• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2007 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #undef LOG_TAG
18 #define LOG_TAG "Transform"
19 
20 #include <math.h>
21 
22 #include <android-base/stringprintf.h>
23 #include <cutils/compiler.h>
24 #include <ui/Region.h>
25 #include <ui/Transform.h>
26 #include <utils/String8.h>
27 
28 namespace android::ui {
29 
Transform()30 Transform::Transform() {
31     reset();
32 }
33 
Transform(const Transform & other)34 Transform::Transform(const Transform&  other)
35     : mMatrix(other.mMatrix), mType(other.mType) {
36 }
37 
Transform(uint32_t orientation,int w,int h)38 Transform::Transform(uint32_t orientation, int w, int h) {
39     set(orientation, w, h);
40 }
41 
42 Transform::~Transform() = default;
43 
44 static const float EPSILON = 0.0f;
45 
isZero(float f)46 bool Transform::isZero(float f) {
47     return fabs(f) <= EPSILON;
48 }
49 
absIsOne(float f)50 bool Transform::absIsOne(float f) {
51     return isZero(fabs(f) - 1.0f);
52 }
53 
operator ==(const Transform & other) const54 bool Transform::operator==(const Transform& other) const {
55     return mMatrix[0][0] == other.mMatrix[0][0] && mMatrix[0][1] == other.mMatrix[0][1] &&
56             mMatrix[0][2] == other.mMatrix[0][2] && mMatrix[1][0] == other.mMatrix[1][0] &&
57             mMatrix[1][1] == other.mMatrix[1][1] && mMatrix[1][2] == other.mMatrix[1][2] &&
58             mMatrix[2][0] == other.mMatrix[2][0] && mMatrix[2][1] == other.mMatrix[2][1] &&
59             mMatrix[2][2] == other.mMatrix[2][2];
60 }
61 
operator *(const Transform & rhs) const62 Transform Transform::operator*(const Transform& rhs) const {
63     if (CC_LIKELY(mType == IDENTITY))
64         return rhs;
65 
66     Transform r(*this);
67     if (rhs.mType == IDENTITY)
68         return r;
69 
70     // TODO: we could use mType to optimize the matrix multiply
71     const mat33& A(mMatrix);
72     const mat33& B(rhs.mMatrix);
73           mat33& D(r.mMatrix);
74     for (size_t i = 0; i < 3; i++) {
75         const float v0 = A[0][i];
76         const float v1 = A[1][i];
77         const float v2 = A[2][i];
78         D[0][i] = v0*B[0][0] + v1*B[0][1] + v2*B[0][2];
79         D[1][i] = v0*B[1][0] + v1*B[1][1] + v2*B[1][2];
80         D[2][i] = v0*B[2][0] + v1*B[2][1] + v2*B[2][2];
81     }
82     r.mType |= rhs.mType;
83 
84     // TODO: we could recompute this value from r and rhs
85     r.mType &= 0xFF;
86     r.mType |= UNKNOWN_TYPE;
87     return r;
88 }
89 
operator *(float value) const90 Transform Transform::operator * (float value) const {
91     Transform r(*this);
92     const mat33& M(mMatrix);
93     mat33& R(r.mMatrix);
94     for (size_t i = 0; i < 3; i++) {
95         for (size_t j = 0; j < 2; j++) {
96             R[i][j] = M[i][j] * value;
97         }
98     }
99     r.type();
100     return r;
101 }
102 
operator =(const Transform & other)103 Transform& Transform::operator=(const Transform& other) {
104     mMatrix = other.mMatrix;
105     mType = other.mType;
106     return *this;
107 }
108 
operator [](size_t i) const109 const vec3& Transform::operator [] (size_t i) const {
110     return mMatrix[i];
111 }
112 
tx() const113 float Transform::tx() const {
114     return mMatrix[2][0];
115 }
116 
ty() const117 float Transform::ty() const {
118     return mMatrix[2][1];
119 }
120 
dsdx() const121 float Transform::dsdx() const {
122     return mMatrix[0][0];
123 }
124 
dtdx() const125 float Transform::dtdx() const {
126     return mMatrix[1][0];
127 }
128 
dtdy() const129 float Transform::dtdy() const {
130     return mMatrix[0][1];
131 }
132 
dsdy() const133 float Transform::dsdy() const {
134     return mMatrix[1][1];
135 }
136 
det() const137 float Transform::det() const {
138     return mMatrix[0][0] * mMatrix[1][1] - mMatrix[0][1] * mMatrix[1][0];
139 }
140 
getScaleX() const141 float Transform::getScaleX() const {
142     return sqrt((dsdx() * dsdx()) + (dtdx() * dtdx()));
143 }
144 
getScaleY() const145 float Transform::getScaleY() const {
146     return sqrt((dtdy() * dtdy()) + (dsdy() * dsdy()));
147 }
148 
reset()149 void Transform::reset() {
150     mType = IDENTITY;
151     for(size_t i = 0; i < 3; i++) {
152         vec3& v(mMatrix[i]);
153         for (size_t j = 0; j < 3; j++)
154             v[j] = ((i == j) ? 1.0f : 0.0f);
155     }
156 }
157 
set(float tx,float ty)158 void Transform::set(float tx, float ty) {
159     mMatrix[2][0] = tx;
160     mMatrix[2][1] = ty;
161     mMatrix[2][2] = 1.0f;
162 
163     if (isZero(tx) && isZero(ty)) {
164         mType &= ~TRANSLATE;
165     } else {
166         mType |= TRANSLATE;
167     }
168 }
169 
set(float a,float b,float c,float d)170 void Transform::set(float a, float b, float c, float d) {
171     mat33& M(mMatrix);
172     M[0][0] = a;    M[1][0] = b;
173     M[0][1] = c;    M[1][1] = d;
174     M[0][2] = 0;    M[1][2] = 0;
175     mType = UNKNOWN_TYPE;
176 }
177 
set(uint32_t flags,float w,float h)178 status_t Transform::set(uint32_t flags, float w, float h) {
179     if (flags & ROT_INVALID) {
180         // that's not allowed!
181         reset();
182         return BAD_VALUE;
183     }
184 
185     Transform H, V, R;
186     if (flags & ROT_90) {
187         // w & h are inverted when rotating by 90 degrees
188         std::swap(w, h);
189     }
190 
191     if (flags & FLIP_H) {
192         H.mType = (FLIP_H << 8) | SCALE;
193         H.mType |= isZero(w) ? IDENTITY : TRANSLATE;
194         mat33& M(H.mMatrix);
195         M[0][0] = -1;
196         M[2][0] = w;
197     }
198 
199     if (flags & FLIP_V) {
200         V.mType = (FLIP_V << 8) | SCALE;
201         V.mType |= isZero(h) ? IDENTITY : TRANSLATE;
202         mat33& M(V.mMatrix);
203         M[1][1] = -1;
204         M[2][1] = h;
205     }
206 
207     if (flags & ROT_90) {
208         const float original_w = h;
209         R.mType = (ROT_90 << 8) | ROTATE;
210         R.mType |= isZero(original_w) ? IDENTITY : TRANSLATE;
211         mat33& M(R.mMatrix);
212         M[0][0] = 0;    M[1][0] =-1;    M[2][0] = original_w;
213         M[0][1] = 1;    M[1][1] = 0;
214     }
215 
216     *this = (R*(H*V));
217     return NO_ERROR;
218 }
219 
set(const std::array<float,9> & matrix)220 void Transform::set(const std::array<float, 9>& matrix) {
221     mat33& M(mMatrix);
222     M[0][0] = matrix[0];  M[1][0] = matrix[1];  M[2][0] = matrix[2];
223     M[0][1] = matrix[3];  M[1][1] = matrix[4];  M[2][1] = matrix[5];
224     M[0][2] = matrix[6];  M[1][2] = matrix[7];  M[2][2] = matrix[8];
225     mType = UNKNOWN_TYPE;
226     type();
227 }
228 
transform(const vec2 & v) const229 vec2 Transform::transform(const vec2& v) const {
230     vec2 r;
231     const mat33& M(mMatrix);
232     r[0] = M[0][0]*v[0] + M[1][0]*v[1] + M[2][0];
233     r[1] = M[0][1]*v[0] + M[1][1]*v[1] + M[2][1];
234     return r;
235 }
236 
transform(const vec3 & v) const237 vec3 Transform::transform(const vec3& v) const {
238     vec3 r;
239     const mat33& M(mMatrix);
240     r[0] = M[0][0]*v[0] + M[1][0]*v[1] + M[2][0]*v[2];
241     r[1] = M[0][1]*v[0] + M[1][1]*v[1] + M[2][1]*v[2];
242     r[2] = M[0][2]*v[0] + M[1][2]*v[1] + M[2][2]*v[2];
243     return r;
244 }
245 
transform(float x,float y) const246 vec2 Transform::transform(float x, float y) const {
247     return transform(vec2(x, y));
248 }
249 
makeBounds(int w,int h) const250 Rect Transform::makeBounds(int w, int h) const {
251     return transform( Rect(w, h) );
252 }
253 
transform(const Rect & bounds,bool roundOutwards) const254 Rect Transform::transform(const Rect& bounds, bool roundOutwards) const {
255     Rect r;
256     vec2 lt( bounds.left,  bounds.top    );
257     vec2 rt( bounds.right, bounds.top    );
258     vec2 lb( bounds.left,  bounds.bottom );
259     vec2 rb( bounds.right, bounds.bottom );
260 
261     lt = transform(lt);
262     rt = transform(rt);
263     lb = transform(lb);
264     rb = transform(rb);
265 
266     if (roundOutwards) {
267         r.left   = static_cast<int32_t>(floorf(std::min({lt[0], rt[0], lb[0], rb[0]})));
268         r.top    = static_cast<int32_t>(floorf(std::min({lt[1], rt[1], lb[1], rb[1]})));
269         r.right  = static_cast<int32_t>(ceilf(std::max({lt[0], rt[0], lb[0], rb[0]})));
270         r.bottom = static_cast<int32_t>(ceilf(std::max({lt[1], rt[1], lb[1], rb[1]})));
271     } else {
272         r.left   = static_cast<int32_t>(floorf(std::min({lt[0], rt[0], lb[0], rb[0]}) + 0.5f));
273         r.top    = static_cast<int32_t>(floorf(std::min({lt[1], rt[1], lb[1], rb[1]}) + 0.5f));
274         r.right  = static_cast<int32_t>(floorf(std::max({lt[0], rt[0], lb[0], rb[0]}) + 0.5f));
275         r.bottom = static_cast<int32_t>(floorf(std::max({lt[1], rt[1], lb[1], rb[1]}) + 0.5f));
276     }
277 
278     return r;
279 }
280 
transform(const FloatRect & bounds) const281 FloatRect Transform::transform(const FloatRect& bounds) const {
282     vec2 lt(bounds.left, bounds.top);
283     vec2 rt(bounds.right, bounds.top);
284     vec2 lb(bounds.left, bounds.bottom);
285     vec2 rb(bounds.right, bounds.bottom);
286 
287     lt = transform(lt);
288     rt = transform(rt);
289     lb = transform(lb);
290     rb = transform(rb);
291 
292     FloatRect r;
293     r.left = std::min({lt[0], rt[0], lb[0], rb[0]});
294     r.top = std::min({lt[1], rt[1], lb[1], rb[1]});
295     r.right = std::max({lt[0], rt[0], lb[0], rb[0]});
296     r.bottom = std::max({lt[1], rt[1], lb[1], rb[1]});
297 
298     return r;
299 }
300 
transform(const Region & reg) const301 Region Transform::transform(const Region& reg) const {
302     Region out;
303     if (CC_UNLIKELY(type() > TRANSLATE)) {
304         if (CC_LIKELY(preserveRects())) {
305             Region::const_iterator it = reg.begin();
306             Region::const_iterator const end = reg.end();
307             while (it != end) {
308                 out.orSelf(transform(*it++));
309             }
310         } else {
311             out.set(transform(reg.bounds()));
312         }
313     } else {
314         int xpos = static_cast<int>(floorf(tx() + 0.5f));
315         int ypos = static_cast<int>(floorf(ty() + 0.5f));
316         out = reg.translate(xpos, ypos);
317     }
318     return out;
319 }
320 
type() const321 uint32_t Transform::type() const {
322     if (mType & UNKNOWN_TYPE) {
323         // recompute what this transform is
324 
325         const mat33& M(mMatrix);
326         const float a = M[0][0];
327         const float b = M[1][0];
328         const float c = M[0][1];
329         const float d = M[1][1];
330         const float x = M[2][0];
331         const float y = M[2][1];
332 
333         bool scale = false;
334         uint32_t flags = ROT_0;
335         if (isZero(b) && isZero(c)) {
336             if (a<0)    flags |= FLIP_H;
337             if (d<0)    flags |= FLIP_V;
338             if (!absIsOne(a) || !absIsOne(d)) {
339                 scale = true;
340             }
341         } else if (isZero(a) && isZero(d)) {
342             flags |= ROT_90;
343             if (b>0)    flags |= FLIP_V;
344             if (c<0)    flags |= FLIP_H;
345             if (!absIsOne(b) || !absIsOne(c)) {
346                 scale = true;
347             }
348         } else {
349             // there is a skew component and/or a non 90 degrees rotation
350             flags = ROT_INVALID;
351         }
352 
353         mType = flags << 8;
354         if (flags & ROT_INVALID) {
355             mType |= UNKNOWN;
356         } else {
357             if ((flags & ROT_90) || ((flags & ROT_180) == ROT_180))
358                 mType |= ROTATE;
359             if (flags & FLIP_H)
360                 mType ^= SCALE;
361             if (flags & FLIP_V)
362                 mType ^= SCALE;
363             if (scale)
364                 mType |= SCALE;
365         }
366 
367         if (!isZero(x) || !isZero(y))
368             mType |= TRANSLATE;
369     }
370     return mType;
371 }
372 
inverse() const373 Transform Transform::inverse() const {
374     // our 3x3 matrix is always of the form of a 2x2 transformation
375     // followed by a translation: T*M, therefore:
376     // (T*M)^-1 = M^-1 * T^-1
377     Transform result;
378     if (mType <= TRANSLATE) {
379         // 1 0 0
380         // 0 1 0
381         // x y 1
382         result = *this;
383         result.mMatrix[2][0] = -result.mMatrix[2][0];
384         result.mMatrix[2][1] = -result.mMatrix[2][1];
385     } else {
386         // a c 0
387         // b d 0
388         // x y 1
389         const mat33& M(mMatrix);
390         const float a = M[0][0];
391         const float b = M[1][0];
392         const float c = M[0][1];
393         const float d = M[1][1];
394         const float x = M[2][0];
395         const float y = M[2][1];
396 
397         const float idet = 1.0f / det();
398         result.mMatrix[0][0] =  d*idet;
399         result.mMatrix[0][1] = -c*idet;
400         result.mMatrix[1][0] = -b*idet;
401         result.mMatrix[1][1] =  a*idet;
402         result.mType = mType;
403         if (getOrientation() & ROT_90) {
404             // Recalculate the type if there is a 90-degree rotation component, since the inverse
405             // of ROT_90 is ROT_270 and vice versa.
406             result.mType |= UNKNOWN_TYPE;
407         }
408 
409         vec2 T(-x, -y);
410         T = result.transform(T);
411         result.mMatrix[2][0] = T[0];
412         result.mMatrix[2][1] = T[1];
413     }
414     return result;
415 }
416 
getType() const417 uint32_t Transform::getType() const {
418     return type() & 0xFF;
419 }
420 
getOrientation() const421 uint32_t Transform::getOrientation() const {
422     return (type() >> 8) & 0xFF;
423 }
424 
preserveRects() const425 bool Transform::preserveRects() const {
426     return (getOrientation() & ROT_INVALID) ? false : true;
427 }
428 
needsBilinearFiltering() const429 bool Transform::needsBilinearFiltering() const {
430     return (!preserveRects() || getType() >= ui::Transform::SCALE);
431 }
432 
asMatrix4() const433 mat4 Transform::asMatrix4() const {
434     // Internally Transform uses a 3x3 matrix since the transform is meant for
435     // two-dimensional values. An equivalent 4x4 matrix means inserting an extra
436     // row and column which adds as an identity transform on the third
437     // dimension.
438 
439     mat4 m = mat4{mat4::NO_INIT}; // NO_INIT since we explicitly set every element
440 
441     m[0][0] = mMatrix[0][0];
442     m[0][1] = mMatrix[0][1];
443     m[0][2] = 0.f;
444     m[0][3] = mMatrix[0][2];
445 
446     m[1][0] = mMatrix[1][0];
447     m[1][1] = mMatrix[1][1];
448     m[1][2] = 0.f;
449     m[1][3] = mMatrix[1][2];
450 
451     m[2][0] = 0.f;
452     m[2][1] = 0.f;
453     m[2][2] = 1.f;
454     m[2][3] = 0.f;
455 
456     m[3][0] = mMatrix[2][0];
457     m[3][1] = mMatrix[2][1];
458     m[3][2] = 0.f;
459     m[3][3] = mMatrix[2][2];
460 
461     return m;
462 }
463 
rotationToString(const uint32_t rotationFlags)464 static std::string rotationToString(const uint32_t rotationFlags) {
465     switch (rotationFlags) {
466         case Transform::ROT_0:
467             return "ROT_0";
468         case Transform::FLIP_H:
469             return "FLIP_H";
470         case Transform::FLIP_V:
471             return "FLIP_V";
472         case Transform::ROT_90:
473             return "ROT_90";
474         case Transform::ROT_180:
475             return "ROT_180";
476         case Transform::ROT_270:
477             return "ROT_270";
478         case Transform::ROT_INVALID:
479         default:
480             return "ROT_INVALID";
481     }
482 }
483 
transformToString(const uint32_t transform)484 static std::string transformToString(const uint32_t transform) {
485     if (transform == Transform::IDENTITY) {
486         return "IDENTITY";
487     }
488 
489     if (transform == Transform::UNKNOWN) {
490         return "UNKNOWN";
491     }
492 
493     std::string out;
494     if (transform & Transform::SCALE) out.append("SCALE ");
495     if (transform & Transform::ROTATE) out.append("ROTATE ");
496     if (transform & Transform::TRANSLATE) out.append("TRANSLATE");
497     return out;
498 }
499 
dump(std::string & out,const char * name,const char * prefix) const500 void Transform::dump(std::string& out, const char* name, const char* prefix) const {
501     using android::base::StringAppendF;
502 
503     type(); // Ensure the information in mType is up to date
504 
505     const uint32_t type = mType;
506     const uint32_t orient = type >> 8;
507 
508     out += prefix;
509     out += name;
510     out += " ";
511 
512     if (orient & ROT_INVALID) {
513         StringAppendF(&out, "0x%08x ", orient);
514     }
515     out += "(" + rotationToString(orient) + ") ";
516 
517     if (type & UNKNOWN) {
518         StringAppendF(&out, "0x%02x ", type);
519     }
520     out += "(" + transformToString(type) + ")\n";
521 
522     if (type == IDENTITY) {
523         return;
524     }
525 
526     for (size_t i = 0; i < 3; i++) {
527         StringAppendF(&out, "%s    %.4f  %.4f  %.4f\n", prefix, static_cast<double>(mMatrix[0][i]),
528                       static_cast<double>(mMatrix[1][i]), static_cast<double>(mMatrix[2][i]));
529     }
530 }
531 
dump(const char * name,const char * prefix) const532 void Transform::dump(const char* name, const char* prefix) const {
533     std::string out;
534     dump(out, name, prefix);
535     ALOGD("%s", out.c_str());
536 }
537 
538 } // namespace android::ui
539