• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**************************************************************************
2  *
3  * Copyright 2008 VMware, Inc.
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 
29 
30 #include "util/detect.h"
31 #include "util/u_math.h"
32 #include "util/u_cpu_detect.h"
33 
34 #if DETECT_ARCH_SSE
35 #include <xmmintrin.h>
36 /* This is defined in pmmintrin.h, but it can only be included when -msse3 is
37  * used, so just define it here to avoid further. */
38 #ifndef _MM_DENORMALS_ZERO_MASK
39 #define _MM_DENORMALS_ZERO_MASK	0x0040
40 #endif
41 #endif
42 
43 
44 /** log2(x), for x in [1.0, 2.0) */
45 float log2_table[LOG2_TABLE_SIZE];
46 
47 
48 static void
init_log2_table(void)49 init_log2_table(void)
50 {
51    unsigned i;
52    for (i = 0; i < LOG2_TABLE_SIZE; i++)
53       log2_table[i] = (float) log2(1.0 + i * (1.0 / LOG2_TABLE_SCALE));
54 }
55 
56 
57 /**
58  * One time init for math utilities.
59  */
60 void
util_init_math(void)61 util_init_math(void)
62 {
63    static bool initialized = false;
64    if (!initialized) {
65       init_log2_table();
66       initialized = true;
67    }
68 }
69 
70 /**
71  * Fetches the contents of the fpstate (mxcsr on x86) register.
72  *
73  * On platforms without support for it just returns 0.
74  */
75 unsigned
util_fpstate_get(void)76 util_fpstate_get(void)
77 {
78    unsigned mxcsr = 0;
79 
80 #if DETECT_ARCH_SSE
81    if (util_get_cpu_caps()->has_sse) {
82       mxcsr = _mm_getcsr();
83    }
84 #endif
85 
86    return mxcsr;
87 }
88 
89 /**
90  * Make sure that the fp treats the denormalized floating
91  * point numbers as zero.
92  *
93  * This is the behavior required by D3D10. OpenGL doesn't care.
94  */
95 unsigned
util_fpstate_set_denorms_to_zero(unsigned current_mxcsr)96 util_fpstate_set_denorms_to_zero(unsigned current_mxcsr)
97 {
98 #if DETECT_ARCH_SSE
99    if (util_get_cpu_caps()->has_sse) {
100       /* Enable flush to zero mode */
101       current_mxcsr |= _MM_FLUSH_ZERO_MASK;
102       if (util_get_cpu_caps()->has_daz) {
103          /* Enable denormals are zero mode */
104          current_mxcsr |= _MM_DENORMALS_ZERO_MASK;
105       }
106       util_fpstate_set(current_mxcsr);
107    }
108 #endif
109    return current_mxcsr;
110 }
111 
112 /**
113  * Set the state of the fpstate (mxcsr on x86) register.
114  *
115  * On platforms without support for it's a noop.
116  */
117 void
util_fpstate_set(unsigned mxcsr)118 util_fpstate_set(unsigned mxcsr)
119 {
120 #if DETECT_ARCH_SSE
121    if (util_get_cpu_caps()->has_sse) {
122       _mm_setcsr(mxcsr);
123    }
124 #endif
125 }
126 
127 /**
128  * Compute inverse of 4x4 matrix.
129  *
130  * \return false if the source matrix is singular.
131  *
132  * \author
133  * Code contributed by Jacques Leroy jle@star.be
134  *
135  * Calculates the inverse matrix by performing the gaussian matrix reduction
136  * with partial pivoting followed by back/substitution with the loops manually
137  * unrolled.
138  */
139 bool
util_invert_mat4x4(float * out,const float * m)140 util_invert_mat4x4(float *out, const float *m)
141 {
142    float wtmp[4][8];
143    float m0, m1, m2, m3, s;
144    float *r0, *r1, *r2, *r3;
145 
146 #define MAT(m, r, c) (m)[(c)*4 + (r)]
147 #define SWAP_ROWS(a, b)                                                                            \
148    {                                                                                               \
149       float *_tmp = a;                                                                             \
150       (a) = (b);                                                                                   \
151       (b) = _tmp;                                                                                  \
152    }
153 
154    r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3];
155 
156    r0[0] = MAT(m, 0, 0), r0[1] = MAT(m, 0, 1), r0[2] = MAT(m, 0, 2), r0[3] = MAT(m, 0, 3),
157    r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0,
158 
159    r1[0] = MAT(m, 1, 0), r1[1] = MAT(m, 1, 1), r1[2] = MAT(m, 1, 2), r1[3] = MAT(m, 1, 3),
160    r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0,
161 
162    r2[0] = MAT(m, 2, 0), r2[1] = MAT(m, 2, 1), r2[2] = MAT(m, 2, 2), r2[3] = MAT(m, 2, 3),
163    r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0,
164 
165    r3[0] = MAT(m, 3, 0), r3[1] = MAT(m, 3, 1), r3[2] = MAT(m, 3, 2), r3[3] = MAT(m, 3, 3),
166    r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0;
167 
168    /* choose pivot - or die */
169    if (fabsf(r3[0]) > fabsf(r2[0]))
170       SWAP_ROWS(r3, r2);
171    if (fabsf(r2[0]) > fabsf(r1[0]))
172       SWAP_ROWS(r2, r1);
173    if (fabsf(r1[0]) > fabsf(r0[0]))
174       SWAP_ROWS(r1, r0);
175    if (0.0F == r0[0])
176       return false;
177 
178    /* eliminate first variable     */
179    m1 = r1[0] / r0[0];
180    m2 = r2[0] / r0[0];
181    m3 = r3[0] / r0[0];
182    s = r0[1];
183    r1[1] -= m1 * s;
184    r2[1] -= m2 * s;
185    r3[1] -= m3 * s;
186    s = r0[2];
187    r1[2] -= m1 * s;
188    r2[2] -= m2 * s;
189    r3[2] -= m3 * s;
190    s = r0[3];
191    r1[3] -= m1 * s;
192    r2[3] -= m2 * s;
193    r3[3] -= m3 * s;
194    s = r0[4];
195    if (s != 0.0F) {
196       r1[4] -= m1 * s;
197       r2[4] -= m2 * s;
198       r3[4] -= m3 * s;
199    }
200    s = r0[5];
201    if (s != 0.0F) {
202       r1[5] -= m1 * s;
203       r2[5] -= m2 * s;
204       r3[5] -= m3 * s;
205    }
206    s = r0[6];
207    if (s != 0.0F) {
208       r1[6] -= m1 * s;
209       r2[6] -= m2 * s;
210       r3[6] -= m3 * s;
211    }
212    s = r0[7];
213    if (s != 0.0F) {
214       r1[7] -= m1 * s;
215       r2[7] -= m2 * s;
216       r3[7] -= m3 * s;
217    }
218 
219    /* choose pivot - or die */
220    if (fabsf(r3[1]) > fabsf(r2[1]))
221       SWAP_ROWS(r3, r2);
222    if (fabsf(r2[1]) > fabsf(r1[1]))
223       SWAP_ROWS(r2, r1);
224    if (0.0F == r1[1])
225       return false;
226 
227    /* eliminate second variable */
228    m2 = r2[1] / r1[1];
229    m3 = r3[1] / r1[1];
230    r2[2] -= m2 * r1[2];
231    r3[2] -= m3 * r1[2];
232    r2[3] -= m2 * r1[3];
233    r3[3] -= m3 * r1[3];
234    s = r1[4];
235    if (0.0F != s) {
236       r2[4] -= m2 * s;
237       r3[4] -= m3 * s;
238    }
239    s = r1[5];
240    if (0.0F != s) {
241       r2[5] -= m2 * s;
242       r3[5] -= m3 * s;
243    }
244    s = r1[6];
245    if (0.0F != s) {
246       r2[6] -= m2 * s;
247       r3[6] -= m3 * s;
248    }
249    s = r1[7];
250    if (0.0F != s) {
251       r2[7] -= m2 * s;
252       r3[7] -= m3 * s;
253    }
254 
255    /* choose pivot - or die */
256    if (fabsf(r3[2]) > fabsf(r2[2]))
257       SWAP_ROWS(r3, r2);
258    if (0.0F == r2[2])
259       return false;
260 
261    /* eliminate third variable */
262    m3 = r3[2] / r2[2];
263    r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4], r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6],
264       r3[7] -= m3 * r2[7];
265 
266    /* last check */
267    if (0.0F == r3[3])
268       return false;
269 
270    s = 1.0F / r3[3]; /* now back substitute row 3 */
271    r3[4] *= s;
272    r3[5] *= s;
273    r3[6] *= s;
274    r3[7] *= s;
275 
276    m2 = r2[3]; /* now back substitute row 2 */
277    s = 1.0F / r2[2];
278    r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2),
279    r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2);
280    m1 = r1[3];
281    r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1, r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1;
282    m0 = r0[3];
283    r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0, r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0;
284 
285    m1 = r1[2]; /* now back substitute row 1 */
286    s = 1.0F / r1[1];
287    r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1),
288    r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1);
289    m0 = r0[2];
290    r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0, r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0;
291 
292    m0 = r0[1]; /* now back substitute row 0 */
293    s = 1.0F / r0[0];
294    r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0),
295    r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0);
296 
297    MAT(out, 0, 0) = r0[4];
298    MAT(out, 0, 1) = r0[5], MAT(out, 0, 2) = r0[6];
299    MAT(out, 0, 3) = r0[7], MAT(out, 1, 0) = r1[4];
300    MAT(out, 1, 1) = r1[5], MAT(out, 1, 2) = r1[6];
301    MAT(out, 1, 3) = r1[7], MAT(out, 2, 0) = r2[4];
302    MAT(out, 2, 1) = r2[5], MAT(out, 2, 2) = r2[6];
303    MAT(out, 2, 3) = r2[7], MAT(out, 3, 0) = r3[4];
304    MAT(out, 3, 1) = r3[5], MAT(out, 3, 2) = r3[6];
305    MAT(out, 3, 3) = r3[7];
306 
307 #undef MAT
308 #undef SWAP_ROWS
309 
310    return true;
311 }
312