| /external/eigen/doc/ |
| D | LeastSquares.dox | 3 /** \eigenManualPage LeastSquares Solving linear least squares systems 5 This page describes how to solve linear least squares systems using %Eigen. An overdetermined system 20 solve linear squares systems. It is not enough to compute only the singular values (the default for 22 computing least squares solutions: 33 If you just need to solve the least squares problem, but are not interested in the SVD per se, a 39 The solve() method in QR decomposition classes also computes the least squares solution. There are 56 Finding the least squares solution of \a Ax = \a b is equivalent to solving the normal equation
|
| /external/chromium-trace/catapult/third_party/polymer/components/neon-animation/demo/tiles/ |
| D | squares-page.html | 13 <dom-module id="squares-page"> 52 is: 'squares-page', 70 var squares = Polymer.dom(this.root).querySelectorAll('.square'); 71 var squaresArray = Array.prototype.slice.call(squares);
|
| D | index.html | 26 <link rel="import" href="squares-page.html"> 50 <squares-page on-click="_onSquaresClick"></squares-page>
|
| /external/tensorflow/tensorflow/core/api_def/base_api/ |
| D | api_def_MatrixSolveLs.pbtxt | 31 summary: "Solves one or more linear least-squares problems." 39 in the least squares sense. 51 \\(X = (A^H A + \lambda I)^{-1} A^H B\\), which solves the least-squares 64 least-squares solution, even when \\(A\\) is rank deficient. This path is
|
| /external/kotlinx.coroutines/kotlinx-coroutines-core/jvm/test/guide/ |
| D | example-channel-04.kt | 13 val squares = square(numbers) // squares integers in <lambda>() constant 15 println(squares.receive()) // print first five in <lambda>()
|
| D | example-channel-03.kt | 16 val squares = produceSquares() in <lambda>() constant 17 squares.consumeEach { println(it) } in <lambda>()
|
| /external/pigweed/pw_containers/ |
| D | docs.rst | 200 pw::IntrusiveList<Square> squares; 206 // `IntrusiveList<Square> squares`. 207 squares.push_back(small); 208 squares.push_back(large); 213 squares.push_back(&different_scope); 216 for (const auto& square : squares) { 223 for (const auto& square_bad_example : squares) { 226 squares.remove(square_bad_example); // NEVER DO THIS! THIS IS A BUG! 231 auto previous = squares.before_begin(); 232 auto current = squares.begin(); [all …]
|
| /external/tensorflow/tensorflow/tools/android/test/jni/object_tracking/ |
| D | object_detector.h | 49 // in the position given and of square_size, and the remaining squares are added 52 // Squares that do not fall completely within image_bounds will not be added. 59 std::vector<BoundingSquare>* const squares) { in FillWithSquares() argument 68 squares->push_back(descriptor_area); in FillWithSquares() 72 LOGV("Created %zu squares starting from size %.2f to min size %.2f " in FillWithSquares() 74 squares->size(), starting_square_size, smallest_square_size, in FillWithSquares()
|
| /external/apache-commons-math/src/main/java/org/apache/commons/math3/fitting/leastsquares/ |
| D | LeastSquaresOptimizer.java | 20 * An algorithm that can be applied to a non-linear least squares problem. 27 * Solve the non-linear least squares problem. 53 * optimum. In general least squares it is common to have one {@link
|
| D | GaussNewtonOptimizer.java | 38 * Gauss-Newton least-squares solver. 80 * Solve the linear least squares problem (Jx=r) using the {@link 127 * Solve the linear least squares problem using the {@link 144 * Solve the linear least squares problem Jx=r. 149 * @return the solution x, to the linear least squares problem Jx=r. 243 // solve the linearized least squares problem in optimize()
|
| /external/webrtc/test/ |
| D | frame_generator.h | 33 // sized and colored squares. Between each new generated frame, the squares 133 // with randomly sized and colored squares instead of reading their content 145 // Generates some randomly sized and colored squares scattered
|
| /external/pigweed/pw_allocator/public/pw_allocator/ |
| D | fragmentation.h | 38 /// This struct provides the sum-of-squares and the sum of the inner sizes of 43 /// The sum-of-squares is stored as a pair of sizes, since it can overflow. 45 /// Sum-of-squares of the inner sizes of free blocks.
|
| /external/lmfit/lib/ |
| D | lmstruct.h | 2 * Library: lmfit (Levenberg-Marquardt least squares fitting) 32 double ftol; /* Relative error desired in the sum of squares. 34 predicted relative reductions in the sum of squares
|
| D | lmmin.c | 2 * Library: lmfit (Levenberg-Marquardt least squares fitting) 77 "found zero (sum of squares below underflow limit)", 78 "converged (the relative error in the sum of squares is at most tol)", 83 "failed (ftol<tol: cannot reduce sum of squares any further)", 250 S->outcome = 0; /* sum of squares almost zero, nothing to do */ in lmmin() 496 goto terminate; /* success: sum of squares almost zero */ in lmmin() 501 S->outcome += 2; /* success: sum of squares almost stable */ in lmmin() 562 * in the least squares sense, and dxnorm is the Euclidean norm of D*x, in lm_lmpar() 612 * x is an OUTPUT array of length n which contains the least-squares in lm_lmpar() 630 is rank-deficient, obtain a least-squares solution. ***/ in lm_lmpar() [all …]
|
| /external/lmfit/man/ |
| D | lmfit.html | 5 <title>lmfit: a self-contained C library for Levenberg-Marquardt least-squares minimization and cur… 20 <p>lmfit - Levenberg-Marquardt least-squares minimization</p> 24 <p><b>lmfit</b> is a C library for Levenberg-Marquardt least-squares minimization and curve fitting…
|
| /external/tensorflow/tensorflow/core/graph/ |
| D | graph_partition_test.cc | 576 std::vector<ops::Square> squares; in TEST() local 578 squares.emplace_back(root.WithOpName(strings::StrCat("s", i)), in TEST() 580 squares.back().node()->AddAttr("_start_time", 50 - (i + 1)); in TEST() 583 // Create addn to sum all squares. in TEST() 585 for (const auto& s : squares) inputs.push_back(s); in TEST() 599 ASSERT_EQ(1 + squares.size() + placeholders.size(), nodes.size()); in TEST() 606 for (int i = 0; i < squares.size(); ++i) { in TEST() 671 std::vector<Square> squares; in TEST() local 672 squares.reserve(indexes.size()); in TEST() 674 squares.emplace_back(root.WithOpName(strings::StrCat("s", i)), in TEST() [all …]
|
| /external/rust/crates/rayon/tests/ |
| D | issue671-unzip.rs | 8 let (indexes, (squares, cubes)): (Vec<_>, (Vec<_>, Vec<_>)) = input in type_length_limit() 15 drop(squares); in type_length_limit()
|
| /external/skia/gm/ |
| D | thinrects.cpp | 120 constexpr SkRect squares[] = { in drawSquares() local 131 for (size_t j = 0; j < std::size(squares); ++j) { in drawSquares() 133 rrect.setRectXY(squares[j], 1/32.f, 2/32.f); in drawSquares() 136 canvas->drawRect(squares[j], p); in drawSquares()
|
| D | dashing.cpp | 238 // 1on/1off 1x1 squares with phase of 0 - points fastpath in onDraw() 244 // 1on/1off 1x1 squares with phase of .5 - rects fastpath (due to partial squares) in onDraw() 250 // 1on/1off 1x1 squares with phase of 1 - points fastpath in onDraw() 256 // 1on/1off 1x1 squares with phase of 1 and non-integer length - rects fastpath in onDraw() 262 // 255on/255off 1x1 squares with phase of 0 - rects fast path in onDraw() 268 // 1on/1off 3x3 squares with phase of 0 - points fast path in onDraw() 274 // 1on/1off 3x3 squares with phase of 1.5 - rects fast path in onDraw() 292 // 1on/1off 1x1 squares with rotation - should break fast path in onDraw() 337 // a line of squares or circles in onDraw()
|
| /external/apache-commons-math/src/main/java/org/apache/commons/math/stat/descriptive/summary/ |
| D | SumOfSquares.java | 24 * Returns the sum of the squares of the available values. 105 * Returns the sum of the squares of the entries in the specified portion of 114 * @return the sum of the squares of the values or Double.NaN if length = 0
|
| /external/apache-commons-math/src/main/java/org/apache/commons/math/stat/regression/ |
| D | OLSMultipleLinearRegression.java | 29 * <p>Implements ordinary least squares (OLS) to estimate the parameters of a 130 * @return SSTO - the total sum of squares 145 * @return residual sum of squares 158 * and SSTO is the {@link #calculateTotalSumOfSquares() total sum of squares} 172 * SSTO is the {@link #calculateTotalSumOfSquares() total sum of squares}, n is the number
|
| /external/apache-commons-math/src/main/java/org/apache/commons/math3/stat/descriptive/summary/ |
| D | SumOfSquares.java | 27 * Returns the sum of the squares of the available values. 105 * Returns the sum of the squares of the entries in the specified portion of 114 * @return the sum of the squares of the values or 0 if length = 0
|
| /external/libaom/av1/encoder/ |
| D | wedge_utils.c | 68 * ds: Difference of the squares of the residuals. 108 * Compute the element-wise difference of the squares of 2 arrays. 110 * d: Difference of the squares of the inputs: a**2 - b**2
|
| /external/deqp/external/vulkancts/modules/vulkan/ray_query/ |
| D | vktRayQueryCullRayFlagsTests.cpp | 690 …// 4 squares have characteristics: (front, opaque), (front, no_opaque), (back, opaque), (back, no_… in verifyImage() 694 std::vector<std::vector<tcu::UVec2>> squares = { in verifyImage() local 731 for (uint32_t squareNdx = 0; squareNdx < squares.size(); ++squareNdx) in verifyImage() 734 for (uint32_t y = squares[squareNdx][0].y(); y < squares[squareNdx][1].y(); ++y) in verifyImage() 735 for (uint32_t x = squares[squareNdx][0].x(); x < squares[squareNdx][1].x(); ++x) in verifyImage() 876 …// 4 squares have characteristics: (front, opaque), (front, no_opaque), (back, opaque), (back, no_… in verifyImage() 880 std::vector<std::vector<tcu::UVec2>> squares = { in verifyImage() local 890 for (uint32_t squareNdx = 0; squareNdx < squares.size(); ++squareNdx) in verifyImage() 893 for (uint32_t y = squares[squareNdx][0].y(); y < squares[squareNdx][1].y(); ++y) in verifyImage() 894 for (uint32_t x = squares[squareNdx][0].x(); x < squares[squareNdx][1].x(); ++x) in verifyImage() [all …]
|
| /external/apache-commons-math/src/main/java/org/apache/commons/math/estimation/ |
| D | WeightedMeasurement.java | 72 * @param weight weight of the measurement in the least squares problem 89 * @param weight weight of the measurement in the least squares problem 101 * Get the weight of the measurement in the least squares problem
|