1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 /** @file register_allocate.c
29 *
30 * Graph-coloring register allocator.
31 *
32 * The basic idea of graph coloring is to make a node in a graph for
33 * every thing that needs a register (color) number assigned, and make
34 * edges in the graph between nodes that interfere (can't be allocated
35 * to the same register at the same time).
36 *
37 * During the "simplify" process, any any node with fewer edges than
38 * there are registers means that that edge can get assigned a
39 * register regardless of what its neighbors choose, so that node is
40 * pushed on a stack and removed (with its edges) from the graph.
41 * That likely causes other nodes to become trivially colorable as well.
42 *
43 * Then during the "select" process, nodes are popped off of that
44 * stack, their edges restored, and assigned a color different from
45 * their neighbors. Because they were pushed on the stack only when
46 * they were trivially colorable, any color chosen won't interfere
47 * with the registers to be popped later.
48 *
49 * The downside to most graph coloring is that real hardware often has
50 * limitations, like registers that need to be allocated to a node in
51 * pairs, or aligned on some boundary. This implementation follows
52 * the paper "Retargetable Graph-Coloring Register Allocation for
53 * Irregular Architectures" by Johan Runeson and Sven-Olof Nyström.
54 *
55 * In this system, there are register classes each containing various
56 * registers, and registers may interfere with other registers. For
57 * example, one might have a class of base registers, and a class of
58 * aligned register pairs that would each interfere with their pair of
59 * the base registers. Each node has a register class it needs to be
60 * assigned to. Define p(B) to be the size of register class B, and
61 * q(B,C) to be the number of registers in B that the worst choice
62 * register in C could conflict with. Then, this system replaces the
63 * basic graph coloring test of "fewer edges from this node than there
64 * are registers" with "For this node of class B, the sum of q(B,C)
65 * for each neighbor node of class C is less than pB".
66 *
67 * A nice feature of the pq test is that q(B,C) can be computed once
68 * up front and stored in a 2-dimensional array, so that the cost of
69 * coloring a node is constant with the number of registers. We do
70 * this during ra_set_finalize().
71 */
72
73 #include <stdbool.h>
74 #include <stdlib.h>
75
76 #include "blob.h"
77 #include "ralloc.h"
78 #include "util/bitset.h"
79 #include "util/u_dynarray.h"
80 #include "u_math.h"
81 #include "register_allocate.h"
82 #include "register_allocate_internal.h"
83
84 /**
85 * Creates a set of registers for the allocator.
86 *
87 * mem_ctx is a ralloc context for the allocator. The reg set may be freed
88 * using ralloc_free().
89 */
90 struct ra_regs *
ra_alloc_reg_set(void * mem_ctx,unsigned int count,bool need_conflict_lists)91 ra_alloc_reg_set(void *mem_ctx, unsigned int count, bool need_conflict_lists)
92 {
93 unsigned int i;
94 struct ra_regs *regs;
95
96 regs = rzalloc(mem_ctx, struct ra_regs);
97 regs->count = count;
98 regs->regs = rzalloc_array(regs, struct ra_reg, count);
99
100 for (i = 0; i < count; i++) {
101 regs->regs[i].conflicts = rzalloc_array(regs->regs, BITSET_WORD,
102 BITSET_WORDS(count));
103 BITSET_SET(regs->regs[i].conflicts, i);
104
105 util_dynarray_init(®s->regs[i].conflict_list,
106 need_conflict_lists ? regs->regs : NULL);
107 if (need_conflict_lists)
108 util_dynarray_append(®s->regs[i].conflict_list, unsigned int, i);
109 }
110
111 return regs;
112 }
113
114 /**
115 * The register allocator by default prefers to allocate low register numbers,
116 * since it was written for hardware (gen4/5 Intel) that is limited in its
117 * multithreadedness by the number of registers used in a given shader.
118 *
119 * However, for hardware without that restriction, densely packed register
120 * allocation can put serious constraints on instruction scheduling. This
121 * function tells the allocator to rotate around the registers if possible as
122 * it allocates the nodes.
123 */
124 void
ra_set_allocate_round_robin(struct ra_regs * regs)125 ra_set_allocate_round_robin(struct ra_regs *regs)
126 {
127 regs->round_robin = true;
128 }
129
130 static void
ra_add_conflict_list(struct ra_regs * regs,unsigned int r1,unsigned int r2)131 ra_add_conflict_list(struct ra_regs *regs, unsigned int r1, unsigned int r2)
132 {
133 struct ra_reg *reg1 = ®s->regs[r1];
134
135 if (reg1->conflict_list.mem_ctx) {
136 util_dynarray_append(®1->conflict_list, unsigned int, r2);
137 }
138 BITSET_SET(reg1->conflicts, r2);
139 }
140
141 void
ra_add_reg_conflict(struct ra_regs * regs,unsigned int r1,unsigned int r2)142 ra_add_reg_conflict(struct ra_regs *regs, unsigned int r1, unsigned int r2)
143 {
144 if (!BITSET_TEST(regs->regs[r1].conflicts, r2)) {
145 ra_add_conflict_list(regs, r1, r2);
146 ra_add_conflict_list(regs, r2, r1);
147 }
148 }
149
150 /**
151 * Adds a conflict between base_reg and reg, and also between reg and
152 * anything that base_reg conflicts with.
153 *
154 * This can simplify code for setting up multiple register classes
155 * which are aggregates of some base hardware registers, compared to
156 * explicitly using ra_add_reg_conflict.
157 */
158 void
ra_add_transitive_reg_conflict(struct ra_regs * regs,unsigned int base_reg,unsigned int reg)159 ra_add_transitive_reg_conflict(struct ra_regs *regs,
160 unsigned int base_reg, unsigned int reg)
161 {
162 ra_add_reg_conflict(regs, reg, base_reg);
163
164 util_dynarray_foreach(®s->regs[base_reg].conflict_list, unsigned int,
165 r2p) {
166 ra_add_reg_conflict(regs, reg, *r2p);
167 }
168 }
169
170 /**
171 * Set up conflicts between base_reg and it's two half registers reg0 and
172 * reg1, but take care to not add conflicts between reg0 and reg1.
173 *
174 * This is useful for architectures where full size registers are aliased by
175 * two half size registers (eg 32 bit float and 16 bit float registers).
176 */
177 void
ra_add_transitive_reg_pair_conflict(struct ra_regs * regs,unsigned int base_reg,unsigned int reg0,unsigned int reg1)178 ra_add_transitive_reg_pair_conflict(struct ra_regs *regs,
179 unsigned int base_reg, unsigned int reg0, unsigned int reg1)
180 {
181 ra_add_reg_conflict(regs, reg0, base_reg);
182 ra_add_reg_conflict(regs, reg1, base_reg);
183
184 util_dynarray_foreach(®s->regs[base_reg].conflict_list, unsigned int, i) {
185 unsigned int conflict = *i;
186 if (conflict != reg1)
187 ra_add_reg_conflict(regs, reg0, conflict);
188 if (conflict != reg0)
189 ra_add_reg_conflict(regs, reg1, conflict);
190 }
191 }
192
193 /**
194 * Makes every conflict on the given register transitive. In other words,
195 * every register that conflicts with r will now conflict with every other
196 * register conflicting with r.
197 *
198 * This can simplify code for setting up multiple register classes
199 * which are aggregates of some base hardware registers, compared to
200 * explicitly using ra_add_reg_conflict.
201 */
202 void
ra_make_reg_conflicts_transitive(struct ra_regs * regs,unsigned int r)203 ra_make_reg_conflicts_transitive(struct ra_regs *regs, unsigned int r)
204 {
205 struct ra_reg *reg = ®s->regs[r];
206 int c;
207
208 BITSET_FOREACH_SET(c, reg->conflicts, regs->count) {
209 struct ra_reg *other = ®s->regs[c];
210 unsigned i;
211 for (i = 0; i < BITSET_WORDS(regs->count); i++)
212 other->conflicts[i] |= reg->conflicts[i];
213 }
214 }
215
216 struct ra_class *
ra_alloc_reg_class(struct ra_regs * regs)217 ra_alloc_reg_class(struct ra_regs *regs)
218 {
219 struct ra_class *class;
220
221 regs->classes = reralloc(regs->regs, regs->classes, struct ra_class *,
222 regs->class_count + 1);
223
224 class = rzalloc(regs, struct ra_class);
225 class->regset = regs;
226
227 /* Users may rely on the class index being allocated in order starting from 0. */
228 class->index = regs->class_count++;
229 regs->classes[class->index] = class;
230
231 class->regs = rzalloc_array(class, BITSET_WORD, BITSET_WORDS(regs->count));
232
233 return class;
234 }
235
236 /**
237 * Creates a register class for contiguous register groups of a base register
238 * set.
239 *
240 * A reg set using this type of register class must use only this type of
241 * register class.
242 */
243 struct ra_class *
ra_alloc_contig_reg_class(struct ra_regs * regs,int contig_len)244 ra_alloc_contig_reg_class(struct ra_regs *regs, int contig_len)
245 {
246 struct ra_class *c = ra_alloc_reg_class(regs);
247
248 assert(contig_len != 0);
249 c->contig_len = contig_len;
250
251 return c;
252 }
253
254 struct ra_class *
ra_get_class_from_index(struct ra_regs * regs,unsigned int class)255 ra_get_class_from_index(struct ra_regs *regs, unsigned int class)
256 {
257 return regs->classes[class];
258 }
259
260 unsigned int
ra_class_index(struct ra_class * c)261 ra_class_index(struct ra_class *c)
262 {
263 return c->index;
264 }
265
266 void
ra_class_add_reg(struct ra_class * class,unsigned int r)267 ra_class_add_reg(struct ra_class *class, unsigned int r)
268 {
269 assert(r < class->regset->count);
270 assert(r + class->contig_len <= class->regset->count);
271
272 BITSET_SET(class->regs, r);
273 class->p++;
274 }
275
276 /**
277 * Returns true if the register belongs to the given class.
278 */
279 static bool
reg_belongs_to_class(unsigned int r,struct ra_class * c)280 reg_belongs_to_class(unsigned int r, struct ra_class *c)
281 {
282 return BITSET_TEST(c->regs, r);
283 }
284
285 /**
286 * Must be called after all conflicts and register classes have been
287 * set up and before the register set is used for allocation.
288 * To avoid costly q value computation, use the q_values paramater
289 * to pass precomputed q values to this function.
290 */
291 void
ra_set_finalize(struct ra_regs * regs,unsigned int ** q_values)292 ra_set_finalize(struct ra_regs *regs, unsigned int **q_values)
293 {
294 unsigned int b, c;
295
296 for (b = 0; b < regs->class_count; b++) {
297 regs->classes[b]->q = ralloc_array(regs, unsigned int, regs->class_count);
298 }
299
300 if (q_values) {
301 for (b = 0; b < regs->class_count; b++) {
302 for (c = 0; c < regs->class_count; c++) {
303 regs->classes[b]->q[c] = q_values[b][c];
304 }
305 }
306 } else {
307 /* Compute, for each class B and C, how many regs of B an
308 * allocation to C could conflict with.
309 */
310 for (b = 0; b < regs->class_count; b++) {
311 for (c = 0; c < regs->class_count; c++) {
312 struct ra_class *class_b = regs->classes[b];
313 struct ra_class *class_c = regs->classes[c];
314
315 if (class_b->contig_len && class_c->contig_len) {
316 if (class_b->contig_len == 1 && class_c->contig_len == 1) {
317 /* If both classes are single registers, then they only
318 * conflict if there are any regs shared between them. This
319 * is a cheap test for a common case.
320 */
321 class_b->q[c] = 0;
322 for (int i = 0; i < BITSET_WORDS(regs->count); i++) {
323 if (class_b->regs[i] & class_c->regs[i]) {
324 class_b->q[c] = 1;
325 break;
326 }
327 }
328 } else {
329 int max_possible_conflicts = class_b->contig_len + class_c->contig_len - 1;
330
331 unsigned int max_conflicts = 0;
332 unsigned int rc;
333 BITSET_FOREACH_SET(rc, regs->classes[c]->regs, regs->count) {
334 int start = MAX2(0, (int)rc - class_b->contig_len + 1);
335 int end = MIN2(regs->count, rc + class_c->contig_len);
336 unsigned int conflicts = 0;
337 for (int i = start; i < end; i++) {
338 if (BITSET_TEST(class_b->regs, i))
339 conflicts++;
340 }
341 max_conflicts = MAX2(max_conflicts, conflicts);
342 /* Unless a class has some restriction like the register
343 * bases are all aligned, then we should quickly find this
344 * limit and exit the loop.
345 */
346 if (max_conflicts == max_possible_conflicts)
347 break;
348 }
349 class_b->q[c] = max_conflicts;
350 }
351 } else {
352 /* If you're doing contiguous classes, you have to be all in
353 * because I don't want to deal with it.
354 */
355 assert(!class_b->contig_len && !class_c->contig_len);
356
357 unsigned int rc;
358 int max_conflicts = 0;
359
360 BITSET_FOREACH_SET(rc, regs->classes[c]->regs, regs->count) {
361 int conflicts = 0;
362
363 util_dynarray_foreach(®s->regs[rc].conflict_list,
364 unsigned int, rbp) {
365 unsigned int rb = *rbp;
366 if (reg_belongs_to_class(rb, regs->classes[b]))
367 conflicts++;
368 }
369 max_conflicts = MAX2(max_conflicts, conflicts);
370 }
371 regs->classes[b]->q[c] = max_conflicts;
372 }
373 }
374 }
375 }
376
377 for (b = 0; b < regs->count; b++) {
378 util_dynarray_fini(®s->regs[b].conflict_list);
379 }
380
381 bool all_contig = true;
382 for (int c = 0; c < regs->class_count; c++)
383 all_contig &= regs->classes[c]->contig_len != 0;
384 if (all_contig) {
385 /* In this case, we never need the conflicts lists (and it would probably
386 * be a mistake to look at conflicts when doing contiguous classes!), so
387 * free them. TODO: Avoid the allocation in the first place.
388 */
389 for (int i = 0; i < regs->count; i++) {
390 ralloc_free(regs->regs[i].conflicts);
391 regs->regs[i].conflicts = NULL;
392 }
393 }
394 }
395
396 void
ra_set_serialize(const struct ra_regs * regs,struct blob * blob)397 ra_set_serialize(const struct ra_regs *regs, struct blob *blob)
398 {
399 blob_write_uint32(blob, regs->count);
400 blob_write_uint32(blob, regs->class_count);
401
402 bool is_contig = regs->classes[0]->contig_len != 0;
403 blob_write_uint8(blob, is_contig);
404
405 if (!is_contig) {
406 for (unsigned int r = 0; r < regs->count; r++) {
407 struct ra_reg *reg = ®s->regs[r];
408 blob_write_bytes(blob, reg->conflicts, BITSET_WORDS(regs->count) *
409 sizeof(BITSET_WORD));
410 assert(util_dynarray_num_elements(®->conflict_list, unsigned int) == 0);
411 }
412 }
413
414 for (unsigned int c = 0; c < regs->class_count; c++) {
415 struct ra_class *class = regs->classes[c];
416 blob_write_bytes(blob, class->regs, BITSET_WORDS(regs->count) *
417 sizeof(BITSET_WORD));
418 blob_write_uint32(blob, class->contig_len);
419 blob_write_uint32(blob, class->p);
420 blob_write_bytes(blob, class->q, regs->class_count * sizeof(*class->q));
421 }
422
423 blob_write_uint32(blob, regs->round_robin);
424 }
425
426 struct ra_regs *
ra_set_deserialize(void * mem_ctx,struct blob_reader * blob)427 ra_set_deserialize(void *mem_ctx, struct blob_reader *blob)
428 {
429 unsigned int reg_count = blob_read_uint32(blob);
430 unsigned int class_count = blob_read_uint32(blob);
431 bool is_contig = blob_read_uint8(blob);
432
433 struct ra_regs *regs = ra_alloc_reg_set(mem_ctx, reg_count, false);
434 assert(regs->count == reg_count);
435
436 if (is_contig) {
437 for (int i = 0; i < regs->count; i++) {
438 ralloc_free(regs->regs[i].conflicts);
439 regs->regs[i].conflicts = NULL;
440 }
441 } else {
442 for (unsigned int r = 0; r < reg_count; r++) {
443 struct ra_reg *reg = ®s->regs[r];
444 blob_copy_bytes(blob, reg->conflicts, BITSET_WORDS(reg_count) *
445 sizeof(BITSET_WORD));
446 }
447 }
448
449 assert(regs->classes == NULL);
450 regs->classes = ralloc_array(regs->regs, struct ra_class *, class_count);
451 regs->class_count = class_count;
452
453 for (unsigned int c = 0; c < class_count; c++) {
454 struct ra_class *class = rzalloc(regs, struct ra_class);
455 regs->classes[c] = class;
456 class->regset = regs;
457 class->index = c;
458
459 class->regs = ralloc_array(class, BITSET_WORD, BITSET_WORDS(reg_count));
460 blob_copy_bytes(blob, class->regs, BITSET_WORDS(reg_count) *
461 sizeof(BITSET_WORD));
462
463 class->contig_len = blob_read_uint32(blob);
464 class->p = blob_read_uint32(blob);
465
466 class->q = ralloc_array(regs->classes[c], unsigned int, class_count);
467 blob_copy_bytes(blob, class->q, class_count * sizeof(*class->q));
468 }
469
470 regs->round_robin = blob_read_uint32(blob);
471
472 return regs;
473 }
474
475 static uint64_t
ra_get_num_adjacency_bits(uint64_t n)476 ra_get_num_adjacency_bits(uint64_t n)
477 {
478 return (n * (n - 1)) / 2;
479 }
480
481 static uint64_t
ra_get_adjacency_bit_index(unsigned n1,unsigned n2)482 ra_get_adjacency_bit_index(unsigned n1, unsigned n2)
483 {
484 assert(n1 != n2);
485 unsigned k1 = MAX2(n1, n2);
486 unsigned k2 = MIN2(n1, n2);
487 return ra_get_num_adjacency_bits(k1) + k2;
488 }
489
490 static bool
ra_test_adjacency_bit(struct ra_graph * g,unsigned n1,unsigned n2)491 ra_test_adjacency_bit(struct ra_graph *g, unsigned n1, unsigned n2)
492 {
493 uint64_t index = ra_get_adjacency_bit_index(n1, n2);
494 return BITSET_TEST(g->adjacency, index);
495 }
496
497 static void
ra_set_adjacency_bit(struct ra_graph * g,unsigned n1,unsigned n2)498 ra_set_adjacency_bit(struct ra_graph *g, unsigned n1, unsigned n2)
499 {
500 unsigned index = ra_get_adjacency_bit_index(n1, n2);
501 BITSET_SET(g->adjacency, index);
502 }
503
504 static void
ra_clear_adjacency_bit(struct ra_graph * g,unsigned n1,unsigned n2)505 ra_clear_adjacency_bit(struct ra_graph *g, unsigned n1, unsigned n2)
506 {
507 unsigned index = ra_get_adjacency_bit_index(n1, n2);
508 BITSET_CLEAR(g->adjacency, index);
509 }
510
511 static void
ra_add_node_adjacency(struct ra_graph * g,unsigned int n1,unsigned int n2)512 ra_add_node_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2)
513 {
514 assert(n1 != n2);
515
516 int n1_class = g->nodes[n1].class;
517 int n2_class = g->nodes[n2].class;
518 g->nodes[n1].q_total += g->regs->classes[n1_class]->q[n2_class];
519
520 util_dynarray_append(&g->nodes[n1].adjacency_list, unsigned int, n2);
521 }
522
523 static void
ra_node_remove_adjacency(struct ra_graph * g,unsigned int n1,unsigned int n2)524 ra_node_remove_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2)
525 {
526 assert(n1 != n2);
527 ra_clear_adjacency_bit(g, n1, n2);
528
529 int n1_class = g->nodes[n1].class;
530 int n2_class = g->nodes[n2].class;
531 g->nodes[n1].q_total -= g->regs->classes[n1_class]->q[n2_class];
532
533 util_dynarray_delete_unordered(&g->nodes[n1].adjacency_list, unsigned int,
534 n2);
535 }
536
537 static void
ra_realloc_interference_graph(struct ra_graph * g,unsigned int alloc)538 ra_realloc_interference_graph(struct ra_graph *g, unsigned int alloc)
539 {
540 if (alloc <= g->alloc)
541 return;
542
543 /* If we always have a whole number of BITSET_WORDs, it makes it much
544 * easier to memset the top of the growing bitsets.
545 */
546 assert(g->alloc % BITSET_WORDBITS == 0);
547 alloc = align(alloc, BITSET_WORDBITS);
548 g->nodes = rerzalloc(g, g->nodes, struct ra_node, g->alloc, alloc);
549 g->adjacency = rerzalloc(g, g->adjacency, BITSET_WORD,
550 BITSET_WORDS(ra_get_num_adjacency_bits(g->alloc)),
551 BITSET_WORDS(ra_get_num_adjacency_bits(alloc)));
552
553 /* Initialize new nodes. */
554 for (unsigned i = g->alloc; i < alloc; i++) {
555 struct ra_node* node = g->nodes + i;
556 util_dynarray_init(&node->adjacency_list, g);
557 node->q_total = 0;
558 node->forced_reg = NO_REG;
559 node->reg = NO_REG;
560 }
561
562 /* These are scratch values and don't need to be zeroed. We'll clear them
563 * as part of ra_select() setup.
564 */
565 unsigned bitset_count = BITSET_WORDS(alloc);
566 g->tmp.stack = reralloc(g, g->tmp.stack, unsigned int, alloc);
567 g->tmp.in_stack = reralloc(g, g->tmp.in_stack, BITSET_WORD, bitset_count);
568
569 g->tmp.reg_assigned = reralloc(g, g->tmp.reg_assigned, BITSET_WORD,
570 bitset_count);
571 g->tmp.pq_test = reralloc(g, g->tmp.pq_test, BITSET_WORD, bitset_count);
572 g->tmp.min_q_total = reralloc(g, g->tmp.min_q_total, unsigned int,
573 bitset_count);
574 g->tmp.min_q_node = reralloc(g, g->tmp.min_q_node, unsigned int,
575 bitset_count);
576
577 g->alloc = alloc;
578 }
579
580 struct ra_graph *
ra_alloc_interference_graph(struct ra_regs * regs,unsigned int count)581 ra_alloc_interference_graph(struct ra_regs *regs, unsigned int count)
582 {
583 struct ra_graph *g;
584
585 g = rzalloc(NULL, struct ra_graph);
586 g->regs = regs;
587 g->count = count;
588 ra_realloc_interference_graph(g, count);
589
590 return g;
591 }
592
593 void
ra_resize_interference_graph(struct ra_graph * g,unsigned int count)594 ra_resize_interference_graph(struct ra_graph *g, unsigned int count)
595 {
596 g->count = count;
597 if (count > g->alloc)
598 ra_realloc_interference_graph(g, g->alloc * 2);
599 }
600
ra_set_select_reg_callback(struct ra_graph * g,ra_select_reg_callback callback,void * data)601 void ra_set_select_reg_callback(struct ra_graph *g,
602 ra_select_reg_callback callback,
603 void *data)
604 {
605 g->select_reg_callback = callback;
606 g->select_reg_callback_data = data;
607 }
608
609 void
ra_set_node_class(struct ra_graph * g,unsigned int n,struct ra_class * class)610 ra_set_node_class(struct ra_graph *g,
611 unsigned int n, struct ra_class *class)
612 {
613 g->nodes[n].class = class->index;
614 }
615
616 struct ra_class *
ra_get_node_class(struct ra_graph * g,unsigned int n)617 ra_get_node_class(struct ra_graph *g,
618 unsigned int n)
619 {
620 return g->regs->classes[g->nodes[n].class];
621 }
622
623 unsigned int
ra_add_node(struct ra_graph * g,struct ra_class * class)624 ra_add_node(struct ra_graph *g, struct ra_class *class)
625 {
626 unsigned int n = g->count;
627 ra_resize_interference_graph(g, g->count + 1);
628
629 ra_set_node_class(g, n, class);
630
631 return n;
632 }
633
634 void
ra_add_node_interference(struct ra_graph * g,unsigned int n1,unsigned int n2)635 ra_add_node_interference(struct ra_graph *g,
636 unsigned int n1, unsigned int n2)
637 {
638 assert(n1 < g->count && n2 < g->count);
639 if (n1 != n2 && !ra_test_adjacency_bit(g, n1, n2)) {
640 ra_set_adjacency_bit(g, n1, n2);
641 ra_add_node_adjacency(g, n1, n2);
642 ra_add_node_adjacency(g, n2, n1);
643 }
644 }
645
646 void
ra_reset_node_interference(struct ra_graph * g,unsigned int n)647 ra_reset_node_interference(struct ra_graph *g, unsigned int n)
648 {
649 util_dynarray_foreach(&g->nodes[n].adjacency_list, unsigned int, n2p) {
650 ra_node_remove_adjacency(g, *n2p, n);
651 }
652
653 util_dynarray_clear(&g->nodes[n].adjacency_list);
654 }
655
656 static void
update_pq_info(struct ra_graph * g,unsigned int n)657 update_pq_info(struct ra_graph *g, unsigned int n)
658 {
659 int i = n / BITSET_WORDBITS;
660 int n_class = g->nodes[n].class;
661 if (g->nodes[n].tmp.q_total < g->regs->classes[n_class]->p) {
662 BITSET_SET(g->tmp.pq_test, n);
663 } else if (g->tmp.min_q_total[i] != UINT_MAX) {
664 /* Only update min_q_total and min_q_node if min_q_total != UINT_MAX so
665 * that we don't update while we have stale data and accidentally mark
666 * it as non-stale. Also, in order to remain consistent with the old
667 * naive implementation of the algorithm, we do a lexicographical sort
668 * to ensure that we always choose the node with the highest node index.
669 */
670 if (g->nodes[n].tmp.q_total < g->tmp.min_q_total[i] ||
671 (g->nodes[n].tmp.q_total == g->tmp.min_q_total[i] &&
672 n > g->tmp.min_q_node[i])) {
673 g->tmp.min_q_total[i] = g->nodes[n].tmp.q_total;
674 g->tmp.min_q_node[i] = n;
675 }
676 }
677 }
678
679 static void
add_node_to_stack(struct ra_graph * g,unsigned int n)680 add_node_to_stack(struct ra_graph *g, unsigned int n)
681 {
682 int n_class = g->nodes[n].class;
683
684 assert(!BITSET_TEST(g->tmp.in_stack, n));
685
686 util_dynarray_foreach(&g->nodes[n].adjacency_list, unsigned int, n2p) {
687 unsigned int n2 = *n2p;
688 unsigned int n2_class = g->nodes[n2].class;
689
690 if (!BITSET_TEST(g->tmp.in_stack, n2) &&
691 !BITSET_TEST(g->tmp.reg_assigned, n2)) {
692 assert(g->nodes[n2].tmp.q_total >= g->regs->classes[n2_class]->q[n_class]);
693 g->nodes[n2].tmp.q_total -= g->regs->classes[n2_class]->q[n_class];
694 update_pq_info(g, n2);
695 }
696 }
697
698 g->tmp.stack[g->tmp.stack_count] = n;
699 g->tmp.stack_count++;
700 BITSET_SET(g->tmp.in_stack, n);
701
702 /* Flag the min_q_total for n's block as dirty so it gets recalculated */
703 g->tmp.min_q_total[n / BITSET_WORDBITS] = UINT_MAX;
704 }
705
706 /**
707 * Simplifies the interference graph by pushing all
708 * trivially-colorable nodes into a stack of nodes to be colored,
709 * removing them from the graph, and rinsing and repeating.
710 *
711 * If we encounter a case where we can't push any nodes on the stack, then
712 * we optimistically choose a node and push it on the stack. We heuristically
713 * push the node with the lowest total q value, since it has the fewest
714 * neighbors and therefore is most likely to be allocated.
715 */
716 static void
ra_simplify(struct ra_graph * g)717 ra_simplify(struct ra_graph *g)
718 {
719 bool progress = true;
720 unsigned int stack_optimistic_start = UINT_MAX;
721
722 /* Figure out the high bit and bit mask for the first iteration of a loop
723 * over BITSET_WORDs.
724 */
725 const unsigned int top_word_high_bit = (g->count - 1) % BITSET_WORDBITS;
726
727 /* Do a quick pre-pass to set things up */
728 g->tmp.stack_count = 0;
729 for (int i = BITSET_WORDS(g->count) - 1, high_bit = top_word_high_bit;
730 i >= 0; i--, high_bit = BITSET_WORDBITS - 1) {
731 g->tmp.in_stack[i] = 0;
732 g->tmp.reg_assigned[i] = 0;
733 g->tmp.pq_test[i] = 0;
734 g->tmp.min_q_total[i] = UINT_MAX;
735 g->tmp.min_q_node[i] = UINT_MAX;
736 for (int j = high_bit; j >= 0; j--) {
737 unsigned int n = i * BITSET_WORDBITS + j;
738 g->nodes[n].reg = g->nodes[n].forced_reg;
739 g->nodes[n].tmp.q_total = g->nodes[n].q_total;
740 if (g->nodes[n].reg != NO_REG)
741 g->tmp.reg_assigned[i] |= BITSET_BIT(j);
742 update_pq_info(g, n);
743 }
744 }
745
746 while (progress) {
747 unsigned int min_q_total = UINT_MAX;
748 unsigned int min_q_node = UINT_MAX;
749
750 progress = false;
751
752 for (int i = BITSET_WORDS(g->count) - 1, high_bit = top_word_high_bit;
753 i >= 0; i--, high_bit = BITSET_WORDBITS - 1) {
754 BITSET_WORD mask = ~(BITSET_WORD)0 >> (31 - high_bit);
755
756 BITSET_WORD skip = g->tmp.in_stack[i] | g->tmp.reg_assigned[i];
757 if (skip == mask)
758 continue;
759
760 BITSET_WORD pq = g->tmp.pq_test[i] & ~skip;
761 if (pq) {
762 /* In this case, we have stuff we can immediately take off the
763 * stack. This also means that we're guaranteed to make progress
764 * and we don't need to bother updating lowest_q_total because we
765 * know we're going to loop again before attempting to do anything
766 * optimistic.
767 */
768 for (int j = high_bit; j >= 0; j--) {
769 if (pq & BITSET_BIT(j)) {
770 unsigned int n = i * BITSET_WORDBITS + j;
771 assert(n < g->count);
772 add_node_to_stack(g, n);
773 /* add_node_to_stack() may update pq_test for this word so
774 * we need to update our local copy.
775 */
776 pq = g->tmp.pq_test[i] & ~skip;
777 progress = true;
778 }
779 }
780 } else if (!progress) {
781 if (g->tmp.min_q_total[i] == UINT_MAX) {
782 /* The min_q_total and min_q_node are dirty because we added
783 * one of these nodes to the stack. It needs to be
784 * recalculated.
785 */
786 for (int j = high_bit; j >= 0; j--) {
787 if (skip & BITSET_BIT(j))
788 continue;
789
790 unsigned int n = i * BITSET_WORDBITS + j;
791 assert(n < g->count);
792 if (g->nodes[n].tmp.q_total < g->tmp.min_q_total[i]) {
793 g->tmp.min_q_total[i] = g->nodes[n].tmp.q_total;
794 g->tmp.min_q_node[i] = n;
795 }
796 }
797 }
798 if (g->tmp.min_q_total[i] < min_q_total) {
799 min_q_node = g->tmp.min_q_node[i];
800 min_q_total = g->tmp.min_q_total[i];
801 }
802 }
803 }
804
805 if (!progress && min_q_total != UINT_MAX) {
806 if (stack_optimistic_start == UINT_MAX)
807 stack_optimistic_start = g->tmp.stack_count;
808
809 add_node_to_stack(g, min_q_node);
810 progress = true;
811 }
812 }
813
814 g->tmp.stack_optimistic_start = stack_optimistic_start;
815 }
816
817 bool
ra_class_allocations_conflict(struct ra_class * c1,unsigned int r1,struct ra_class * c2,unsigned int r2)818 ra_class_allocations_conflict(struct ra_class *c1, unsigned int r1,
819 struct ra_class *c2, unsigned int r2)
820 {
821 if (c1->contig_len) {
822 assert(c2->contig_len);
823
824 int r1_end = r1 + c1->contig_len;
825 int r2_end = r2 + c2->contig_len;
826 return !(r2 >= r1_end || r1 >= r2_end);
827 } else {
828 return BITSET_TEST(c1->regset->regs[r1].conflicts, r2);
829 }
830 }
831
832 static struct ra_node *
ra_find_conflicting_neighbor(struct ra_graph * g,unsigned int n,unsigned int r)833 ra_find_conflicting_neighbor(struct ra_graph *g, unsigned int n, unsigned int r)
834 {
835 util_dynarray_foreach(&g->nodes[n].adjacency_list, unsigned int, n2p) {
836 unsigned int n2 = *n2p;
837
838 /* If our adjacent node is in the stack, it's not allocated yet. */
839 if (!BITSET_TEST(g->tmp.in_stack, n2) &&
840 ra_class_allocations_conflict(g->regs->classes[g->nodes[n].class], r,
841 g->regs->classes[g->nodes[n2].class], g->nodes[n2].reg)) {
842 return &g->nodes[n2];
843 }
844 }
845
846 return NULL;
847 }
848
849 /* Computes a bitfield of what regs are available for a given register
850 * selection.
851 *
852 * This lets drivers implement a more complicated policy than our simple first
853 * or round robin policies (which don't require knowing the whole bitset)
854 */
855 static bool
ra_compute_available_regs(struct ra_graph * g,unsigned int n,BITSET_WORD * regs)856 ra_compute_available_regs(struct ra_graph *g, unsigned int n, BITSET_WORD *regs)
857 {
858 struct ra_class *c = g->regs->classes[g->nodes[n].class];
859
860 /* Populate with the set of regs that are in the node's class. */
861 memcpy(regs, c->regs, BITSET_WORDS(g->regs->count) * sizeof(BITSET_WORD));
862
863 /* Remove any regs that conflict with nodes that we're adjacent to and have
864 * already colored.
865 */
866 util_dynarray_foreach(&g->nodes[n].adjacency_list, unsigned int, n2p) {
867 struct ra_node *n2 = &g->nodes[*n2p];
868 struct ra_class *n2c = g->regs->classes[n2->class];
869
870 if (!BITSET_TEST(g->tmp.in_stack, *n2p)) {
871 if (c->contig_len) {
872 int start = MAX2(0, (int)n2->reg - c->contig_len + 1);
873 int end = MIN2(g->regs->count, n2->reg + n2c->contig_len);
874 for (unsigned i = start; i < end; i++)
875 BITSET_CLEAR(regs, i);
876 } else {
877 for (int j = 0; j < BITSET_WORDS(g->regs->count); j++)
878 regs[j] &= ~g->regs->regs[n2->reg].conflicts[j];
879 }
880 }
881 }
882
883 for (int i = 0; i < BITSET_WORDS(g->regs->count); i++) {
884 if (regs[i])
885 return true;
886 }
887
888 return false;
889 }
890
891 /**
892 * Pops nodes from the stack back into the graph, coloring them with
893 * registers as they go.
894 *
895 * If all nodes were trivially colorable, then this must succeed. If
896 * not (optimistic coloring), then it may return false;
897 */
898 static bool
ra_select(struct ra_graph * g)899 ra_select(struct ra_graph *g)
900 {
901 int start_search_reg = 0;
902 BITSET_WORD *select_regs = NULL;
903
904 if (g->select_reg_callback)
905 select_regs = malloc(BITSET_WORDS(g->regs->count) * sizeof(BITSET_WORD));
906
907 while (g->tmp.stack_count != 0) {
908 unsigned int ri;
909 unsigned int r = -1;
910 int n = g->tmp.stack[g->tmp.stack_count - 1];
911 struct ra_class *c = g->regs->classes[g->nodes[n].class];
912
913 /* set this to false even if we return here so that
914 * ra_get_best_spill_node() considers this node later.
915 */
916 BITSET_CLEAR(g->tmp.in_stack, n);
917
918 if (g->select_reg_callback) {
919 if (!ra_compute_available_regs(g, n, select_regs)) {
920 free(select_regs);
921 return false;
922 }
923
924 r = g->select_reg_callback(n, select_regs, g->select_reg_callback_data);
925 assert(r < g->regs->count);
926 } else {
927 /* Find the lowest-numbered reg which is not used by a member
928 * of the graph adjacent to us.
929 */
930 for (ri = 0; ri < g->regs->count; ri++) {
931 r = (start_search_reg + ri) % g->regs->count;
932 if (!reg_belongs_to_class(r, c))
933 continue;
934
935 struct ra_node *conflicting = ra_find_conflicting_neighbor(g, n, r);
936 if (!conflicting) {
937 /* Found a reg! */
938 break;
939 }
940 if (g->regs->classes[conflicting->class]->contig_len) {
941 /* Skip to point at the last base reg of the conflicting reg
942 * allocation -- the loop will increment us to check the next reg
943 * after the conflicting allocaiton.
944 */
945 unsigned conflicting_end = (conflicting->reg +
946 g->regs->classes[conflicting->class]->contig_len - 1);
947 assert(conflicting_end >= r);
948 ri += conflicting_end - r;
949 }
950 }
951
952 if (ri >= g->regs->count)
953 return false;
954 }
955
956 g->nodes[n].reg = r;
957 g->tmp.stack_count--;
958
959 /* Rotate the starting point except for any nodes above the lowest
960 * optimistically colorable node. The likelihood that we will succeed
961 * at allocating optimistically colorable nodes is highly dependent on
962 * the way that the previous nodes popped off the stack are laid out.
963 * The round-robin strategy increases the fragmentation of the register
964 * file and decreases the number of nearby nodes assigned to the same
965 * color, what increases the likelihood of spilling with respect to the
966 * dense packing strategy.
967 */
968 if (g->regs->round_robin &&
969 g->tmp.stack_count - 1 <= g->tmp.stack_optimistic_start)
970 start_search_reg = r + 1;
971 }
972
973 free(select_regs);
974
975 return true;
976 }
977
978 bool
ra_allocate(struct ra_graph * g)979 ra_allocate(struct ra_graph *g)
980 {
981 ra_simplify(g);
982 return ra_select(g);
983 }
984
985 unsigned int
ra_get_node_reg(struct ra_graph * g,unsigned int n)986 ra_get_node_reg(struct ra_graph *g, unsigned int n)
987 {
988 if (g->nodes[n].forced_reg != NO_REG)
989 return g->nodes[n].forced_reg;
990 else
991 return g->nodes[n].reg;
992 }
993
994 /**
995 * Forces a node to a specific register. This can be used to avoid
996 * creating a register class containing one node when handling data
997 * that must live in a fixed location and is known to not conflict
998 * with other forced register assignment (as is common with shader
999 * input data). These nodes do not end up in the stack during
1000 * ra_simplify(), and thus at ra_select() time it is as if they were
1001 * the first popped off the stack and assigned their fixed locations.
1002 * Nodes that use this function do not need to be assigned a register
1003 * class.
1004 *
1005 * Must be called before ra_simplify().
1006 */
1007 void
ra_set_node_reg(struct ra_graph * g,unsigned int n,unsigned int reg)1008 ra_set_node_reg(struct ra_graph *g, unsigned int n, unsigned int reg)
1009 {
1010 g->nodes[n].forced_reg = reg;
1011 }
1012
1013 static float
ra_get_spill_benefit(struct ra_graph * g,unsigned int n)1014 ra_get_spill_benefit(struct ra_graph *g, unsigned int n)
1015 {
1016 float benefit = 0;
1017 int n_class = g->nodes[n].class;
1018
1019 /* Define the benefit of eliminating an interference between n, n2
1020 * through spilling as q(C, B) / p(C). This is similar to the
1021 * "count number of edges" approach of traditional graph coloring,
1022 * but takes classes into account.
1023 */
1024 util_dynarray_foreach(&g->nodes[n].adjacency_list, unsigned int, n2p) {
1025 unsigned int n2 = *n2p;
1026 unsigned int n2_class = g->nodes[n2].class;
1027 benefit += ((float)g->regs->classes[n_class]->q[n2_class] /
1028 g->regs->classes[n_class]->p);
1029 }
1030
1031 return benefit;
1032 }
1033
1034 /**
1035 * Returns a node number to be spilled according to the cost/benefit using
1036 * the pq test, or -1 if there are no spillable nodes.
1037 */
1038 int
ra_get_best_spill_node(struct ra_graph * g)1039 ra_get_best_spill_node(struct ra_graph *g)
1040 {
1041 unsigned int best_node = -1;
1042 float best_benefit = 0.0;
1043 unsigned int n;
1044
1045 /* Consider any nodes that we colored successfully or the node we failed to
1046 * color for spilling. When we failed to color a node in ra_select(), we
1047 * only considered these nodes, so spilling any other ones would not result
1048 * in us making progress.
1049 */
1050 for (n = 0; n < g->count; n++) {
1051 float cost = g->nodes[n].spill_cost;
1052 float benefit;
1053
1054 if (cost <= 0.0f)
1055 continue;
1056
1057 if (BITSET_TEST(g->tmp.in_stack, n))
1058 continue;
1059
1060 benefit = ra_get_spill_benefit(g, n);
1061
1062 if (benefit / cost > best_benefit) {
1063 best_benefit = benefit / cost;
1064 best_node = n;
1065 }
1066 }
1067
1068 return best_node;
1069 }
1070
1071 /**
1072 * Only nodes with a spill cost set (cost != 0.0) will be considered
1073 * for register spilling.
1074 */
1075 void
ra_set_node_spill_cost(struct ra_graph * g,unsigned int n,float cost)1076 ra_set_node_spill_cost(struct ra_graph *g, unsigned int n, float cost)
1077 {
1078 g->nodes[n].spill_cost = cost;
1079 }
1080