->impl);
4190    return func->impl;
4191 }
4192 
4193 static inline nir_function *
nir_shader_get_function_for_name(const nir_shader * shader,const char * name)4194 nir_shader_get_function_for_name(const nir_shader *shader, const char *name)
4195 {
4196    nir_foreach_function(func, shader) {
4197       if (strcmp(func->name, name) == 0)
4198          return func;
4199    }
4200 
4201    return NULL;
4202 }
4203 
4204 /*
4205  * After all functions are forcibly inlined, these passes remove redundant
4206  * functions from a shader and library respectively.
4207  */
4208 void nir_remove_non_entrypoints(nir_shader *shader);
4209 void nir_remove_non_exported(nir_shader *shader);
4210 
4211 nir_shader *nir_shader_create(void *mem_ctx,
4212                               gl_shader_stage stage,
4213                               const nir_shader_compiler_options *options,
4214                               shader_info *si);
4215 
4216 /** Adds a variable to the appropriate list in nir_shader */
4217 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
4218 
4219 static inline void
nir_function_impl_add_variable(nir_function_impl * impl,nir_variable * var)4220 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
4221 {
4222    assert(var->data.mode == nir_var_function_temp);
4223    exec_list_push_tail(&impl->locals, &var->node);
4224 }
4225 
4226 /** creates a variable, sets a few defaults, and adds it to the list */
4227 nir_variable *nir_variable_create(nir_shader *shader,
4228                                   nir_variable_mode mode,
4229                                   const struct glsl_type *type,
4230                                   const char *name);
4231 /** creates a local variable and adds it to the list */
4232 nir_variable *nir_local_variable_create(nir_function_impl *impl,
4233                                         const struct glsl_type *type,
4234                                         const char *name);
4235 
4236 /** Creates a uniform builtin state variable. */
4237 nir_variable *
4238 nir_state_variable_create(nir_shader *shader,
4239                           const struct glsl_type *type,
4240                           const char *name,
4241                           const gl_state_index16 tokens[STATE_LENGTH]);
4242 
4243 /* Gets the variable for the given mode and location, creating it (with the given
4244  * type) if necessary.
4245  */
4246 nir_variable *
4247 nir_get_variable_with_location(nir_shader *shader, nir_variable_mode mode, int location,
4248                                const struct glsl_type *type);
4249 
4250 /* Creates a variable for the given mode and location.
4251  */
4252 nir_variable *
4253 nir_create_variable_with_location(nir_shader *shader, nir_variable_mode mode, int location,
4254                                   const struct glsl_type *type);
4255 
4256 nir_variable *nir_find_variable_with_location(nir_shader *shader,
4257                                               nir_variable_mode mode,
4258                                               unsigned location);
4259 
4260 nir_variable *nir_find_variable_with_driver_location(nir_shader *shader,
4261                                                      nir_variable_mode mode,
4262                                                      unsigned location);
4263 
4264 nir_variable *nir_find_state_variable(nir_shader *s,
4265                                       gl_state_index16 tokens[STATE_LENGTH]);
4266 
4267 nir_variable *nir_find_sampler_variable_with_tex_index(nir_shader *shader,
4268                                                        unsigned texture_index);
4269 
4270 void nir_sort_variables_with_modes(nir_shader *shader,
4271                                    int (*compar)(const nir_variable *,
4272                                                  const nir_variable *),
4273                                    nir_variable_mode modes);
4274 
4275 /** creates a function and adds it to the shader's list of functions */
4276 nir_function *nir_function_create(nir_shader *shader, const char *name);
4277 
4278 static inline void
nir_function_set_impl(nir_function * func,nir_function_impl * impl)4279 nir_function_set_impl(nir_function *func, nir_function_impl *impl)
4280 {
4281    func->impl = impl;
4282    impl->function = func;
4283 }
4284 
4285 nir_function_impl *nir_function_impl_create(nir_function *func);
4286 /** creates a function_impl that isn't tied to any particular function */
4287 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
4288 
4289 nir_block *nir_block_create(nir_shader *shader);
4290 nir_if *nir_if_create(nir_shader *shader);
4291 nir_loop *nir_loop_create(nir_shader *shader);
4292 
4293 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
4294 
4295 /** requests that the given pieces of metadata be generated */
4296 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
4297 /** dirties all but the preserved metadata */
4298 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
4299 /** Preserves all metadata for the given shader */
4300 void nir_shader_preserve_all_metadata(nir_shader *shader);
4301 
4302 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
4303 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
4304 
4305 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
4306                                         nir_deref_type deref_type);
4307 
4308 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
4309 
4310 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
4311                                                   unsigned num_components,
4312                                                   unsigned bit_size);
4313 
4314 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
4315                                                 nir_intrinsic_op op);
4316 
4317 nir_call_instr *nir_call_instr_create(nir_shader *shader,
4318                                       nir_function *callee);
4319 
4320 /** Creates a NIR texture instruction */
4321 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
4322 
4323 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
4324 nir_phi_src *nir_phi_instr_add_src(nir_phi_instr *instr,
4325                                    nir_block *pred, nir_def *src);
4326 
4327 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
4328 
4329 nir_undef_instr *nir_undef_instr_create(nir_shader *shader,
4330                                         unsigned num_components,
4331                                         unsigned bit_size);
4332 
4333 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
4334 
4335 /**
4336  * NIR Cursors and Instruction Insertion API
4337  * @{
4338  *
4339  * A tiny struct representing a point to insert/extract instructions or
4340  * control flow nodes.  Helps reduce the combinatorial explosion of possible
4341  * points to insert/extract.
4342  *
4343  * \sa nir_control_flow.h
4344  */
4345 typedef enum {
4346    nir_cursor_before_block,
4347    nir_cursor_after_block,
4348    nir_cursor_before_instr,
4349    nir_cursor_after_instr,
4350 } nir_cursor_option;
4351 
4352 typedef struct {
4353    nir_cursor_option option;
4354    union {
4355       nir_block *block;
4356       nir_instr *instr;
4357    };
4358 } nir_cursor;
4359 
4360 static inline nir_block *
nir_cursor_current_block(nir_cursor cursor)4361 nir_cursor_current_block(nir_cursor cursor)
4362 {
4363    if (cursor.option == nir_cursor_before_instr ||
4364        cursor.option == nir_cursor_after_instr) {
4365       return cursor.instr->block;
4366    } else {
4367       return cursor.block;
4368    }
4369 }
4370 
4371 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
4372 
4373 static inline nir_cursor
nir_before_block(nir_block * block)4374 nir_before_block(nir_block *block)
4375 {
4376    nir_cursor cursor;
4377    cursor.option = nir_cursor_before_block;
4378    cursor.block = block;
4379    return cursor;
4380 }
4381 
4382 static inline nir_cursor
nir_after_block(nir_block * block)4383 nir_after_block(nir_block *block)
4384 {
4385    nir_cursor cursor;
4386    cursor.option = nir_cursor_after_block;
4387    cursor.block = block;
4388    return cursor;
4389 }
4390 
4391 static inline nir_cursor
nir_before_instr(nir_instr * instr)4392 nir_before_instr(nir_instr *instr)
4393 {
4394    nir_cursor cursor;
4395    cursor.option = nir_cursor_before_instr;
4396    cursor.instr = instr;
4397    return cursor;
4398 }
4399 
4400 static inline nir_cursor
nir_after_instr(nir_instr * instr)4401 nir_after_instr(nir_instr *instr)
4402 {
4403    nir_cursor cursor;
4404    cursor.option = nir_cursor_after_instr;
4405    cursor.instr = instr;
4406    return cursor;
4407 }
4408 
4409 static inline nir_cursor
nir_before_block_after_phis(nir_block * block)4410 nir_before_block_after_phis(nir_block *block)
4411 {
4412    nir_phi_instr *last_phi = nir_block_last_phi_instr(block);
4413    if (last_phi)
4414       return nir_after_instr(&last_phi->instr);
4415    else
4416       return nir_before_block(block);
4417 }
4418 
4419 static inline nir_cursor
nir_after_block_before_jump(nir_block * block)4420 nir_after_block_before_jump(nir_block *block)
4421 {
4422    nir_instr *last_instr = nir_block_last_instr(block);
4423    if (last_instr && last_instr->type == nir_instr_type_jump) {
4424       return nir_before_instr(last_instr);
4425    } else {
4426       return nir_after_block(block);
4427    }
4428 }
4429 
4430 static inline nir_cursor
nir_before_src(nir_src * src)4431 nir_before_src(nir_src *src)
4432 {
4433    if (nir_src_is_if(src)) {
4434       nir_block *prev_block =
4435          nir_cf_node_as_block(nir_cf_node_prev(&nir_src_parent_if(src)->cf_node));
4436       return nir_after_block(prev_block);
4437    } else if (nir_src_parent_instr(src)->type == nir_instr_type_phi) {
4438 #ifndef NDEBUG
4439       nir_phi_instr *cond_phi = nir_instr_as_phi(nir_src_parent_instr(src));
4440       bool found = false;
4441       nir_foreach_phi_src(phi_src, cond_phi) {
4442          if (phi_src->src.ssa == src->ssa) {
4443             found = true;
4444             break;
4445          }
4446       }
4447       assert(found);
4448 #endif
4449       /* The list_entry() macro is a generic container-of macro, it just happens
4450        * to have a more specific name.
4451        */
4452       nir_phi_src *phi_src = list_entry(src, nir_phi_src, src);
4453       return nir_after_block_before_jump(phi_src->pred);
4454    } else {
4455       return nir_before_instr(nir_src_parent_instr(src));
4456    }
4457 }
4458 
4459 static inline nir_cursor
nir_before_cf_node(nir_cf_node * node)4460 nir_before_cf_node(nir_cf_node *node)
4461 {
4462    if (node->type == nir_cf_node_block)
4463       return nir_before_block(nir_cf_node_as_block(node));
4464 
4465    return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
4466 }
4467 
4468 static inline nir_cursor
nir_after_cf_node(nir_cf_node * node)4469 nir_after_cf_node(nir_cf_node *node)
4470 {
4471    if (node->type == nir_cf_node_block)
4472       return nir_after_block(nir_cf_node_as_block(node));
4473 
4474    return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
4475 }
4476 
4477 static inline nir_cursor
nir_after_phis(nir_block * block)4478 nir_after_phis(nir_block *block)
4479 {
4480    nir_foreach_instr(instr, block) {
4481       if (instr->type != nir_instr_type_phi)
4482          return nir_before_instr(instr);
4483    }
4484    return nir_after_block(block);
4485 }
4486 
4487 static inline nir_cursor
nir_after_instr_and_phis(nir_instr * instr)4488 nir_after_instr_and_phis(nir_instr *instr)
4489 {
4490    if (instr->type == nir_instr_type_phi)
4491       return nir_after_phis(instr->block);
4492    else
4493       return nir_after_instr(instr);
4494 }
4495 
4496 static inline nir_cursor
nir_after_cf_node_and_phis(nir_cf_node * node)4497 nir_after_cf_node_and_phis(nir_cf_node *node)
4498 {
4499    if (node->type == nir_cf_node_block)
4500       return nir_after_block(nir_cf_node_as_block(node));
4501 
4502    nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
4503 
4504    return nir_after_phis(block);
4505 }
4506 
4507 static inline nir_cursor
nir_before_cf_list(struct exec_list * cf_list)4508 nir_before_cf_list(struct exec_list *cf_list)
4509 {
4510    nir_cf_node *first_node = exec_node_data(nir_cf_node,
4511                                             exec_list_get_head(cf_list), node);
4512    return nir_before_cf_node(first_node);
4513 }
4514 
4515 static inline nir_cursor
nir_after_cf_list(struct exec_list * cf_list)4516 nir_after_cf_list(struct exec_list *cf_list)
4517 {
4518    nir_cf_node *last_node = exec_node_data(nir_cf_node,
4519                                            exec_list_get_tail(cf_list), node);
4520    return nir_after_cf_node(last_node);
4521 }
4522 
4523 static inline nir_cursor
nir_before_impl(nir_function_impl * impl)4524 nir_before_impl(nir_function_impl *impl)
4525 {
4526    return nir_before_cf_list(&impl->body);
4527 }
4528 
4529 static inline nir_cursor
nir_after_impl(nir_function_impl * impl)4530 nir_after_impl(nir_function_impl *impl)
4531 {
4532    return nir_after_cf_list(&impl->body);
4533 }
4534 
4535 /**
4536  * Insert a NIR instruction at the given cursor.
4537  *
4538  * Note: This does not update the cursor.
4539  */
4540 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
4541 
4542 bool nir_instr_move(nir_cursor cursor, nir_instr *instr);
4543 
4544 static inline void
nir_instr_insert_before(nir_instr * instr,nir_instr * before)4545 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
4546 {
4547    nir_instr_insert(nir_before_instr(instr), before);
4548 }
4549 
4550 static inline void
nir_instr_insert_after(nir_instr * instr,nir_instr * after)4551 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
4552 {
4553    nir_instr_insert(nir_after_instr(instr), after);
4554 }
4555 
4556 static inline void
nir_instr_insert_before_block(nir_block * block,nir_instr * before)4557 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
4558 {
4559    nir_instr_insert(nir_before_block(block), before);
4560 }
4561 
4562 static inline void
nir_instr_insert_after_block(nir_block * block,nir_instr * after)4563 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
4564 {
4565    nir_instr_insert(nir_after_block(block), after);
4566 }
4567 
4568 static inline void
nir_instr_insert_before_cf(nir_cf_node * node,nir_instr * before)4569 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
4570 {
4571    nir_instr_insert(nir_before_cf_node(node), before);
4572 }
4573 
4574 static inline void
nir_instr_insert_after_cf(nir_cf_node * node,nir_instr * after)4575 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
4576 {
4577    nir_instr_insert(nir_after_cf_node(node), after);
4578 }
4579 
4580 static inline void
nir_instr_insert_before_cf_list(struct exec_list * list,nir_instr * before)4581 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
4582 {
4583    nir_instr_insert(nir_before_cf_list(list), before);
4584 }
4585 
4586 static inline void
nir_instr_insert_after_cf_list(struct exec_list * list,nir_instr * after)4587 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
4588 {
4589    nir_instr_insert(nir_after_cf_list(list), after);
4590 }
4591 
4592 void nir_instr_remove_v(nir_instr *instr);
4593 void nir_instr_free(nir_instr *instr);
4594 void nir_instr_free_list(struct exec_list *list);
4595 
4596 static inline nir_cursor
nir_instr_remove(nir_instr * instr)4597 nir_instr_remove(nir_instr *instr)
4598 {
4599    nir_cursor cursor;
4600    nir_instr *prev = nir_instr_prev(instr);
4601    if (prev) {
4602       cursor = nir_after_instr(prev);
4603    } else {
4604       cursor = nir_before_block(instr->block);
4605    }
4606    nir_instr_remove_v(instr);
4607    return cursor;
4608 }
4609 
4610 nir_cursor nir_instr_free_and_dce(nir_instr *instr);
4611 
4612 /** @} */
4613 
4614 nir_def *nir_instr_def(nir_instr *instr);
4615 
4616 typedef bool (*nir_foreach_def_cb)(nir_def *def, void *state);
4617 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
4618 static inline bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
4619 bool nir_foreach_phi_src_leaving_block(nir_block *instr,
4620                                        nir_foreach_src_cb cb,
4621                                        void *state);
4622 
4623 nir_const_value *nir_src_as_const_value(nir_src src);
4624 
4625 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
4626    static inline c_type *                                \
4627       nir_src_as_##name(nir_src src)                     \
4628    {                                                     \
4629       return src.ssa->parent_instr->type == type_enum    \
4630                 ? cast_macro(src.ssa->parent_instr)      \
4631                 : NULL;                                  \
4632    }
4633 
4634 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
4635 NIR_SRC_AS_(intrinsic, nir_intrinsic_instr,
4636             nir_instr_type_intrinsic, nir_instr_as_intrinsic)
4637 NIR_SRC_AS_(deref, nir_deref_instr, nir_instr_type_deref, nir_instr_as_deref)
4638 
4639 bool nir_src_is_always_uniform(nir_src src);
4640 bool nir_srcs_equal(nir_src src1, nir_src src2);
4641 bool nir_instrs_equal(const nir_instr *instr1, const nir_instr *instr2);
4642 
4643 static inline void
nir_src_rewrite(nir_src * src,nir_def * new_ssa)4644 nir_src_rewrite(nir_src *src, nir_def *new_ssa)
4645 {
4646    assert(src->ssa);
4647    assert(nir_src_is_if(src) ? (nir_src_parent_if(src) != NULL) : (nir_src_parent_instr(src) != NULL));
4648    list_del(&src->use_link);
4649    src->ssa = new_ssa;
4650    list_addtail(&src->use_link, &new_ssa->uses);
4651 }
4652 
4653 /** Initialize a nir_src
4654  *
4655  * This is almost never the helper you want to use.  This helper assumes that
4656  * the source is uninitialized garbage and blasts over it without doing any
4657  * tear-down the existing source, including removing it from uses lists.
4658  * Using this helper on a source that currently exists in any uses list will
4659  * result in linked list corruption.  It also assumes that the instruction is
4660  * currently live in the IR and adds the source to the uses list for the given
4661  * nir_def as part of setup.
4662  *
4663  * This is pretty much only useful for adding sources to extant instructions
4664  * or manipulating parallel copy instructions as part of out-of-SSA.
4665  *
4666  * When in doubt, use nir_src_rewrite() instead.
4667  */
4668 void nir_instr_init_src(nir_instr *instr, nir_src *src, nir_def *def);
4669 
4670 /** Clear a nir_src
4671  *
4672  * This helper clears a nir_src by removing it from any uses lists and
4673  * resetting its contents to NIR_SRC_INIT.  This is typically used as a
4674  * precursor to removing the source from the instruction by adjusting a
4675  * num_srcs parameter somewhere or overwriting it with nir_instr_move_src().
4676  */
4677 void nir_instr_clear_src(nir_instr *instr, nir_src *src);
4678 
4679 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
4680 
4681 void nir_def_init(nir_instr *instr, nir_def *def,
4682                   unsigned num_components, unsigned bit_size);
4683 static inline void
nir_def_init_for_type(nir_instr * instr,nir_def * def,const struct glsl_type * type)4684 nir_def_init_for_type(nir_instr *instr, nir_def *def,
4685                       const struct glsl_type *type)
4686 {
4687    assert(glsl_type_is_vector_or_scalar(type));
4688    nir_def_init(instr, def, glsl_get_components(type),
4689                 glsl_get_bit_size(type));
4690 }
4691 void nir_def_rewrite_uses(nir_def *def, nir_def *new_ssa);
4692 void nir_def_rewrite_uses_src(nir_def *def, nir_src new_src);
4693 void nir_def_rewrite_uses_after(nir_def *def, nir_def *new_ssa,
4694                                 nir_instr *after_me);
4695 
4696 nir_component_mask_t nir_src_components_read(const nir_src *src);
4697 nir_component_mask_t nir_def_components_read(const nir_def *def);
4698 bool nir_def_all_uses_are_fsat(const nir_def *def);
4699 
4700 static inline bool
nir_def_is_unused(nir_def * ssa)4701 nir_def_is_unused(nir_def *ssa)
4702 {
4703    return list_is_empty(&ssa->uses);
4704 }
4705 
4706 /** Returns the next block, disregarding structure
4707  *
4708  * The ordering is deterministic but has no guarantees beyond that.  In
4709  * particular, it is not guaranteed to be dominance-preserving.
4710  */
4711 nir_block *nir_block_unstructured_next(nir_block *block);
4712 nir_block *nir_unstructured_start_block(nir_function_impl *impl);
4713 
4714 #define nir_foreach_block_unstructured(block, impl)                           \
4715    for (nir_block *block = nir_unstructured_start_block(impl); block != NULL; \
4716         block = nir_block_unstructured_next(block))
4717 
4718 #define nir_foreach_block_unstructured_safe(block, impl)       \
4719    for (nir_block *block = nir_unstructured_start_block(impl), \
4720                   *next = nir_block_unstructured_next(block);  \
4721         block != NULL;                                         \
4722         block = next, next = nir_block_unstructured_next(block))
4723 
4724 /*
4725  * finds the next basic block in source-code order, returns NULL if there is
4726  * none
4727  */
4728 
4729 nir_block *nir_block_cf_tree_next(nir_block *block);
4730 
4731 /* Performs the opposite of nir_block_cf_tree_next() */
4732 
4733 nir_block *nir_block_cf_tree_prev(nir_block *block);
4734 
4735 /* Gets the first block in a CF node in source-code order */
4736 
4737 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
4738 
4739 /* Gets the last block in a CF node in source-code order */
4740 
4741 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
4742 
4743 /* Gets the next block after a CF node in source-code order */
4744 
4745 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
4746 
4747 /* Gets the block before a CF node in source-code order */
4748 
4749 nir_block *nir_cf_node_cf_tree_prev(nir_cf_node *node);
4750 
4751 /* Macros for loops that visit blocks in source-code order */
4752 
4753 #define nir_foreach_block(block, impl)                           \
4754    for (nir_block *block = nir_start_block(impl); block != NULL; \
4755         block = nir_block_cf_tree_next(block))
4756 
4757 #define nir_foreach_block_safe(block, impl)              \
4758    for (nir_block *block = nir_start_block(impl),        \
4759                   *next = nir_block_cf_tree_next(block); \
4760         block != NULL;                                   \
4761         block = next, next = nir_block_cf_tree_next(block))
4762 
4763 #define nir_foreach_block_reverse(block, impl)                       \
4764    for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
4765         block = nir_block_cf_tree_prev(block))
4766 
4767 #define nir_foreach_block_reverse_safe(block, impl)      \
4768    for (nir_block *block = nir_impl_last_block(impl),    \
4769                   *prev = nir_block_cf_tree_prev(block); \
4770         block != NULL;                                   \
4771         block = prev, prev = nir_block_cf_tree_prev(block))
4772 
4773 #define nir_foreach_block_in_cf_node(block, node)           \
4774    for (nir_block *block = nir_cf_node_cf_tree_first(node); \
4775         block != nir_cf_node_cf_tree_next(node);            \
4776         block = nir_block_cf_tree_next(block))
4777 
4778 #define nir_foreach_block_in_cf_node_reverse(block, node)  \
4779    for (nir_block *block = nir_cf_node_cf_tree_last(node); \
4780         block != nir_cf_node_cf_tree_prev(node);           \
4781         block = nir_block_cf_tree_prev(block))
4782 
4783 /* If the following CF node is an if, this function returns that if.
4784  * Otherwise, it returns NULL.
4785  */
4786 nir_if *nir_block_get_following_if(nir_block *block);
4787 
4788 nir_loop *nir_block_get_following_loop(nir_block *block);
4789 
4790 nir_block **nir_block_get_predecessors_sorted(const nir_block *block, void *mem_ctx);
4791 
4792 void nir_index_ssa_defs(nir_function_impl *impl);
4793 unsigned nir_index_instrs(nir_function_impl *impl);
4794 
4795 void nir_index_blocks(nir_function_impl *impl);
4796 
4797 void nir_shader_clear_pass_flags(nir_shader *shader);
4798 
4799 unsigned nir_shader_index_vars(nir_shader *shader, nir_variable_mode modes);
4800 unsigned nir_function_impl_index_vars(nir_function_impl *impl);
4801 
4802 void nir_print_shader(nir_shader *shader, FILE *fp);
4803 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
4804 void nir_print_instr(const nir_instr *instr, FILE *fp);
4805 void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
4806 void nir_log_shader_annotated_tagged(enum mesa_log_level level, const char *tag, nir_shader *shader, struct hash_table *annotations);
4807 #define nir_log_shadere(s)                       nir_log_shader_annotated_tagged(MESA_LOG_ERROR, (MESA_LOG_TAG), (s), NULL)
4808 #define nir_log_shaderw(s)                       nir_log_shader_annotated_tagged(MESA_LOG_WARN, (MESA_LOG_TAG), (s), NULL)
4809 #define nir_log_shaderi(s)                       nir_log_shader_annotated_tagged(MESA_LOG_INFO, (MESA_LOG_TAG), (s), NULL)
4810 #define nir_log_shader_annotated(s, annotations) nir_log_shader_annotated_tagged(MESA_LOG_ERROR, (MESA_LOG_TAG), (s), annotations)
4811 
4812 char *nir_shader_as_str(nir_shader *nir, void *mem_ctx);
4813 char *nir_shader_as_str_annotated(nir_shader *nir, struct hash_table *annotations, void *mem_ctx);
4814 char *nir_instr_as_str(const nir_instr *instr, void *mem_ctx);
4815 
4816 /** Shallow clone of a single instruction. */
4817 nir_instr *nir_instr_clone(nir_shader *s, const nir_instr *orig);
4818 
4819 /** Clone a single instruction, including a remap table to rewrite sources. */
4820 nir_instr *nir_instr_clone_deep(nir_shader *s, const nir_instr *orig,
4821                                 struct hash_table *remap_table);
4822 
4823 /** Shallow clone of a single ALU instruction. */
4824 nir_alu_instr *nir_alu_instr_clone(nir_shader *s, const nir_alu_instr *orig);
4825 
4826 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
4827 nir_function *nir_function_clone(nir_shader *ns, const nir_function *fxn);
4828 nir_function_impl *nir_function_impl_clone(nir_shader *shader,
4829                                            const nir_function_impl *fi);
4830 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
4831 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
4832 
4833 void nir_shader_replace(nir_shader *dest, nir_shader *src);
4834 
4835 void nir_shader_serialize_deserialize(nir_shader *s);
4836 
4837 #ifndef NDEBUG
4838 void nir_validate_shader(nir_shader *shader, const char *when);
4839 void nir_validate_ssa_dominance(nir_shader *shader, const char *when);
4840 void nir_metadata_set_validation_flag(nir_shader *shader);
4841 void nir_metadata_check_validation_flag(nir_shader *shader);
4842 
4843 static inline bool
should_skip_nir(const char * name)4844 should_skip_nir(const char *name)
4845 {
4846    static const char *list = NULL;
4847    if (!list) {
4848       /* Comma separated list of names to skip. */
4849       list = getenv("NIR_SKIP");
4850       if (!list)
4851          list = "";
4852    }
4853 
4854    if (!list[0])
4855       return false;
4856 
4857    return comma_separated_list_contains(list, name);
4858 }
4859 
4860 static inline bool
should_print_nir(nir_shader * shader)4861 should_print_nir(nir_shader *shader)
4862 {
4863    if ((shader->info.internal && !NIR_DEBUG(PRINT_INTERNAL)) ||
4864        shader->info.stage < 0 ||
4865        shader->info.stage > MESA_SHADER_KERNEL)
4866       return false;
4867 
4868    return unlikely(nir_debug_print_shader[shader->info.stage]);
4869 }
4870 #else
4871 static inline void
nir_validate_shader(nir_shader * shader,const char * when)4872 nir_validate_shader(nir_shader *shader, const char *when)
4873 {
4874    (void)shader;
4875    (void)when;
4876 }
4877 static inline void
nir_validate_ssa_dominance(nir_shader * shader,const char * when)4878 nir_validate_ssa_dominance(nir_shader *shader, const char *when)
4879 {
4880    (void)shader;
4881    (void)when;
4882 }
4883 static inline void
nir_metadata_set_validation_flag(nir_shader * shader)4884 nir_metadata_set_validation_flag(nir_shader *shader)
4885 {
4886    (void)shader;
4887 }
4888 static inline void
nir_metadata_check_validation_flag(nir_shader * shader)4889 nir_metadata_check_validation_flag(nir_shader *shader)
4890 {
4891    (void)shader;
4892 }
4893 static inline bool
should_skip_nir(UNUSED const char * pass_name)4894 should_skip_nir(UNUSED const char *pass_name)
4895 {
4896    return false;
4897 }
4898 static inline bool
should_print_nir(UNUSED nir_shader * shader)4899 should_print_nir(UNUSED nir_shader *shader)
4900 {
4901    return false;
4902 }
4903 #endif /* NDEBUG */
4904 
4905 #define _PASS(pass, nir, do_pass)                                       \
4906    do {                                                                 \
4907       if (should_skip_nir(#pass)) {                                     \
4908          printf("skipping %s\n", #pass);                                \
4909          break;                                                         \
4910       }                                                                 \
4911       do_pass if (NIR_DEBUG(CLONE))                                     \
4912       {                                                                 \
4913          nir_shader *_clone = nir_shader_clone(ralloc_parent(nir), nir);\
4914          nir_shader_replace(nir, _clone);                               \
4915       }                                                                 \
4916       if (NIR_DEBUG(SERIALIZE)) {                                       \
4917          nir_shader_serialize_deserialize(nir);                         \
4918       }                                                                 \
4919    } while (0)
4920 
4921 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, {   \
4922    nir_metadata_set_validation_flag(nir);                       \
4923    if (should_print_nir(nir))                                   \
4924       printf("%s\n", #pass);                                    \
4925    if (pass(nir, ##__VA_ARGS__)) {                              \
4926       nir_validate_shader(nir, "after " #pass " in " __FILE__); \
4927       UNUSED bool _;                                            \
4928       progress = true;                                          \
4929       if (should_print_nir(nir))                                \
4930          nir_print_shader(nir, stdout);                         \
4931       nir_metadata_check_validation_flag(nir);                  \
4932    }                                                            \
4933 })
4934 
4935 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, {        \
4936    if (should_print_nir(nir))                                \
4937       printf("%s\n", #pass);                                 \
4938    pass(nir, ##__VA_ARGS__);                                 \
4939    nir_validate_shader(nir, "after " #pass " in " __FILE__); \
4940    if (should_print_nir(nir))                                \
4941       nir_print_shader(nir, stdout);                         \
4942 })
4943 
4944 #define _NIR_LOOP_PASS(progress, idempotent, skip, nir, pass, ...)   \
4945 do {                                                                 \
4946    bool nir_loop_pass_progress = false;                              \
4947    if (!_mesa_set_search(skip, (void (*)())&pass))                   \
4948       NIR_PASS(nir_loop_pass_progress, nir, pass, ##__VA_ARGS__);    \
4949    if (nir_loop_pass_progress)                                       \
4950       _mesa_set_clear(skip, NULL);                                   \
4951    if (idempotent || !nir_loop_pass_progress)                        \
4952       _mesa_set_add(skip, (void (*)())&pass);                        \
4953    UNUSED bool _ = false;                                            \
4954    progress |= nir_loop_pass_progress;                               \
4955 } while (0)
4956 
4957 /* Helper to skip a pass if no different passes have made progress since it was
4958  * previously run. Note that two passes are considered the same if they have
4959  * the same function pointer, even if they used different options.
4960  *
4961  * The usage of this is mostly identical to NIR_PASS. "skip" is a "struct set *"
4962  * (created by _mesa_pointer_set_create) which the macro uses to keep track of
4963  * already run passes.
4964  *
4965  * Example:
4966  * bool progress = true;
4967  * struct set *skip = _mesa_pointer_set_create(NULL);
4968  * while (progress) {
4969  *    progress = false;
4970  *    NIR_LOOP_PASS(progress, skip, nir, pass1);
4971  *    NIR_LOOP_PASS_NOT_IDEMPOTENT(progress, skip, nir, nir_opt_algebraic);
4972  *    NIR_LOOP_PASS(progress, skip, nir, pass2);
4973  *    ...
4974  * }
4975  * _mesa_set_destroy(skip, NULL);
4976  *
4977  * You shouldn't mix usage of this with the NIR_PASS set of helpers, without
4978  * using a new "skip" in-between.
4979  */
4980 #define NIR_LOOP_PASS(progress, skip, nir, pass, ...) \
4981    _NIR_LOOP_PASS(progress, true, skip, nir, pass, ##__VA_ARGS__)
4982 
4983 /* Like NIR_LOOP_PASS, but use this for passes which may make further progress
4984  * when repeated.
4985  */
4986 #define NIR_LOOP_PASS_NOT_IDEMPOTENT(progress, skip, nir, pass, ...) \
4987    _NIR_LOOP_PASS(progress, false, skip, nir, pass, ##__VA_ARGS__)
4988 
4989 #define NIR_SKIP(name) should_skip_nir(#name)
4990 
4991 /** An instruction filtering callback with writemask
4992  *
4993  * Returns true if the instruction should be processed with the associated
4994  * writemask and false otherwise.
4995  */
4996 typedef bool (*nir_instr_writemask_filter_cb)(const nir_instr *,
4997                                               unsigned writemask, const void *);
4998 
4999 /** A simple instruction lowering callback
5000  *
5001  * Many instruction lowering passes can be written as a simple function which
5002  * takes an instruction as its input and returns a sequence of instructions
5003  * that implement the consumed instruction.  This function type represents
5004  * such a lowering function.  When called, a function with this prototype
5005  * should either return NULL indicating that no lowering needs to be done or
5006  * emit a sequence of instructions using the provided builder (whose cursor
5007  * will already be placed after the instruction to be lowered) and return the
5008  * resulting nir_def.
5009  */
5010 typedef nir_def *(*nir_lower_instr_cb)(struct nir_builder *,
5011                                        nir_instr *, void *);
5012 
5013 /**
5014  * Special return value for nir_lower_instr_cb when some progress occurred
5015  * (like changing an input to the instr) that didn't result in a replacement
5016  * SSA def being generated.
5017  */
5018 #define NIR_LOWER_INSTR_PROGRESS ((nir_def *)(uintptr_t)1)
5019 
5020 /**
5021  * Special return value for nir_lower_instr_cb when some progress occurred
5022  * that should remove the current instruction that doesn't create an output
5023  * (like a store)
5024  */
5025 
5026 #define NIR_LOWER_INSTR_PROGRESS_REPLACE ((nir_def *)(uintptr_t)2)
5027 
5028 /** Iterate over all the instructions in a nir_function_impl and lower them
5029  *  using the provided callbacks
5030  *
5031  * This function implements the guts of a standard lowering pass for you.  It
5032  * iterates over all of the instructions in a nir_function_impl and calls the
5033  * filter callback on each one.  If the filter callback returns true, it then
5034  * calls the lowering call back on the instruction.  (Splitting it this way
5035  * allows us to avoid some save/restore work for instructions we know won't be
5036  * lowered.)  If the instruction is dead after the lowering is complete, it
5037  * will be removed.  If new instructions are added, the lowering callback will
5038  * also be called on them in case multiple lowerings are required.
5039  *
5040  * If the callback indicates that the original instruction is replaced (either
5041  * through a new SSA def or NIR_LOWER_INSTR_PROGRESS_REPLACE), then the
5042  * instruction is removed along with any now-dead SSA defs it used.
5043  *
5044  * The metadata for the nir_function_impl will also be updated.  If any blocks
5045  * are added (they cannot be removed), dominance and block indices will be
5046  * invalidated.
5047  */
5048 bool nir_function_impl_lower_instructions(nir_function_impl *impl,
5049                                           nir_instr_filter_cb filter,
5050                                           nir_lower_instr_cb lower,
5051                                           void *cb_data);
5052 bool nir_shader_lower_instructions(nir_shader *shader,
5053                                    nir_instr_filter_cb filter,
5054                                    nir_lower_instr_cb lower,
5055                                    void *cb_data);
5056 
5057 void nir_calc_dominance_impl(nir_function_impl *impl);
5058 void nir_calc_dominance(nir_shader *shader);
5059 
5060 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
5061 bool nir_block_dominates(nir_block *parent, nir_block *child);
5062 bool nir_block_is_unreachable(nir_block *block);
5063 
5064 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
5065 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
5066 
5067 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
5068 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
5069 
5070 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
5071 void nir_dump_cfg(nir_shader *shader, FILE *fp);
5072 
5073 void nir_gs_count_vertices_and_primitives(const nir_shader *shader,
5074                                           int *out_vtxcnt,
5075                                           int *out_prmcnt,
5076                                           int *out_decomposed_prmcnt,
5077                                           unsigned num_streams);
5078 
5079 typedef enum {
5080    nir_group_all,
5081    nir_group_same_resource_only,
5082 } nir_load_grouping;
5083 
5084 void nir_group_loads(nir_shader *shader, nir_load_grouping grouping,
5085                      unsigned max_distance);
5086 
5087 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
5088 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
5089 bool nir_split_var_copies(nir_shader *shader);
5090 bool nir_split_per_member_structs(nir_shader *shader);
5091 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
5092 
5093 bool nir_lower_returns_impl(nir_function_impl *impl);
5094 bool nir_lower_returns(nir_shader *shader);
5095 
5096 void nir_inline_function_impl(struct nir_builder *b,
5097                               const nir_function_impl *impl,
5098                               nir_def **params,
5099                               struct hash_table *shader_var_remap);
5100 bool nir_inline_functions(nir_shader *shader);
5101 void nir_cleanup_functions(nir_shader *shader);
5102 bool nir_link_shader_functions(nir_shader *shader,
5103                                const nir_shader *link_shader);
5104 
5105 void nir_find_inlinable_uniforms(nir_shader *shader);
5106 void nir_inline_uniforms(nir_shader *shader, unsigned num_uniforms,
5107                          const uint32_t *uniform_values,
5108                          const uint16_t *uniform_dw_offsets);
5109 bool nir_collect_src_uniforms(const nir_src *src, int component,
5110                               uint32_t *uni_offsets, uint8_t *num_offsets,
5111                               unsigned max_num_bo, unsigned max_offset);
5112 void nir_add_inlinable_uniforms(const nir_src *cond, nir_loop_info *info,
5113                                 uint32_t *uni_offsets, uint8_t *num_offsets,
5114                                 unsigned max_num_bo, unsigned max_offset);
5115 
5116 bool nir_propagate_invariant(nir_shader *shader, bool invariant_prim);
5117 
5118 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
5119 void nir_lower_deref_copy_instr(struct nir_builder *b,
5120                                 nir_intrinsic_instr *copy);
5121 bool nir_lower_var_copies(nir_shader *shader);
5122 
5123 bool nir_opt_memcpy(nir_shader *shader);
5124 bool nir_lower_memcpy(nir_shader *shader);
5125 
5126 void nir_fixup_deref_modes(nir_shader *shader);
5127 void nir_fixup_deref_types(nir_shader *shader);
5128 
5129 bool nir_lower_global_vars_to_local(nir_shader *shader);
5130 
5131 typedef enum {
5132    nir_lower_direct_array_deref_of_vec_load = (1 << 0),
5133    nir_lower_indirect_array_deref_of_vec_load = (1 << 1),
5134    nir_lower_direct_array_deref_of_vec_store = (1 << 2),
5135    nir_lower_indirect_array_deref_of_vec_store = (1 << 3),
5136 } nir_lower_array_deref_of_vec_options;
5137 
5138 bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes,
5139                                   nir_lower_array_deref_of_vec_options options);
5140 
5141 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes,
5142                                uint32_t max_lower_array_len);
5143 
5144 bool nir_lower_indirect_var_derefs(nir_shader *shader,
5145                                    const struct set *vars);
5146 
5147 bool nir_lower_locals_to_regs(nir_shader *shader, uint8_t bool_bitsize);
5148 
5149 bool nir_lower_io_to_temporaries(nir_shader *shader,
5150                                  nir_function_impl *entrypoint,
5151                                  bool outputs, bool inputs);
5152 
5153 bool nir_lower_vars_to_scratch(nir_shader *shader,
5154                                nir_variable_mode modes,
5155                                int size_threshold,
5156                                glsl_type_size_align_func size_align);
5157 
5158 void nir_lower_clip_halfz(nir_shader *shader);
5159 
5160 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
5161 
5162 void nir_gather_types(nir_function_impl *impl,
5163                       BITSET_WORD *float_types,
5164                       BITSET_WORD *int_types);
5165 
5166 void nir_assign_var_locations(nir_shader *shader, nir_variable_mode mode,
5167                               unsigned *size,
5168                               int (*type_size)(const struct glsl_type *, bool));
5169 
5170 /* Some helpers to do very simple linking */
5171 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
5172 bool nir_remove_unused_io_vars(nir_shader *shader, nir_variable_mode mode,
5173                                uint64_t *used_by_other_stage,
5174                                uint64_t *used_by_other_stage_patches);
5175 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
5176                           bool default_to_smooth_interp);
5177 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
5178 bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
5179 void nir_link_varying_precision(nir_shader *producer, nir_shader *consumer);
5180 nir_variable *nir_clone_uniform_variable(nir_shader *nir,
5181                                          nir_variable *uniform, bool spirv);
5182 nir_deref_instr *nir_clone_deref_instr(struct nir_builder *b,
5183                                        nir_variable *var,
5184                                        nir_deref_instr *deref);
5185 
5186 bool nir_slot_is_sysval_output(gl_varying_slot slot,
5187                                gl_shader_stage next_shader);
5188 bool nir_slot_is_varying(gl_varying_slot slot);
5189 bool nir_slot_is_sysval_output_and_varying(gl_varying_slot slot,
5190                                            gl_shader_stage next_shader);
5191 bool nir_remove_varying(nir_intrinsic_instr *intr, gl_shader_stage next_shader);
5192 bool nir_remove_sysval_output(nir_intrinsic_instr *intr);
5193 
5194 bool nir_lower_amul(nir_shader *shader,
5195                     int (*type_size)(const struct glsl_type *, bool));
5196 
5197 bool nir_lower_ubo_vec4(nir_shader *shader);
5198 
5199 void nir_sort_variables_by_location(nir_shader *shader, nir_variable_mode mode);
5200 void nir_assign_io_var_locations(nir_shader *shader,
5201                                  nir_variable_mode mode,
5202                                  unsigned *size,
5203                                  gl_shader_stage stage);
5204 
5205 typedef struct {
5206    uint8_t num_linked_io_vars;
5207    uint8_t num_linked_patch_io_vars;
5208 } nir_linked_io_var_info;
5209 
5210 nir_linked_io_var_info
5211 nir_assign_linked_io_var_locations(nir_shader *producer,
5212                                    nir_shader *consumer);
5213 
5214 typedef enum {
5215    /* If set, this causes all 64-bit IO operations to be lowered on-the-fly
5216     * to 32-bit operations.  This is only valid for nir_var_shader_in/out
5217     * modes.
5218     *
5219     * Note that this destroys dual-slot information i.e. whether an input
5220     * occupies the low or high half of dvec4. Instead, it adds an offset of 1
5221     * to the load (which is ambiguous) and expects driver locations of inputs
5222     * to be final, which prevents any further optimizations.
5223     *
5224     * TODO: remove this in favor of nir_lower_io_lower_64bit_to_32_new.
5225     */
5226    nir_lower_io_lower_64bit_to_32 = (1 << 0),
5227 
5228    /* If set, this causes the subset of 64-bit IO operations involving floats to be lowered on-the-fly
5229     * to 32-bit operations.  This is only valid for nir_var_shader_in/out
5230     * modes.
5231     */
5232    nir_lower_io_lower_64bit_float_to_32 = (1 << 1),
5233 
5234    /* This causes all 64-bit IO operations to be lowered to 32-bit operations.
5235     * This is only valid for nir_var_shader_in/out modes.
5236     *
5237     * Only VS inputs: Dual slot information is preserved as nir_io_semantics::
5238     * high_dvec2 and gathered into shader_info::dual_slot_inputs, so that
5239     * the shader can be arbitrarily optimized and the low or high half of
5240     * dvec4 can be DCE'd independently without affecting the other half.
5241     */
5242    nir_lower_io_lower_64bit_to_32_new = (1 << 2),
5243 } nir_lower_io_options;
5244 bool nir_lower_io(nir_shader *shader,
5245                   nir_variable_mode modes,
5246                   int (*type_size)(const struct glsl_type *, bool),
5247                   nir_lower_io_options);
5248 
5249 bool nir_io_add_const_offset_to_base(nir_shader *nir, nir_variable_mode modes);
5250 bool nir_lower_color_inputs(nir_shader *nir);
5251 void nir_lower_io_passes(nir_shader *nir, bool renumber_vs_inputs);
5252 bool nir_io_add_intrinsic_xfb_info(nir_shader *nir);
5253 
5254 bool
5255 nir_lower_vars_to_explicit_types(nir_shader *shader,
5256                                  nir_variable_mode modes,
5257                                  glsl_type_size_align_func type_info);
5258 void
5259 nir_gather_explicit_io_initializers(nir_shader *shader,
5260                                     void *dst, size_t dst_size,
5261                                     nir_variable_mode mode);
5262 
5263 bool nir_lower_vec3_to_vec4(nir_shader *shader, nir_variable_mode modes);
5264 
5265 typedef enum {
5266    /**
5267     * An address format which is a simple 32-bit global GPU address.
5268     */
5269    nir_address_format_32bit_global,
5270 
5271    /**
5272     * An address format which is a simple 64-bit global GPU address.
5273     */
5274    nir_address_format_64bit_global,
5275 
5276    /**
5277     * An address format which is a 64-bit global GPU address encoded as a
5278     * 2x32-bit vector.
5279     */
5280    nir_address_format_2x32bit_global,
5281 
5282    /**
5283     * An address format which is a 64-bit global base address and a 32-bit
5284     * offset.
5285     *
5286     * This is identical to 64bit_bounded_global except that bounds checking
5287     * is not applied when lowering to global access.  Even though the size is
5288     * never used for an actual bounds check, it needs to be valid so we can
5289     * lower deref_buffer_array_length properly.
5290     */
5291    nir_address_format_64bit_global_32bit_offset,
5292 
5293    /**
5294     * An address format which is a bounds-checked 64-bit global GPU address.
5295     *
5296     * The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
5297     * address stored with the low bits in .x and high bits in .y, .z is a
5298     * size, and .w is an offset.  When the final I/O operation is lowered, .w
5299     * is checked against .z and the operation is predicated on the result.
5300     */
5301    nir_address_format_64bit_bounded_global,
5302 
5303    /**
5304     * An address format which is comprised of a vec2 where the first
5305     * component is a buffer index and the second is an offset.
5306     */
5307    nir_address_format_32bit_index_offset,
5308 
5309    /**
5310     * An address format which is a 64-bit value, where the high 32 bits
5311     * are a buffer index, and the low 32 bits are an offset.
5312     */
5313    nir_address_format_32bit_index_offset_pack64,
5314 
5315    /**
5316     * An address format which is comprised of a vec3 where the first two
5317     * components specify the buffer and the third is an offset.
5318     */
5319    nir_address_format_vec2_index_32bit_offset,
5320 
5321    /**
5322     * An address format which represents generic pointers with a 62-bit
5323     * pointer and a 2-bit enum in the top two bits.  The top two bits have
5324     * the following meanings:
5325     *
5326     *  - 0x0: Global memory
5327     *  - 0x1: Shared memory
5328     *  - 0x2: Scratch memory
5329     *  - 0x3: Global memory
5330     *
5331     * The redundancy between 0x0 and 0x3 is because of Intel sign-extension of
5332     * addresses.  Valid global memory addresses may naturally have either 0 or
5333     * ~0 as their high bits.
5334     *
5335     * Shared and scratch pointers are represented as 32-bit offsets with the
5336     * top 32 bits only being used for the enum.  This allows us to avoid
5337     * 64-bit address calculations in a bunch of cases.
5338     */
5339    nir_address_format_62bit_generic,
5340 
5341    /**
5342     * An address format which is a simple 32-bit offset.
5343     */
5344    nir_address_format_32bit_offset,
5345 
5346    /**
5347     * An address format which is a simple 32-bit offset cast to 64-bit.
5348     */
5349    nir_address_format_32bit_offset_as_64bit,
5350 
5351    /**
5352     * An address format representing a purely logical addressing model.  In
5353     * this model, all deref chains must be complete from the dereference
5354     * operation to the variable.  Cast derefs are not allowed.  These
5355     * addresses will be 32-bit scalars but the format is immaterial because
5356     * you can always chase the chain.
5357     */
5358    nir_address_format_logical,
5359 } nir_address_format;
5360 
5361 unsigned
5362 nir_address_format_bit_size(nir_address_format addr_format);
5363 
5364 unsigned
5365 nir_address_format_num_components(nir_address_format addr_format);
5366 
5367 static inline const struct glsl_type *
nir_address_format_to_glsl_type(nir_address_format addr_format)5368 nir_address_format_to_glsl_type(nir_address_format addr_format)
5369 {
5370    unsigned bit_size = nir_address_format_bit_size(addr_format);
5371    assert(bit_size == 32 || bit_size == 64);
5372    return glsl_vector_type(bit_size == 32 ? GLSL_TYPE_UINT : GLSL_TYPE_UINT64,
5373                            nir_address_format_num_components(addr_format));
5374 }
5375 
5376 const nir_const_value *nir_address_format_null_value(nir_address_format addr_format);
5377 
5378 nir_def *nir_build_addr_iadd(struct nir_builder *b, nir_def *addr,
5379                              nir_address_format addr_format,
5380                              nir_variable_mode modes,
5381                              nir_def *offset);
5382 
5383 nir_def *nir_build_addr_iadd_imm(struct nir_builder *b, nir_def *addr,
5384                                  nir_address_format addr_format,
5385                                  nir_variable_mode modes,
5386                                  int64_t offset);
5387 
5388 nir_def *nir_build_addr_ieq(struct nir_builder *b, nir_def *addr0, nir_def *addr1,
5389                             nir_address_format addr_format);
5390 
5391 nir_def *nir_build_addr_isub(struct nir_builder *b, nir_def *addr0, nir_def *addr1,
5392                              nir_address_format addr_format);
5393 
5394 nir_def *nir_explicit_io_address_from_deref(struct nir_builder *b,
5395                                             nir_deref_instr *deref,
5396                                             nir_def *base_addr,
5397                                             nir_address_format addr_format);
5398 
5399 bool nir_get_explicit_deref_align(nir_deref_instr *deref,
5400                                   bool default_to_type_align,
5401                                   uint32_t *align_mul,
5402                                   uint32_t *align_offset);
5403 
5404 void nir_lower_explicit_io_instr(struct nir_builder *b,
5405                                  nir_intrinsic_instr *io_instr,
5406                                  nir_def *addr,
5407                                  nir_address_format addr_format);
5408 
5409 bool nir_lower_explicit_io(nir_shader *shader,
5410                            nir_variable_mode modes,
5411                            nir_address_format);
5412 
5413 typedef struct {
5414    uint8_t num_components;
5415    uint8_t bit_size;
5416    uint16_t align;
5417 } nir_mem_access_size_align;
5418 
5419 /* clang-format off */
5420 typedef nir_mem_access_size_align
5421    (*nir_lower_mem_access_bit_sizes_cb)(nir_intrinsic_op intrin,
5422                                         uint8_t bytes,
5423                                         uint8_t bit_size,
5424                                         uint32_t align_mul,
5425                                         uint32_t align_offset,
5426                                         bool offset_is_const,
5427                                         const void *cb_data);
5428 /* clang-format on */
5429 
5430 typedef struct {
5431    nir_lower_mem_access_bit_sizes_cb callback;
5432    nir_variable_mode modes;
5433    bool may_lower_unaligned_stores_to_atomics;
5434    void *cb_data;
5435 } nir_lower_mem_access_bit_sizes_options;
5436 
5437 bool nir_lower_mem_access_bit_sizes(nir_shader *shader,
5438                                     const nir_lower_mem_access_bit_sizes_options *options);
5439 
5440 typedef struct {
5441    /* Lower load_ubo to be robust. Out-of-bounds loads will return UNDEFINED
5442     * values (not necessarily zero).
5443     */
5444    bool lower_ubo;
5445 
5446    /* Lower load_ssbo/store_ssbo/ssbo_atomic(_swap) to be robust. Out-of-bounds
5447     * loads and atomics will return UNDEFINED values (not necessarily zero).
5448     * Out-of-bounds stores and atomics CORRUPT the contents of the SSBO.
5449     *
5450     * This suffices for robustBufferAccess but not robustBufferAccess2.
5451     */
5452    bool lower_ssbo;
5453 
5454    /* Lower all image_load/image_store/image_atomic(_swap) instructions to be
5455     * robust.  Out-of-bounds loads will return ZERO.
5456     *
5457     * This suffices for robustImageAccess but not robustImageAccess2.
5458     */
5459    bool lower_image;
5460 
5461    /* Lower all buffer image instructions as above. Implied by lower_image. */
5462    bool lower_buffer_image;
5463 
5464    /* Lower image_atomic(_swap) for all dimensions. Implied by lower_image. */
5465    bool lower_image_atomic;
5466 
5467    /* Vulkan's robustBufferAccess feature is only concerned with buffers that
5468     * are bound through descriptor sets, so shared memory is not included, but
5469     * it may be useful to enable this for debugging.
5470     */
5471    bool lower_shared;
5472 } nir_lower_robust_access_options;
5473 
5474 bool nir_lower_robust_access(nir_shader *s,
5475                              const nir_lower_robust_access_options *opts);
5476 
5477 /* clang-format off */
5478 typedef bool (*nir_should_vectorize_mem_func)(unsigned align_mul,
5479                                               unsigned align_offset,
5480                                               unsigned bit_size,
5481                                               unsigned num_components,
5482                                               nir_intrinsic_instr *low,
5483                                               nir_intrinsic_instr *high,
5484                                               void *data);
5485 /* clang-format on */
5486 
5487 typedef struct {
5488    nir_should_vectorize_mem_func callback;
5489    nir_variable_mode modes;
5490    nir_variable_mode robust_modes;
5491    void *cb_data;
5492    bool has_shared2_amd;
5493 } nir_load_store_vectorize_options;
5494 
5495 bool nir_opt_load_store_vectorize(nir_shader *shader, const nir_load_store_vectorize_options *options);
5496 
5497 typedef bool (*nir_lower_shader_calls_should_remat_func)(nir_instr *instr, void *data);
5498 
5499 typedef struct nir_lower_shader_calls_options {
5500    /* Address format used for load/store operations on the call stack. */
5501    nir_address_format address_format;
5502 
5503    /* Stack alignment */
5504    unsigned stack_alignment;
5505 
5506    /* Put loads from the stack as close as possible from where they're needed.
5507     * You might want to disable combined_loads for best effects.
5508     */
5509    bool localized_loads;
5510 
5511    /* If this function pointer is not NULL, lower_shader_calls will run
5512     * nir_opt_load_store_vectorize for stack load/store operations. Otherwise
5513     * the optimizaion is not run.
5514     */
5515    nir_should_vectorize_mem_func vectorizer_callback;
5516 
5517    /* Data passed to vectorizer_callback */
5518    void *vectorizer_data;
5519 
5520    /* If this function pointer is not NULL, lower_shader_calls will call this
5521     * function on instructions that require spill/fill/rematerialization of
5522     * their value. If this function returns true, lower_shader_calls will
5523     * ensure that the instruction is rematerialized, adding the sources of the
5524     * instruction to be spilled/filled.
5525     */
5526    nir_lower_shader_calls_should_remat_func should_remat_callback;
5527 
5528    /* Data passed to should_remat_callback */
5529    void *should_remat_data;
5530 } nir_lower_shader_calls_options;
5531 
5532 bool
5533 nir_lower_shader_calls(nir_shader *shader,
5534                        const nir_lower_shader_calls_options *options,
5535                        nir_shader ***resume_shaders_out,
5536                        uint32_t *num_resume_shaders_out,
5537                        void *mem_ctx);
5538 
5539 int nir_get_io_offset_src_number(const nir_intrinsic_instr *instr);
5540 int nir_get_io_arrayed_index_src_number(const nir_intrinsic_instr *instr);
5541 
5542 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
5543 nir_src *nir_get_io_arrayed_index_src(nir_intrinsic_instr *instr);
5544 nir_src *nir_get_shader_call_payload_src(nir_intrinsic_instr *call);
5545 
5546 bool nir_is_arrayed_io(const nir_variable *var, gl_shader_stage stage);
5547 
5548 bool nir_lower_reg_intrinsics_to_ssa_impl(nir_function_impl *impl);
5549 bool nir_lower_reg_intrinsics_to_ssa(nir_shader *shader);
5550 bool nir_lower_vars_to_ssa(nir_shader *shader);
5551 
5552 bool nir_remove_dead_derefs(nir_shader *shader);
5553 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
5554 
5555 typedef struct nir_remove_dead_variables_options {
5556    bool (*can_remove_var)(nir_variable *var, void *data);
5557    void *can_remove_var_data;
5558 } nir_remove_dead_variables_options;
5559 
5560 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes,
5561                                const nir_remove_dead_variables_options *options);
5562 
5563 bool nir_lower_variable_initializers(nir_shader *shader,
5564                                      nir_variable_mode modes);
5565 bool nir_zero_initialize_shared_memory(nir_shader *shader,
5566                                        const unsigned shared_size,
5567                                        const unsigned chunk_size);
5568 bool nir_clear_shared_memory(nir_shader *shader,
5569                              const unsigned shared_size,
5570                              const unsigned chunk_size);
5571 
5572 bool nir_move_vec_src_uses_to_dest(nir_shader *shader, bool skip_const_srcs);
5573 bool nir_lower_vec_to_regs(nir_shader *shader, nir_instr_writemask_filter_cb cb,
5574                            const void *_data);
5575 bool nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
5576                           bool alpha_to_one,
5577                           const gl_state_index16 *alpha_ref_state_tokens);
5578 bool nir_lower_alu(nir_shader *shader);
5579 
5580 bool nir_lower_flrp(nir_shader *shader, unsigned lowering_mask,
5581                     bool always_precise);
5582 
5583 bool nir_scale_fdiv(nir_shader *shader);
5584 
5585 bool nir_lower_alu_to_scalar(nir_shader *shader, nir_instr_filter_cb cb, const void *data);
5586 bool nir_lower_alu_width(nir_shader *shader, nir_vectorize_cb cb, const void *data);
5587 bool nir_lower_alu_vec8_16_srcs(nir_shader *shader);
5588 bool nir_lower_bool_to_bitsize(nir_shader *shader);
5589 bool nir_lower_bool_to_float(nir_shader *shader, bool has_fcsel_ne);
5590 bool nir_lower_bool_to_int32(nir_shader *shader);
5591 bool nir_opt_simplify_convert_alu_types(nir_shader *shader);
5592 bool nir_lower_const_arrays_to_uniforms(nir_shader *shader,
5593                                         unsigned max_uniform_components);
5594 bool nir_lower_convert_alu_types(nir_shader *shader,
5595                                  bool (*should_lower)(nir_intrinsic_instr *));
5596 bool nir_lower_constant_convert_alu_types(nir_shader *shader);
5597 bool nir_lower_alu_conversion_to_intrinsic(nir_shader *shader);
5598 bool nir_lower_int_to_float(nir_shader *shader);
5599 bool nir_lower_load_const_to_scalar(nir_shader *shader);
5600 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
5601 bool nir_lower_phis_to_scalar(nir_shader *shader, bool lower_all);
5602 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
5603 bool nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
5604                                                   bool outputs_only);
5605 bool nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask, nir_instr_filter_cb filter, void *filter_data);
5606 bool nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
5607 bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask);
5608 bool nir_vectorize_tess_levels(nir_shader *shader);
5609 nir_shader *nir_create_passthrough_tcs_impl(const nir_shader_compiler_options *options,
5610                                             unsigned *locations, unsigned num_locations,
5611                                             uint8_t patch_vertices);
5612 nir_shader *nir_create_passthrough_tcs(const nir_shader_compiler_options *options,
5613                                        const nir_shader *vs, uint8_t patch_vertices);
5614 nir_shader *nir_create_passthrough_gs(const nir_shader_compiler_options *options,
5615                                       const nir_shader *prev_stage,
5616                                       enum mesa_prim primitive_type,
5617                                       enum mesa_prim output_primitive_type,
5618                                       bool emulate_edgeflags,
5619                                       bool force_line_strip_out);
5620 
5621 bool nir_lower_fragcolor(nir_shader *shader, unsigned max_cbufs);
5622 bool nir_lower_fragcoord_wtrans(nir_shader *shader);
5623 bool nir_lower_frag_coord_to_pixel_coord(nir_shader *shader);
5624 bool nir_lower_viewport_transform(nir_shader *shader);
5625 bool nir_lower_uniforms_to_ubo(nir_shader *shader, bool dword_packed, bool load_vec4);
5626 
5627 bool nir_lower_is_helper_invocation(nir_shader *shader);
5628 
5629 bool nir_lower_single_sampled(nir_shader *shader);
5630 
5631 typedef struct nir_lower_subgroups_options {
5632    uint8_t subgroup_size;
5633    uint8_t ballot_bit_size;
5634    uint8_t ballot_components;
5635    bool lower_to_scalar : 1;
5636    bool lower_vote_trivial : 1;
5637    bool lower_vote_eq : 1;
5638    bool lower_vote_bool_eq : 1;
5639    bool lower_first_invocation_to_ballot : 1;
5640    bool lower_read_first_invocation : 1;
5641    bool lower_subgroup_masks : 1;
5642    bool lower_relative_shuffle : 1;
5643    bool lower_shuffle_to_32bit : 1;
5644    bool lower_shuffle_to_swizzle_amd : 1;
5645    bool lower_shuffle : 1;
5646    bool lower_quad : 1;
5647    bool lower_quad_broadcast_dynamic : 1;
5648    bool lower_quad_broadcast_dynamic_to_const : 1;
5649    bool lower_elect : 1;
5650    bool lower_read_invocation_to_cond : 1;
5651    bool lower_rotate_to_shuffle : 1;
5652    bool lower_ballot_bit_count_to_mbcnt_amd : 1;
5653    bool lower_inverse_ballot : 1;
5654    bool lower_boolean_reduce : 1;
5655    bool lower_boolean_shuffle : 1;
5656 } nir_lower_subgroups_options;
5657 
5658 bool nir_lower_subgroups(nir_shader *shader,
5659                          const nir_lower_subgroups_options *options);
5660 
5661 bool nir_lower_system_values(nir_shader *shader);
5662 
5663 nir_def *
5664 nir_build_lowered_load_helper_invocation(struct nir_builder *b);
5665 
5666 typedef struct nir_lower_compute_system_values_options {
5667    bool has_base_global_invocation_id : 1;
5668    bool has_base_workgroup_id : 1;
5669    bool shuffle_local_ids_for_quad_derivatives : 1;
5670    bool lower_local_invocation_index : 1;
5671    bool lower_cs_local_id_to_index : 1;
5672    bool lower_workgroup_id_to_index : 1;
5673    /* At shader execution time, check if WorkGroupId should be 1D
5674     * and compute it quickly. Fall back to slow computation if not.
5675     */
5676    bool shortcut_1d_workgroup_id : 1;
5677    uint32_t num_workgroups[3]; /* Compile-time-known dispatch sizes, or 0 if unknown. */
5678 } nir_lower_compute_system_values_options;
5679 
5680 bool nir_lower_compute_system_values(nir_shader *shader,
5681                                      const nir_lower_compute_system_values_options *options);
5682 
5683 struct nir_lower_sysvals_to_varyings_options {
5684    bool frag_coord : 1;
5685    bool front_face : 1;
5686    bool point_coord : 1;
5687 };
5688 
5689 bool
5690 nir_lower_sysvals_to_varyings(nir_shader *shader,
5691                               const struct nir_lower_sysvals_to_varyings_options *options);
5692 
5693 /***/
5694 enum ENUM_PACKED nir_lower_tex_packing {
5695    /** No packing */
5696    nir_lower_tex_packing_none = 0,
5697    /**
5698     * The sampler returns up to 2 32-bit words of half floats or 16-bit signed
5699     * or unsigned ints based on the sampler type
5700     */
5701    nir_lower_tex_packing_16,
5702    /** The sampler returns 1 32-bit word of 4x8 unorm */
5703    nir_lower_tex_packing_8,
5704 };
5705 
5706 /***/
5707 typedef struct nir_lower_tex_options {
5708    /**
5709     * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
5710     * sampler types a texture projector is lowered.
5711     */
5712    unsigned lower_txp;
5713 
5714    /**
5715     * If true, lower texture projector for any array sampler dims
5716     */
5717    bool lower_txp_array;
5718 
5719    /**
5720     * If true, lower away nir_tex_src_offset for all texelfetch instructions.
5721     */
5722    bool lower_txf_offset;
5723 
5724    /**
5725     * If true, lower away nir_tex_src_offset for all rect textures.
5726     */
5727    bool lower_rect_offset;
5728 
5729    /**
5730     * If not NULL, this filter will return true for tex instructions that
5731     * should lower away nir_tex_src_offset.
5732     */
5733    nir_instr_filter_cb lower_offset_filter;
5734 
5735    /**
5736     * If true, lower rect textures to 2D, using txs to fetch the
5737     * texture dimensions and dividing the texture coords by the
5738     * texture dims to normalize.
5739     */
5740    bool lower_rect;
5741 
5742    /**
5743     * If true, lower 1D textures to 2D. This requires the GL/VK driver to map 1D
5744     * textures to 2D textures with height=1.
5745     *
5746     * lower_1d_shadow does this lowering for shadow textures only.
5747     */
5748    bool lower_1d;
5749    bool lower_1d_shadow;
5750 
5751    /**
5752     * If true, convert yuv to rgb.
5753     */
5754    unsigned lower_y_uv_external;
5755    unsigned lower_y_vu_external;
5756    unsigned lower_y_u_v_external;
5757    unsigned lower_yx_xuxv_external;
5758    unsigned lower_yx_xvxu_external;
5759    unsigned lower_xy_uxvx_external;
5760    unsigned lower_xy_vxux_external;
5761    unsigned lower_ayuv_external;
5762    unsigned lower_xyuv_external;
5763    unsigned lower_yuv_external;
5764    unsigned lower_yu_yv_external;
5765    unsigned lower_yv_yu_external;
5766    unsigned lower_y41x_external;
5767    unsigned bt709_external;
5768    unsigned bt2020_external;
5769    unsigned yuv_full_range_external;
5770 
5771    /**
5772     * To emulate certain texture wrap modes, this can be used
5773     * to saturate the specified tex coord to [0.0, 1.0].  The
5774     * bits are according to sampler #, ie. if, for example:
5775     *
5776     *   (conf->saturate_s & (1 << n))
5777     *
5778     * is true, then the s coord for sampler n is saturated.
5779     *
5780     * Note that clamping must happen *after* projector lowering
5781     * so any projected texture sample instruction with a clamped
5782     * coordinate gets automatically lowered, regardless of the
5783     * 'lower_txp' setting.
5784     */
5785    unsigned saturate_s;
5786    unsigned saturate_t;
5787    unsigned saturate_r;
5788 
5789    /* Bitmask of textures that need swizzling.
5790     *
5791     * If (swizzle_result & (1 << texture_index)), then the swizzle in
5792     * swizzles[texture_index] is applied to the result of the texturing
5793     * operation.
5794     */
5795    unsigned swizzle_result;
5796 
5797    /* A swizzle for each texture.  Values 0-3 represent x, y, z, or w swizzles
5798     * while 4 and 5 represent 0 and 1 respectively.
5799     *
5800     * Indexed by texture-id.
5801     */
5802    uint8_t swizzles[32][4];
5803 
5804    /* Can be used to scale sampled values in range required by the
5805     * format.
5806     *
5807     * Indexed by texture-id.
5808     */
5809    float scale_factors[32];
5810 
5811    /**
5812     * Bitmap of textures that need srgb to linear conversion.  If
5813     * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
5814     * of the texture are lowered to linear.
5815     */
5816    unsigned lower_srgb;
5817 
5818    /**
5819     * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
5820     */
5821    bool lower_txd_cube_map;
5822 
5823    /**
5824     * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
5825     */
5826    bool lower_txd_3d;
5827 
5828    /**
5829     * If true, lower nir_texop_txd any array surfaces with nir_texop_txl.
5830     */
5831    bool lower_txd_array;
5832 
5833    /**
5834     * If true, lower nir_texop_txd on shadow samplers (except cube maps)
5835     * with nir_texop_txl. Notice that cube map shadow samplers are lowered
5836     * with lower_txd_cube_map.
5837     */
5838    bool lower_txd_shadow;
5839 
5840    /**
5841     * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
5842     * Implies lower_txd_cube_map and lower_txd_shadow.
5843     */
5844    bool lower_txd;
5845 
5846    /**
5847     * If true, lower nir_texop_txd  when it uses min_lod.
5848     */
5849    bool lower_txd_clamp;
5850 
5851    /**
5852     * If true, lower nir_texop_txb that try to use shadow compare and min_lod
5853     * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
5854     */
5855    bool lower_txb_shadow_clamp;
5856 
5857    /**
5858     * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
5859     * with nir_texop_txl.  This includes cube maps.
5860     */
5861    bool lower_txd_shadow_clamp;
5862 
5863    /**
5864     * If true, lower nir_texop_txd on when it uses both offset and min_lod
5865     * with nir_texop_txl.  This includes cube maps.
5866     */
5867    bool lower_txd_offset_clamp;
5868 
5869    /**
5870     * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
5871     * sampler is bindless.
5872     */
5873    bool lower_txd_clamp_bindless_sampler;
5874 
5875    /**
5876     * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
5877     * sampler index is not statically determinable to be less than 16.
5878     */
5879    bool lower_txd_clamp_if_sampler_index_not_lt_16;
5880 
5881    /**
5882     * If true, lower nir_texop_txs with a non-0-lod into nir_texop_txs with
5883     * 0-lod followed by a nir_ishr.
5884     */
5885    bool lower_txs_lod;
5886 
5887    /**
5888     * If true, lower nir_texop_txs for cube arrays to a nir_texop_txs with a
5889     * 2D array type followed by a nir_idiv by 6.
5890     */
5891    bool lower_txs_cube_array;
5892 
5893    /**
5894     * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
5895     * mixed-up tg4 locations.
5896     */
5897    bool lower_tg4_broadcom_swizzle;
5898 
5899    /**
5900     * If true, lowers tg4 with 4 constant offsets to 4 tg4 calls
5901     */
5902    bool lower_tg4_offsets;
5903 
5904    /**
5905     * Lower txf_ms to fragment_mask_fetch and fragment_fetch and samples_identical to
5906     * fragment_mask_fetch.
5907     */
5908    bool lower_to_fragment_fetch_amd;
5909 
5910    /**
5911     * To lower packed sampler return formats. This will be called for all
5912     * tex instructions.
5913     */
5914    enum nir_lower_tex_packing (*lower_tex_packing_cb)(const nir_tex_instr *tex, const void *data);
5915    const void *lower_tex_packing_data;
5916 
5917    /**
5918     * If true, lower nir_texop_lod to return -FLT_MAX if the sum of the
5919     * absolute values of derivatives is 0 for all coordinates.
5920     */
5921    bool lower_lod_zero_width;
5922 
5923    /* Turns nir_op_tex and other ops with an implicit derivative, in stages
5924     * without implicit derivatives (like the vertex shader) to have an explicit
5925     * LOD with a value of 0.
5926     */
5927    bool lower_invalid_implicit_lod;
5928 
5929    /* If true, texture_index (sampler_index) will be zero if a texture_offset
5930     * (sampler_offset) source is present. This is convenient for backends that
5931     * support indirect indexing of textures (samplers) but not offsetting it.
5932     */
5933    bool lower_index_to_offset;
5934 
5935    /**
5936     * Payload data to be sent to callback / filter functions.
5937     */
5938    void *callback_data;
5939 } nir_lower_tex_options;
5940 
5941 /** Lowers complex texture instructions to simpler ones */
5942 bool nir_lower_tex(nir_shader *shader,
5943                    const nir_lower_tex_options *options);
5944 
5945 typedef struct nir_lower_tex_shadow_swizzle {
5946    unsigned swizzle_r : 3;
5947    unsigned swizzle_g : 3;
5948    unsigned swizzle_b : 3;
5949    unsigned swizzle_a : 3;
5950 } nir_lower_tex_shadow_swizzle;
5951 
5952 bool
5953 nir_lower_tex_shadow(nir_shader *s,
5954                      unsigned n_states,
5955                      enum compare_func *compare_func,
5956                      nir_lower_tex_shadow_swizzle *tex_swizzles);
5957 
5958 typedef struct nir_lower_image_options {
5959    /**
5960     * If true, lower cube size operations.
5961     */
5962    bool lower_cube_size;
5963 
5964    /**
5965     * Lower multi sample image load and samples_identical to use fragment_mask_load.
5966     */
5967    bool lower_to_fragment_mask_load_amd;
5968 
5969    /**
5970     * Lower image_samples to a constant in case the driver doesn't support multisampled
5971     * images.
5972     */
5973    bool lower_image_samples_to_one;
5974 } nir_lower_image_options;
5975 
5976 bool nir_lower_image(nir_shader *nir,
5977                      const nir_lower_image_options *options);
5978 
5979 bool
5980 nir_lower_image_atomics_to_global(nir_shader *s);
5981 
5982 bool nir_lower_readonly_images_to_tex(nir_shader *shader, bool per_variable);
5983 
5984 enum nir_lower_non_uniform_access_type {
5985    nir_lower_non_uniform_ubo_access = (1 << 0),
5986    nir_lower_non_uniform_ssbo_access = (1 << 1),
5987    nir_lower_non_uniform_texture_access = (1 << 2),
5988    nir_lower_non_uniform_image_access = (1 << 3),
5989    nir_lower_non_uniform_get_ssbo_size = (1 << 4),
5990 };
5991 
5992 /* Given the nir_src used for the resource, return the channels which might be non-uniform. */
5993 typedef nir_component_mask_t (*nir_lower_non_uniform_access_callback)(const nir_src *, void *);
5994 
5995 typedef struct nir_lower_non_uniform_access_options {
5996    enum nir_lower_non_uniform_access_type types;
5997    nir_lower_non_uniform_access_callback callback;
5998    void *callback_data;
5999 } nir_lower_non_uniform_access_options;
6000 
6001 bool nir_has_non_uniform_access(nir_shader *shader, enum nir_lower_non_uniform_access_type types);
6002 bool nir_opt_non_uniform_access(nir_shader *shader);
6003 bool nir_lower_non_uniform_access(nir_shader *shader,
6004                                   const nir_lower_non_uniform_access_options *options);
6005 
6006 typedef struct {
6007    /* Whether 16-bit floating point arithmetic should be allowed in 8-bit
6008     * division lowering
6009     */
6010    bool allow_fp16;
6011 } nir_lower_idiv_options;
6012 
6013 bool nir_lower_idiv(nir_shader *shader, const nir_lower_idiv_options *options);
6014 
6015 typedef struct nir_input_attachment_options {
6016    bool use_fragcoord_sysval;
6017    bool use_layer_id_sysval;
6018    bool use_view_id_for_layer;
6019    uint32_t unscaled_input_attachment_ir3;
6020 } nir_input_attachment_options;
6021 
6022 bool nir_lower_input_attachments(nir_shader *shader,
6023                                  const nir_input_attachment_options *options);
6024 
6025 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables,
6026                        bool use_vars,
6027                        bool use_clipdist_array,
6028                        const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
6029 bool nir_lower_clip_gs(nir_shader *shader, unsigned ucp_enables,
6030                        bool use_clipdist_array,
6031                        const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
6032 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables,
6033                        bool use_clipdist_array);
6034 
6035 bool nir_lower_clip_cull_distance_to_vec4s(nir_shader *shader);
6036 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
6037 bool nir_lower_clip_disable(nir_shader *shader, unsigned clip_plane_enable);
6038 
6039 bool nir_lower_point_size_mov(nir_shader *shader,
6040                               const gl_state_index16 *pointsize_state_tokens);
6041 
6042 bool nir_lower_frexp(nir_shader *nir);
6043 
6044 bool nir_lower_two_sided_color(nir_shader *shader, bool face_sysval);
6045 
6046 bool nir_lower_clamp_color_outputs(nir_shader *shader);
6047 
6048 bool nir_lower_flatshade(nir_shader *shader);
6049 
6050 bool nir_lower_passthrough_edgeflags(nir_shader *shader);
6051 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
6052                               const gl_state_index16 *uniform_state_tokens);
6053 
6054 typedef struct nir_lower_wpos_ytransform_options {
6055    gl_state_index16 state_tokens[STATE_LENGTH];
6056    bool fs_coord_origin_upper_left : 1;
6057    bool fs_coord_origin_lower_left : 1;
6058    bool fs_coord_pixel_center_integer : 1;
6059    bool fs_coord_pixel_center_half_integer : 1;
6060 } nir_lower_wpos_ytransform_options;
6061 
6062 bool nir_lower_wpos_ytransform(nir_shader *shader,
6063                                const nir_lower_wpos_ytransform_options *options);
6064 bool nir_lower_wpos_center(nir_shader *shader);
6065 
6066 bool nir_lower_pntc_ytransform(nir_shader *shader,
6067                                const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
6068 
6069 bool nir_lower_pntc_ytransform(nir_shader *shader,
6070                                const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
6071 
6072 bool nir_lower_wrmasks(nir_shader *shader, nir_instr_filter_cb cb, const void *data);
6073 
6074 bool nir_lower_fb_read(nir_shader *shader);
6075 
6076 typedef struct nir_lower_drawpixels_options {
6077    gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
6078    gl_state_index16 scale_state_tokens[STATE_LENGTH];
6079    gl_state_index16 bias_state_tokens[STATE_LENGTH];
6080    unsigned drawpix_sampler;
6081    unsigned pixelmap_sampler;
6082    bool pixel_maps : 1;
6083    bool scale_and_bias : 1;
6084 } nir_lower_drawpixels_options;
6085 
6086 bool nir_lower_drawpixels(nir_shader *shader,
6087                           const nir_lower_drawpixels_options *options);
6088 
6089 typedef struct nir_lower_bitmap_options {
6090    unsigned sampler;
6091    bool swizzle_xxxx;
6092 } nir_lower_bitmap_options;
6093 
6094 bool nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
6095 
6096 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned offset_align_state);
6097 
6098 typedef enum {
6099    nir_lower_gs_intrinsics_per_stream = 1 << 0,
6100    nir_lower_gs_intrinsics_count_primitives = 1 << 1,
6101    nir_lower_gs_intrinsics_count_vertices_per_primitive = 1 << 2,
6102    nir_lower_gs_intrinsics_overwrite_incomplete = 1 << 3,
6103    nir_lower_gs_intrinsics_always_end_primitive = 1 << 4,
6104    nir_lower_gs_intrinsics_count_decomposed_primitives = 1 << 5,
6105 } nir_lower_gs_intrinsics_flags;
6106 
6107 bool nir_lower_gs_intrinsics(nir_shader *shader, nir_lower_gs_intrinsics_flags options);
6108 
6109 bool nir_lower_tess_coord_z(nir_shader *shader, bool triangles);
6110 
6111 typedef struct {
6112    bool payload_to_shared_for_atomics : 1;
6113    bool payload_to_shared_for_small_types : 1;
6114    uint32_t payload_offset_in_bytes;
6115 } nir_lower_task_shader_options;
6116 
6117 bool nir_lower_task_shader(nir_shader *shader, nir_lower_task_shader_options options);
6118 
6119 typedef unsigned (*nir_lower_bit_size_callback)(const nir_instr *, void *);
6120 
6121 bool nir_lower_bit_size(nir_shader *shader,
6122                         nir_lower_bit_size_callback callback,
6123                         void *callback_data);
6124 bool nir_lower_64bit_phis(nir_shader *shader);
6125 
6126 bool nir_split_64bit_vec3_and_vec4(nir_shader *shader);
6127 
6128 nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
6129 bool nir_lower_int64(nir_shader *shader);
6130 bool nir_lower_int64_float_conversions(nir_shader *shader);
6131 
6132 nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
6133 bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
6134                        nir_lower_doubles_options options);
6135 bool nir_lower_pack(nir_shader *shader);
6136 
6137 bool nir_recompute_io_bases(nir_shader *nir, nir_variable_mode modes);
6138 bool nir_lower_mediump_vars(nir_shader *nir, nir_variable_mode modes);
6139 bool nir_lower_mediump_io(nir_shader *nir, nir_variable_mode modes,
6140                           uint64_t varying_mask, bool use_16bit_slots);
6141 bool nir_force_mediump_io(nir_shader *nir, nir_variable_mode modes,
6142                           nir_alu_type types);
6143 bool nir_unpack_16bit_varying_slots(nir_shader *nir, nir_variable_mode modes);
6144 
6145 struct nir_fold_tex_srcs_options {
6146    unsigned sampler_dims;
6147    unsigned src_types;
6148 };
6149 
6150 struct nir_fold_16bit_tex_image_options {
6151    nir_rounding_mode rounding_mode;
6152    nir_alu_type fold_tex_dest_types;
6153    nir_alu_type fold_image_dest_types;
6154    bool fold_image_store_data;
6155    bool fold_image_srcs;
6156    unsigned fold_srcs_options_count;
6157    struct nir_fold_tex_srcs_options *fold_srcs_options;
6158 };
6159 
6160 bool nir_fold_16bit_tex_image(nir_shader *nir,
6161                               struct nir_fold_16bit_tex_image_options *options);
6162 
6163 typedef struct {
6164    bool legalize_type;         /* whether this src should be legalized */
6165    uint8_t bit_size;           /* bit_size to enforce */
6166    nir_tex_src_type match_src; /* if bit_size is 0, match bit size of this */
6167 } nir_tex_src_type_constraint, nir_tex_src_type_constraints[nir_num_tex_src_types];
6168 
6169 bool nir_legalize_16bit_sampler_srcs(nir_shader *nir,
6170                                      nir_tex_src_type_constraints constraints);
6171 
6172 bool nir_lower_point_size(nir_shader *shader, float min, float max);
6173 
6174 void nir_lower_texcoord_replace(nir_shader *s, unsigned coord_replace,
6175                                 bool point_coord_is_sysval, bool yinvert);
6176 
6177 void nir_lower_texcoord_replace_late(nir_shader *s, unsigned coord_replace,
6178                                      bool point_coord_is_sysval);
6179 
6180 typedef enum {
6181    nir_lower_interpolation_at_sample = (1 << 1),
6182    nir_lower_interpolation_at_offset = (1 << 2),
6183    nir_lower_interpolation_centroid = (1 << 3),
6184    nir_lower_interpolation_pixel = (1 << 4),
6185    nir_lower_interpolation_sample = (1 << 5),
6186 } nir_lower_interpolation_options;
6187 
6188 bool nir_lower_interpolation(nir_shader *shader,
6189                              nir_lower_interpolation_options options);
6190 
6191 typedef enum {
6192    nir_lower_discard_if_to_cf = (1 << 0),
6193    nir_lower_demote_if_to_cf = (1 << 1),
6194    nir_lower_terminate_if_to_cf = (1 << 2),
6195 } nir_lower_discard_if_options;
6196 
6197 bool nir_lower_discard_if(nir_shader *shader, nir_lower_discard_if_options options);
6198 
6199 bool nir_lower_discard_or_demote(nir_shader *shader,
6200                                  bool force_correct_quad_ops_after_discard);
6201 
6202 bool nir_lower_memory_model(nir_shader *shader);
6203 
6204 bool nir_lower_goto_ifs(nir_shader *shader);
6205 bool nir_lower_continue_constructs(nir_shader *shader);
6206 
6207 bool nir_shader_uses_view_index(nir_shader *shader);
6208 bool nir_can_lower_multiview(nir_shader *shader);
6209 bool nir_lower_multiview(nir_shader *shader, uint32_t view_mask);
6210 
6211 typedef enum {
6212    nir_lower_fp16_rtz = (1 << 0),
6213    nir_lower_fp16_rtne = (1 << 1),
6214    nir_lower_fp16_ru = (1 << 2),
6215    nir_lower_fp16_rd = (1 << 3),
6216    nir_lower_fp16_all = 0xf,
6217    nir_lower_fp16_split_fp64 = (1 << 4),
6218 } nir_lower_fp16_cast_options;
6219 bool nir_lower_fp16_casts(nir_shader *shader, nir_lower_fp16_cast_options options);
6220 bool nir_normalize_cubemap_coords(nir_shader *shader);
6221 
6222 bool nir_shader_supports_implicit_lod(nir_shader *shader);
6223 
6224 void nir_live_defs_impl(nir_function_impl *impl);
6225 
6226 const BITSET_WORD *nir_get_live_defs(nir_cursor cursor, void *mem_ctx);
6227 
6228 void nir_loop_analyze_impl(nir_function_impl *impl,
6229                            nir_variable_mode indirect_mask,
6230                            bool force_unroll_sampler_indirect);
6231 
6232 bool nir_defs_interfere(nir_def *a, nir_def *b);
6233 
6234 bool nir_repair_ssa_impl(nir_function_impl *impl);
6235 bool nir_repair_ssa(nir_shader *shader);
6236 
6237 void nir_convert_loop_to_lcssa(nir_loop *loop);
6238 bool nir_convert_to_lcssa(nir_shader *shader, bool skip_invariants, bool skip_bool_invariants);
6239 void nir_divergence_analysis(nir_shader *shader);
6240 void nir_vertex_divergence_analysis(nir_shader *shader);
6241 bool nir_update_instr_divergence(nir_shader *shader, nir_instr *instr);
6242 bool nir_has_divergent_loop(nir_shader *shader);
6243 
6244 void
6245 nir_rewrite_uses_to_load_reg(struct nir_builder *b, nir_def *old,
6246                              nir_def *reg);
6247 
6248 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
6249  * registers.  If false, convert all values (even those not involved in a phi
6250  * node) to registers.
6251  */
6252 bool nir_convert_from_ssa(nir_shader *shader,
6253                           bool phi_webs_only);
6254 
6255 bool nir_lower_phis_to_regs_block(nir_block *block);
6256 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
6257 
6258 bool nir_rematerialize_deref_in_use_blocks(nir_deref_instr *instr);
6259 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
6260 
6261 bool nir_lower_samplers(nir_shader *shader);
6262 bool nir_lower_cl_images(nir_shader *shader, bool lower_image_derefs, bool lower_sampler_derefs);
6263 bool nir_dedup_inline_samplers(nir_shader *shader);
6264 bool nir_lower_ssbo(nir_shader *shader);
6265 bool nir_lower_helper_writes(nir_shader *shader, bool lower_plain_stores);
6266 
6267 typedef struct nir_lower_printf_options {
6268    unsigned max_buffer_size;
6269 } nir_lower_printf_options;
6270 
6271 bool nir_lower_printf(nir_shader *nir, const nir_lower_printf_options *options);
6272 
6273 /* This is here for unit tests. */
6274 bool nir_opt_comparison_pre_impl(nir_function_impl *impl);
6275 
6276 bool nir_opt_comparison_pre(nir_shader *shader);
6277 
6278 typedef struct nir_opt_access_options {
6279    bool is_vulkan;
6280 } nir_opt_access_options;
6281 
6282 bool nir_opt_access(nir_shader *shader, const nir_opt_access_options *options);
6283 bool nir_opt_algebraic(nir_shader *shader);
6284 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
6285 bool nir_opt_algebraic_late(nir_shader *shader);
6286 bool nir_opt_algebraic_distribute_src_mods(nir_shader *shader);
6287 bool nir_opt_constant_folding(nir_shader *shader);
6288 
6289 /* Try to combine a and b into a.  Return true if combination was possible,
6290  * which will result in b being removed by the pass.  Return false if
6291  * combination wasn't possible.
6292  */
6293 typedef bool (*nir_combine_barrier_cb)(
6294    nir_intrinsic_instr *a, nir_intrinsic_instr *b, void *data);
6295 
6296 bool nir_opt_combine_barriers(nir_shader *shader,
6297                               nir_combine_barrier_cb combine_cb,
6298                               void *data);
6299 bool nir_opt_barrier_modes(nir_shader *shader);
6300 
6301 bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes);
6302 
6303 bool nir_copy_prop_impl(nir_function_impl *impl);
6304 bool nir_copy_prop(nir_shader *shader);
6305 
6306 bool nir_opt_copy_prop_vars(nir_shader *shader);
6307 
6308 bool nir_opt_cse(nir_shader *shader);
6309 
6310 bool nir_opt_dce(nir_shader *shader);
6311 
6312 bool nir_opt_dead_cf(nir_shader *shader);
6313 
6314 bool nir_opt_dead_write_vars(nir_shader *shader);
6315 
6316 bool nir_opt_deref_impl(nir_function_impl *impl);
6317 bool nir_opt_deref(nir_shader *shader);
6318 
6319 bool nir_opt_find_array_copies(nir_shader *shader);
6320 
6321 bool nir_opt_fragdepth(nir_shader *shader);
6322 
6323 bool nir_opt_gcm(nir_shader *shader, bool value_number);
6324 
6325 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
6326 
6327 typedef enum {
6328    nir_opt_if_optimize_phi_true_false = (1 << 0),
6329    nir_opt_if_avoid_64bit_phis = (1 << 1),
6330 } nir_opt_if_options;
6331 
6332 bool nir_opt_if(nir_shader *shader, nir_opt_if_options options);
6333 
6334 bool nir_opt_intrinsics(nir_shader *shader);
6335 
6336 bool nir_opt_large_constants(nir_shader *shader,
6337                              glsl_type_size_align_func size_align,
6338                              unsigned threshold);
6339 
6340 bool nir_opt_loop(nir_shader *shader);
6341 
6342 bool nir_opt_loop_unroll(nir_shader *shader);
6343 
6344 typedef enum {
6345    nir_move_const_undef = (1 << 0),
6346    nir_move_load_ubo = (1 << 1),
6347    nir_move_load_input = (1 << 2),
6348    nir_move_comparisons = (1 << 3),
6349    nir_move_copies = (1 << 4),
6350    nir_move_load_ssbo = (1 << 5),
6351    nir_move_load_uniform = (1 << 6),
6352    nir_move_alu = (1 << 7),
6353 } nir_move_options;
6354 
6355 bool nir_can_move_instr(nir_instr *instr, nir_move_options options);
6356 
6357 bool nir_opt_sink(nir_shader *shader, nir_move_options options);
6358 
6359 bool nir_opt_move(nir_shader *shader, nir_move_options options);
6360 
6361 typedef struct {
6362    /** nir_load_uniform max base offset */
6363    uint32_t uniform_max;
6364 
6365    /** nir_load_ubo_vec4 max base offset */
6366    uint32_t ubo_vec4_max;
6367 
6368    /** nir_var_mem_shared max base offset */
6369    uint32_t shared_max;
6370 
6371    /** nir_load/store_buffer_amd max base offset */
6372    uint32_t buffer_max;
6373 } nir_opt_offsets_options;
6374 
6375 bool nir_opt_offsets(nir_shader *shader, const nir_opt_offsets_options *options);
6376 
6377 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
6378                              bool indirect_load_ok, bool expensive_alu_ok);
6379 
6380 bool nir_opt_reassociate_bfi(nir_shader *shader);
6381 
6382 bool nir_opt_rematerialize_compares(nir_shader *shader);
6383 
6384 bool nir_opt_remove_phis(nir_shader *shader);
6385 bool nir_opt_remove_phis_block(nir_block *block);
6386 
6387 bool nir_opt_phi_precision(nir_shader *shader);
6388 
6389 bool nir_opt_shrink_stores(nir_shader *shader, bool shrink_image_store);
6390 
6391 bool nir_opt_shrink_vectors(nir_shader *shader);
6392 
6393 bool nir_opt_undef(nir_shader *shader);
6394 
6395 bool nir_lower_undef_to_zero(nir_shader *shader);
6396 
6397 bool nir_opt_uniform_atomics(nir_shader *shader);
6398 
6399 bool nir_opt_uniform_subgroup(nir_shader *shader,
6400                               const nir_lower_subgroups_options *);
6401 
6402 bool nir_opt_vectorize(nir_shader *shader, nir_vectorize_cb filter,
6403                        void *data);
6404 
6405 bool nir_opt_conditional_discard(nir_shader *shader);
6406 bool nir_opt_move_discards_to_top(nir_shader *shader);
6407 
6408 bool nir_opt_ray_queries(nir_shader *shader);
6409 
6410 bool nir_opt_ray_query_ranges(nir_shader *shader);
6411 
6412 bool nir_opt_reuse_constants(nir_shader *shader);
6413 
6414 void nir_sweep(nir_shader *shader);
6415 
6416 void nir_remap_dual_slot_attributes(nir_shader *shader,
6417                                     uint64_t *dual_slot_inputs);
6418 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
6419 
6420 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
6421 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
6422 
6423 static inline bool
nir_variable_is_in_ubo(const nir_variable * var)6424 nir_variable_is_in_ubo(const nir_variable *var)
6425 {
6426    return (var->data.mode == nir_var_mem_ubo &&
6427            var->interface_type != NULL);
6428 }
6429 
6430 static inline bool
nir_variable_is_in_ssbo(const nir_variable * var)6431 nir_variable_is_in_ssbo(const nir_variable *var)
6432 {
6433    return (var->data.mode == nir_var_mem_ssbo &&
6434            var->interface_type != NULL);
6435 }
6436 
6437 static inline bool
nir_variable_is_in_block(const nir_variable * var)6438 nir_variable_is_in_block(const nir_variable *var)
6439 {
6440    return nir_variable_is_in_ubo(var) || nir_variable_is_in_ssbo(var);
6441 }
6442 
6443 static inline unsigned
nir_variable_count_slots(const nir_variable * var,const struct glsl_type * type)6444 nir_variable_count_slots(const nir_variable *var, const struct glsl_type *type)
6445 {
6446    return var->data.compact ? DIV_ROUND_UP(var->data.location_frac + glsl_get_length(type), 4) : glsl_count_attribute_slots(type, false);
6447 }
6448 
6449 static inline unsigned
nir_deref_count_slots(nir_deref_instr * deref,nir_variable * var)6450 nir_deref_count_slots(nir_deref_instr *deref, nir_variable *var)
6451 {
6452    if (var->data.compact) {
6453       switch (deref->deref_type) {
6454       case nir_deref_type_array:
6455          return 1;
6456       case nir_deref_type_var:
6457          return nir_variable_count_slots(var, deref->type);
6458       default:
6459          unreachable("illegal deref type");
6460       }
6461    }
6462    return glsl_count_attribute_slots(deref->type, false);
6463 }
6464 
6465 /* See default_ub_config in nir_range_analysis.c for documentation. */
6466 typedef struct nir_unsigned_upper_bound_config {
6467    unsigned min_subgroup_size;
6468    unsigned max_subgroup_size;
6469    unsigned max_workgroup_invocations;
6470    unsigned max_workgroup_count[3];
6471    unsigned max_workgroup_size[3];
6472 
6473    uint32_t vertex_attrib_max[32];
6474 } nir_unsigned_upper_bound_config;
6475 
6476 uint32_t
6477 nir_unsigned_upper_bound(nir_shader *shader, struct hash_table *range_ht,
6478                          nir_scalar scalar,
6479                          const nir_unsigned_upper_bound_config *config);
6480 
6481 bool
6482 nir_addition_might_overflow(nir_shader *shader, struct hash_table *range_ht,
6483                             nir_scalar ssa, unsigned const_val,
6484                             const nir_unsigned_upper_bound_config *config);
6485 
6486 typedef struct {
6487    /* True if gl_DrawID is considered uniform, i.e. if the preamble is run
6488     * at least once per "internal" draw rather than per user-visible draw.
6489     */
6490    bool drawid_uniform;
6491 
6492    /* True if the subgroup size is uniform. */
6493    bool subgroup_size_uniform;
6494 
6495    /* True if load_workgroup_size is supported in the preamble. */
6496    bool load_workgroup_size_allowed;
6497 
6498    /* size/align for load/store_preamble. */
6499    void (*def_size)(nir_def *def, unsigned *size, unsigned *align);
6500 
6501    /* Total available size for load/store_preamble storage, in units
6502     * determined by def_size.
6503     */
6504    unsigned preamble_storage_size;
6505 
6506    /* Give the cost for an instruction. nir_opt_preamble will prioritize
6507     * instructions with higher costs. Instructions with cost 0 may still be
6508     * lifted, but only when required to lift other instructions with non-0
6509     * cost (e.g. a load_const source of an expression).
6510     */
6511    float (*instr_cost_cb)(nir_instr *instr, const void *data);
6512 
6513    /* Give the cost of rewriting the instruction to use load_preamble. This
6514     * may happen from inserting move instructions, etc. If the benefit doesn't
6515     * exceed the cost here then we won't rewrite it.
6516     */
6517    float (*rewrite_cost_cb)(nir_def *def, const void *data);
6518 
6519    /* Instructions whose definitions should not be rewritten. These could
6520     * still be moved to the preamble, but they shouldn't be the root of a
6521     * replacement expression. Instructions with cost 0 and derefs are
6522     * automatically included by the pass.
6523     */
6524    nir_instr_filter_cb avoid_instr_cb;
6525 
6526    const void *cb_data;
6527 } nir_opt_preamble_options;
6528 
6529 bool
6530 nir_opt_preamble(nir_shader *shader,
6531                  const nir_opt_preamble_options *options,
6532                  unsigned *size);
6533 
6534 nir_function_impl *nir_shader_get_preamble(nir_shader *shader);
6535 
6536 bool nir_lower_point_smooth(nir_shader *shader);
6537 bool nir_lower_poly_line_smooth(nir_shader *shader, unsigned num_smooth_aa_sample);
6538 
6539 bool nir_mod_analysis(nir_scalar val, nir_alu_type val_type, unsigned div, unsigned *mod);
6540 
6541 bool
6542 nir_remove_tex_shadow(nir_shader *shader, unsigned textures_bitmask);
6543 
6544 void
6545 nir_trivialize_registers(nir_shader *s);
6546 
6547 unsigned
6548 nir_static_workgroup_size(const nir_shader *s);
6549 
6550 static inline nir_intrinsic_instr *
nir_reg_get_decl(nir_def * reg)6551 nir_reg_get_decl(nir_def *reg)
6552 {
6553    assert(reg->parent_instr->type == nir_instr_type_intrinsic);
6554    nir_intrinsic_instr *decl = nir_instr_as_intrinsic(reg->parent_instr);
6555    assert(decl->intrinsic == nir_intrinsic_decl_reg);
6556 
6557    return decl;
6558 }
6559 
6560 static inline nir_intrinsic_instr *
nir_next_decl_reg(nir_intrinsic_instr * prev,nir_function_impl * impl)6561 nir_next_decl_reg(nir_intrinsic_instr *prev, nir_function_impl *impl)
6562 {
6563    nir_instr *start;
6564    if (prev != NULL)
6565       start = nir_instr_next(&prev->instr);
6566    else if (impl != NULL)
6567       start = nir_block_first_instr(nir_start_block(impl));
6568    else
6569       return NULL;
6570 
6571    for (nir_instr *instr = start; instr; instr = nir_instr_next(instr)) {
6572       if (instr->type != nir_instr_type_intrinsic)
6573          continue;
6574 
6575       nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6576       if (intrin->intrinsic == nir_intrinsic_decl_reg)
6577          return intrin;
6578    }
6579 
6580    return NULL;
6581 }
6582 
6583 #define nir_foreach_reg_decl(reg, impl)                           \
6584    for (nir_intrinsic_instr *reg = nir_next_decl_reg(NULL, impl); \
6585         reg; reg = nir_next_decl_reg(reg, NULL))
6586 
6587 #define nir_foreach_reg_decl_safe(reg, impl)                       \
6588    for (nir_intrinsic_instr *reg = nir_next_decl_reg(NULL, impl),  \
6589                             *next_ = nir_next_decl_reg(reg, NULL); \
6590         reg; reg = next_, next_ = nir_next_decl_reg(next_, NULL))
6591 
6592 static inline nir_cursor
nir_after_reg_decls(nir_function_impl * impl)6593 nir_after_reg_decls(nir_function_impl *impl)
6594 {
6595    nir_intrinsic_instr *last_reg_decl = NULL;
6596    nir_foreach_reg_decl(reg_decl, impl)
6597       last_reg_decl = reg_decl;
6598 
6599    if (last_reg_decl != NULL)
6600       return nir_after_instr(&last_reg_decl->instr);
6601    return nir_before_impl(impl);
6602 }
6603 
6604 static inline bool
nir_is_load_reg(nir_intrinsic_instr * intr)6605 nir_is_load_reg(nir_intrinsic_instr *intr)
6606 {
6607    return intr->intrinsic == nir_intrinsic_load_reg ||
6608           intr->intrinsic == nir_intrinsic_load_reg_indirect;
6609 }
6610 
6611 static inline bool
nir_is_store_reg(nir_intrinsic_instr * intr)6612 nir_is_store_reg(nir_intrinsic_instr *intr)
6613 {
6614    return intr->intrinsic == nir_intrinsic_store_reg ||
6615           intr->intrinsic == nir_intrinsic_store_reg_indirect;
6616 }
6617 
6618 #define nir_foreach_reg_load(load, reg)              \
6619    assert(reg->intrinsic == nir_intrinsic_decl_reg); \
6620                                                      \
6621    nir_foreach_use(load, &reg->def)             \
6622       if (nir_is_load_reg(nir_instr_as_intrinsic(nir_src_parent_instr(load))))
6623 
6624 #define nir_foreach_reg_load_safe(load, reg)         \
6625    assert(reg->intrinsic == nir_intrinsic_decl_reg); \
6626                                                      \
6627    nir_foreach_use_safe(load, &reg->def)             \
6628       if (nir_is_load_reg(nir_instr_as_intrinsic(nir_src_parent_instr(load))))
6629 
6630 #define nir_foreach_reg_store(store, reg)            \
6631    assert(reg->intrinsic == nir_intrinsic_decl_reg); \
6632                                                      \
6633    nir_foreach_use(store, &reg->def)            \
6634       if (nir_is_store_reg(nir_instr_as_intrinsic(nir_src_parent_instr(store))))
6635 
6636 #define nir_foreach_reg_store_safe(store, reg)       \
6637    assert(reg->intrinsic == nir_intrinsic_decl_reg); \
6638                                                      \
6639    nir_foreach_use_safe(store, &reg->def)            \
6640       if (nir_is_store_reg(nir_instr_as_intrinsic(nir_src_parent_instr(store))))
6641 
6642 static inline nir_intrinsic_instr *
nir_load_reg_for_def(const nir_def * def)6643 nir_load_reg_for_def(const nir_def *def)
6644 {
6645    if (def->parent_instr->type != nir_instr_type_intrinsic)
6646       return NULL;
6647 
6648    nir_intrinsic_instr *intr = nir_instr_as_intrinsic(def->parent_instr);
6649    if (!nir_is_load_reg(intr))
6650       return NULL;
6651 
6652    return intr;
6653 }
6654 
6655 static inline nir_intrinsic_instr *
nir_store_reg_for_def(const nir_def * def)6656 nir_store_reg_for_def(const nir_def *def)
6657 {
6658    /* Look for the trivial store: single use of our destination by a
6659     * store_register intrinsic.
6660     */
6661    if (!list_is_singular(&def->uses))
6662       return NULL;
6663 
6664    nir_src *src = list_first_entry(&def->uses, nir_src, use_link);
6665    if (nir_src_is_if(src))
6666       return NULL;
6667 
6668    nir_instr *parent = nir_src_parent_instr(src);
6669    if (parent->type != nir_instr_type_intrinsic)
6670       return NULL;
6671 
6672    nir_intrinsic_instr *intr = nir_instr_as_intrinsic(parent);
6673    if (!nir_is_store_reg(intr))
6674       return NULL;
6675 
6676    /* The first value is data. Third is indirect index, ignore that one. */
6677    if (&intr->src[0] != src)
6678       return NULL;
6679 
6680    return intr;
6681 }
6682 
6683 #include "nir_inline_helpers.h"
6684 
6685 #ifdef __cplusplus
6686 } /* extern "C" */
6687 #endif
6688 
6689 #endif /* NIR_H */
6690