1 // Copyright 2020 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "absl/strings/cord.h"
16
17 #include <algorithm>
18 #include <array>
19 #include <cassert>
20 #include <cstddef>
21 #include <cstdint>
22 #include <cstdio>
23 #include <cstring>
24 #include <iostream>
25 #include <iterator>
26 #include <limits>
27 #include <random>
28 #include <set>
29 #include <sstream>
30 #include <string>
31 #include <type_traits>
32 #include <utility>
33 #include <vector>
34
35 #include "gmock/gmock.h"
36 #include "gtest/gtest.h"
37 #include "absl/base/attributes.h"
38 #include "absl/base/config.h"
39 #include "absl/base/internal/endian.h"
40 #include "absl/base/macros.h"
41 #include "absl/base/no_destructor.h"
42 #include "absl/base/options.h"
43 #include "absl/container/fixed_array.h"
44 #include "absl/functional/function_ref.h"
45 #include "absl/hash/hash.h"
46 #include "absl/hash/hash_testing.h"
47 #include "absl/log/check.h"
48 #include "absl/log/log.h"
49 #include "absl/random/random.h"
50 #include "absl/strings/cord_buffer.h"
51 #include "absl/strings/cord_test_helpers.h"
52 #include "absl/strings/cordz_test_helpers.h"
53 #include "absl/strings/internal/cord_internal.h"
54 #include "absl/strings/internal/cord_rep_crc.h"
55 #include "absl/strings/internal/cord_rep_flat.h"
56 #include "absl/strings/internal/cordz_statistics.h"
57 #include "absl/strings/internal/cordz_update_tracker.h"
58 #include "absl/strings/internal/string_constant.h"
59 #include "absl/strings/match.h"
60 #include "absl/strings/str_cat.h"
61 #include "absl/strings/str_format.h"
62 #include "absl/strings/string_view.h"
63 #include "absl/types/optional.h"
64
65 // convenience local constants
66 static constexpr auto FLAT = absl::cord_internal::FLAT;
67 static constexpr auto MAX_FLAT_TAG = absl::cord_internal::MAX_FLAT_TAG;
68
69 typedef std::mt19937_64 RandomEngine;
70
71 using absl::cord_internal::CordRep;
72 using absl::cord_internal::CordRepBtree;
73 using absl::cord_internal::CordRepConcat;
74 using absl::cord_internal::CordRepCrc;
75 using absl::cord_internal::CordRepExternal;
76 using absl::cord_internal::CordRepFlat;
77 using absl::cord_internal::CordRepSubstring;
78 using absl::cord_internal::CordzUpdateTracker;
79 using absl::cord_internal::kFlatOverhead;
80 using absl::cord_internal::kMaxFlatLength;
81 using ::testing::ElementsAre;
82 using ::testing::Le;
83
84 static std::string RandomLowercaseString(RandomEngine* rng);
85 static std::string RandomLowercaseString(RandomEngine* rng, size_t length);
86
GetUniformRandomUpTo(RandomEngine * rng,int upper_bound)87 static int GetUniformRandomUpTo(RandomEngine* rng, int upper_bound) {
88 if (upper_bound > 0) {
89 std::uniform_int_distribution<int> uniform(0, upper_bound - 1);
90 return uniform(*rng);
91 } else {
92 return 0;
93 }
94 }
95
GetUniformRandomUpTo(RandomEngine * rng,size_t upper_bound)96 static size_t GetUniformRandomUpTo(RandomEngine* rng, size_t upper_bound) {
97 if (upper_bound > 0) {
98 std::uniform_int_distribution<size_t> uniform(0, upper_bound - 1);
99 return uniform(*rng);
100 } else {
101 return 0;
102 }
103 }
104
GenerateSkewedRandom(RandomEngine * rng,int max_log)105 static int32_t GenerateSkewedRandom(RandomEngine* rng, int max_log) {
106 const uint32_t base = (*rng)() % (max_log + 1);
107 const uint32_t mask = ((base < 32) ? (1u << base) : 0u) - 1u;
108 return (*rng)() & mask;
109 }
110
RandomLowercaseString(RandomEngine * rng)111 static std::string RandomLowercaseString(RandomEngine* rng) {
112 int length;
113 std::bernoulli_distribution one_in_1k(0.001);
114 std::bernoulli_distribution one_in_10k(0.0001);
115 // With low probability, make a large fragment
116 if (one_in_10k(*rng)) {
117 length = GetUniformRandomUpTo(rng, 1048576);
118 } else if (one_in_1k(*rng)) {
119 length = GetUniformRandomUpTo(rng, 10000);
120 } else {
121 length = GenerateSkewedRandom(rng, 10);
122 }
123 return RandomLowercaseString(rng, length);
124 }
125
RandomLowercaseString(RandomEngine * rng,size_t length)126 static std::string RandomLowercaseString(RandomEngine* rng, size_t length) {
127 std::string result(length, '\0');
128 std::uniform_int_distribution<int> chars('a', 'z');
129 std::generate(result.begin(), result.end(),
130 [&]() { return static_cast<char>(chars(*rng)); });
131 return result;
132 }
133
DoNothing(absl::string_view,void *)134 static void DoNothing(absl::string_view /* data */, void* /* arg */) {}
135
DeleteExternalString(absl::string_view data,void * arg)136 static void DeleteExternalString(absl::string_view data, void* arg) {
137 std::string* s = reinterpret_cast<std::string*>(arg);
138 EXPECT_EQ(data, *s);
139 delete s;
140 }
141
142 // Add "s" to *dst via `MakeCordFromExternal`
AddExternalMemory(absl::string_view s,absl::Cord * dst)143 static void AddExternalMemory(absl::string_view s, absl::Cord* dst) {
144 std::string* str = new std::string(s.data(), s.size());
145 dst->Append(absl::MakeCordFromExternal(*str, [str](absl::string_view data) {
146 DeleteExternalString(data, str);
147 }));
148 }
149
DumpGrowth()150 static void DumpGrowth() {
151 absl::Cord str;
152 for (int i = 0; i < 1000; i++) {
153 char c = 'a' + i % 26;
154 str.Append(absl::string_view(&c, 1));
155 }
156 }
157
158 // Make a Cord with some number of fragments. Return the size (in bytes)
159 // of the smallest fragment.
AppendWithFragments(const std::string & s,RandomEngine * rng,absl::Cord * cord)160 static size_t AppendWithFragments(const std::string& s, RandomEngine* rng,
161 absl::Cord* cord) {
162 size_t j = 0;
163 const size_t max_size = s.size() / 5; // Make approx. 10 fragments
164 size_t min_size = max_size; // size of smallest fragment
165 while (j < s.size()) {
166 size_t N = 1 + GetUniformRandomUpTo(rng, max_size);
167 if (N > (s.size() - j)) {
168 N = s.size() - j;
169 }
170 if (N < min_size) {
171 min_size = N;
172 }
173
174 std::bernoulli_distribution coin_flip(0.5);
175 if (coin_flip(*rng)) {
176 // Grow by adding an external-memory.
177 AddExternalMemory(absl::string_view(s.data() + j, N), cord);
178 } else {
179 cord->Append(absl::string_view(s.data() + j, N));
180 }
181 j += N;
182 }
183 return min_size;
184 }
185
186 // Add an external memory that contains the specified std::string to cord
AddNewStringBlock(const std::string & str,absl::Cord * dst)187 static void AddNewStringBlock(const std::string& str, absl::Cord* dst) {
188 char* data = new char[str.size()];
189 memcpy(data, str.data(), str.size());
190 dst->Append(absl::MakeCordFromExternal(
191 absl::string_view(data, str.size()),
192 [](absl::string_view s) { delete[] s.data(); }));
193 }
194
195 // Make a Cord out of many different types of nodes.
MakeComposite()196 static absl::Cord MakeComposite() {
197 absl::Cord cord;
198 cord.Append("the");
199 AddExternalMemory(" quick brown", &cord);
200 AddExternalMemory(" fox jumped", &cord);
201
202 absl::Cord full(" over");
203 AddExternalMemory(" the lazy", &full);
204 AddNewStringBlock(" dog slept the whole day away", &full);
205 absl::Cord substring = full.Subcord(0, 18);
206
207 // Make substring long enough to defeat the copying fast path in Append.
208 substring.Append(std::string(1000, '.'));
209 cord.Append(substring);
210 cord = cord.Subcord(0, cord.size() - 998); // Remove most of extra junk
211
212 return cord;
213 }
214
215 namespace absl {
216 ABSL_NAMESPACE_BEGIN
217
218 class CordTestPeer {
219 public:
ForEachChunk(const Cord & c,absl::FunctionRef<void (absl::string_view)> callback)220 static void ForEachChunk(
221 const Cord& c, absl::FunctionRef<void(absl::string_view)> callback) {
222 c.ForEachChunk(callback);
223 }
224
IsTree(const Cord & c)225 static bool IsTree(const Cord& c) { return c.contents_.is_tree(); }
Tree(const Cord & c)226 static CordRep* Tree(const Cord& c) { return c.contents_.tree(); }
227
GetCordzInfo(const Cord & c)228 static cord_internal::CordzInfo* GetCordzInfo(const Cord& c) {
229 return c.contents_.cordz_info();
230 }
231
MakeSubstring(Cord src,size_t offset,size_t length)232 static Cord MakeSubstring(Cord src, size_t offset, size_t length) {
233 CHECK(src.contents_.is_tree()) << "Can not be inlined";
234 CHECK(!src.ExpectedChecksum().has_value()) << "Can not be hardened";
235 Cord cord;
236 auto* tree = cord_internal::SkipCrcNode(src.contents_.tree());
237 auto* rep = CordRepSubstring::Create(CordRep::Ref(tree), offset, length);
238 cord.contents_.EmplaceTree(rep, CordzUpdateTracker::kSubCord);
239 return cord;
240 }
241 };
242
243 ABSL_NAMESPACE_END
244 } // namespace absl
245
246
247
248 // The CordTest fixture runs all tests with and without expected CRCs being set
249 // on the subject Cords.
250 class CordTest : public testing::TestWithParam<bool /*useCrc*/> {
251 public:
252 // Returns true if test is running with Crc enabled.
UseCrc() const253 bool UseCrc() const { return GetParam(); }
MaybeHarden(absl::Cord & c)254 void MaybeHarden(absl::Cord& c) {
255 if (UseCrc()) {
256 c.SetExpectedChecksum(1);
257 }
258 }
MaybeHardened(absl::Cord c)259 absl::Cord MaybeHardened(absl::Cord c) {
260 MaybeHarden(c);
261 return c;
262 }
263
264 // Returns human readable string representation of the test parameter.
ToString(testing::TestParamInfo<bool> useCrc)265 static std::string ToString(testing::TestParamInfo<bool> useCrc) {
266 if (useCrc.param) {
267 return "BtreeHardened";
268 } else {
269 return "Btree";
270 }
271 }
272 };
273
274 INSTANTIATE_TEST_SUITE_P(WithParam, CordTest, testing::Bool(),
275 CordTest::ToString);
276
TEST(CordRepFlat,AllFlatCapacities)277 TEST(CordRepFlat, AllFlatCapacities) {
278 // Explicitly and redundantly assert built-in min/max limits
279 static_assert(absl::cord_internal::kFlatOverhead < 32, "");
280 static_assert(absl::cord_internal::kMinFlatSize == 32, "");
281 static_assert(absl::cord_internal::kMaxLargeFlatSize == 256 << 10, "");
282 EXPECT_EQ(absl::cord_internal::TagToAllocatedSize(FLAT), 32);
283 EXPECT_EQ(absl::cord_internal::TagToAllocatedSize(MAX_FLAT_TAG), 256 << 10);
284
285 // Verify all tags to map perfectly back and forth, and
286 // that sizes are monotonically increasing.
287 size_t last_size = 0;
288 for (int tag = FLAT; tag <= MAX_FLAT_TAG; ++tag) {
289 size_t size = absl::cord_internal::TagToAllocatedSize(tag);
290 ASSERT_GT(size, last_size);
291 ASSERT_EQ(absl::cord_internal::TagToAllocatedSize(tag), size);
292 last_size = size;
293 }
294
295 // All flat size from 32 - 512 are 8 byte granularity
296 for (size_t size = 32; size <= 512; size += 8) {
297 ASSERT_EQ(absl::cord_internal::RoundUpForTag(size), size);
298 uint8_t tag = absl::cord_internal::AllocatedSizeToTag(size);
299 ASSERT_EQ(absl::cord_internal::TagToAllocatedSize(tag), size);
300 }
301
302 // All flat sizes from 512 - 8192 are 64 byte granularity
303 for (size_t size = 512; size <= 8192; size += 64) {
304 ASSERT_EQ(absl::cord_internal::RoundUpForTag(size), size);
305 uint8_t tag = absl::cord_internal::AllocatedSizeToTag(size);
306 ASSERT_EQ(absl::cord_internal::TagToAllocatedSize(tag), size);
307 }
308
309 // All flat sizes from 8KB to 256KB are 4KB granularity
310 for (size_t size = 8192; size <= 256 * 1024; size += 4 * 1024) {
311 ASSERT_EQ(absl::cord_internal::RoundUpForTag(size), size);
312 uint8_t tag = absl::cord_internal::AllocatedSizeToTag(size);
313 ASSERT_EQ(absl::cord_internal::TagToAllocatedSize(tag), size);
314 }
315 }
316
TEST(CordRepFlat,MaxFlatSize)317 TEST(CordRepFlat, MaxFlatSize) {
318 CordRepFlat* flat = CordRepFlat::New(kMaxFlatLength);
319 EXPECT_EQ(flat->Capacity(), kMaxFlatLength);
320 CordRep::Unref(flat);
321
322 flat = CordRepFlat::New(kMaxFlatLength * 4);
323 EXPECT_EQ(flat->Capacity(), kMaxFlatLength);
324 CordRep::Unref(flat);
325 }
326
TEST(CordRepFlat,MaxLargeFlatSize)327 TEST(CordRepFlat, MaxLargeFlatSize) {
328 const size_t size = 256 * 1024 - kFlatOverhead;
329 CordRepFlat* flat = CordRepFlat::New(CordRepFlat::Large(), size);
330 EXPECT_GE(flat->Capacity(), size);
331 CordRep::Unref(flat);
332 }
333
TEST(CordRepFlat,AllFlatSizes)334 TEST(CordRepFlat, AllFlatSizes) {
335 const size_t kMaxSize = 256 * 1024;
336 for (size_t size = 32; size <= kMaxSize; size *=2) {
337 const size_t length = size - kFlatOverhead - 1;
338 CordRepFlat* flat = CordRepFlat::New(CordRepFlat::Large(), length);
339 EXPECT_GE(flat->Capacity(), length);
340 memset(flat->Data(), 0xCD, flat->Capacity());
341 CordRep::Unref(flat);
342 }
343 }
344
TEST_P(CordTest,AllFlatSizes)345 TEST_P(CordTest, AllFlatSizes) {
346 using absl::strings_internal::CordTestAccess;
347
348 for (size_t s = 0; s < CordTestAccess::MaxFlatLength(); s++) {
349 // Make a string of length s.
350 std::string src;
351 while (src.size() < s) {
352 src.push_back('a' + (src.size() % 26));
353 }
354
355 absl::Cord dst(src);
356 MaybeHarden(dst);
357 EXPECT_EQ(std::string(dst), src) << s;
358 }
359 }
360
361 // We create a Cord at least 128GB in size using the fact that Cords can
362 // internally reference-count; thus the Cord is enormous without actually
363 // consuming very much memory.
TEST_P(CordTest,GigabyteCordFromExternal)364 TEST_P(CordTest, GigabyteCordFromExternal) {
365 const size_t one_gig = 1024U * 1024U * 1024U;
366 size_t max_size = 2 * one_gig;
367 if (sizeof(max_size) > 4) max_size = 128 * one_gig;
368
369 size_t length = 128 * 1024;
370 char* data = new char[length];
371 absl::Cord from = absl::MakeCordFromExternal(
372 absl::string_view(data, length),
373 [](absl::string_view sv) { delete[] sv.data(); });
374
375 // This loop may seem odd due to its combination of exponential doubling of
376 // size and incremental size increases. We do it incrementally to be sure the
377 // Cord will need rebalancing and will exercise code that, in the past, has
378 // caused crashes in production. We grow exponentially so that the code will
379 // execute in a reasonable amount of time.
380 absl::Cord c;
381 c.Append(from);
382 while (c.size() < max_size) {
383 c.Append(c);
384 c.Append(from);
385 c.Append(from);
386 c.Append(from);
387 c.Append(from);
388 MaybeHarden(c);
389 }
390
391 for (int i = 0; i < 1024; ++i) {
392 c.Append(from);
393 }
394 LOG(INFO) << "Made a Cord with " << c.size() << " bytes!";
395 // Note: on a 32-bit build, this comes out to 2,818,048,000 bytes.
396 // Note: on a 64-bit build, this comes out to 171,932,385,280 bytes.
397 }
398
MakeExternalCord(int size)399 static absl::Cord MakeExternalCord(int size) {
400 char* buffer = new char[size];
401 memset(buffer, 'x', size);
402 absl::Cord cord;
403 cord.Append(absl::MakeCordFromExternal(
404 absl::string_view(buffer, size),
405 [](absl::string_view s) { delete[] s.data(); }));
406 return cord;
407 }
408
409 // Extern to fool clang that this is not constant. Needed to suppress
410 // a warning of unsafe code we want to test.
411 extern bool my_unique_true_boolean;
412 bool my_unique_true_boolean = true;
413
TEST_P(CordTest,Assignment)414 TEST_P(CordTest, Assignment) {
415 absl::Cord x(absl::string_view("hi there"));
416 absl::Cord y(x);
417 MaybeHarden(y);
418 ASSERT_EQ(x.ExpectedChecksum(), absl::nullopt);
419 ASSERT_EQ(std::string(x), "hi there");
420 ASSERT_EQ(std::string(y), "hi there");
421 ASSERT_TRUE(x == y);
422 ASSERT_TRUE(x <= y);
423 ASSERT_TRUE(y <= x);
424
425 x = absl::string_view("foo");
426 ASSERT_EQ(std::string(x), "foo");
427 ASSERT_EQ(std::string(y), "hi there");
428 ASSERT_TRUE(x < y);
429 ASSERT_TRUE(y > x);
430 ASSERT_TRUE(x != y);
431 ASSERT_TRUE(x <= y);
432 ASSERT_TRUE(y >= x);
433
434 x = "foo";
435 ASSERT_EQ(x, "foo");
436
437 // Test that going from inline rep to tree we don't leak memory.
438 std::vector<std::pair<absl::string_view, absl::string_view>>
439 test_string_pairs = {{"hi there", "foo"},
440 {"loooooong coooooord", "short cord"},
441 {"short cord", "loooooong coooooord"},
442 {"loooooong coooooord1", "loooooong coooooord2"}};
443 for (std::pair<absl::string_view, absl::string_view> test_strings :
444 test_string_pairs) {
445 absl::Cord tmp(test_strings.first);
446 absl::Cord z(std::move(tmp));
447 ASSERT_EQ(std::string(z), test_strings.first);
448 tmp = test_strings.second;
449 z = std::move(tmp);
450 ASSERT_EQ(std::string(z), test_strings.second);
451 }
452 {
453 // Test that self-move assignment doesn't crash/leak.
454 // Do not write such code!
455 absl::Cord my_small_cord("foo");
456 absl::Cord my_big_cord("loooooong coooooord");
457 // Bypass clang's warning on self move-assignment.
458 absl::Cord* my_small_alias =
459 my_unique_true_boolean ? &my_small_cord : &my_big_cord;
460 absl::Cord* my_big_alias =
461 !my_unique_true_boolean ? &my_small_cord : &my_big_cord;
462
463 *my_small_alias = std::move(my_small_cord);
464 *my_big_alias = std::move(my_big_cord);
465 // my_small_cord and my_big_cord are in an unspecified but valid
466 // state, and will be correctly destroyed here.
467 }
468 }
469
TEST_P(CordTest,StartsEndsWith)470 TEST_P(CordTest, StartsEndsWith) {
471 absl::Cord x(absl::string_view("abcde"));
472 MaybeHarden(x);
473 absl::Cord empty("");
474
475 ASSERT_TRUE(x.StartsWith(absl::Cord("abcde")));
476 ASSERT_TRUE(x.StartsWith(absl::Cord("abc")));
477 ASSERT_TRUE(x.StartsWith(absl::Cord("")));
478 ASSERT_TRUE(empty.StartsWith(absl::Cord("")));
479 ASSERT_TRUE(x.EndsWith(absl::Cord("abcde")));
480 ASSERT_TRUE(x.EndsWith(absl::Cord("cde")));
481 ASSERT_TRUE(x.EndsWith(absl::Cord("")));
482 ASSERT_TRUE(empty.EndsWith(absl::Cord("")));
483
484 ASSERT_TRUE(!x.StartsWith(absl::Cord("xyz")));
485 ASSERT_TRUE(!empty.StartsWith(absl::Cord("xyz")));
486 ASSERT_TRUE(!x.EndsWith(absl::Cord("xyz")));
487 ASSERT_TRUE(!empty.EndsWith(absl::Cord("xyz")));
488
489 ASSERT_TRUE(x.StartsWith("abcde"));
490 ASSERT_TRUE(x.StartsWith("abc"));
491 ASSERT_TRUE(x.StartsWith(""));
492 ASSERT_TRUE(empty.StartsWith(""));
493 ASSERT_TRUE(x.EndsWith("abcde"));
494 ASSERT_TRUE(x.EndsWith("cde"));
495 ASSERT_TRUE(x.EndsWith(""));
496 ASSERT_TRUE(empty.EndsWith(""));
497
498 ASSERT_TRUE(!x.StartsWith("xyz"));
499 ASSERT_TRUE(!empty.StartsWith("xyz"));
500 ASSERT_TRUE(!x.EndsWith("xyz"));
501 ASSERT_TRUE(!empty.EndsWith("xyz"));
502 }
503
TEST_P(CordTest,Contains)504 TEST_P(CordTest, Contains) {
505 auto flat_haystack = absl::Cord("this is a flat cord");
506 auto fragmented_haystack = absl::MakeFragmentedCord(
507 {"this", " ", "is", " ", "a", " ", "fragmented", " ", "cord"});
508
509 EXPECT_TRUE(flat_haystack.Contains(""));
510 EXPECT_TRUE(fragmented_haystack.Contains(""));
511 EXPECT_TRUE(flat_haystack.Contains(absl::Cord("")));
512 EXPECT_TRUE(fragmented_haystack.Contains(absl::Cord("")));
513 EXPECT_TRUE(absl::Cord("").Contains(""));
514 EXPECT_TRUE(absl::Cord("").Contains(absl::Cord("")));
515 EXPECT_FALSE(absl::Cord("").Contains(flat_haystack));
516 EXPECT_FALSE(absl::Cord("").Contains(fragmented_haystack));
517
518 EXPECT_FALSE(flat_haystack.Contains("z"));
519 EXPECT_FALSE(fragmented_haystack.Contains("z"));
520 EXPECT_FALSE(flat_haystack.Contains(absl::Cord("z")));
521 EXPECT_FALSE(fragmented_haystack.Contains(absl::Cord("z")));
522
523 EXPECT_FALSE(flat_haystack.Contains("is an"));
524 EXPECT_FALSE(fragmented_haystack.Contains("is an"));
525 EXPECT_FALSE(flat_haystack.Contains(absl::Cord("is an")));
526 EXPECT_FALSE(fragmented_haystack.Contains(absl::Cord("is an")));
527 EXPECT_FALSE(
528 flat_haystack.Contains(absl::MakeFragmentedCord({"is", " ", "an"})));
529 EXPECT_FALSE(fragmented_haystack.Contains(
530 absl::MakeFragmentedCord({"is", " ", "an"})));
531
532 EXPECT_TRUE(flat_haystack.Contains("is a"));
533 EXPECT_TRUE(fragmented_haystack.Contains("is a"));
534 EXPECT_TRUE(flat_haystack.Contains(absl::Cord("is a")));
535 EXPECT_TRUE(fragmented_haystack.Contains(absl::Cord("is a")));
536 EXPECT_TRUE(
537 flat_haystack.Contains(absl::MakeFragmentedCord({"is", " ", "a"})));
538 EXPECT_TRUE(
539 fragmented_haystack.Contains(absl::MakeFragmentedCord({"is", " ", "a"})));
540 }
541
TEST_P(CordTest,Find)542 TEST_P(CordTest, Find) {
543 auto flat_haystack = absl::Cord("this is a flat cord");
544 auto fragmented_haystack = absl::MakeFragmentedCord(
545 {"this", " ", "is", " ", "a", " ", "fragmented", " ", "cord"});
546 auto empty_haystack = absl::Cord("");
547
548 EXPECT_EQ(flat_haystack.Find(""), flat_haystack.char_begin());
549 EXPECT_EQ(fragmented_haystack.Find(""), fragmented_haystack.char_begin());
550 EXPECT_EQ(flat_haystack.Find(absl::Cord("")), flat_haystack.char_begin());
551 EXPECT_EQ(fragmented_haystack.Find(absl::Cord("")),
552 fragmented_haystack.char_begin());
553 EXPECT_EQ(empty_haystack.Find(""), empty_haystack.char_begin());
554 EXPECT_EQ(empty_haystack.Find(absl::Cord("")), empty_haystack.char_begin());
555 EXPECT_EQ(empty_haystack.Find(flat_haystack), empty_haystack.char_end());
556 EXPECT_EQ(empty_haystack.Find(fragmented_haystack),
557 empty_haystack.char_end());
558
559 EXPECT_EQ(flat_haystack.Find("z"), flat_haystack.char_end());
560 EXPECT_EQ(fragmented_haystack.Find("z"), fragmented_haystack.char_end());
561 EXPECT_EQ(flat_haystack.Find(absl::Cord("z")), flat_haystack.char_end());
562 EXPECT_EQ(fragmented_haystack.Find(absl::Cord("z")),
563 fragmented_haystack.char_end());
564
565 EXPECT_EQ(flat_haystack.Find("is an"), flat_haystack.char_end());
566 EXPECT_EQ(fragmented_haystack.Find("is an"), fragmented_haystack.char_end());
567 EXPECT_EQ(flat_haystack.Find(absl::Cord("is an")), flat_haystack.char_end());
568 EXPECT_EQ(fragmented_haystack.Find(absl::Cord("is an")),
569 fragmented_haystack.char_end());
570 EXPECT_EQ(flat_haystack.Find(absl::MakeFragmentedCord({"is", " ", "an"})),
571 flat_haystack.char_end());
572 EXPECT_EQ(
573 fragmented_haystack.Find(absl::MakeFragmentedCord({"is", " ", "an"})),
574 fragmented_haystack.char_end());
575
576 EXPECT_EQ(flat_haystack.Find("is a"),
577 std::next(flat_haystack.char_begin(), 5));
578 EXPECT_EQ(fragmented_haystack.Find("is a"),
579 std::next(fragmented_haystack.char_begin(), 5));
580 EXPECT_EQ(flat_haystack.Find(absl::Cord("is a")),
581 std::next(flat_haystack.char_begin(), 5));
582 EXPECT_EQ(fragmented_haystack.Find(absl::Cord("is a")),
583 std::next(fragmented_haystack.char_begin(), 5));
584 EXPECT_EQ(flat_haystack.Find(absl::MakeFragmentedCord({"is", " ", "a"})),
585 std::next(flat_haystack.char_begin(), 5));
586 EXPECT_EQ(
587 fragmented_haystack.Find(absl::MakeFragmentedCord({"is", " ", "a"})),
588 std::next(fragmented_haystack.char_begin(), 5));
589 }
590
TEST_P(CordTest,Subcord)591 TEST_P(CordTest, Subcord) {
592 RandomEngine rng(GTEST_FLAG_GET(random_seed));
593 const std::string s = RandomLowercaseString(&rng, 1024);
594
595 absl::Cord a;
596 AppendWithFragments(s, &rng, &a);
597 MaybeHarden(a);
598 ASSERT_EQ(s, std::string(a));
599
600 // Check subcords of a, from a variety of interesting points.
601 std::set<size_t> positions;
602 for (int i = 0; i <= 32; ++i) {
603 positions.insert(i);
604 positions.insert(i * 32 - 1);
605 positions.insert(i * 32);
606 positions.insert(i * 32 + 1);
607 positions.insert(a.size() - i);
608 }
609 positions.insert(237);
610 positions.insert(732);
611 for (size_t pos : positions) {
612 if (pos > a.size()) continue;
613 for (size_t end_pos : positions) {
614 if (end_pos < pos || end_pos > a.size()) continue;
615 absl::Cord sa = a.Subcord(pos, end_pos - pos);
616 ASSERT_EQ(absl::string_view(s).substr(pos, end_pos - pos),
617 std::string(sa))
618 << a;
619 if (pos != 0 || end_pos != a.size()) {
620 ASSERT_EQ(sa.ExpectedChecksum(), absl::nullopt);
621 }
622 }
623 }
624
625 // Do the same thing for an inline cord.
626 const std::string sh = "short";
627 absl::Cord c(sh);
628 for (size_t pos = 0; pos <= sh.size(); ++pos) {
629 for (size_t n = 0; n <= sh.size() - pos; ++n) {
630 absl::Cord sc = c.Subcord(pos, n);
631 ASSERT_EQ(sh.substr(pos, n), std::string(sc)) << c;
632 }
633 }
634
635 // Check subcords of subcords.
636 absl::Cord sa = a.Subcord(0, a.size());
637 std::string ss = s.substr(0, s.size());
638 while (sa.size() > 1) {
639 sa = sa.Subcord(1, sa.size() - 2);
640 ss = ss.substr(1, ss.size() - 2);
641 ASSERT_EQ(ss, std::string(sa)) << a;
642 if (HasFailure()) break; // halt cascade
643 }
644
645 // It is OK to ask for too much.
646 sa = a.Subcord(0, a.size() + 1);
647 EXPECT_EQ(s, std::string(sa));
648
649 // It is OK to ask for something beyond the end.
650 sa = a.Subcord(a.size() + 1, 0);
651 EXPECT_TRUE(sa.empty());
652 sa = a.Subcord(a.size() + 1, 1);
653 EXPECT_TRUE(sa.empty());
654 }
655
TEST_P(CordTest,Swap)656 TEST_P(CordTest, Swap) {
657 absl::string_view a("Dexter");
658 absl::string_view b("Mandark");
659 absl::Cord x(a);
660 absl::Cord y(b);
661 MaybeHarden(x);
662 swap(x, y);
663 if (UseCrc()) {
664 ASSERT_EQ(x.ExpectedChecksum(), absl::nullopt);
665 ASSERT_EQ(y.ExpectedChecksum(), 1);
666 }
667 ASSERT_EQ(x, absl::Cord(b));
668 ASSERT_EQ(y, absl::Cord(a));
669 x.swap(y);
670 if (UseCrc()) {
671 ASSERT_EQ(x.ExpectedChecksum(), 1);
672 ASSERT_EQ(y.ExpectedChecksum(), absl::nullopt);
673 }
674 ASSERT_EQ(x, absl::Cord(a));
675 ASSERT_EQ(y, absl::Cord(b));
676 }
677
VerifyCopyToString(const absl::Cord & cord)678 static void VerifyCopyToString(const absl::Cord& cord) {
679 std::string initially_empty;
680 absl::CopyCordToString(cord, &initially_empty);
681 EXPECT_EQ(initially_empty, cord);
682
683 constexpr size_t kInitialLength = 1024;
684 std::string has_initial_contents(kInitialLength, 'x');
685 const char* address_before_copy = has_initial_contents.data();
686 absl::CopyCordToString(cord, &has_initial_contents);
687 EXPECT_EQ(has_initial_contents, cord);
688
689 if (cord.size() <= kInitialLength) {
690 EXPECT_EQ(has_initial_contents.data(), address_before_copy)
691 << "CopyCordToString allocated new string storage; "
692 "has_initial_contents = \""
693 << has_initial_contents << "\"";
694 }
695 }
696
TEST_P(CordTest,CopyToString)697 TEST_P(CordTest, CopyToString) {
698 VerifyCopyToString(absl::Cord()); // empty cords cannot carry CRCs
699 VerifyCopyToString(MaybeHardened(absl::Cord("small cord")));
700 VerifyCopyToString(MaybeHardened(
701 absl::MakeFragmentedCord({"fragmented ", "cord ", "to ", "test ",
702 "copying ", "to ", "a ", "string."})));
703 }
704
VerifyAppendCordToString(const absl::Cord & cord)705 static void VerifyAppendCordToString(const absl::Cord& cord) {
706 std::string initially_empty;
707 absl::AppendCordToString(cord, &initially_empty);
708 EXPECT_EQ(initially_empty, cord);
709
710 const absl::string_view kInitialContents = "initial contents.";
711 std::string expected_after_append =
712 absl::StrCat(kInitialContents, std::string(cord));
713
714 std::string no_reserve(kInitialContents);
715 absl::AppendCordToString(cord, &no_reserve);
716 EXPECT_EQ(no_reserve, expected_after_append);
717
718 std::string has_reserved_capacity(kInitialContents);
719 has_reserved_capacity.reserve(has_reserved_capacity.size() + cord.size());
720 const char* address_before_copy = has_reserved_capacity.data();
721 absl::AppendCordToString(cord, &has_reserved_capacity);
722 EXPECT_EQ(has_reserved_capacity, expected_after_append);
723 EXPECT_EQ(has_reserved_capacity.data(), address_before_copy)
724 << "AppendCordToString allocated new string storage; "
725 "has_reserved_capacity = \""
726 << has_reserved_capacity << "\"";
727 }
728
TEST_P(CordTest,AppendToString)729 TEST_P(CordTest, AppendToString) {
730 VerifyAppendCordToString(absl::Cord()); // empty cords cannot carry CRCs
731 VerifyAppendCordToString(MaybeHardened(absl::Cord("small cord")));
732 VerifyAppendCordToString(MaybeHardened(
733 absl::MakeFragmentedCord({"fragmented ", "cord ", "to ", "test ",
734 "appending ", "to ", "a ", "string."})));
735 }
736
TEST_P(CordTest,AppendEmptyBuffer)737 TEST_P(CordTest, AppendEmptyBuffer) {
738 absl::Cord cord;
739 cord.Append(absl::CordBuffer());
740 cord.Append(absl::CordBuffer::CreateWithDefaultLimit(2000));
741 }
742
TEST_P(CordTest,AppendEmptyBufferToFlat)743 TEST_P(CordTest, AppendEmptyBufferToFlat) {
744 absl::Cord cord(std::string(2000, 'x'));
745 cord.Append(absl::CordBuffer());
746 cord.Append(absl::CordBuffer::CreateWithDefaultLimit(2000));
747 }
748
TEST_P(CordTest,AppendEmptyBufferToTree)749 TEST_P(CordTest, AppendEmptyBufferToTree) {
750 absl::Cord cord(std::string(2000, 'x'));
751 cord.Append(std::string(2000, 'y'));
752 cord.Append(absl::CordBuffer());
753 cord.Append(absl::CordBuffer::CreateWithDefaultLimit(2000));
754 }
755
TEST_P(CordTest,AppendSmallBuffer)756 TEST_P(CordTest, AppendSmallBuffer) {
757 absl::Cord cord;
758 absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(3);
759 ASSERT_THAT(buffer.capacity(), Le(15));
760 memcpy(buffer.data(), "Abc", 3);
761 buffer.SetLength(3);
762 cord.Append(std::move(buffer));
763 EXPECT_EQ(buffer.length(), 0); // NOLINT
764 EXPECT_GT(buffer.capacity(), 0); // NOLINT
765
766 buffer = absl::CordBuffer::CreateWithDefaultLimit(3);
767 memcpy(buffer.data(), "defgh", 5);
768 buffer.SetLength(5);
769 cord.Append(std::move(buffer));
770 EXPECT_EQ(buffer.length(), 0); // NOLINT
771 EXPECT_GT(buffer.capacity(), 0); // NOLINT
772
773 EXPECT_THAT(cord.Chunks(), ElementsAre("Abcdefgh"));
774 }
775
TEST_P(CordTest,AppendAndPrependBufferArePrecise)776 TEST_P(CordTest, AppendAndPrependBufferArePrecise) {
777 // Create a cord large enough to force 40KB flats.
778 std::string test_data(absl::cord_internal::kMaxFlatLength * 10, 'x');
779 absl::Cord cord1(test_data);
780 absl::Cord cord2(test_data);
781 const size_t size1 = cord1.EstimatedMemoryUsage();
782 const size_t size2 = cord2.EstimatedMemoryUsage();
783
784 absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(3);
785 memcpy(buffer.data(), "Abc", 3);
786 buffer.SetLength(3);
787 cord1.Append(std::move(buffer));
788
789 buffer = absl::CordBuffer::CreateWithDefaultLimit(3);
790 memcpy(buffer.data(), "Abc", 3);
791 buffer.SetLength(3);
792 cord2.Prepend(std::move(buffer));
793
794 #ifndef NDEBUG
795 // Allow 32 bytes new CordRepFlat, and 128 bytes for 'glue nodes'
796 constexpr size_t kMaxDelta = 128 + 32;
797 #else
798 // Allow 256 bytes extra for 'allocation debug overhead'
799 constexpr size_t kMaxDelta = 128 + 32 + 256;
800 #endif
801
802 EXPECT_LE(cord1.EstimatedMemoryUsage() - size1, kMaxDelta);
803 EXPECT_LE(cord2.EstimatedMemoryUsage() - size2, kMaxDelta);
804
805 EXPECT_EQ(cord1, absl::StrCat(test_data, "Abc"));
806 EXPECT_EQ(cord2, absl::StrCat("Abc", test_data));
807 }
808
TEST_P(CordTest,PrependSmallBuffer)809 TEST_P(CordTest, PrependSmallBuffer) {
810 absl::Cord cord;
811 absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(3);
812 ASSERT_THAT(buffer.capacity(), Le(15));
813 memcpy(buffer.data(), "Abc", 3);
814 buffer.SetLength(3);
815 cord.Prepend(std::move(buffer));
816 EXPECT_EQ(buffer.length(), 0); // NOLINT
817 EXPECT_GT(buffer.capacity(), 0); // NOLINT
818
819 buffer = absl::CordBuffer::CreateWithDefaultLimit(3);
820 memcpy(buffer.data(), "defgh", 5);
821 buffer.SetLength(5);
822 cord.Prepend(std::move(buffer));
823 EXPECT_EQ(buffer.length(), 0); // NOLINT
824 EXPECT_GT(buffer.capacity(), 0); // NOLINT
825
826 EXPECT_THAT(cord.Chunks(), ElementsAre("defghAbc"));
827 }
828
TEST_P(CordTest,AppendLargeBuffer)829 TEST_P(CordTest, AppendLargeBuffer) {
830 absl::Cord cord;
831
832 std::string s1(700, '1');
833 absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(s1.size());
834 memcpy(buffer.data(), s1.data(), s1.size());
835 buffer.SetLength(s1.size());
836 cord.Append(std::move(buffer));
837 EXPECT_EQ(buffer.length(), 0); // NOLINT
838 EXPECT_GT(buffer.capacity(), 0); // NOLINT
839
840 std::string s2(1000, '2');
841 buffer = absl::CordBuffer::CreateWithDefaultLimit(s2.size());
842 memcpy(buffer.data(), s2.data(), s2.size());
843 buffer.SetLength(s2.size());
844 cord.Append(std::move(buffer));
845 EXPECT_EQ(buffer.length(), 0); // NOLINT
846 EXPECT_GT(buffer.capacity(), 0); // NOLINT
847
848 EXPECT_THAT(cord.Chunks(), ElementsAre(s1, s2));
849 }
850
TEST_P(CordTest,PrependLargeBuffer)851 TEST_P(CordTest, PrependLargeBuffer) {
852 absl::Cord cord;
853
854 std::string s1(700, '1');
855 absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(s1.size());
856 memcpy(buffer.data(), s1.data(), s1.size());
857 buffer.SetLength(s1.size());
858 cord.Prepend(std::move(buffer));
859 EXPECT_EQ(buffer.length(), 0); // NOLINT
860 EXPECT_GT(buffer.capacity(), 0); // NOLINT
861
862 std::string s2(1000, '2');
863 buffer = absl::CordBuffer::CreateWithDefaultLimit(s2.size());
864 memcpy(buffer.data(), s2.data(), s2.size());
865 buffer.SetLength(s2.size());
866 cord.Prepend(std::move(buffer));
867 EXPECT_EQ(buffer.length(), 0); // NOLINT
868 EXPECT_GT(buffer.capacity(), 0); // NOLINT
869
870 EXPECT_THAT(cord.Chunks(), ElementsAre(s2, s1));
871 }
872
873 class CordAppendBufferTest : public testing::TestWithParam<bool> {
874 public:
is_default() const875 size_t is_default() const { return GetParam(); }
876
877 // Returns human readable string representation of the test parameter.
ToString(testing::TestParamInfo<bool> param)878 static std::string ToString(testing::TestParamInfo<bool> param) {
879 return param.param ? "DefaultLimit" : "CustomLimit";
880 }
881
limit() const882 size_t limit() const {
883 return is_default() ? absl::CordBuffer::kDefaultLimit
884 : absl::CordBuffer::kCustomLimit;
885 }
886
maximum_payload() const887 size_t maximum_payload() const {
888 return is_default() ? absl::CordBuffer::MaximumPayload()
889 : absl::CordBuffer::MaximumPayload(limit());
890 }
891
GetAppendBuffer(absl::Cord & cord,size_t capacity,size_t min_capacity=16)892 absl::CordBuffer GetAppendBuffer(absl::Cord& cord, size_t capacity,
893 size_t min_capacity = 16) {
894 return is_default()
895 ? cord.GetAppendBuffer(capacity, min_capacity)
896 : cord.GetCustomAppendBuffer(limit(), capacity, min_capacity);
897 }
898 };
899
900 INSTANTIATE_TEST_SUITE_P(WithParam, CordAppendBufferTest, testing::Bool(),
901 CordAppendBufferTest::ToString);
902
TEST_P(CordAppendBufferTest,GetAppendBufferOnEmptyCord)903 TEST_P(CordAppendBufferTest, GetAppendBufferOnEmptyCord) {
904 absl::Cord cord;
905 absl::CordBuffer buffer = GetAppendBuffer(cord, 1000);
906 EXPECT_GE(buffer.capacity(), 1000);
907 EXPECT_EQ(buffer.length(), 0);
908 }
909
TEST_P(CordAppendBufferTest,GetAppendBufferOnInlinedCord)910 TEST_P(CordAppendBufferTest, GetAppendBufferOnInlinedCord) {
911 static constexpr int kInlinedSize = sizeof(absl::CordBuffer) - 1;
912 for (int size : {6, kInlinedSize - 3, kInlinedSize - 2, 1000}) {
913 absl::Cord cord("Abc");
914 absl::CordBuffer buffer = GetAppendBuffer(cord, size, 1);
915 EXPECT_GE(buffer.capacity(), 3 + size);
916 EXPECT_EQ(buffer.length(), 3);
917 EXPECT_EQ(absl::string_view(buffer.data(), buffer.length()), "Abc");
918 EXPECT_TRUE(cord.empty());
919 }
920 }
921
TEST_P(CordAppendBufferTest,GetAppendBufferOnInlinedCordCapacityCloseToMax)922 TEST_P(CordAppendBufferTest, GetAppendBufferOnInlinedCordCapacityCloseToMax) {
923 // Cover the use case where we have a non empty inlined cord with some size
924 // 'n', and ask for something like 'uint64_max - k', assuming internal logic
925 // could overflow on 'uint64_max - k + size', and return a valid, but
926 // inefficiently smaller buffer if it would provide is the max allowed size.
927 for (size_t dist_from_max = 0; dist_from_max <= 4; ++dist_from_max) {
928 absl::Cord cord("Abc");
929 size_t size = std::numeric_limits<size_t>::max() - dist_from_max;
930 absl::CordBuffer buffer = GetAppendBuffer(cord, size, 1);
931 EXPECT_GE(buffer.capacity(), maximum_payload());
932 EXPECT_EQ(buffer.length(), 3);
933 EXPECT_EQ(absl::string_view(buffer.data(), buffer.length()), "Abc");
934 EXPECT_TRUE(cord.empty());
935 }
936 }
937
TEST_P(CordAppendBufferTest,GetAppendBufferOnFlat)938 TEST_P(CordAppendBufferTest, GetAppendBufferOnFlat) {
939 // Create a cord with a single flat and extra capacity
940 absl::Cord cord;
941 absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(500);
942 const size_t expected_capacity = buffer.capacity();
943 buffer.SetLength(3);
944 memcpy(buffer.data(), "Abc", 3);
945 cord.Append(std::move(buffer));
946
947 buffer = GetAppendBuffer(cord, 6);
948 EXPECT_EQ(buffer.capacity(), expected_capacity);
949 EXPECT_EQ(buffer.length(), 3);
950 EXPECT_EQ(absl::string_view(buffer.data(), buffer.length()), "Abc");
951 EXPECT_TRUE(cord.empty());
952 }
953
TEST_P(CordAppendBufferTest,GetAppendBufferOnFlatWithoutMinCapacity)954 TEST_P(CordAppendBufferTest, GetAppendBufferOnFlatWithoutMinCapacity) {
955 // Create a cord with a single flat and extra capacity
956 absl::Cord cord;
957 absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(500);
958 buffer.SetLength(30);
959 memset(buffer.data(), 'x', 30);
960 cord.Append(std::move(buffer));
961
962 buffer = GetAppendBuffer(cord, 1000, 900);
963 EXPECT_GE(buffer.capacity(), 1000);
964 EXPECT_EQ(buffer.length(), 0);
965 EXPECT_EQ(cord, std::string(30, 'x'));
966 }
967
TEST_P(CordAppendBufferTest,GetAppendBufferOnTree)968 TEST_P(CordAppendBufferTest, GetAppendBufferOnTree) {
969 RandomEngine rng;
970 for (int num_flats : {2, 3, 100}) {
971 // Create a cord with `num_flats` flats and extra capacity
972 absl::Cord cord;
973 std::string prefix;
974 std::string last;
975 for (int i = 0; i < num_flats - 1; ++i) {
976 prefix += last;
977 last = RandomLowercaseString(&rng, 10);
978 absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(500);
979 buffer.SetLength(10);
980 memcpy(buffer.data(), last.data(), 10);
981 cord.Append(std::move(buffer));
982 }
983 absl::CordBuffer buffer = GetAppendBuffer(cord, 6);
984 EXPECT_GE(buffer.capacity(), 500);
985 EXPECT_EQ(buffer.length(), 10);
986 EXPECT_EQ(absl::string_view(buffer.data(), buffer.length()), last);
987 EXPECT_EQ(cord, prefix);
988 }
989 }
990
TEST_P(CordAppendBufferTest,GetAppendBufferOnTreeWithoutMinCapacity)991 TEST_P(CordAppendBufferTest, GetAppendBufferOnTreeWithoutMinCapacity) {
992 absl::Cord cord;
993 for (int i = 0; i < 2; ++i) {
994 absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(500);
995 buffer.SetLength(3);
996 memcpy(buffer.data(), i ? "def" : "Abc", 3);
997 cord.Append(std::move(buffer));
998 }
999 absl::CordBuffer buffer = GetAppendBuffer(cord, 1000, 900);
1000 EXPECT_GE(buffer.capacity(), 1000);
1001 EXPECT_EQ(buffer.length(), 0);
1002 EXPECT_EQ(cord, "Abcdef");
1003 }
1004
TEST_P(CordAppendBufferTest,GetAppendBufferOnSubstring)1005 TEST_P(CordAppendBufferTest, GetAppendBufferOnSubstring) {
1006 // Create a large cord with a single flat and some extra capacity
1007 absl::Cord cord;
1008 absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(500);
1009 buffer.SetLength(450);
1010 memset(buffer.data(), 'x', 450);
1011 cord.Append(std::move(buffer));
1012 cord.RemovePrefix(1);
1013
1014 // Deny on substring
1015 buffer = GetAppendBuffer(cord, 6);
1016 EXPECT_EQ(buffer.length(), 0);
1017 EXPECT_EQ(cord, std::string(449, 'x'));
1018 }
1019
TEST_P(CordAppendBufferTest,GetAppendBufferOnSharedCord)1020 TEST_P(CordAppendBufferTest, GetAppendBufferOnSharedCord) {
1021 // Create a shared cord with a single flat and extra capacity
1022 absl::Cord cord;
1023 absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(500);
1024 buffer.SetLength(3);
1025 memcpy(buffer.data(), "Abc", 3);
1026 cord.Append(std::move(buffer));
1027 absl::Cord shared_cord = cord;
1028
1029 // Deny on flat
1030 buffer = GetAppendBuffer(cord, 6);
1031 EXPECT_EQ(buffer.length(), 0);
1032 EXPECT_EQ(cord, "Abc");
1033
1034 buffer = absl::CordBuffer::CreateWithDefaultLimit(500);
1035 buffer.SetLength(3);
1036 memcpy(buffer.data(), "def", 3);
1037 cord.Append(std::move(buffer));
1038 shared_cord = cord;
1039
1040 // Deny on tree
1041 buffer = GetAppendBuffer(cord, 6);
1042 EXPECT_EQ(buffer.length(), 0);
1043 EXPECT_EQ(cord, "Abcdef");
1044 }
1045
TEST_P(CordTest,TryFlatEmpty)1046 TEST_P(CordTest, TryFlatEmpty) {
1047 absl::Cord c;
1048 EXPECT_EQ(c.TryFlat(), "");
1049 }
1050
TEST_P(CordTest,TryFlatFlat)1051 TEST_P(CordTest, TryFlatFlat) {
1052 absl::Cord c("hello");
1053 MaybeHarden(c);
1054 EXPECT_EQ(c.TryFlat(), "hello");
1055 }
1056
TEST_P(CordTest,TryFlatSubstrInlined)1057 TEST_P(CordTest, TryFlatSubstrInlined) {
1058 absl::Cord c("hello");
1059 c.RemovePrefix(1);
1060 MaybeHarden(c);
1061 EXPECT_EQ(c.TryFlat(), "ello");
1062 }
1063
TEST_P(CordTest,TryFlatSubstrFlat)1064 TEST_P(CordTest, TryFlatSubstrFlat) {
1065 absl::Cord c("longer than 15 bytes");
1066 absl::Cord sub = absl::CordTestPeer::MakeSubstring(c, 1, c.size() - 1);
1067 MaybeHarden(sub);
1068 EXPECT_EQ(sub.TryFlat(), "onger than 15 bytes");
1069 }
1070
TEST_P(CordTest,TryFlatConcat)1071 TEST_P(CordTest, TryFlatConcat) {
1072 absl::Cord c = absl::MakeFragmentedCord({"hel", "lo"});
1073 MaybeHarden(c);
1074 EXPECT_EQ(c.TryFlat(), absl::nullopt);
1075 }
1076
TEST_P(CordTest,TryFlatExternal)1077 TEST_P(CordTest, TryFlatExternal) {
1078 absl::Cord c = absl::MakeCordFromExternal("hell", [](absl::string_view) {});
1079 MaybeHarden(c);
1080 EXPECT_EQ(c.TryFlat(), "hell");
1081 }
1082
TEST_P(CordTest,TryFlatSubstrExternal)1083 TEST_P(CordTest, TryFlatSubstrExternal) {
1084 absl::Cord c = absl::MakeCordFromExternal("hell", [](absl::string_view) {});
1085 absl::Cord sub = absl::CordTestPeer::MakeSubstring(c, 1, c.size() - 1);
1086 MaybeHarden(sub);
1087 EXPECT_EQ(sub.TryFlat(), "ell");
1088 }
1089
TEST_P(CordTest,TryFlatCommonlyAssumedInvariants)1090 TEST_P(CordTest, TryFlatCommonlyAssumedInvariants) {
1091 // The behavior tested below is not part of the API contract of Cord, but it's
1092 // something we intend to be true in our current implementation. This test
1093 // exists to detect and prevent accidental breakage of the implementation.
1094 absl::string_view fragments[] = {"A fragmented test",
1095 " cord",
1096 " to test subcords",
1097 " of ",
1098 "a",
1099 " cord for",
1100 " each chunk "
1101 "returned by the ",
1102 "iterator"};
1103 absl::Cord c = absl::MakeFragmentedCord(fragments);
1104 MaybeHarden(c);
1105 int fragment = 0;
1106 int offset = 0;
1107 absl::Cord::CharIterator itc = c.char_begin();
1108 for (absl::string_view sv : c.Chunks()) {
1109 absl::string_view expected = fragments[fragment];
1110 absl::Cord subcord1 = c.Subcord(offset, sv.length());
1111 absl::Cord subcord2 = absl::Cord::AdvanceAndRead(&itc, sv.size());
1112 EXPECT_EQ(subcord1.TryFlat(), expected);
1113 EXPECT_EQ(subcord2.TryFlat(), expected);
1114 ++fragment;
1115 offset += sv.length();
1116 }
1117 }
1118
IsFlat(const absl::Cord & c)1119 static bool IsFlat(const absl::Cord& c) {
1120 return c.chunk_begin() == c.chunk_end() || ++c.chunk_begin() == c.chunk_end();
1121 }
1122
VerifyFlatten(absl::Cord c)1123 static void VerifyFlatten(absl::Cord c) {
1124 std::string old_contents(c);
1125 absl::string_view old_flat;
1126 bool already_flat_and_non_empty = IsFlat(c) && !c.empty();
1127 if (already_flat_and_non_empty) {
1128 old_flat = *c.chunk_begin();
1129 }
1130 absl::string_view new_flat = c.Flatten();
1131
1132 // Verify that the contents of the flattened Cord are correct.
1133 EXPECT_EQ(new_flat, old_contents);
1134 EXPECT_EQ(std::string(c), old_contents);
1135
1136 // If the Cord contained data and was already flat, verify that the data
1137 // wasn't copied.
1138 if (already_flat_and_non_empty) {
1139 EXPECT_EQ(old_flat.data(), new_flat.data())
1140 << "Allocated new memory even though the Cord was already flat.";
1141 }
1142
1143 // Verify that the flattened Cord is in fact flat.
1144 EXPECT_TRUE(IsFlat(c));
1145 }
1146
TEST_P(CordTest,Flatten)1147 TEST_P(CordTest, Flatten) {
1148 VerifyFlatten(absl::Cord());
1149 VerifyFlatten(MaybeHardened(absl::Cord("small cord")));
1150 VerifyFlatten(
1151 MaybeHardened(absl::Cord("larger than small buffer optimization")));
1152 VerifyFlatten(MaybeHardened(
1153 absl::MakeFragmentedCord({"small ", "fragmented ", "cord"})));
1154
1155 // Test with a cord that is longer than the largest flat buffer
1156 RandomEngine rng(GTEST_FLAG_GET(random_seed));
1157 VerifyFlatten(MaybeHardened(absl::Cord(RandomLowercaseString(&rng, 8192))));
1158 }
1159
1160 // Test data
1161 namespace {
1162 class TestData {
1163 private:
1164 std::vector<std::string> data_;
1165
1166 // Return a std::string of the specified length.
MakeString(int length)1167 static std::string MakeString(int length) {
1168 std::string result;
1169 char buf[30];
1170 snprintf(buf, sizeof(buf), "(%d)", length);
1171 while (result.size() < length) {
1172 result += buf;
1173 }
1174 result.resize(length);
1175 return result;
1176 }
1177
1178 public:
TestData()1179 TestData() {
1180 // short strings increasing in length by one
1181 for (int i = 0; i < 30; i++) {
1182 data_.push_back(MakeString(i));
1183 }
1184
1185 // strings around half kMaxFlatLength
1186 static const int kMaxFlatLength = 4096 - 9;
1187 static const int kHalf = kMaxFlatLength / 2;
1188
1189 for (int i = -10; i <= +10; i++) {
1190 data_.push_back(MakeString(kHalf + i));
1191 }
1192
1193 for (int i = -10; i <= +10; i++) {
1194 data_.push_back(MakeString(kMaxFlatLength + i));
1195 }
1196 }
1197
size() const1198 size_t size() const { return data_.size(); }
data(size_t i) const1199 const std::string& data(size_t i) const { return data_[i]; }
1200 };
1201 } // namespace
1202
TEST_P(CordTest,MultipleLengths)1203 TEST_P(CordTest, MultipleLengths) {
1204 TestData d;
1205 for (size_t i = 0; i < d.size(); i++) {
1206 std::string a = d.data(i);
1207
1208 { // Construct from Cord
1209 absl::Cord tmp(a);
1210 absl::Cord x(tmp);
1211 MaybeHarden(x);
1212 EXPECT_EQ(a, std::string(x)) << "'" << a << "'";
1213 }
1214
1215 { // Construct from absl::string_view
1216 absl::Cord x(a);
1217 MaybeHarden(x);
1218 EXPECT_EQ(a, std::string(x)) << "'" << a << "'";
1219 }
1220
1221 { // Append cord to self
1222 absl::Cord self(a);
1223 MaybeHarden(self);
1224 self.Append(self);
1225 EXPECT_EQ(a + a, std::string(self)) << "'" << a << "' + '" << a << "'";
1226 }
1227
1228 { // Prepend cord to self
1229 absl::Cord self(a);
1230 MaybeHarden(self);
1231 self.Prepend(self);
1232 EXPECT_EQ(a + a, std::string(self)) << "'" << a << "' + '" << a << "'";
1233 }
1234
1235 // Try to append/prepend others
1236 for (size_t j = 0; j < d.size(); j++) {
1237 std::string b = d.data(j);
1238
1239 { // CopyFrom Cord
1240 absl::Cord x(a);
1241 absl::Cord y(b);
1242 MaybeHarden(x);
1243 x = y;
1244 EXPECT_EQ(b, std::string(x)) << "'" << a << "' + '" << b << "'";
1245 }
1246
1247 { // CopyFrom absl::string_view
1248 absl::Cord x(a);
1249 MaybeHarden(x);
1250 x = b;
1251 EXPECT_EQ(b, std::string(x)) << "'" << a << "' + '" << b << "'";
1252 }
1253
1254 { // Cord::Append(Cord)
1255 absl::Cord x(a);
1256 absl::Cord y(b);
1257 MaybeHarden(x);
1258 x.Append(y);
1259 EXPECT_EQ(a + b, std::string(x)) << "'" << a << "' + '" << b << "'";
1260 }
1261
1262 { // Cord::Append(absl::string_view)
1263 absl::Cord x(a);
1264 MaybeHarden(x);
1265 x.Append(b);
1266 EXPECT_EQ(a + b, std::string(x)) << "'" << a << "' + '" << b << "'";
1267 }
1268
1269 { // Cord::Prepend(Cord)
1270 absl::Cord x(a);
1271 absl::Cord y(b);
1272 MaybeHarden(x);
1273 x.Prepend(y);
1274 EXPECT_EQ(b + a, std::string(x)) << "'" << b << "' + '" << a << "'";
1275 }
1276
1277 { // Cord::Prepend(absl::string_view)
1278 absl::Cord x(a);
1279 MaybeHarden(x);
1280 x.Prepend(b);
1281 EXPECT_EQ(b + a, std::string(x)) << "'" << b << "' + '" << a << "'";
1282 }
1283 }
1284 }
1285 }
1286
1287 namespace {
1288
TEST_P(CordTest,RemoveSuffixWithExternalOrSubstring)1289 TEST_P(CordTest, RemoveSuffixWithExternalOrSubstring) {
1290 absl::Cord cord = absl::MakeCordFromExternal(
1291 "foo bar baz", [](absl::string_view s) { DoNothing(s, nullptr); });
1292 EXPECT_EQ("foo bar baz", std::string(cord));
1293
1294 MaybeHarden(cord);
1295
1296 // This RemoveSuffix() will wrap the EXTERNAL node in a SUBSTRING node.
1297 cord.RemoveSuffix(4);
1298 EXPECT_EQ("foo bar", std::string(cord));
1299
1300 MaybeHarden(cord);
1301
1302 // This RemoveSuffix() will adjust the SUBSTRING node in-place.
1303 cord.RemoveSuffix(4);
1304 EXPECT_EQ("foo", std::string(cord));
1305 }
1306
TEST_P(CordTest,RemoveSuffixMakesZeroLengthNode)1307 TEST_P(CordTest, RemoveSuffixMakesZeroLengthNode) {
1308 absl::Cord c;
1309 c.Append(absl::Cord(std::string(100, 'x')));
1310 absl::Cord other_ref = c; // Prevent inplace appends
1311 MaybeHarden(c);
1312 c.Append(absl::Cord(std::string(200, 'y')));
1313 c.RemoveSuffix(200);
1314 EXPECT_EQ(std::string(100, 'x'), std::string(c));
1315 }
1316
1317 } // namespace
1318
1319 // CordSpliceTest contributed by hendrie.
1320 namespace {
1321
1322 // Create a cord with an external memory block filled with 'z'
CordWithZedBlock(size_t size)1323 absl::Cord CordWithZedBlock(size_t size) {
1324 char* data = new char[size];
1325 if (size > 0) {
1326 memset(data, 'z', size);
1327 }
1328 absl::Cord cord = absl::MakeCordFromExternal(
1329 absl::string_view(data, size),
1330 [](absl::string_view s) { delete[] s.data(); });
1331 return cord;
1332 }
1333
1334 // Establish that ZedBlock does what we think it does.
TEST_P(CordTest,CordSpliceTestZedBlock)1335 TEST_P(CordTest, CordSpliceTestZedBlock) {
1336 absl::Cord blob = CordWithZedBlock(10);
1337 MaybeHarden(blob);
1338 EXPECT_EQ(10, blob.size());
1339 std::string s;
1340 absl::CopyCordToString(blob, &s);
1341 EXPECT_EQ("zzzzzzzzzz", s);
1342 }
1343
TEST_P(CordTest,CordSpliceTestZedBlock0)1344 TEST_P(CordTest, CordSpliceTestZedBlock0) {
1345 absl::Cord blob = CordWithZedBlock(0);
1346 MaybeHarden(blob);
1347 EXPECT_EQ(0, blob.size());
1348 std::string s;
1349 absl::CopyCordToString(blob, &s);
1350 EXPECT_EQ("", s);
1351 }
1352
TEST_P(CordTest,CordSpliceTestZedBlockSuffix1)1353 TEST_P(CordTest, CordSpliceTestZedBlockSuffix1) {
1354 absl::Cord blob = CordWithZedBlock(10);
1355 MaybeHarden(blob);
1356 EXPECT_EQ(10, blob.size());
1357 absl::Cord suffix(blob);
1358 suffix.RemovePrefix(9);
1359 EXPECT_EQ(1, suffix.size());
1360 std::string s;
1361 absl::CopyCordToString(suffix, &s);
1362 EXPECT_EQ("z", s);
1363 }
1364
1365 // Remove all of a prefix block
TEST_P(CordTest,CordSpliceTestZedBlockSuffix0)1366 TEST_P(CordTest, CordSpliceTestZedBlockSuffix0) {
1367 absl::Cord blob = CordWithZedBlock(10);
1368 MaybeHarden(blob);
1369 EXPECT_EQ(10, blob.size());
1370 absl::Cord suffix(blob);
1371 suffix.RemovePrefix(10);
1372 EXPECT_EQ(0, suffix.size());
1373 std::string s;
1374 absl::CopyCordToString(suffix, &s);
1375 EXPECT_EQ("", s);
1376 }
1377
BigCord(size_t len,char v)1378 absl::Cord BigCord(size_t len, char v) {
1379 std::string s(len, v);
1380 return absl::Cord(s);
1381 }
1382
1383 // Splice block into cord.
SpliceCord(const absl::Cord & blob,int64_t offset,const absl::Cord & block)1384 absl::Cord SpliceCord(const absl::Cord& blob, int64_t offset,
1385 const absl::Cord& block) {
1386 CHECK_GE(offset, 0);
1387 CHECK_LE(static_cast<size_t>(offset) + block.size(), blob.size());
1388 absl::Cord result(blob);
1389 result.RemoveSuffix(blob.size() - offset);
1390 result.Append(block);
1391 absl::Cord suffix(blob);
1392 suffix.RemovePrefix(offset + block.size());
1393 result.Append(suffix);
1394 CHECK_EQ(blob.size(), result.size());
1395 return result;
1396 }
1397
1398 // Taking an empty suffix of a block breaks appending.
TEST_P(CordTest,CordSpliceTestRemoveEntireBlock1)1399 TEST_P(CordTest, CordSpliceTestRemoveEntireBlock1) {
1400 absl::Cord zero = CordWithZedBlock(10);
1401 MaybeHarden(zero);
1402 absl::Cord suffix(zero);
1403 suffix.RemovePrefix(10);
1404 absl::Cord result;
1405 result.Append(suffix);
1406 }
1407
TEST_P(CordTest,CordSpliceTestRemoveEntireBlock2)1408 TEST_P(CordTest, CordSpliceTestRemoveEntireBlock2) {
1409 absl::Cord zero = CordWithZedBlock(10);
1410 MaybeHarden(zero);
1411 absl::Cord prefix(zero);
1412 prefix.RemoveSuffix(10);
1413 absl::Cord suffix(zero);
1414 suffix.RemovePrefix(10);
1415 absl::Cord result(prefix);
1416 result.Append(suffix);
1417 }
1418
TEST_P(CordTest,CordSpliceTestRemoveEntireBlock3)1419 TEST_P(CordTest, CordSpliceTestRemoveEntireBlock3) {
1420 absl::Cord blob = CordWithZedBlock(10);
1421 absl::Cord block = BigCord(10, 'b');
1422 MaybeHarden(blob);
1423 MaybeHarden(block);
1424 blob = SpliceCord(blob, 0, block);
1425 }
1426
1427 struct CordCompareTestCase {
1428 template <typename LHS, typename RHS>
CordCompareTestCase__anondd0221c80b11::CordCompareTestCase1429 CordCompareTestCase(const LHS& lhs, const RHS& rhs, bool use_crc)
1430 : lhs_cord(lhs), rhs_cord(rhs) {
1431 if (use_crc) {
1432 lhs_cord.SetExpectedChecksum(1);
1433 }
1434 }
1435
1436 absl::Cord lhs_cord;
1437 absl::Cord rhs_cord;
1438 };
1439
__anondd0221c80d02(int x) 1440 const auto sign = [](int x) { return x == 0 ? 0 : (x > 0 ? 1 : -1); };
1441
VerifyComparison(const CordCompareTestCase & test_case)1442 void VerifyComparison(const CordCompareTestCase& test_case) {
1443 std::string lhs_string(test_case.lhs_cord);
1444 std::string rhs_string(test_case.rhs_cord);
1445 int expected = sign(lhs_string.compare(rhs_string));
1446 EXPECT_EQ(expected, test_case.lhs_cord.Compare(test_case.rhs_cord))
1447 << "LHS=" << lhs_string << "; RHS=" << rhs_string;
1448 EXPECT_EQ(expected, test_case.lhs_cord.Compare(rhs_string))
1449 << "LHS=" << lhs_string << "; RHS=" << rhs_string;
1450 EXPECT_EQ(-expected, test_case.rhs_cord.Compare(test_case.lhs_cord))
1451 << "LHS=" << rhs_string << "; RHS=" << lhs_string;
1452 EXPECT_EQ(-expected, test_case.rhs_cord.Compare(lhs_string))
1453 << "LHS=" << rhs_string << "; RHS=" << lhs_string;
1454 }
1455
TEST_P(CordTest,Compare)1456 TEST_P(CordTest, Compare) {
1457 absl::Cord subcord("aaaaaBBBBBcccccDDDDD");
1458 subcord = subcord.Subcord(3, 10);
1459
1460 absl::Cord tmp("aaaaaaaaaaaaaaaa");
1461 tmp.Append("BBBBBBBBBBBBBBBB");
1462 absl::Cord concat = absl::Cord("cccccccccccccccc");
1463 concat.Append("DDDDDDDDDDDDDDDD");
1464 concat.Prepend(tmp);
1465
1466 absl::Cord concat2("aaaaaaaaaaaaa");
1467 concat2.Append("aaaBBBBBBBBBBBBBBBBccccc");
1468 concat2.Append("cccccccccccDDDDDDDDDDDDDD");
1469 concat2.Append("DD");
1470
1471 const bool use_crc = UseCrc();
1472
1473 std::vector<CordCompareTestCase> test_cases = {{
1474 // Inline cords
1475 {"abcdef", "abcdef", use_crc},
1476 {"abcdef", "abcdee", use_crc},
1477 {"abcdef", "abcdeg", use_crc},
1478 {"bbcdef", "abcdef", use_crc},
1479 {"bbcdef", "abcdeg", use_crc},
1480 {"abcdefa", "abcdef", use_crc},
1481 {"abcdef", "abcdefa", use_crc},
1482
1483 // Small flat cords
1484 {"aaaaaBBBBBcccccDDDDD", "aaaaaBBBBBcccccDDDDD", use_crc},
1485 {"aaaaaBBBBBcccccDDDDD", "aaaaaBBBBBxccccDDDDD", use_crc},
1486 {"aaaaaBBBBBcxcccDDDDD", "aaaaaBBBBBcccccDDDDD", use_crc},
1487 {"aaaaaBBBBBxccccDDDDD", "aaaaaBBBBBcccccDDDDX", use_crc},
1488 {"aaaaaBBBBBcccccDDDDDa", "aaaaaBBBBBcccccDDDDD", use_crc},
1489 {"aaaaaBBBBBcccccDDDDD", "aaaaaBBBBBcccccDDDDDa", use_crc},
1490
1491 // Subcords
1492 {subcord, subcord, use_crc},
1493 {subcord, "aaBBBBBccc", use_crc},
1494 {subcord, "aaBBBBBccd", use_crc},
1495 {subcord, "aaBBBBBccb", use_crc},
1496 {subcord, "aaBBBBBxcb", use_crc},
1497 {subcord, "aaBBBBBccca", use_crc},
1498 {subcord, "aaBBBBBcc", use_crc},
1499
1500 // Concats
1501 {concat, concat, use_crc},
1502 {concat,
1503 "aaaaaaaaaaaaaaaaBBBBBBBBBBBBBBBBccccccccccccccccDDDDDDDDDDDDDDDD",
1504 use_crc},
1505 {concat,
1506 "aaaaaaaaaaaaaaaaBBBBBBBBBBBBBBBBcccccccccccccccxDDDDDDDDDDDDDDDD",
1507 use_crc},
1508 {concat,
1509 "aaaaaaaaaaaaaaaaBBBBBBBBBBBBBBBBacccccccccccccccDDDDDDDDDDDDDDDD",
1510 use_crc},
1511 {concat,
1512 "aaaaaaaaaaaaaaaaBBBBBBBBBBBBBBBBccccccccccccccccDDDDDDDDDDDDDDD",
1513 use_crc},
1514 {concat,
1515 "aaaaaaaaaaaaaaaaBBBBBBBBBBBBBBBBccccccccccccccccDDDDDDDDDDDDDDDDe",
1516 use_crc},
1517
1518 {concat, concat2, use_crc},
1519 }};
1520
1521 for (const auto& tc : test_cases) {
1522 VerifyComparison(tc);
1523 }
1524 }
1525
TEST_P(CordTest,CompareAfterAssign)1526 TEST_P(CordTest, CompareAfterAssign) {
1527 absl::Cord a("aaaaaa1111111");
1528 absl::Cord b("aaaaaa2222222");
1529 MaybeHarden(a);
1530 a = "cccccc";
1531 b = "cccccc";
1532 EXPECT_EQ(a, b);
1533 EXPECT_FALSE(a < b);
1534
1535 a = "aaaa";
1536 b = "bbbbb";
1537 a = "";
1538 b = "";
1539 EXPECT_EQ(a, b);
1540 EXPECT_FALSE(a < b);
1541 }
1542
1543 // Test CompareTo() and ComparePrefix() against string and substring
1544 // comparison methods from basic_string.
TestCompare(const absl::Cord & c,const absl::Cord & d,RandomEngine * rng)1545 static void TestCompare(const absl::Cord& c, const absl::Cord& d,
1546 RandomEngine* rng) {
1547 // char_traits<char>::lt is guaranteed to do an unsigned comparison:
1548 // https://en.cppreference.com/w/cpp/string/char_traits/cmp. We also expect
1549 // Cord comparisons to be based on unsigned byte comparisons regardless of
1550 // whether char is signed.
1551 int expected = sign(std::string(c).compare(std::string(d)));
1552 EXPECT_EQ(expected, sign(c.Compare(d))) << c << ", " << d;
1553 }
1554
TEST_P(CordTest,CompareComparisonIsUnsigned)1555 TEST_P(CordTest, CompareComparisonIsUnsigned) {
1556 RandomEngine rng(GTEST_FLAG_GET(random_seed));
1557 std::uniform_int_distribution<uint32_t> uniform_uint8(0, 255);
1558 char x = static_cast<char>(uniform_uint8(rng));
1559 TestCompare(
1560 absl::Cord(std::string(GetUniformRandomUpTo(&rng, 100), x)),
1561 absl::Cord(std::string(GetUniformRandomUpTo(&rng, 100), x ^ 0x80)), &rng);
1562 }
1563
TEST_P(CordTest,CompareRandomComparisons)1564 TEST_P(CordTest, CompareRandomComparisons) {
1565 const int kIters = 5000;
1566 RandomEngine rng(GTEST_FLAG_GET(random_seed));
1567
1568 int n = GetUniformRandomUpTo(&rng, 5000);
1569 absl::Cord a[] = {MakeExternalCord(n),
1570 absl::Cord("ant"),
1571 absl::Cord("elephant"),
1572 absl::Cord("giraffe"),
1573 absl::Cord(std::string(GetUniformRandomUpTo(&rng, 100),
1574 GetUniformRandomUpTo(&rng, 100))),
1575 absl::Cord(""),
1576 absl::Cord("x"),
1577 absl::Cord("A"),
1578 absl::Cord("B"),
1579 absl::Cord("C")};
1580 for (int i = 0; i < kIters; i++) {
1581 absl::Cord c, d;
1582 for (int j = 0; j < (i % 7) + 1; j++) {
1583 c.Append(a[GetUniformRandomUpTo(&rng, ABSL_ARRAYSIZE(a))]);
1584 d.Append(a[GetUniformRandomUpTo(&rng, ABSL_ARRAYSIZE(a))]);
1585 }
1586 std::bernoulli_distribution coin_flip(0.5);
1587 MaybeHarden(c);
1588 MaybeHarden(d);
1589 TestCompare(coin_flip(rng) ? c : absl::Cord(std::string(c)),
1590 coin_flip(rng) ? d : absl::Cord(std::string(d)), &rng);
1591 }
1592 }
1593
1594 template <typename T1, typename T2>
CompareOperators()1595 void CompareOperators() {
1596 const T1 a("a");
1597 const T2 b("b");
1598
1599 EXPECT_TRUE(a == a);
1600 // For pointer type (i.e. `const char*`), operator== compares the address
1601 // instead of the string, so `a == const char*("a")` isn't necessarily true.
1602 EXPECT_TRUE(std::is_pointer<T1>::value || a == T1("a"));
1603 EXPECT_TRUE(std::is_pointer<T2>::value || a == T2("a"));
1604 EXPECT_FALSE(a == b);
1605
1606 EXPECT_TRUE(a != b);
1607 EXPECT_FALSE(a != a);
1608
1609 EXPECT_TRUE(a < b);
1610 EXPECT_FALSE(b < a);
1611
1612 EXPECT_TRUE(b > a);
1613 EXPECT_FALSE(a > b);
1614
1615 EXPECT_TRUE(a >= a);
1616 EXPECT_TRUE(b >= a);
1617 EXPECT_FALSE(a >= b);
1618
1619 EXPECT_TRUE(a <= a);
1620 EXPECT_TRUE(a <= b);
1621 EXPECT_FALSE(b <= a);
1622 }
1623
TEST_P(CordTest,ComparisonOperators_Cord_Cord)1624 TEST_P(CordTest, ComparisonOperators_Cord_Cord) {
1625 CompareOperators<absl::Cord, absl::Cord>();
1626 }
1627
TEST_P(CordTest,ComparisonOperators_Cord_StringPiece)1628 TEST_P(CordTest, ComparisonOperators_Cord_StringPiece) {
1629 CompareOperators<absl::Cord, absl::string_view>();
1630 }
1631
TEST_P(CordTest,ComparisonOperators_StringPiece_Cord)1632 TEST_P(CordTest, ComparisonOperators_StringPiece_Cord) {
1633 CompareOperators<absl::string_view, absl::Cord>();
1634 }
1635
TEST_P(CordTest,ComparisonOperators_Cord_string)1636 TEST_P(CordTest, ComparisonOperators_Cord_string) {
1637 CompareOperators<absl::Cord, std::string>();
1638 }
1639
TEST_P(CordTest,ComparisonOperators_string_Cord)1640 TEST_P(CordTest, ComparisonOperators_string_Cord) {
1641 CompareOperators<std::string, absl::Cord>();
1642 }
1643
TEST_P(CordTest,ComparisonOperators_stdstring_Cord)1644 TEST_P(CordTest, ComparisonOperators_stdstring_Cord) {
1645 CompareOperators<std::string, absl::Cord>();
1646 }
1647
TEST_P(CordTest,ComparisonOperators_Cord_stdstring)1648 TEST_P(CordTest, ComparisonOperators_Cord_stdstring) {
1649 CompareOperators<absl::Cord, std::string>();
1650 }
1651
TEST_P(CordTest,ComparisonOperators_charstar_Cord)1652 TEST_P(CordTest, ComparisonOperators_charstar_Cord) {
1653 CompareOperators<const char*, absl::Cord>();
1654 }
1655
TEST_P(CordTest,ComparisonOperators_Cord_charstar)1656 TEST_P(CordTest, ComparisonOperators_Cord_charstar) {
1657 CompareOperators<absl::Cord, const char*>();
1658 }
1659
TEST_P(CordTest,ConstructFromExternalReleaserInvoked)1660 TEST_P(CordTest, ConstructFromExternalReleaserInvoked) {
1661 // Empty external memory means the releaser should be called immediately.
1662 {
1663 bool invoked = false;
1664 auto releaser = [&invoked](absl::string_view) { invoked = true; };
1665 {
1666 auto c = absl::MakeCordFromExternal("", releaser);
1667 EXPECT_TRUE(invoked);
1668 }
1669 }
1670
1671 // If the size of the data is small enough, a future constructor
1672 // implementation may copy the bytes and immediately invoke the releaser
1673 // instead of creating an external node. We make a large dummy std::string to
1674 // make this test independent of such an optimization.
1675 std::string large_dummy(2048, 'c');
1676 {
1677 bool invoked = false;
1678 auto releaser = [&invoked](absl::string_view) { invoked = true; };
1679 {
1680 auto c = absl::MakeCordFromExternal(large_dummy, releaser);
1681 EXPECT_FALSE(invoked);
1682 }
1683 EXPECT_TRUE(invoked);
1684 }
1685
1686 {
1687 bool invoked = false;
1688 auto releaser = [&invoked](absl::string_view) { invoked = true; };
1689 {
1690 absl::Cord copy;
1691 {
1692 auto c = absl::MakeCordFromExternal(large_dummy, releaser);
1693 copy = c;
1694 EXPECT_FALSE(invoked);
1695 }
1696 EXPECT_FALSE(invoked);
1697 }
1698 EXPECT_TRUE(invoked);
1699 }
1700 }
1701
TEST_P(CordTest,ConstructFromExternalCompareContents)1702 TEST_P(CordTest, ConstructFromExternalCompareContents) {
1703 RandomEngine rng(GTEST_FLAG_GET(random_seed));
1704
1705 for (int length = 1; length <= 2048; length *= 2) {
1706 std::string data = RandomLowercaseString(&rng, length);
1707 auto* external = new std::string(data);
1708 auto cord =
1709 absl::MakeCordFromExternal(*external, [external](absl::string_view sv) {
1710 EXPECT_EQ(external->data(), sv.data());
1711 EXPECT_EQ(external->size(), sv.size());
1712 delete external;
1713 });
1714 MaybeHarden(cord);
1715 EXPECT_EQ(data, cord);
1716 }
1717 }
1718
TEST_P(CordTest,ConstructFromExternalLargeReleaser)1719 TEST_P(CordTest, ConstructFromExternalLargeReleaser) {
1720 RandomEngine rng(GTEST_FLAG_GET(random_seed));
1721 constexpr size_t kLength = 256;
1722 std::string data = RandomLowercaseString(&rng, kLength);
1723 std::array<char, kLength> data_array;
1724 for (size_t i = 0; i < kLength; ++i) data_array[i] = data[i];
1725 bool invoked = false;
1726 auto releaser = [data_array, &invoked](absl::string_view data) {
1727 EXPECT_EQ(data, absl::string_view(data_array.data(), data_array.size()));
1728 invoked = true;
1729 };
1730 (void)MaybeHardened(absl::MakeCordFromExternal(data, releaser));
1731 EXPECT_TRUE(invoked);
1732 }
1733
TEST_P(CordTest,ConstructFromExternalFunctionPointerReleaser)1734 TEST_P(CordTest, ConstructFromExternalFunctionPointerReleaser) {
1735 static absl::string_view data("hello world");
1736 static bool invoked;
1737 auto* releaser =
1738 static_cast<void (*)(absl::string_view)>([](absl::string_view sv) {
1739 EXPECT_EQ(data, sv);
1740 invoked = true;
1741 });
1742 invoked = false;
1743 (void)MaybeHardened(absl::MakeCordFromExternal(data, releaser));
1744 EXPECT_TRUE(invoked);
1745
1746 invoked = false;
1747 (void)MaybeHardened(absl::MakeCordFromExternal(data, *releaser));
1748 EXPECT_TRUE(invoked);
1749 }
1750
TEST_P(CordTest,ConstructFromExternalMoveOnlyReleaser)1751 TEST_P(CordTest, ConstructFromExternalMoveOnlyReleaser) {
1752 struct Releaser {
1753 explicit Releaser(bool* invoked) : invoked(invoked) {}
1754 Releaser(Releaser&& other) noexcept : invoked(other.invoked) {}
1755 void operator()(absl::string_view) const { *invoked = true; }
1756
1757 bool* invoked;
1758 };
1759
1760 bool invoked = false;
1761 (void)MaybeHardened(absl::MakeCordFromExternal("dummy", Releaser(&invoked)));
1762 EXPECT_TRUE(invoked);
1763 }
1764
TEST_P(CordTest,ConstructFromExternalNoArgLambda)1765 TEST_P(CordTest, ConstructFromExternalNoArgLambda) {
1766 bool invoked = false;
1767 (void)MaybeHardened(
1768 absl::MakeCordFromExternal("dummy", [&invoked]() { invoked = true; }));
1769 EXPECT_TRUE(invoked);
1770 }
1771
TEST_P(CordTest,ConstructFromExternalStringViewArgLambda)1772 TEST_P(CordTest, ConstructFromExternalStringViewArgLambda) {
1773 bool invoked = false;
1774 (void)MaybeHardened(absl::MakeCordFromExternal(
1775 "dummy", [&invoked](absl::string_view) { invoked = true; }));
1776 EXPECT_TRUE(invoked);
1777 }
1778
TEST_P(CordTest,ConstructFromExternalNonTrivialReleaserDestructor)1779 TEST_P(CordTest, ConstructFromExternalNonTrivialReleaserDestructor) {
1780 struct Releaser {
1781 explicit Releaser(bool* destroyed) : destroyed(destroyed) {}
1782 ~Releaser() { *destroyed = true; }
1783 void operator()(absl::string_view) const {}
1784
1785 bool* destroyed;
1786 };
1787
1788 bool destroyed = false;
1789 Releaser releaser(&destroyed);
1790 (void)MaybeHardened(absl::MakeCordFromExternal("dummy", releaser));
1791 EXPECT_TRUE(destroyed);
1792 }
1793
TEST_P(CordTest,ConstructFromExternalReferenceQualifierOverloads)1794 TEST_P(CordTest, ConstructFromExternalReferenceQualifierOverloads) {
1795 enum InvokedAs { kMissing, kLValue, kRValue };
1796 enum CopiedAs { kNone, kMove, kCopy };
1797 struct Tracker {
1798 CopiedAs copied_as = kNone;
1799 InvokedAs invoked_as = kMissing;
1800
1801 void Record(InvokedAs rhs) {
1802 ASSERT_EQ(invoked_as, kMissing);
1803 invoked_as = rhs;
1804 }
1805
1806 void Record(CopiedAs rhs) {
1807 if (copied_as == kNone || rhs == kCopy) copied_as = rhs;
1808 }
1809 } tracker;
1810
1811 class Releaser {
1812 public:
1813 explicit Releaser(Tracker* tracker) : tr_(tracker) { *tracker = Tracker(); }
1814 Releaser(Releaser&& rhs) : tr_(rhs.tr_) { tr_->Record(kMove); }
1815 Releaser(const Releaser& rhs) : tr_(rhs.tr_) { tr_->Record(kCopy); }
1816
1817 void operator()(absl::string_view) & { tr_->Record(kLValue); }
1818 void operator()(absl::string_view) && { tr_->Record(kRValue); }
1819
1820 private:
1821 Tracker* tr_;
1822 };
1823
1824 const Releaser releaser1(&tracker);
1825 (void)MaybeHardened(absl::MakeCordFromExternal("", releaser1));
1826 EXPECT_EQ(tracker.copied_as, kCopy);
1827 EXPECT_EQ(tracker.invoked_as, kRValue);
1828
1829 const Releaser releaser2(&tracker);
1830 (void)MaybeHardened(absl::MakeCordFromExternal("", releaser2));
1831 EXPECT_EQ(tracker.copied_as, kCopy);
1832 EXPECT_EQ(tracker.invoked_as, kRValue);
1833
1834 Releaser releaser3(&tracker);
1835 (void)MaybeHardened(absl::MakeCordFromExternal("", std::move(releaser3)));
1836 EXPECT_EQ(tracker.copied_as, kMove);
1837 EXPECT_EQ(tracker.invoked_as, kRValue);
1838
1839 Releaser releaser4(&tracker);
1840 (void)MaybeHardened(absl::MakeCordFromExternal("dummy", releaser4));
1841 EXPECT_EQ(tracker.copied_as, kCopy);
1842 EXPECT_EQ(tracker.invoked_as, kRValue);
1843
1844 const Releaser releaser5(&tracker);
1845 (void)MaybeHardened(absl::MakeCordFromExternal("dummy", releaser5));
1846 EXPECT_EQ(tracker.copied_as, kCopy);
1847 EXPECT_EQ(tracker.invoked_as, kRValue);
1848
1849 Releaser releaser6(&tracker);
1850 (void)MaybeHardened(absl::MakeCordFromExternal("foo", std::move(releaser6)));
1851 EXPECT_EQ(tracker.copied_as, kMove);
1852 EXPECT_EQ(tracker.invoked_as, kRValue);
1853 }
1854
TEST_P(CordTest,ExternalMemoryBasicUsage)1855 TEST_P(CordTest, ExternalMemoryBasicUsage) {
1856 static const char* strings[] = {"", "hello", "there"};
1857 for (const char* str : strings) {
1858 absl::Cord dst("(prefix)");
1859 MaybeHarden(dst);
1860 AddExternalMemory(str, &dst);
1861 MaybeHarden(dst);
1862 dst.Append("(suffix)");
1863 EXPECT_EQ((std::string("(prefix)") + str + std::string("(suffix)")),
1864 std::string(dst));
1865 }
1866 }
1867
TEST_P(CordTest,ExternalMemoryRemovePrefixSuffix)1868 TEST_P(CordTest, ExternalMemoryRemovePrefixSuffix) {
1869 // Exhaustively try all sub-strings.
1870 absl::Cord cord = MakeComposite();
1871 std::string s = std::string(cord);
1872 for (int offset = 0; offset <= s.size(); offset++) {
1873 for (int length = 0; length <= s.size() - offset; length++) {
1874 absl::Cord result(cord);
1875 MaybeHarden(result);
1876 result.RemovePrefix(offset);
1877 MaybeHarden(result);
1878 result.RemoveSuffix(result.size() - length);
1879 EXPECT_EQ(s.substr(offset, length), std::string(result))
1880 << offset << " " << length;
1881 }
1882 }
1883 }
1884
TEST_P(CordTest,ExternalMemoryGet)1885 TEST_P(CordTest, ExternalMemoryGet) {
1886 absl::Cord cord("hello");
1887 AddExternalMemory(" world!", &cord);
1888 MaybeHarden(cord);
1889 AddExternalMemory(" how are ", &cord);
1890 cord.Append(" you?");
1891 MaybeHarden(cord);
1892 std::string s = std::string(cord);
1893 for (int i = 0; i < s.size(); i++) {
1894 EXPECT_EQ(s[i], cord[i]);
1895 }
1896 }
1897
1898 // CordMemoryUsage tests verify the correctness of the EstimatedMemoryUsage()
1899 // We use whiteboxed expectations based on our knowledge of the layout and size
1900 // of empty and inlined cords, and flat nodes.
1901
1902 constexpr auto kFairShare = absl::CordMemoryAccounting::kFairShare;
1903 constexpr auto kTotalMorePrecise =
1904 absl::CordMemoryAccounting::kTotalMorePrecise;
1905
1906 // Creates a cord of `n` `c` values, making sure no string stealing occurs.
MakeCord(size_t n,char c)1907 absl::Cord MakeCord(size_t n, char c) {
1908 const std::string s(n, c);
1909 return absl::Cord(s);
1910 }
1911
TEST(CordTest,CordMemoryUsageEmpty)1912 TEST(CordTest, CordMemoryUsageEmpty) {
1913 absl::Cord cord;
1914 EXPECT_EQ(sizeof(absl::Cord), cord.EstimatedMemoryUsage());
1915 EXPECT_EQ(sizeof(absl::Cord), cord.EstimatedMemoryUsage(kFairShare));
1916 EXPECT_EQ(sizeof(absl::Cord), cord.EstimatedMemoryUsage(kTotalMorePrecise));
1917 }
1918
TEST(CordTest,CordMemoryUsageInlined)1919 TEST(CordTest, CordMemoryUsageInlined) {
1920 absl::Cord a("hello");
1921 EXPECT_EQ(a.EstimatedMemoryUsage(), sizeof(absl::Cord));
1922 EXPECT_EQ(a.EstimatedMemoryUsage(kFairShare), sizeof(absl::Cord));
1923 EXPECT_EQ(a.EstimatedMemoryUsage(kTotalMorePrecise), sizeof(absl::Cord));
1924 }
1925
TEST(CordTest,CordMemoryUsageExternalMemory)1926 TEST(CordTest, CordMemoryUsageExternalMemory) {
1927 absl::Cord cord;
1928 AddExternalMemory(std::string(1000, 'x'), &cord);
1929 const size_t expected =
1930 sizeof(absl::Cord) + 1000 + sizeof(CordRepExternal) + sizeof(intptr_t);
1931 EXPECT_EQ(cord.EstimatedMemoryUsage(), expected);
1932 EXPECT_EQ(cord.EstimatedMemoryUsage(kFairShare), expected);
1933 EXPECT_EQ(cord.EstimatedMemoryUsage(kTotalMorePrecise), expected);
1934 }
1935
TEST(CordTest,CordMemoryUsageFlat)1936 TEST(CordTest, CordMemoryUsageFlat) {
1937 absl::Cord cord = MakeCord(1000, 'a');
1938 const size_t flat_size =
1939 absl::CordTestPeer::Tree(cord)->flat()->AllocatedSize();
1940 EXPECT_EQ(cord.EstimatedMemoryUsage(), sizeof(absl::Cord) + flat_size);
1941 EXPECT_EQ(cord.EstimatedMemoryUsage(kFairShare),
1942 sizeof(absl::Cord) + flat_size);
1943 EXPECT_EQ(cord.EstimatedMemoryUsage(kTotalMorePrecise),
1944 sizeof(absl::Cord) + flat_size);
1945 }
1946
TEST(CordTest,CordMemoryUsageSubStringSharedFlat)1947 TEST(CordTest, CordMemoryUsageSubStringSharedFlat) {
1948 absl::Cord flat = MakeCord(2000, 'a');
1949 const size_t flat_size =
1950 absl::CordTestPeer::Tree(flat)->flat()->AllocatedSize();
1951 absl::Cord cord = flat.Subcord(500, 1000);
1952 EXPECT_EQ(cord.EstimatedMemoryUsage(),
1953 sizeof(absl::Cord) + sizeof(CordRepSubstring) + flat_size);
1954 EXPECT_EQ(cord.EstimatedMemoryUsage(kTotalMorePrecise),
1955 sizeof(absl::Cord) + sizeof(CordRepSubstring) + flat_size);
1956 EXPECT_EQ(cord.EstimatedMemoryUsage(kFairShare),
1957 sizeof(absl::Cord) + sizeof(CordRepSubstring) + flat_size / 2);
1958 }
1959
TEST(CordTest,CordMemoryUsageFlatShared)1960 TEST(CordTest, CordMemoryUsageFlatShared) {
1961 absl::Cord shared = MakeCord(1000, 'a');
1962 absl::Cord cord(shared);
1963 const size_t flat_size =
1964 absl::CordTestPeer::Tree(cord)->flat()->AllocatedSize();
1965 EXPECT_EQ(cord.EstimatedMemoryUsage(), sizeof(absl::Cord) + flat_size);
1966 EXPECT_EQ(cord.EstimatedMemoryUsage(kTotalMorePrecise),
1967 sizeof(absl::Cord) + flat_size);
1968 EXPECT_EQ(cord.EstimatedMemoryUsage(kFairShare),
1969 sizeof(absl::Cord) + flat_size / 2);
1970 }
1971
TEST(CordTest,CordMemoryUsageFlatHardenedAndShared)1972 TEST(CordTest, CordMemoryUsageFlatHardenedAndShared) {
1973 absl::Cord shared = MakeCord(1000, 'a');
1974 absl::Cord cord(shared);
1975 const size_t flat_size =
1976 absl::CordTestPeer::Tree(cord)->flat()->AllocatedSize();
1977 cord.SetExpectedChecksum(1);
1978 EXPECT_EQ(cord.EstimatedMemoryUsage(),
1979 sizeof(absl::Cord) + sizeof(CordRepCrc) + flat_size);
1980 EXPECT_EQ(cord.EstimatedMemoryUsage(kFairShare),
1981 sizeof(absl::Cord) + sizeof(CordRepCrc) + flat_size / 2);
1982
1983 absl::Cord cord2(cord);
1984 EXPECT_EQ(cord2.EstimatedMemoryUsage(),
1985 sizeof(absl::Cord) + sizeof(CordRepCrc) + flat_size);
1986 EXPECT_EQ(cord2.EstimatedMemoryUsage(kTotalMorePrecise),
1987 sizeof(absl::Cord) + sizeof(CordRepCrc) + flat_size);
1988 EXPECT_EQ(cord2.EstimatedMemoryUsage(kFairShare),
1989 sizeof(absl::Cord) + (sizeof(CordRepCrc) + flat_size / 2) / 2);
1990 }
1991
TEST(CordTest,CordMemoryUsageBTree)1992 TEST(CordTest, CordMemoryUsageBTree) {
1993 absl::Cord cord1;
1994 size_t flats1_size = 0;
1995 absl::Cord flats1[4] = {MakeCord(1000, 'a'), MakeCord(1100, 'a'),
1996 MakeCord(1200, 'a'), MakeCord(1300, 'a')};
1997 for (absl::Cord flat : flats1) {
1998 flats1_size += absl::CordTestPeer::Tree(flat)->flat()->AllocatedSize();
1999 cord1.Append(std::move(flat));
2000 }
2001
2002 // Make sure the created cord is a BTREE tree. Under some builds such as
2003 // windows DLL, we may have ODR like effects on the flag, meaning the DLL
2004 // code will run with the picked up default.
2005 if (!absl::CordTestPeer::Tree(cord1)->IsBtree()) {
2006 LOG(WARNING) << "Cord library code not respecting btree flag";
2007 return;
2008 }
2009
2010 size_t rep1_size = sizeof(CordRepBtree) + flats1_size;
2011 size_t rep1_shared_size = sizeof(CordRepBtree) + flats1_size / 2;
2012
2013 EXPECT_EQ(cord1.EstimatedMemoryUsage(), sizeof(absl::Cord) + rep1_size);
2014 EXPECT_EQ(cord1.EstimatedMemoryUsage(kTotalMorePrecise),
2015 sizeof(absl::Cord) + rep1_size);
2016 EXPECT_EQ(cord1.EstimatedMemoryUsage(kFairShare),
2017 sizeof(absl::Cord) + rep1_shared_size);
2018
2019 absl::Cord cord2;
2020 size_t flats2_size = 0;
2021 absl::Cord flats2[4] = {MakeCord(600, 'a'), MakeCord(700, 'a'),
2022 MakeCord(800, 'a'), MakeCord(900, 'a')};
2023 for (absl::Cord& flat : flats2) {
2024 flats2_size += absl::CordTestPeer::Tree(flat)->flat()->AllocatedSize();
2025 cord2.Append(std::move(flat));
2026 }
2027 size_t rep2_size = sizeof(CordRepBtree) + flats2_size;
2028
2029 EXPECT_EQ(cord2.EstimatedMemoryUsage(), sizeof(absl::Cord) + rep2_size);
2030 EXPECT_EQ(cord2.EstimatedMemoryUsage(kTotalMorePrecise),
2031 sizeof(absl::Cord) + rep2_size);
2032 EXPECT_EQ(cord2.EstimatedMemoryUsage(kFairShare),
2033 sizeof(absl::Cord) + rep2_size);
2034
2035 absl::Cord cord(cord1);
2036 cord.Append(std::move(cord2));
2037
2038 EXPECT_EQ(cord.EstimatedMemoryUsage(),
2039 sizeof(absl::Cord) + sizeof(CordRepBtree) + rep1_size + rep2_size);
2040 EXPECT_EQ(cord.EstimatedMemoryUsage(kTotalMorePrecise),
2041 sizeof(absl::Cord) + sizeof(CordRepBtree) + rep1_size + rep2_size);
2042 EXPECT_EQ(cord.EstimatedMemoryUsage(kFairShare),
2043 sizeof(absl::Cord) + sizeof(CordRepBtree) + rep1_shared_size / 2 +
2044 rep2_size);
2045 }
2046
TEST(CordTest,TestHashFragmentation)2047 TEST(CordTest, TestHashFragmentation) {
2048 // Make sure we hit these boundary cases precisely.
2049 EXPECT_EQ(1024, absl::hash_internal::PiecewiseChunkSize());
2050 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({
2051 absl::Cord(),
2052 absl::MakeFragmentedCord({std::string(600, 'a'), std::string(600, 'a')}),
2053 absl::MakeFragmentedCord({std::string(1200, 'a')}),
2054 absl::MakeFragmentedCord({std::string(900, 'b'), std::string(900, 'b')}),
2055 absl::MakeFragmentedCord({std::string(1800, 'b')}),
2056 absl::MakeFragmentedCord(
2057 {std::string(2000, 'c'), std::string(2000, 'c')}),
2058 absl::MakeFragmentedCord({std::string(4000, 'c')}),
2059 absl::MakeFragmentedCord({std::string(1024, 'd')}),
2060 absl::MakeFragmentedCord({std::string(1023, 'd'), "d"}),
2061 absl::MakeFragmentedCord({std::string(1025, 'e')}),
2062 absl::MakeFragmentedCord({std::string(1024, 'e'), "e"}),
2063 absl::MakeFragmentedCord({std::string(1023, 'e'), "e", "e"}),
2064 }));
2065 }
2066
2067 // Regtest for a change that had to be rolled back because it expanded out
2068 // of the InlineRep too soon, which was observable through MemoryUsage().
TEST_P(CordTest,CordMemoryUsageInlineRep)2069 TEST_P(CordTest, CordMemoryUsageInlineRep) {
2070 constexpr size_t kMaxInline = 15; // Cord::InlineRep::N
2071 const std::string small_string(kMaxInline, 'x');
2072 absl::Cord c1(small_string);
2073
2074 absl::Cord c2;
2075 c2.Append(small_string);
2076 EXPECT_EQ(c1, c2);
2077 EXPECT_EQ(c1.EstimatedMemoryUsage(), c2.EstimatedMemoryUsage());
2078 }
2079
TEST_P(CordTest,CordMemoryUsageTotalMorePreciseMode)2080 TEST_P(CordTest, CordMemoryUsageTotalMorePreciseMode) {
2081 constexpr size_t kChunkSize = 2000;
2082 std::string tmp_str(kChunkSize, 'x');
2083 const absl::Cord flat(std::move(tmp_str));
2084
2085 // Construct `fragmented` with two references into the same
2086 // underlying buffer shared with `flat`:
2087 absl::Cord fragmented(flat);
2088 fragmented.Append(flat);
2089
2090 // Memory usage of `flat`, minus the top-level Cord object:
2091 const size_t flat_internal_usage =
2092 flat.EstimatedMemoryUsage() - sizeof(absl::Cord);
2093
2094 // `fragmented` holds a Cord and a CordRepBtree. That tree points to two
2095 // copies of flat's internals, which we expect to dedup:
2096 EXPECT_EQ(fragmented.EstimatedMemoryUsage(kTotalMorePrecise),
2097 sizeof(absl::Cord) +
2098 sizeof(CordRepBtree) +
2099 flat_internal_usage);
2100
2101 // This is a case where kTotal produces an overestimate:
2102 EXPECT_EQ(fragmented.EstimatedMemoryUsage(),
2103 sizeof(absl::Cord) +
2104 sizeof(CordRepBtree) +
2105 2 * flat_internal_usage);
2106 }
2107
TEST_P(CordTest,CordMemoryUsageTotalMorePreciseModeWithSubstring)2108 TEST_P(CordTest, CordMemoryUsageTotalMorePreciseModeWithSubstring) {
2109 constexpr size_t kChunkSize = 2000;
2110 std::string tmp_str(kChunkSize, 'x');
2111 const absl::Cord flat(std::move(tmp_str));
2112
2113 // Construct `fragmented` with two references into the same
2114 // underlying buffer shared with `flat`.
2115 //
2116 // This time, each reference is through a Subcord():
2117 absl::Cord fragmented;
2118 fragmented.Append(flat.Subcord(1, kChunkSize - 2));
2119 fragmented.Append(flat.Subcord(1, kChunkSize - 2));
2120
2121 // Memory usage of `flat`, minus the top-level Cord object:
2122 const size_t flat_internal_usage =
2123 flat.EstimatedMemoryUsage() - sizeof(absl::Cord);
2124
2125 // `fragmented` holds a Cord and a CordRepBtree. That tree points to two
2126 // CordRepSubstrings, each pointing at flat's internals.
2127 EXPECT_EQ(fragmented.EstimatedMemoryUsage(kTotalMorePrecise),
2128 sizeof(absl::Cord) +
2129 sizeof(CordRepBtree) +
2130 2 * sizeof(CordRepSubstring) +
2131 flat_internal_usage);
2132
2133 // This is a case where kTotal produces an overestimate:
2134 EXPECT_EQ(fragmented.EstimatedMemoryUsage(),
2135 sizeof(absl::Cord) +
2136 sizeof(CordRepBtree) +
2137 2 * sizeof(CordRepSubstring) +
2138 2 * flat_internal_usage);
2139 }
2140 } // namespace
2141
2142 // Regtest for 7510292 (fix a bug introduced by 7465150)
TEST_P(CordTest,Concat_Append)2143 TEST_P(CordTest, Concat_Append) {
2144 // Create a rep of type CONCAT
2145 absl::Cord s1("foobarbarbarbarbar");
2146 MaybeHarden(s1);
2147 s1.Append("abcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefg");
2148 size_t size = s1.size();
2149
2150 // Create a copy of s1 and append to it.
2151 absl::Cord s2 = s1;
2152 MaybeHarden(s2);
2153 s2.Append("x");
2154
2155 // 7465150 modifies s1 when it shouldn't.
2156 EXPECT_EQ(s1.size(), size);
2157 EXPECT_EQ(s2.size(), size + 1);
2158 }
2159
TEST_P(CordTest,DiabolicalGrowth)2160 TEST_P(CordTest, DiabolicalGrowth) {
2161 // This test exercises a diabolical Append(<one char>) on a cord, making the
2162 // cord shared before each Append call resulting in a terribly fragmented
2163 // resulting cord.
2164 RandomEngine rng(GTEST_FLAG_GET(random_seed));
2165 const std::string expected = RandomLowercaseString(&rng, 5000);
2166 absl::Cord cord;
2167 for (char c : expected) {
2168 absl::Cord shared(cord);
2169 cord.Append(absl::string_view(&c, 1));
2170 MaybeHarden(cord);
2171 }
2172 std::string value;
2173 absl::CopyCordToString(cord, &value);
2174 EXPECT_EQ(value, expected);
2175 LOG(INFO) << "Diabolical size allocated = " << cord.EstimatedMemoryUsage();
2176 }
2177
2178 // The following tests check support for >4GB cords in 64-bit binaries, and
2179 // 2GB-4GB cords in 32-bit binaries. This function returns the large cord size
2180 // that's appropriate for the binary.
2181
2182 // Construct a huge cord with the specified valid prefix.
MakeHuge(absl::string_view prefix)2183 static absl::Cord MakeHuge(absl::string_view prefix) {
2184 absl::Cord cord;
2185 if (sizeof(size_t) > 4) {
2186 // In 64-bit binaries, test 64-bit Cord support.
2187 const size_t size =
2188 static_cast<size_t>(std::numeric_limits<uint32_t>::max()) + 314;
2189 cord.Append(absl::MakeCordFromExternal(
2190 absl::string_view(prefix.data(), size),
2191 [](absl::string_view s) { DoNothing(s, nullptr); }));
2192 } else {
2193 // Cords are limited to 32-bit lengths in 32-bit binaries. The following
2194 // tests check for use of "signed int" to represent Cord length/offset.
2195 // However absl::string_view does not allow lengths >= (1u<<31), so we need
2196 // to append in two parts;
2197 const size_t s1 = (1u << 31) - 1;
2198 // For shorter cord, `Append` copies the data rather than allocating a new
2199 // node. The threshold is currently set to 511, so `s2` needs to be bigger
2200 // to not trigger the copy.
2201 const size_t s2 = 600;
2202 cord.Append(absl::MakeCordFromExternal(
2203 absl::string_view(prefix.data(), s1),
2204 [](absl::string_view s) { DoNothing(s, nullptr); }));
2205 cord.Append(absl::MakeCordFromExternal(
2206 absl::string_view("", s2),
2207 [](absl::string_view s) { DoNothing(s, nullptr); }));
2208 }
2209 return cord;
2210 }
2211
TEST_P(CordTest,HugeCord)2212 TEST_P(CordTest, HugeCord) {
2213 absl::Cord cord = MakeHuge("huge cord");
2214 MaybeHarden(cord);
2215
2216 const size_t acceptable_delta =
2217 100 + (UseCrc() ? sizeof(absl::cord_internal::CordRepCrc) : 0);
2218 EXPECT_LE(cord.size(), cord.EstimatedMemoryUsage());
2219 EXPECT_GE(cord.size() + acceptable_delta, cord.EstimatedMemoryUsage());
2220 }
2221
2222 // Tests that Append() works ok when handed a self reference
TEST_P(CordTest,AppendSelf)2223 TEST_P(CordTest, AppendSelf) {
2224 // Test the empty case.
2225 absl::Cord empty;
2226 MaybeHarden(empty);
2227 empty.Append(empty);
2228 ASSERT_EQ(empty, "");
2229
2230 // We run the test until data is ~16K
2231 // This guarantees it covers small, medium and large data.
2232 std::string control_data = "Abc";
2233 absl::Cord data(control_data);
2234 while (control_data.length() < 0x4000) {
2235 MaybeHarden(data);
2236 data.Append(data);
2237 control_data.append(control_data);
2238 ASSERT_EQ(control_data, data);
2239 }
2240 }
2241
TEST_P(CordTest,MakeFragmentedCordFromInitializerList)2242 TEST_P(CordTest, MakeFragmentedCordFromInitializerList) {
2243 absl::Cord fragmented =
2244 absl::MakeFragmentedCord({"A ", "fragmented ", "Cord"});
2245
2246 MaybeHarden(fragmented);
2247
2248 EXPECT_EQ("A fragmented Cord", fragmented);
2249
2250 auto chunk_it = fragmented.chunk_begin();
2251
2252 ASSERT_TRUE(chunk_it != fragmented.chunk_end());
2253 EXPECT_EQ("A ", *chunk_it);
2254
2255 ASSERT_TRUE(++chunk_it != fragmented.chunk_end());
2256 EXPECT_EQ("fragmented ", *chunk_it);
2257
2258 ASSERT_TRUE(++chunk_it != fragmented.chunk_end());
2259 EXPECT_EQ("Cord", *chunk_it);
2260
2261 ASSERT_TRUE(++chunk_it == fragmented.chunk_end());
2262 }
2263
TEST_P(CordTest,MakeFragmentedCordFromVector)2264 TEST_P(CordTest, MakeFragmentedCordFromVector) {
2265 std::vector<absl::string_view> chunks = {"A ", "fragmented ", "Cord"};
2266 absl::Cord fragmented = absl::MakeFragmentedCord(chunks);
2267
2268 MaybeHarden(fragmented);
2269
2270 EXPECT_EQ("A fragmented Cord", fragmented);
2271
2272 auto chunk_it = fragmented.chunk_begin();
2273
2274 ASSERT_TRUE(chunk_it != fragmented.chunk_end());
2275 EXPECT_EQ("A ", *chunk_it);
2276
2277 ASSERT_TRUE(++chunk_it != fragmented.chunk_end());
2278 EXPECT_EQ("fragmented ", *chunk_it);
2279
2280 ASSERT_TRUE(++chunk_it != fragmented.chunk_end());
2281 EXPECT_EQ("Cord", *chunk_it);
2282
2283 ASSERT_TRUE(++chunk_it == fragmented.chunk_end());
2284 }
2285
TEST_P(CordTest,CordChunkIteratorTraits)2286 TEST_P(CordTest, CordChunkIteratorTraits) {
2287 static_assert(std::is_copy_constructible<absl::Cord::ChunkIterator>::value,
2288 "");
2289 static_assert(std::is_copy_assignable<absl::Cord::ChunkIterator>::value, "");
2290
2291 // Move semantics to satisfy swappable via std::swap
2292 static_assert(std::is_move_constructible<absl::Cord::ChunkIterator>::value,
2293 "");
2294 static_assert(std::is_move_assignable<absl::Cord::ChunkIterator>::value, "");
2295
2296 static_assert(
2297 std::is_same<
2298 std::iterator_traits<absl::Cord::ChunkIterator>::iterator_category,
2299 std::input_iterator_tag>::value,
2300 "");
2301 static_assert(
2302 std::is_same<std::iterator_traits<absl::Cord::ChunkIterator>::value_type,
2303 absl::string_view>::value,
2304 "");
2305 static_assert(
2306 std::is_same<
2307 std::iterator_traits<absl::Cord::ChunkIterator>::difference_type,
2308 ptrdiff_t>::value,
2309 "");
2310 static_assert(
2311 std::is_same<std::iterator_traits<absl::Cord::ChunkIterator>::pointer,
2312 const absl::string_view*>::value,
2313 "");
2314 static_assert(
2315 std::is_same<std::iterator_traits<absl::Cord::ChunkIterator>::reference,
2316 absl::string_view>::value,
2317 "");
2318 }
2319
VerifyChunkIterator(const absl::Cord & cord,size_t expected_chunks)2320 static void VerifyChunkIterator(const absl::Cord& cord,
2321 size_t expected_chunks) {
2322 EXPECT_EQ(cord.chunk_begin() == cord.chunk_end(), cord.empty()) << cord;
2323 EXPECT_EQ(cord.chunk_begin() != cord.chunk_end(), !cord.empty());
2324
2325 absl::Cord::ChunkRange range = cord.Chunks();
2326 EXPECT_EQ(range.begin() == range.end(), cord.empty());
2327 EXPECT_EQ(range.begin() != range.end(), !cord.empty());
2328
2329 std::string content(cord);
2330 size_t pos = 0;
2331 auto pre_iter = cord.chunk_begin(), post_iter = cord.chunk_begin();
2332 size_t n_chunks = 0;
2333 while (pre_iter != cord.chunk_end() && post_iter != cord.chunk_end()) {
2334 EXPECT_FALSE(pre_iter == cord.chunk_end()); // NOLINT: explicitly test ==
2335 EXPECT_FALSE(post_iter == cord.chunk_end()); // NOLINT
2336
2337 EXPECT_EQ(pre_iter, post_iter);
2338 EXPECT_EQ(*pre_iter, *post_iter);
2339
2340 EXPECT_EQ(pre_iter->data(), (*pre_iter).data());
2341 EXPECT_EQ(pre_iter->size(), (*pre_iter).size());
2342
2343 absl::string_view chunk = *pre_iter;
2344 EXPECT_FALSE(chunk.empty());
2345 EXPECT_LE(pos + chunk.size(), content.size());
2346 EXPECT_EQ(absl::string_view(content.c_str() + pos, chunk.size()), chunk);
2347
2348 int n_equal_iterators = 0;
2349 for (absl::Cord::ChunkIterator it = range.begin(); it != range.end();
2350 ++it) {
2351 n_equal_iterators += static_cast<int>(it == pre_iter);
2352 }
2353 EXPECT_EQ(n_equal_iterators, 1);
2354
2355 ++pre_iter;
2356 EXPECT_EQ(*post_iter++, chunk);
2357
2358 pos += chunk.size();
2359 ++n_chunks;
2360 }
2361 EXPECT_EQ(expected_chunks, n_chunks);
2362 EXPECT_EQ(pos, content.size());
2363 EXPECT_TRUE(pre_iter == cord.chunk_end()); // NOLINT: explicitly test ==
2364 EXPECT_TRUE(post_iter == cord.chunk_end()); // NOLINT
2365 }
2366
TEST_P(CordTest,CordChunkIteratorOperations)2367 TEST_P(CordTest, CordChunkIteratorOperations) {
2368 absl::Cord empty_cord;
2369 VerifyChunkIterator(empty_cord, 0);
2370
2371 absl::Cord small_buffer_cord("small cord");
2372 MaybeHarden(small_buffer_cord);
2373 VerifyChunkIterator(small_buffer_cord, 1);
2374
2375 absl::Cord flat_node_cord("larger than small buffer optimization");
2376 MaybeHarden(flat_node_cord);
2377 VerifyChunkIterator(flat_node_cord, 1);
2378
2379 VerifyChunkIterator(MaybeHardened(absl::MakeFragmentedCord(
2380 {"a ", "small ", "fragmented ", "cord ", "for ",
2381 "testing ", "chunk ", "iterations."})),
2382 8);
2383
2384 absl::Cord reused_nodes_cord(std::string(40, 'c'));
2385 reused_nodes_cord.Prepend(absl::Cord(std::string(40, 'b')));
2386 MaybeHarden(reused_nodes_cord);
2387 reused_nodes_cord.Prepend(absl::Cord(std::string(40, 'a')));
2388 size_t expected_chunks = 3;
2389 for (int i = 0; i < 8; ++i) {
2390 reused_nodes_cord.Prepend(reused_nodes_cord);
2391 MaybeHarden(reused_nodes_cord);
2392 expected_chunks *= 2;
2393 VerifyChunkIterator(reused_nodes_cord, expected_chunks);
2394 }
2395
2396 RandomEngine rng(GTEST_FLAG_GET(random_seed));
2397 absl::Cord flat_cord(RandomLowercaseString(&rng, 256));
2398 absl::Cord subcords;
2399 for (int i = 0; i < 128; ++i) subcords.Prepend(flat_cord.Subcord(i, 128));
2400 VerifyChunkIterator(subcords, 128);
2401 }
2402
2403
TEST_P(CordTest,AdvanceAndReadOnDataEdge)2404 TEST_P(CordTest, AdvanceAndReadOnDataEdge) {
2405 RandomEngine rng(GTEST_FLAG_GET(random_seed));
2406 const std::string data = RandomLowercaseString(&rng, 2000);
2407 for (bool as_flat : {true, false}) {
2408 SCOPED_TRACE(as_flat ? "Flat" : "External");
2409
2410 absl::Cord cord =
2411 as_flat ? absl::Cord(data)
2412 : absl::MakeCordFromExternal(data, [](absl::string_view) {});
2413 auto it = cord.Chars().begin();
2414 #if !defined(NDEBUG) || ABSL_OPTION_HARDENED
2415 EXPECT_DEATH_IF_SUPPORTED(cord.AdvanceAndRead(&it, 2001), ".*");
2416 #endif
2417
2418 it = cord.Chars().begin();
2419 absl::Cord frag = cord.AdvanceAndRead(&it, 2000);
2420 EXPECT_EQ(frag, data);
2421 EXPECT_TRUE(it == cord.Chars().end());
2422
2423 it = cord.Chars().begin();
2424 frag = cord.AdvanceAndRead(&it, 200);
2425 EXPECT_EQ(frag, data.substr(0, 200));
2426 EXPECT_FALSE(it == cord.Chars().end());
2427
2428 frag = cord.AdvanceAndRead(&it, 1500);
2429 EXPECT_EQ(frag, data.substr(200, 1500));
2430 EXPECT_FALSE(it == cord.Chars().end());
2431
2432 frag = cord.AdvanceAndRead(&it, 300);
2433 EXPECT_EQ(frag, data.substr(1700, 300));
2434 EXPECT_TRUE(it == cord.Chars().end());
2435 }
2436 }
2437
TEST_P(CordTest,AdvanceAndReadOnSubstringDataEdge)2438 TEST_P(CordTest, AdvanceAndReadOnSubstringDataEdge) {
2439 RandomEngine rng(GTEST_FLAG_GET(random_seed));
2440 const std::string data = RandomLowercaseString(&rng, 2500);
2441 for (bool as_flat : {true, false}) {
2442 SCOPED_TRACE(as_flat ? "Flat" : "External");
2443
2444 absl::Cord cord =
2445 as_flat ? absl::Cord(data)
2446 : absl::MakeCordFromExternal(data, [](absl::string_view) {});
2447 cord = cord.Subcord(200, 2000);
2448 const std::string substr = data.substr(200, 2000);
2449
2450 auto it = cord.Chars().begin();
2451 #if !defined(NDEBUG) || ABSL_OPTION_HARDENED
2452 EXPECT_DEATH_IF_SUPPORTED(cord.AdvanceAndRead(&it, 2001), ".*");
2453 #endif
2454
2455 it = cord.Chars().begin();
2456 absl::Cord frag = cord.AdvanceAndRead(&it, 2000);
2457 EXPECT_EQ(frag, substr);
2458 EXPECT_TRUE(it == cord.Chars().end());
2459
2460 it = cord.Chars().begin();
2461 frag = cord.AdvanceAndRead(&it, 200);
2462 EXPECT_EQ(frag, substr.substr(0, 200));
2463 EXPECT_FALSE(it == cord.Chars().end());
2464
2465 frag = cord.AdvanceAndRead(&it, 1500);
2466 EXPECT_EQ(frag, substr.substr(200, 1500));
2467 EXPECT_FALSE(it == cord.Chars().end());
2468
2469 frag = cord.AdvanceAndRead(&it, 300);
2470 EXPECT_EQ(frag, substr.substr(1700, 300));
2471 EXPECT_TRUE(it == cord.Chars().end());
2472 }
2473 }
2474
TEST_P(CordTest,CharIteratorTraits)2475 TEST_P(CordTest, CharIteratorTraits) {
2476 static_assert(std::is_copy_constructible<absl::Cord::CharIterator>::value,
2477 "");
2478 static_assert(std::is_copy_assignable<absl::Cord::CharIterator>::value, "");
2479
2480 // Move semantics to satisfy swappable via std::swap
2481 static_assert(std::is_move_constructible<absl::Cord::CharIterator>::value,
2482 "");
2483 static_assert(std::is_move_assignable<absl::Cord::CharIterator>::value, "");
2484
2485 static_assert(
2486 std::is_same<
2487 std::iterator_traits<absl::Cord::CharIterator>::iterator_category,
2488 std::input_iterator_tag>::value,
2489 "");
2490 static_assert(
2491 std::is_same<std::iterator_traits<absl::Cord::CharIterator>::value_type,
2492 char>::value,
2493 "");
2494 static_assert(
2495 std::is_same<
2496 std::iterator_traits<absl::Cord::CharIterator>::difference_type,
2497 ptrdiff_t>::value,
2498 "");
2499 static_assert(
2500 std::is_same<std::iterator_traits<absl::Cord::CharIterator>::pointer,
2501 const char*>::value,
2502 "");
2503 static_assert(
2504 std::is_same<std::iterator_traits<absl::Cord::CharIterator>::reference,
2505 const char&>::value,
2506 "");
2507 }
2508
VerifyCharIterator(const absl::Cord & cord)2509 static void VerifyCharIterator(const absl::Cord& cord) {
2510 EXPECT_EQ(cord.char_begin() == cord.char_end(), cord.empty());
2511 EXPECT_EQ(cord.char_begin() != cord.char_end(), !cord.empty());
2512
2513 absl::Cord::CharRange range = cord.Chars();
2514 EXPECT_EQ(range.begin() == range.end(), cord.empty());
2515 EXPECT_EQ(range.begin() != range.end(), !cord.empty());
2516
2517 size_t i = 0;
2518 absl::Cord::CharIterator pre_iter = cord.char_begin();
2519 absl::Cord::CharIterator post_iter = cord.char_begin();
2520 std::string content(cord);
2521 while (pre_iter != cord.char_end() && post_iter != cord.char_end()) {
2522 EXPECT_FALSE(pre_iter == cord.char_end()); // NOLINT: explicitly test ==
2523 EXPECT_FALSE(post_iter == cord.char_end()); // NOLINT
2524
2525 EXPECT_LT(i, cord.size());
2526 EXPECT_EQ(content[i], *pre_iter);
2527
2528 EXPECT_EQ(pre_iter, post_iter);
2529 EXPECT_EQ(*pre_iter, *post_iter);
2530 EXPECT_EQ(&*pre_iter, &*post_iter);
2531
2532 EXPECT_EQ(&*pre_iter, pre_iter.operator->());
2533
2534 const char* character_address = &*pre_iter;
2535 absl::Cord::CharIterator copy = pre_iter;
2536 ++copy;
2537 EXPECT_EQ(character_address, &*pre_iter);
2538
2539 int n_equal_iterators = 0;
2540 for (absl::Cord::CharIterator it = range.begin(); it != range.end(); ++it) {
2541 n_equal_iterators += static_cast<int>(it == pre_iter);
2542 }
2543 EXPECT_EQ(n_equal_iterators, 1);
2544
2545 absl::Cord::CharIterator advance_iter = range.begin();
2546 absl::Cord::Advance(&advance_iter, i);
2547 EXPECT_EQ(pre_iter, advance_iter);
2548
2549 advance_iter = range.begin();
2550 EXPECT_EQ(absl::Cord::AdvanceAndRead(&advance_iter, i), cord.Subcord(0, i));
2551 EXPECT_EQ(pre_iter, advance_iter);
2552
2553 advance_iter = pre_iter;
2554 absl::Cord::Advance(&advance_iter, cord.size() - i);
2555 EXPECT_EQ(range.end(), advance_iter);
2556
2557 advance_iter = pre_iter;
2558 EXPECT_EQ(absl::Cord::AdvanceAndRead(&advance_iter, cord.size() - i),
2559 cord.Subcord(i, cord.size() - i));
2560 EXPECT_EQ(range.end(), advance_iter);
2561
2562 ++i;
2563 ++pre_iter;
2564 post_iter++;
2565 }
2566 EXPECT_EQ(i, cord.size());
2567 EXPECT_TRUE(pre_iter == cord.char_end()); // NOLINT: explicitly test ==
2568 EXPECT_TRUE(post_iter == cord.char_end()); // NOLINT
2569
2570 absl::Cord::CharIterator zero_advanced_end = cord.char_end();
2571 absl::Cord::Advance(&zero_advanced_end, 0);
2572 EXPECT_EQ(zero_advanced_end, cord.char_end());
2573
2574 absl::Cord::CharIterator it = cord.char_begin();
2575 for (absl::string_view chunk : cord.Chunks()) {
2576 while (!chunk.empty()) {
2577 EXPECT_EQ(absl::Cord::ChunkRemaining(it), chunk);
2578 chunk.remove_prefix(1);
2579 ++it;
2580 }
2581 }
2582 }
2583
TEST_P(CordTest,CharIteratorOperations)2584 TEST_P(CordTest, CharIteratorOperations) {
2585 absl::Cord empty_cord;
2586 VerifyCharIterator(empty_cord);
2587
2588 absl::Cord small_buffer_cord("small cord");
2589 MaybeHarden(small_buffer_cord);
2590 VerifyCharIterator(small_buffer_cord);
2591
2592 absl::Cord flat_node_cord("larger than small buffer optimization");
2593 MaybeHarden(flat_node_cord);
2594 VerifyCharIterator(flat_node_cord);
2595
2596 VerifyCharIterator(MaybeHardened(
2597 absl::MakeFragmentedCord({"a ", "small ", "fragmented ", "cord ", "for ",
2598 "testing ", "character ", "iteration."})));
2599
2600 absl::Cord reused_nodes_cord("ghi");
2601 reused_nodes_cord.Prepend(absl::Cord("def"));
2602 reused_nodes_cord.Prepend(absl::Cord("abc"));
2603 for (int i = 0; i < 4; ++i) {
2604 reused_nodes_cord.Prepend(reused_nodes_cord);
2605 MaybeHarden(reused_nodes_cord);
2606 VerifyCharIterator(reused_nodes_cord);
2607 }
2608
2609 RandomEngine rng(GTEST_FLAG_GET(random_seed));
2610 absl::Cord flat_cord(RandomLowercaseString(&rng, 256));
2611 absl::Cord subcords;
2612 for (int i = 0; i < 4; ++i) {
2613 subcords.Prepend(flat_cord.Subcord(16 * i, 128));
2614 MaybeHarden(subcords);
2615 }
2616 VerifyCharIterator(subcords);
2617 }
2618
TEST_P(CordTest,CharIteratorAdvanceAndRead)2619 TEST_P(CordTest, CharIteratorAdvanceAndRead) {
2620 // Create a Cord holding 6 flats of 2500 bytes each, and then iterate over it
2621 // reading 150, 1500, 2500 and 3000 bytes. This will result in all possible
2622 // partial, full and straddled read combinations including reads below
2623 // kMaxBytesToCopy. b/197776822 surfaced a bug for a specific partial, small
2624 // read 'at end' on Cord which caused a failure on attempting to read past the
2625 // end in CordRepBtreeReader which was not covered by any existing test.
2626 constexpr int kBlocks = 6;
2627 constexpr size_t kBlockSize = 2500;
2628 constexpr size_t kChunkSize1 = 1500;
2629 constexpr size_t kChunkSize2 = 2500;
2630 constexpr size_t kChunkSize3 = 3000;
2631 constexpr size_t kChunkSize4 = 150;
2632 RandomEngine rng;
2633 std::string data = RandomLowercaseString(&rng, kBlocks * kBlockSize);
2634 absl::Cord cord;
2635 for (int i = 0; i < kBlocks; ++i) {
2636 const std::string block = data.substr(i * kBlockSize, kBlockSize);
2637 cord.Append(absl::Cord(block));
2638 }
2639
2640 MaybeHarden(cord);
2641
2642 for (size_t chunk_size :
2643 {kChunkSize1, kChunkSize2, kChunkSize3, kChunkSize4}) {
2644 absl::Cord::CharIterator it = cord.char_begin();
2645 size_t offset = 0;
2646 while (offset < data.length()) {
2647 const size_t n = std::min<size_t>(data.length() - offset, chunk_size);
2648 absl::Cord chunk = cord.AdvanceAndRead(&it, n);
2649 ASSERT_EQ(chunk.size(), n);
2650 ASSERT_EQ(chunk.Compare(data.substr(offset, n)), 0);
2651 offset += n;
2652 }
2653 }
2654 }
2655
TEST_P(CordTest,StreamingOutput)2656 TEST_P(CordTest, StreamingOutput) {
2657 absl::Cord c =
2658 absl::MakeFragmentedCord({"A ", "small ", "fragmented ", "Cord", "."});
2659 MaybeHarden(c);
2660 std::stringstream output;
2661 output << c;
2662 EXPECT_EQ("A small fragmented Cord.", output.str());
2663 }
2664
TEST_P(CordTest,ForEachChunk)2665 TEST_P(CordTest, ForEachChunk) {
2666 for (int num_elements : {1, 10, 200}) {
2667 SCOPED_TRACE(num_elements);
2668 std::vector<std::string> cord_chunks;
2669 for (int i = 0; i < num_elements; ++i) {
2670 cord_chunks.push_back(absl::StrCat("[", i, "]"));
2671 }
2672 absl::Cord c = absl::MakeFragmentedCord(cord_chunks);
2673 MaybeHarden(c);
2674
2675 std::vector<std::string> iterated_chunks;
2676 absl::CordTestPeer::ForEachChunk(c,
2677 [&iterated_chunks](absl::string_view sv) {
2678 iterated_chunks.emplace_back(sv);
2679 });
2680 EXPECT_EQ(iterated_chunks, cord_chunks);
2681 }
2682 }
2683
TEST_P(CordTest,SmallBufferAssignFromOwnData)2684 TEST_P(CordTest, SmallBufferAssignFromOwnData) {
2685 constexpr size_t kMaxInline = 15;
2686 std::string contents = "small buff cord";
2687 EXPECT_EQ(contents.size(), kMaxInline);
2688 for (size_t pos = 0; pos < contents.size(); ++pos) {
2689 for (size_t count = contents.size() - pos; count > 0; --count) {
2690 absl::Cord c(contents);
2691 MaybeHarden(c);
2692 absl::string_view flat = c.Flatten();
2693 c = flat.substr(pos, count);
2694 EXPECT_EQ(c, contents.substr(pos, count))
2695 << "pos = " << pos << "; count = " << count;
2696 }
2697 }
2698 }
2699
TEST_P(CordTest,Format)2700 TEST_P(CordTest, Format) {
2701 absl::Cord c;
2702 absl::Format(&c, "There were %04d little %s.", 3, "pigs");
2703 EXPECT_EQ(c, "There were 0003 little pigs.");
2704 MaybeHarden(c);
2705 absl::Format(&c, "And %-3llx bad wolf!", 1);
2706 MaybeHarden(c);
2707 EXPECT_EQ(c, "There were 0003 little pigs.And 1 bad wolf!");
2708 }
2709
TEST_P(CordTest,Stringify)2710 TEST_P(CordTest, Stringify) {
2711 absl::Cord c =
2712 absl::MakeFragmentedCord({"A ", "small ", "fragmented ", "Cord", "."});
2713 MaybeHarden(c);
2714 EXPECT_EQ(absl::StrCat(c), "A small fragmented Cord.");
2715 }
2716
TEST_P(CordTest,Hardening)2717 TEST_P(CordTest, Hardening) {
2718 absl::Cord cord("hello");
2719 MaybeHarden(cord);
2720
2721 // These statement should abort the program in all builds modes.
2722 EXPECT_DEATH_IF_SUPPORTED(cord.RemovePrefix(6), "");
2723 EXPECT_DEATH_IF_SUPPORTED(cord.RemoveSuffix(6), "");
2724
2725 bool test_hardening = false;
2726 ABSL_HARDENING_ASSERT([&]() {
2727 // This only runs when ABSL_HARDENING_ASSERT is active.
2728 test_hardening = true;
2729 return true;
2730 }());
2731 if (!test_hardening) return;
2732
2733 EXPECT_DEATH_IF_SUPPORTED(cord[5], "");
2734 EXPECT_DEATH_IF_SUPPORTED(*cord.chunk_end(), "");
2735 EXPECT_DEATH_IF_SUPPORTED(static_cast<void>(cord.chunk_end()->empty()), "");
2736 EXPECT_DEATH_IF_SUPPORTED(++cord.chunk_end(), "");
2737 }
2738
2739 // This test mimics a specific (and rare) application repeatedly splitting a
2740 // cord, inserting (overwriting) a string value, and composing a new cord from
2741 // the three pieces. This is hostile towards a Btree implementation: A split of
2742 // a node at any level is likely to have the right-most edge of the left split,
2743 // and the left-most edge of the right split shared. For example, splitting a
2744 // leaf node with 6 edges will result likely in a 1-6, 2-5, 3-4, etc. split,
2745 // sharing the 'split node'. When recomposing such nodes, we 'injected' an edge
2746 // in that node. As this happens with some probability on each level of the
2747 // tree, this will quickly grow the tree until it reaches maximum height.
TEST_P(CordTest,BtreeHostileSplitInsertJoin)2748 TEST_P(CordTest, BtreeHostileSplitInsertJoin) {
2749 absl::BitGen bitgen;
2750
2751 // Start with about 1GB of data
2752 std::string data(1 << 10, 'x');
2753 absl::Cord buffer(data);
2754 absl::Cord cord;
2755 for (int i = 0; i < 1000000; ++i) {
2756 cord.Append(buffer);
2757 }
2758
2759 for (int j = 0; j < 1000; ++j) {
2760 MaybeHarden(cord);
2761 size_t offset = absl::Uniform(bitgen, 0u, cord.size());
2762 size_t length = absl::Uniform(bitgen, 100u, data.size());
2763 if (cord.size() == offset) {
2764 cord.Append(absl::string_view(data.data(), length));
2765 } else {
2766 absl::Cord suffix;
2767 if (offset + length < cord.size()) {
2768 suffix = cord;
2769 suffix.RemovePrefix(offset + length);
2770 }
2771 if (cord.size() > offset) {
2772 cord.RemoveSuffix(cord.size() - offset);
2773 }
2774 cord.Append(absl::string_view(data.data(), length));
2775 if (!suffix.empty()) {
2776 cord.Append(suffix);
2777 }
2778 }
2779 }
2780 }
2781
2782 class AfterExitCordTester {
2783 public:
Set(absl::Cord * cord,absl::string_view expected)2784 bool Set(absl::Cord* cord, absl::string_view expected) {
2785 cord_ = cord;
2786 expected_ = expected;
2787 return true;
2788 }
2789
~AfterExitCordTester()2790 ~AfterExitCordTester() {
2791 EXPECT_EQ(*cord_, expected_);
2792 }
2793 private:
2794 absl::Cord* cord_;
2795 absl::string_view expected_;
2796 };
2797
2798 template <typename Str>
TestAfterExit(Str)2799 void TestAfterExit(Str) {
2800 const auto expected = Str::value;
2801 // Defined before `cord` to be destroyed after it.
2802 static AfterExitCordTester exit_tester; // NOLINT
2803 static absl::NoDestructor<absl::Cord> cord_leaker(Str{});
2804 // cord_leaker is static, so this reference will remain valid through the end
2805 // of program execution.
2806 static absl::Cord& cord = *cord_leaker;
2807 static bool init_exit_tester = exit_tester.Set(&cord, expected);
2808 (void)init_exit_tester;
2809
2810 EXPECT_EQ(cord, expected);
2811 // Copy the object and test the copy, and the original.
2812 {
2813 absl::Cord copy = cord;
2814 EXPECT_EQ(copy, expected);
2815 }
2816 // The original still works
2817 EXPECT_EQ(cord, expected);
2818
2819 // Try making adding more structure to the tree.
2820 {
2821 absl::Cord copy = cord;
2822 std::string expected_copy(expected);
2823 for (int i = 0; i < 10; ++i) {
2824 copy.Append(cord);
2825 absl::StrAppend(&expected_copy, expected);
2826 EXPECT_EQ(copy, expected_copy);
2827 }
2828 }
2829
2830 // Make sure we are using the right branch during constant evaluation.
2831 EXPECT_EQ(absl::CordTestPeer::IsTree(cord), cord.size() >= 16);
2832
2833 for (int i = 0; i < 10; ++i) {
2834 // Make a few more Cords from the same global rep.
2835 // This tests what happens when the refcount for it gets below 1.
2836 EXPECT_EQ(expected, absl::Cord(Str{}));
2837 }
2838 }
2839
SimpleStrlen(const char * p)2840 constexpr int SimpleStrlen(const char* p) {
2841 return *p ? 1 + SimpleStrlen(p + 1) : 0;
2842 }
2843
2844 struct ShortView {
operator ()ShortView2845 constexpr absl::string_view operator()() const {
2846 return absl::string_view("SSO string", SimpleStrlen("SSO string"));
2847 }
2848 };
2849
2850 struct LongView {
operator ()LongView2851 constexpr absl::string_view operator()() const {
2852 return absl::string_view("String that does not fit SSO.",
2853 SimpleStrlen("String that does not fit SSO."));
2854 }
2855 };
2856
2857
TEST_P(CordTest,AfterExit)2858 TEST_P(CordTest, AfterExit) {
2859 TestAfterExit(absl::strings_internal::MakeStringConstant(ShortView{}));
2860 TestAfterExit(absl::strings_internal::MakeStringConstant(LongView{}));
2861 }
2862
2863 namespace {
2864
2865 // Test helper that generates a populated cord for future manipulation.
2866 //
2867 // By test convention, all generated cords begin with the characters "abcde" at
2868 // the start of the first chunk.
2869 class PopulatedCordFactory {
2870 public:
PopulatedCordFactory(absl::string_view name,absl::Cord (* generator)())2871 constexpr PopulatedCordFactory(absl::string_view name,
2872 absl::Cord (*generator)())
2873 : name_(name), generator_(generator) {}
2874
Name() const2875 absl::string_view Name() const { return name_; }
Generate() const2876 absl::Cord Generate() const { return generator_(); }
2877
2878 private:
2879 absl::string_view name_;
2880 absl::Cord (*generator_)();
2881 };
2882
2883 // clang-format off
2884 // This array is constant-initialized in conformant compilers.
2885 PopulatedCordFactory cord_factories[] = {
__anondd0221c81e02null2886 {"sso", [] { return absl::Cord("abcde"); }},
__anondd0221c81f02null2887 {"flat", [] {
2888 // Too large to live in SSO space, but small enough to be a simple FLAT.
2889 absl::Cord flat(absl::StrCat("abcde", std::string(1000, 'x')));
2890 flat.Flatten();
2891 return flat;
2892 }},
__anondd0221c82002null2893 {"external", [] {
2894 // A cheat: we are using a string literal as the external storage, so a
2895 // no-op releaser is correct here.
2896 return absl::MakeCordFromExternal("abcde External!", []{});
2897 }},
__anondd0221c82202null2898 {"external substring", [] {
2899 // A cheat: we are using a string literal as the external storage, so a
2900 // no-op releaser is correct here.
2901 absl::Cord ext = absl::MakeCordFromExternal("-abcde External!", []{});
2902 return absl::CordTestPeer::MakeSubstring(ext, 1, ext.size() - 1);
2903 }},
__anondd0221c82402null2904 {"substring", [] {
2905 absl::Cord flat(absl::StrCat("-abcde", std::string(1000, 'x')));
2906 flat.Flatten();
2907 return flat.Subcord(1, 998);
2908 }},
__anondd0221c82502null2909 {"fragmented", [] {
2910 std::string fragment = absl::StrCat("abcde", std::string(195, 'x'));
2911 std::vector<std::string> fragments(200, fragment);
2912 absl::Cord cord = absl::MakeFragmentedCord(fragments);
2913 assert(cord.size() == 40000);
2914 return cord;
2915 }},
2916 };
2917 // clang-format on
2918
2919 // Test helper that can mutate a cord, and possibly undo the mutation, for
2920 // testing.
2921 class CordMutator {
2922 public:
CordMutator(absl::string_view name,void (* mutate)(absl::Cord &),void (* undo)(absl::Cord &)=nullptr)2923 constexpr CordMutator(absl::string_view name, void (*mutate)(absl::Cord&),
2924 void (*undo)(absl::Cord&) = nullptr)
2925 : name_(name), mutate_(mutate), undo_(undo) {}
2926
Name() const2927 absl::string_view Name() const { return name_; }
Mutate(absl::Cord & cord) const2928 void Mutate(absl::Cord& cord) const { mutate_(cord); }
CanUndo() const2929 bool CanUndo() const { return undo_ != nullptr; }
Undo(absl::Cord & cord) const2930 void Undo(absl::Cord& cord) const { undo_(cord); }
2931
2932 private:
2933 absl::string_view name_;
2934 void (*mutate_)(absl::Cord&);
2935 void (*undo_)(absl::Cord&);
2936 };
2937
2938 // clang-format off
2939 // This array is constant-initialized in conformant compilers.
2940 CordMutator cord_mutators[] = {
__anondd0221c82602() 2941 {"clear", [](absl::Cord& c) { c.Clear(); }},
__anondd0221c82702() 2942 {"overwrite", [](absl::Cord& c) { c = "overwritten"; }},
2943 {
2944 "append string",
__anondd0221c82802() 2945 [](absl::Cord& c) { c.Append("0123456789"); },
__anondd0221c82902() 2946 [](absl::Cord& c) { c.RemoveSuffix(10); }
2947 },
2948 {
2949 "append cord",
__anondd0221c82a02() 2950 [](absl::Cord& c) {
2951 c.Append(absl::MakeFragmentedCord({"12345", "67890"}));
2952 },
__anondd0221c82b02() 2953 [](absl::Cord& c) { c.RemoveSuffix(10); }
2954 },
2955 {
2956 "append checksummed cord",
__anondd0221c82c02() 2957 [](absl::Cord& c) {
2958 absl::Cord to_append = absl::MakeFragmentedCord({"12345", "67890"});
2959 to_append.SetExpectedChecksum(999);
2960 c.Append(to_append);
2961 },
__anondd0221c82d02() 2962 [](absl::Cord& c) { c.RemoveSuffix(10); }
2963 },
2964 {
2965 "append self",
__anondd0221c82e02() 2966 [](absl::Cord& c) { c.Append(c); },
__anondd0221c82f02() 2967 [](absl::Cord& c) { c.RemoveSuffix(c.size() / 2); }
2968 },
2969 {
2970 "append empty string",
__anondd0221c83002() 2971 [](absl::Cord& c) { c.Append(""); },
__anondd0221c83102() 2972 [](absl::Cord& c) { }
2973 },
2974 {
2975 "append empty cord",
__anondd0221c83202() 2976 [](absl::Cord& c) { c.Append(absl::Cord()); },
__anondd0221c83302() 2977 [](absl::Cord& c) { }
2978 },
2979 {
2980 "append empty checksummed cord",
__anondd0221c83402() 2981 [](absl::Cord& c) {
2982 absl::Cord to_append;
2983 to_append.SetExpectedChecksum(999);
2984 c.Append(to_append);
2985 },
__anondd0221c83502() 2986 [](absl::Cord& c) { }
2987 },
2988 {
2989 "prepend string",
__anondd0221c83602() 2990 [](absl::Cord& c) { c.Prepend("9876543210"); },
__anondd0221c83702() 2991 [](absl::Cord& c) { c.RemovePrefix(10); }
2992 },
2993 {
2994 "prepend cord",
__anondd0221c83802() 2995 [](absl::Cord& c) {
2996 c.Prepend(absl::MakeFragmentedCord({"98765", "43210"}));
2997 },
__anondd0221c83902() 2998 [](absl::Cord& c) { c.RemovePrefix(10); }
2999 },
3000 {
3001 "prepend checksummed cord",
__anondd0221c83a02() 3002 [](absl::Cord& c) {
3003 absl::Cord to_prepend = absl::MakeFragmentedCord({"98765", "43210"});
3004 to_prepend.SetExpectedChecksum(999);
3005 c.Prepend(to_prepend);
3006 },
__anondd0221c83b02() 3007 [](absl::Cord& c) { c.RemovePrefix(10); }
3008 },
3009 {
3010 "prepend empty string",
__anondd0221c83c02() 3011 [](absl::Cord& c) { c.Prepend(""); },
__anondd0221c83d02() 3012 [](absl::Cord& c) { }
3013 },
3014 {
3015 "prepend empty cord",
__anondd0221c83e02() 3016 [](absl::Cord& c) { c.Prepend(absl::Cord()); },
__anondd0221c83f02() 3017 [](absl::Cord& c) { }
3018 },
3019 {
3020 "prepend empty checksummed cord",
__anondd0221c84002() 3021 [](absl::Cord& c) {
3022 absl::Cord to_prepend;
3023 to_prepend.SetExpectedChecksum(999);
3024 c.Prepend(to_prepend);
3025 },
__anondd0221c84102() 3026 [](absl::Cord& c) { }
3027 },
3028 {
3029 "prepend self",
__anondd0221c84202() 3030 [](absl::Cord& c) { c.Prepend(c); },
__anondd0221c84302() 3031 [](absl::Cord& c) { c.RemovePrefix(c.size() / 2); }
3032 },
__anondd0221c84402() 3033 {"remove prefix", [](absl::Cord& c) { c.RemovePrefix(c.size() / 2); }},
__anondd0221c84502() 3034 {"remove suffix", [](absl::Cord& c) { c.RemoveSuffix(c.size() / 2); }},
__anondd0221c84602() 3035 {"remove 0-prefix", [](absl::Cord& c) { c.RemovePrefix(0); }},
__anondd0221c84702() 3036 {"remove 0-suffix", [](absl::Cord& c) { c.RemoveSuffix(0); }},
__anondd0221c84802() 3037 {"subcord", [](absl::Cord& c) { c = c.Subcord(1, c.size() - 2); }},
3038 {
3039 "swap inline",
__anondd0221c84902() 3040 [](absl::Cord& c) {
3041 absl::Cord other("swap");
3042 c.swap(other);
3043 }
3044 },
3045 {
3046 "swap tree",
__anondd0221c84a02() 3047 [](absl::Cord& c) {
3048 absl::Cord other(std::string(10000, 'x'));
3049 c.swap(other);
3050 }
3051 },
3052 };
3053 // clang-format on
3054 } // namespace
3055
TEST_P(CordTest,ExpectedChecksum)3056 TEST_P(CordTest, ExpectedChecksum) {
3057 for (const PopulatedCordFactory& factory : cord_factories) {
3058 SCOPED_TRACE(factory.Name());
3059 for (bool shared : {false, true}) {
3060 SCOPED_TRACE(shared);
3061
3062 absl::Cord shared_cord_source = factory.Generate();
3063 auto make_instance = [=] {
3064 return shared ? shared_cord_source : factory.Generate();
3065 };
3066
3067 const absl::Cord base_value = factory.Generate();
3068 const std::string base_value_as_string(factory.Generate().Flatten());
3069
3070 absl::Cord c1 = make_instance();
3071 EXPECT_FALSE(c1.ExpectedChecksum().has_value());
3072
3073 // Setting an expected checksum works, and retains the cord's bytes
3074 c1.SetExpectedChecksum(12345);
3075 EXPECT_EQ(c1.ExpectedChecksum().value_or(0), 12345);
3076 EXPECT_EQ(c1, base_value);
3077
3078 // Test that setting an expected checksum again doesn't crash or leak
3079 // memory.
3080 c1.SetExpectedChecksum(12345);
3081 EXPECT_EQ(c1.ExpectedChecksum().value_or(0), 12345);
3082 EXPECT_EQ(c1, base_value);
3083
3084 // CRC persists through copies, assignments, and moves:
3085 absl::Cord c1_copy_construct = c1;
3086 EXPECT_EQ(c1_copy_construct.ExpectedChecksum().value_or(0), 12345);
3087
3088 absl::Cord c1_copy_assign;
3089 c1_copy_assign = c1;
3090 EXPECT_EQ(c1_copy_assign.ExpectedChecksum().value_or(0), 12345);
3091
3092 absl::Cord c1_move(std::move(c1_copy_assign));
3093 EXPECT_EQ(c1_move.ExpectedChecksum().value_or(0), 12345);
3094
3095 EXPECT_EQ(c1.ExpectedChecksum().value_or(0), 12345);
3096
3097 // A CRC Cord compares equal to its non-CRC value.
3098 EXPECT_EQ(c1, make_instance());
3099
3100 for (const CordMutator& mutator : cord_mutators) {
3101 SCOPED_TRACE(mutator.Name());
3102
3103 // Test that mutating a cord removes its stored checksum
3104 absl::Cord c2 = make_instance();
3105 c2.SetExpectedChecksum(24680);
3106
3107 mutator.Mutate(c2);
3108
3109 if (c1 == c2) {
3110 // Not a mutation (for example, appending the empty string).
3111 // Whether the checksum is removed is not defined.
3112 continue;
3113 }
3114
3115 EXPECT_EQ(c2.ExpectedChecksum(), absl::nullopt);
3116
3117 if (mutator.CanUndo()) {
3118 // Undoing an operation should not restore the checksum
3119 mutator.Undo(c2);
3120 EXPECT_EQ(c2, base_value);
3121 EXPECT_EQ(c2.ExpectedChecksum(), absl::nullopt);
3122 }
3123 }
3124
3125 absl::Cord c3 = make_instance();
3126 c3.SetExpectedChecksum(999);
3127 const absl::Cord& cc3 = c3;
3128
3129 // Test that all cord reading operations function in the face of an
3130 // expected checksum.
3131
3132 // Test data precondition
3133 ASSERT_TRUE(cc3.StartsWith("abcde"));
3134
3135 EXPECT_EQ(cc3.size(), base_value_as_string.size());
3136 EXPECT_FALSE(cc3.empty());
3137 EXPECT_EQ(cc3.Compare(base_value), 0);
3138 EXPECT_EQ(cc3.Compare(base_value_as_string), 0);
3139 EXPECT_EQ(cc3.Compare("wxyz"), -1);
3140 EXPECT_EQ(cc3.Compare(absl::Cord("wxyz")), -1);
3141 EXPECT_EQ(cc3.Compare("aaaa"), 1);
3142 EXPECT_EQ(cc3.Compare(absl::Cord("aaaa")), 1);
3143 EXPECT_EQ(absl::Cord("wxyz").Compare(cc3), 1);
3144 EXPECT_EQ(absl::Cord("aaaa").Compare(cc3), -1);
3145 EXPECT_TRUE(cc3.StartsWith("abcd"));
3146 EXPECT_EQ(std::string(cc3), base_value_as_string);
3147
3148 std::string dest;
3149 absl::CopyCordToString(cc3, &dest);
3150 EXPECT_EQ(dest, base_value_as_string);
3151
3152 bool first_pass = true;
3153 for (absl::string_view chunk : cc3.Chunks()) {
3154 if (first_pass) {
3155 EXPECT_TRUE(absl::StartsWith(chunk, "abcde"));
3156 }
3157 first_pass = false;
3158 }
3159 first_pass = true;
3160 for (char ch : cc3.Chars()) {
3161 if (first_pass) {
3162 EXPECT_EQ(ch, 'a');
3163 }
3164 first_pass = false;
3165 }
3166 EXPECT_TRUE(absl::StartsWith(*cc3.chunk_begin(), "abcde"));
3167 EXPECT_EQ(*cc3.char_begin(), 'a');
3168
3169 auto char_it = cc3.char_begin();
3170 absl::Cord::Advance(&char_it, 2);
3171 EXPECT_EQ(absl::Cord::AdvanceAndRead(&char_it, 2), "cd");
3172 EXPECT_EQ(*char_it, 'e');
3173 char_it = cc3.char_begin();
3174 absl::Cord::Advance(&char_it, 2);
3175 EXPECT_TRUE(absl::StartsWith(absl::Cord::ChunkRemaining(char_it), "cde"));
3176
3177 EXPECT_EQ(cc3[0], 'a');
3178 EXPECT_EQ(cc3[4], 'e');
3179 EXPECT_EQ(absl::HashOf(cc3), absl::HashOf(base_value));
3180 EXPECT_EQ(absl::HashOf(cc3), absl::HashOf(base_value_as_string));
3181 }
3182 }
3183 }
3184
3185 // Test the special cases encountered with an empty checksummed cord.
TEST_P(CordTest,ChecksummedEmptyCord)3186 TEST_P(CordTest, ChecksummedEmptyCord) {
3187 absl::Cord c1;
3188 EXPECT_FALSE(c1.ExpectedChecksum().has_value());
3189
3190 // Setting an expected checksum works.
3191 c1.SetExpectedChecksum(12345);
3192 EXPECT_EQ(c1.ExpectedChecksum().value_or(0), 12345);
3193 EXPECT_EQ(c1, "");
3194 EXPECT_TRUE(c1.empty());
3195
3196 // Test that setting an expected checksum again doesn't crash or leak memory.
3197 c1.SetExpectedChecksum(12345);
3198 EXPECT_EQ(c1.ExpectedChecksum().value_or(0), 12345);
3199 EXPECT_EQ(c1, "");
3200 EXPECT_TRUE(c1.empty());
3201
3202 // CRC persists through copies, assignments, and moves:
3203 absl::Cord c1_copy_construct = c1;
3204 EXPECT_EQ(c1_copy_construct.ExpectedChecksum().value_or(0), 12345);
3205
3206 absl::Cord c1_copy_assign;
3207 c1_copy_assign = c1;
3208 EXPECT_EQ(c1_copy_assign.ExpectedChecksum().value_or(0), 12345);
3209
3210 absl::Cord c1_move(std::move(c1_copy_assign));
3211 EXPECT_EQ(c1_move.ExpectedChecksum().value_or(0), 12345);
3212
3213 EXPECT_EQ(c1.ExpectedChecksum().value_or(0), 12345);
3214
3215 // A CRC Cord compares equal to its non-CRC value.
3216 EXPECT_EQ(c1, absl::Cord());
3217
3218 for (const CordMutator& mutator : cord_mutators) {
3219 SCOPED_TRACE(mutator.Name());
3220
3221 // Exercise mutating an empty checksummed cord to catch crashes and exercise
3222 // memory sanitizers.
3223 absl::Cord c2;
3224 c2.SetExpectedChecksum(24680);
3225 mutator.Mutate(c2);
3226
3227 if (c2.empty()) {
3228 // Not a mutation
3229 continue;
3230 }
3231 EXPECT_EQ(c2.ExpectedChecksum(), absl::nullopt);
3232
3233 if (mutator.CanUndo()) {
3234 mutator.Undo(c2);
3235 }
3236 }
3237
3238 absl::Cord c3;
3239 c3.SetExpectedChecksum(999);
3240 const absl::Cord& cc3 = c3;
3241
3242 // Test that all cord reading operations function in the face of an
3243 // expected checksum.
3244 EXPECT_TRUE(cc3.StartsWith(""));
3245 EXPECT_TRUE(cc3.EndsWith(""));
3246 EXPECT_TRUE(cc3.empty());
3247 EXPECT_EQ(cc3, "");
3248 EXPECT_EQ(cc3, absl::Cord());
3249 EXPECT_EQ(cc3.size(), 0);
3250 EXPECT_EQ(cc3.Compare(absl::Cord()), 0);
3251 EXPECT_EQ(cc3.Compare(c1), 0);
3252 EXPECT_EQ(cc3.Compare(cc3), 0);
3253 EXPECT_EQ(cc3.Compare(""), 0);
3254 EXPECT_EQ(cc3.Compare("wxyz"), -1);
3255 EXPECT_EQ(cc3.Compare(absl::Cord("wxyz")), -1);
3256 EXPECT_EQ(absl::Cord("wxyz").Compare(cc3), 1);
3257 EXPECT_EQ(std::string(cc3), "");
3258
3259 std::string dest;
3260 absl::CopyCordToString(cc3, &dest);
3261 EXPECT_EQ(dest, "");
3262
3263 for (absl::string_view chunk : cc3.Chunks()) { // NOLINT(unreachable loop)
3264 static_cast<void>(chunk);
3265 GTEST_FAIL() << "no chunks expected";
3266 }
3267 EXPECT_TRUE(cc3.chunk_begin() == cc3.chunk_end());
3268
3269 for (char ch : cc3.Chars()) { // NOLINT(unreachable loop)
3270 static_cast<void>(ch);
3271 GTEST_FAIL() << "no chars expected";
3272 }
3273 EXPECT_TRUE(cc3.char_begin() == cc3.char_end());
3274
3275 EXPECT_EQ(cc3.TryFlat(), "");
3276 EXPECT_EQ(absl::HashOf(c3), absl::HashOf(absl::Cord()));
3277 EXPECT_EQ(absl::HashOf(c3), absl::HashOf(absl::string_view()));
3278 }
3279
TEST(CrcCordTest,ChecksummedEmptyCordEstimateMemoryUsage)3280 TEST(CrcCordTest, ChecksummedEmptyCordEstimateMemoryUsage) {
3281 absl::Cord cord;
3282 cord.SetExpectedChecksum(0);
3283 EXPECT_NE(cord.EstimatedMemoryUsage(), 0);
3284 }
3285
3286 #if defined(GTEST_HAS_DEATH_TEST) && defined(ABSL_INTERNAL_CORD_HAVE_SANITIZER)
3287
3288 // Returns an expected poison / uninitialized death message expression.
MASanDeathExpr()3289 const char* MASanDeathExpr() {
3290 return "(use-after-poison|use-of-uninitialized-value)";
3291 }
3292
TEST(CordSanitizerTest,SanitizesEmptyCord)3293 TEST(CordSanitizerTest, SanitizesEmptyCord) {
3294 absl::Cord cord;
3295 const char* data = cord.Flatten().data();
3296 EXPECT_DEATH(EXPECT_EQ(data[0], 0), MASanDeathExpr());
3297 }
3298
TEST(CordSanitizerTest,SanitizesSmallCord)3299 TEST(CordSanitizerTest, SanitizesSmallCord) {
3300 absl::Cord cord("Hello");
3301 const char* data = cord.Flatten().data();
3302 EXPECT_DEATH(EXPECT_EQ(data[5], 0), MASanDeathExpr());
3303 }
3304
TEST(CordSanitizerTest,SanitizesCordOnSetSSOValue)3305 TEST(CordSanitizerTest, SanitizesCordOnSetSSOValue) {
3306 absl::Cord cord("String that is too big to be an SSO value");
3307 cord = "Hello";
3308 const char* data = cord.Flatten().data();
3309 EXPECT_DEATH(EXPECT_EQ(data[5], 0), MASanDeathExpr());
3310 }
3311
TEST(CordSanitizerTest,SanitizesCordOnCopyCtor)3312 TEST(CordSanitizerTest, SanitizesCordOnCopyCtor) {
3313 absl::Cord src("hello");
3314 absl::Cord dst(src);
3315 const char* data = dst.Flatten().data();
3316 EXPECT_DEATH(EXPECT_EQ(data[5], 0), MASanDeathExpr());
3317 }
3318
TEST(CordSanitizerTest,SanitizesCordOnMoveCtor)3319 TEST(CordSanitizerTest, SanitizesCordOnMoveCtor) {
3320 absl::Cord src("hello");
3321 absl::Cord dst(std::move(src));
3322 const char* data = dst.Flatten().data();
3323 EXPECT_DEATH(EXPECT_EQ(data[5], 0), MASanDeathExpr());
3324 }
3325
TEST(CordSanitizerTest,SanitizesCordOnAssign)3326 TEST(CordSanitizerTest, SanitizesCordOnAssign) {
3327 absl::Cord src("hello");
3328 absl::Cord dst;
3329 dst = src;
3330 const char* data = dst.Flatten().data();
3331 EXPECT_DEATH(EXPECT_EQ(data[5], 0), MASanDeathExpr());
3332 }
3333
TEST(CordSanitizerTest,SanitizesCordOnMoveAssign)3334 TEST(CordSanitizerTest, SanitizesCordOnMoveAssign) {
3335 absl::Cord src("hello");
3336 absl::Cord dst;
3337 dst = std::move(src);
3338 const char* data = dst.Flatten().data();
3339 EXPECT_DEATH(EXPECT_EQ(data[5], 0), MASanDeathExpr());
3340 }
3341
TEST(CordSanitizerTest,SanitizesCordOnSsoAssign)3342 TEST(CordSanitizerTest, SanitizesCordOnSsoAssign) {
3343 absl::Cord src("hello");
3344 absl::Cord dst("String that is too big to be an SSO value");
3345 dst = src;
3346 const char* data = dst.Flatten().data();
3347 EXPECT_DEATH(EXPECT_EQ(data[5], 0), MASanDeathExpr());
3348 }
3349
3350 #endif // GTEST_HAS_DEATH_TEST && ABSL_INTERNAL_CORD_HAVE_SANITIZER
3351