• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2009-2013 Steven G. Kargl
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * Optimized by Bruce D. Evans.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 /*
35  * ld128 version of s_expl.c.  See ../ld80/s_expl.c for most comments.
36  */
37 
38 #include <float.h>
39 
40 #include "fpmath.h"
41 #include "math.h"
42 #include "math_private.h"
43 #include "k_expl.h"
44 
45 /* XXX Prevent compilers from erroneously constant folding these: */
46 static const volatile long double
47 huge = 0x1p10000L,
48 tiny = 0x1p-10000L;
49 
50 static const long double
51 twom10000 = 0x1p-10000L;
52 
53 static const long double
54 /* log(2**16384 - 0.5) rounded towards zero: */
55 /* log(2**16384 - 0.5 + 1) rounded towards zero for expm1l() is the same: */
56 o_threshold =  11356.523406294143949491931077970763428L,
57 /* log(2**(-16381-64-1)) rounded towards zero: */
58 u_threshold = -11433.462743336297878837243843452621503L;
59 
60 long double
expl(long double x)61 expl(long double x)
62 {
63 	union IEEEl2bits u;
64 	long double hi, lo, t, twopk;
65 	int k;
66 	uint16_t hx, ix;
67 
68 	/* Filter out exceptional cases. */
69 	u.e = x;
70 	hx = u.xbits.expsign;
71 	ix = hx & 0x7fff;
72 	if (ix >= BIAS + 13) {		/* |x| >= 8192 or x is NaN */
73 		if (ix == BIAS + LDBL_MAX_EXP) {
74 			if (hx & 0x8000)  /* x is -Inf or -NaN */
75 				RETURNF(-1 / x);
76 			RETURNF(x + x);	/* x is +Inf or +NaN */
77 		}
78 		if (x > o_threshold)
79 			RETURNF(huge * huge);
80 		if (x < u_threshold)
81 			RETURNF(tiny * tiny);
82 	} else if (ix < BIAS - 114) {	/* |x| < 0x1p-114 */
83 		RETURNF(1 + x);		/* 1 with inexact iff x != 0 */
84 	}
85 
86 	ENTERI();
87 
88 	twopk = 1;
89 	__k_expl(x, &hi, &lo, &k);
90 	t = SUM2P(hi, lo);
91 
92 	/* Scale by 2**k. */
93 	/*
94 	 * XXX sparc64 multiplication was so slow that scalbnl() is faster,
95 	 * but performance on aarch64 and riscv hasn't yet been quantified.
96 	 */
97 	if (k >= LDBL_MIN_EXP) {
98 		if (k == LDBL_MAX_EXP)
99 			RETURNI(t * 2 * 0x1p16383L);
100 		SET_LDBL_EXPSIGN(twopk, BIAS + k);
101 		RETURNI(t * twopk);
102 	} else {
103 		SET_LDBL_EXPSIGN(twopk, BIAS + k + 10000);
104 		RETURNI(t * twopk * twom10000);
105 	}
106 }
107 
108 /*
109  * Our T1 and T2 are chosen to be approximately the points where method
110  * A and method B have the same accuracy.  Tang's T1 and T2 are the
111  * points where method A's accuracy changes by a full bit.  For Tang,
112  * this drop in accuracy makes method A immediately less accurate than
113  * method B, but our larger INTERVALS makes method A 2 bits more
114  * accurate so it remains the most accurate method significantly
115  * closer to the origin despite losing the full bit in our extended
116  * range for it.
117  *
118  * Split the interval [T1, T2] into two intervals [T1, T3] and [T3, T2].
119  * Setting T3 to 0 would require the |x| < 0x1p-113 condition to appear
120  * in both subintervals, so set T3 = 2**-5, which places the condition
121  * into the [T1, T3] interval.
122  *
123  * XXX we now do this more to (partially) balance the number of terms
124  * in the C and D polys than to avoid checking the condition in both
125  * intervals.
126  *
127  * XXX these micro-optimizations are excessive.
128  */
129 static const double
130 T1 = -0.1659,				/* ~-30.625/128 * log(2) */
131 T2 =  0.1659,				/* ~30.625/128 * log(2) */
132 T3 =  0.03125;
133 
134 /*
135  * Domain [-0.1659, 0.03125], range ~[2.9134e-44, 1.8404e-37]:
136  * |(exp(x)-1-x-x**2/2)/x - p(x)| < 2**-122.03
137  *
138  * XXX none of the long double C or D coeffs except C10 is correctly printed.
139  * If you re-print their values in %.35Le format, the result is always
140  * different.  For example, the last 2 digits in C3 should be 59, not 67.
141  * 67 is apparently from rounding an extra-precision value to 36 decimal
142  * places.
143  */
144 static const long double
145 C3  =  1.66666666666666666666666666666666667e-1L,
146 C4  =  4.16666666666666666666666666666666645e-2L,
147 C5  =  8.33333333333333333333333333333371638e-3L,
148 C6  =  1.38888888888888888888888888891188658e-3L,
149 C7  =  1.98412698412698412698412697235950394e-4L,
150 C8  =  2.48015873015873015873015112487849040e-5L,
151 C9  =  2.75573192239858906525606685484412005e-6L,
152 C10 =  2.75573192239858906612966093057020362e-7L,
153 C11 =  2.50521083854417203619031960151253944e-8L,
154 C12 =  2.08767569878679576457272282566520649e-9L,
155 C13 =  1.60590438367252471783548748824255707e-10L;
156 
157 /*
158  * XXX this has 1 more coeff than needed.
159  * XXX can start the double coeffs but not the double mults at C10.
160  * With my coeffs (C10-C17 double; s = best_s):
161  * Domain [-0.1659, 0.03125], range ~[-1.1976e-37, 1.1976e-37]:
162  * |(exp(x)-1-x-x**2/2)/x - p(x)| ~< 2**-122.65
163  */
164 static const double
165 C14 =  1.1470745580491932e-11,		/*  0x1.93974a81dae30p-37 */
166 C15 =  7.6471620181090468e-13,		/*  0x1.ae7f3820adab1p-41 */
167 C16 =  4.7793721460260450e-14,		/*  0x1.ae7cd18a18eacp-45 */
168 C17 =  2.8074757356658877e-15,		/*  0x1.949992a1937d9p-49 */
169 C18 =  1.4760610323699476e-16;		/*  0x1.545b43aabfbcdp-53 */
170 
171 /*
172  * Domain [0.03125, 0.1659], range ~[-2.7676e-37, -1.0367e-38]:
173  * |(exp(x)-1-x-x**2/2)/x - p(x)| < 2**-121.44
174  */
175 static const long double
176 D3  =  1.66666666666666666666666666666682245e-1L,
177 D4  =  4.16666666666666666666666666634228324e-2L,
178 D5  =  8.33333333333333333333333364022244481e-3L,
179 D6  =  1.38888888888888888888887138722762072e-3L,
180 D7  =  1.98412698412698412699085805424661471e-4L,
181 D8  =  2.48015873015873015687993712101479612e-5L,
182 D9  =  2.75573192239858944101036288338208042e-6L,
183 D10 =  2.75573192239853161148064676533754048e-7L,
184 D11 =  2.50521083855084570046480450935267433e-8L,
185 D12 =  2.08767569819738524488686318024854942e-9L,
186 D13 =  1.60590442297008495301927448122499313e-10L;
187 
188 /*
189  * XXX this has 1 more coeff than needed.
190  * XXX can start the double coeffs but not the double mults at D11.
191  * With my coeffs (D11-D16 double):
192  * Domain [0.03125, 0.1659], range ~[-1.1980e-37, 1.1980e-37]:
193  * |(exp(x)-1-x-x**2/2)/x - p(x)| ~< 2**-122.65
194  */
195 static const double
196 D14 =  1.1470726176204336e-11,		/*  0x1.93971dc395d9ep-37 */
197 D15 =  7.6478532249581686e-13,		/*  0x1.ae892e3D16fcep-41 */
198 D16 =  4.7628892832607741e-14,		/*  0x1.ad00Dfe41feccp-45 */
199 D17 =  3.0524857220358650e-15;		/*  0x1.D7e8d886Df921p-49 */
200 
201 long double
expm1l(long double x)202 expm1l(long double x)
203 {
204 	union IEEEl2bits u, v;
205 	long double hx2_hi, hx2_lo, q, r, r1, t, twomk, twopk, x_hi;
206 	long double x_lo, x2;
207 	double dr, dx, fn, r2;
208 	int k, n, n2;
209 	uint16_t hx, ix;
210 
211 	/* Filter out exceptional cases. */
212 	u.e = x;
213 	hx = u.xbits.expsign;
214 	ix = hx & 0x7fff;
215 	if (ix >= BIAS + 7) {		/* |x| >= 128 or x is NaN */
216 		if (ix == BIAS + LDBL_MAX_EXP) {
217 			if (hx & 0x8000)  /* x is -Inf or -NaN */
218 				RETURNF(-1 / x - 1);
219 			RETURNF(x + x);	/* x is +Inf or +NaN */
220 		}
221 		if (x > o_threshold)
222 			RETURNF(huge * huge);
223 		/*
224 		 * expm1l() never underflows, but it must avoid
225 		 * unrepresentable large negative exponents.  We used a
226 		 * much smaller threshold for large |x| above than in
227 		 * expl() so as to handle not so large negative exponents
228 		 * in the same way as large ones here.
229 		 */
230 		if (hx & 0x8000)	/* x <= -128 */
231 			RETURNF(tiny - 1);	/* good for x < -114ln2 - eps */
232 	}
233 
234 	ENTERI();
235 
236 	if (T1 < x && x < T2) {
237 		x2 = x * x;
238 		dx = x;
239 
240 		if (x < T3) {
241 			if (ix < BIAS - 113) {	/* |x| < 0x1p-113 */
242 				/* x (rounded) with inexact if x != 0: */
243 				RETURNI(x == 0 ? x :
244 				    (0x1p200 * x + fabsl(x)) * 0x1p-200);
245 			}
246 			q = x * x2 * C3 + x2 * x2 * (C4 + x * (C5 + x * (C6 +
247 			    x * (C7 + x * (C8 + x * (C9 + x * (C10 +
248 			    x * (C11 + x * (C12 + x * (C13 +
249 			    dx * (C14 + dx * (C15 + dx * (C16 +
250 			    dx * (C17 + dx * C18))))))))))))));
251 		} else {
252 			q = x * x2 * D3 + x2 * x2 * (D4 + x * (D5 + x * (D6 +
253 			    x * (D7 + x * (D8 + x * (D9 + x * (D10 +
254 			    x * (D11 + x * (D12 + x * (D13 +
255 			    dx * (D14 + dx * (D15 + dx * (D16 +
256 			    dx * D17)))))))))))));
257 		}
258 
259 		x_hi = (float)x;
260 		x_lo = x - x_hi;
261 		hx2_hi = x_hi * x_hi / 2;
262 		hx2_lo = x_lo * (x + x_hi) / 2;
263 		if (ix >= BIAS - 7)
264 			RETURNI((hx2_hi + x_hi) + (hx2_lo + x_lo + q));
265 		else
266 			RETURNI(x + (hx2_lo + q + hx2_hi));
267 	}
268 
269 	/* Reduce x to (k*ln2 + endpoint[n2] + r1 + r2). */
270 	fn = rnint((double)x * INV_L);
271 	n = irint(fn);
272 	n2 = (unsigned)n % INTERVALS;
273 	k = n >> LOG2_INTERVALS;
274 	r1 = x - fn * L1;
275 	r2 = fn * -L2;
276 	r = r1 + r2;
277 
278 	/* Prepare scale factor. */
279 	v.e = 1;
280 	v.xbits.expsign = BIAS + k;
281 	twopk = v.e;
282 
283 	/*
284 	 * Evaluate lower terms of
285 	 * expl(endpoint[n2] + r1 + r2) = tbl[n2] * expl(r1 + r2).
286 	 */
287 	dr = r;
288 	q = r2 + r * r * (A2 + r * (A3 + r * (A4 + r * (A5 + r * (A6 +
289 	    dr * (A7 + dr * (A8 + dr * (A9 + dr * A10))))))));
290 
291 	t = tbl[n2].lo + tbl[n2].hi;
292 
293 	if (k == 0) {
294 		t = SUM2P(tbl[n2].hi - 1, tbl[n2].lo * (r1 + 1) + t * q +
295 		    tbl[n2].hi * r1);
296 		RETURNI(t);
297 	}
298 	if (k == -1) {
299 		t = SUM2P(tbl[n2].hi - 2, tbl[n2].lo * (r1 + 1) + t * q +
300 		    tbl[n2].hi * r1);
301 		RETURNI(t / 2);
302 	}
303 	if (k < -7) {
304 		t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1));
305 		RETURNI(t * twopk - 1);
306 	}
307 	if (k > 2 * LDBL_MANT_DIG - 1) {
308 		t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1));
309 		if (k == LDBL_MAX_EXP)
310 			RETURNI(t * 2 * 0x1p16383L - 1);
311 		RETURNI(t * twopk - 1);
312 	}
313 
314 	v.xbits.expsign = BIAS - k;
315 	twomk = v.e;
316 
317 	if (k > LDBL_MANT_DIG - 1)
318 		t = SUM2P(tbl[n2].hi, tbl[n2].lo - twomk + t * (q + r1));
319 	else
320 		t = SUM2P(tbl[n2].hi - twomk, tbl[n2].lo + t * (q + r1));
321 	RETURNI(t * twopk);
322 }
323