| /external/tensorflow/tensorflow/core/framework/ |
| D | model.proto | 8 // Class of a node in the performance model. 31 // General representation of a node in the model. 32 message Node { message 33 // Unique node ID. 34 int64 id = 1; 36 // Human-readable name of the node. 39 // An indication whether autotuning is enabled for this node. 42 // The number of bytes stored in this node's buffer. 43 int64 buffered_bytes = 4; 45 // The number of elements stored in this node's buffer. [all …]
|
| D | step_stats.proto | 14 // An allocation/de-allocation operation performed by the allocator. 17 int64 alloc_micros = 1; 18 // Number of bytes allocated, or de-allocated if negative. 19 int64 alloc_bytes = 2; 24 // These are per-node allocator memory stats. 25 int64 total_bytes = 2; 26 int64 peak_bytes = 3; 28 int64 live_bytes = 4; 34 int64 allocator_bytes_in_use = 5; 37 // Output sizes recorded for a single execution of a graph node. [all …]
|
| /external/tensorflow/tensorflow/core/profiler/ |
| D | tfprof_output.proto | 10 // Flatten tensor in row-major. 13 repeated int64 value_int64 = 3; 17 // A node in TensorFlow graph. Used by scope/graph view. 24 // A node can be defined once but run multiple times in tf.while_loop. 26 int64 run_count = 21; 27 int64 exec_micros = 2; 28 int64 accelerator_exec_micros = 17; 29 int64 cpu_exec_micros = 18; 32 int64 requested_bytes = 3; 34 int64 peak_bytes = 24; [all …]
|
| D | tfprof_log.proto | 14 int64 file_id = 6; 19 int64 function_id = 7; 22 int64 line_id = 8; 34 int64 float_ops = 2; 47 map<int64, string> id_to_string = 2; 55 map<int64, ProfileNode> nodes = 1; 62 repeated int64 steps = 3; 66 map<int64, string> id_to_string = 4; 70 // graph node name. 74 // A unique id for the node. [all …]
|
| /external/perfetto/protos/perfetto/trace/android/ |
| D | camera_event.proto | 8 * http://www.apache.org/licenses/LICENSE-2.0 32 optional int64 frame_number = 3; 38 optional int64 request_id = 4; 44 optional int64 request_received_ns = 5; 48 optional int64 request_processing_started_ns = 6; 51 optional int64 start_of_exposure_ns = 7; 54 optional int64 start_of_frame_ns = 8; 57 optional int64 responses_all_sent_ns = 9; 87 // A profiling event corresponding to a single node processing within the camera 92 optional int64 node_id = 1; [all …]
|
| /external/tensorflow/tensorflow/core/grappler/costs/ |
| D | op_performance_data.proto | 7 http://www.apache.org/licenses/LICENSE-2.0 29 int64 intra_op_parallelism = 1; 77 // The node name (optional). Makes it easier to associate the performance data 78 // with a specific graph node. 79 string node = 5; field 81 // Temporary memory used by this node (in bytes). 82 int64 temporary_memory_size = 2; 85 int64 compute_cost = 3; 88 int64 compute_time = 6; 91 int64 memory_time = 7; [all …]
|
| /external/perfetto/protos/perfetto/metrics/android/ |
| D | monitor_contention_metric.proto | 8 * http://www.apache.org/licenses/LICENSE-2.0 25 message Node { message 27 optional int64 node_parent_id = 1; 28 optional int64 node_child_id = 24; 29 optional int64 node_id = 2; 30 optional int64 ts = 3; 31 optional int64 dur = 4; 32 optional int64 monotonic_dur = 25; 56 optional int64 binder_reply_ts = 17; 62 optional int64 thread_state_dur = 2; [all …]
|
| /external/googleapis/google/cloud/automl/v1/ |
| D | image.proto | 7 // http://www.apache.org/licenses/LICENSE-2.0 50 // Optional. The train budget of creating this model, expressed in milli node 51 // hours i.e. 1,000 value in this field means 1 node hour. The actual 57 // and 800,000 milli node hours, inclusive. The default value is 192, 000 59 // `mobile-low-latency-1`, `mobile-versatile-1`, `mobile-high-accuracy-1`, 60 // `mobile-core-ml-low-latency-1`, `mobile-core-ml-versatile-1`, 61 // `mobile-core-ml-high-accuracy-1`, the train budget must be between 1,000 62 // and 100,000 milli node hours, inclusive. The default value is 24, 000 which 64 int64 train_budget_milli_node_hours = 16 [(google.api.field_behavior) = OPTIONAL]; 67 // milli node hours, i.e. 1,000 value in this field means 1 node hour. [all …]
|
| /external/google-cloud-java/java-automl/proto-google-cloud-automl-v1/src/main/proto/google/cloud/automl/v1/ |
| D | image.proto | 7 // http://www.apache.org/licenses/LICENSE-2.0 50 // Optional. The train budget of creating this model, expressed in milli node 51 // hours i.e. 1,000 value in this field means 1 node hour. The actual 57 // and 800,000 milli node hours, inclusive. The default value is 192, 000 59 // `mobile-low-latency-1`, `mobile-versatile-1`, `mobile-high-accuracy-1`, 60 // `mobile-core-ml-low-latency-1`, `mobile-core-ml-versatile-1`, 61 // `mobile-core-ml-high-accuracy-1`, the train budget must be between 1,000 62 // and 100,000 milli node hours, inclusive. The default value is 24, 000 which 64 int64 train_budget_milli_node_hours = 16 [(google.api.field_behavior) = OPTIONAL]; 67 // milli node hours, i.e. 1,000 value in this field means 1 node hour. [all …]
|
| /external/swiftshader/third_party/llvm-10.0/llvm/lib/IR/ |
| D | MDBuilder.cpp | 1 //===---- llvm/MDBuilder.cpp - Builder for LLVM metadata ------------------===// 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 7 //===----------------------------------------------------------------------===// 12 //===----------------------------------------------------------------------===// 70 SmallVector<GlobalValue::GUID, 2> OrderID(Imports->begin(), Imports->end()); in createFunctionEntryCount() 112 Type *Int64 = Type::getInt64Ty(Context); in createCallbackEncoding() local 113 Ops.push_back(createConstant(ConstantInt::get(Int64, CalleeArgNo))); in createCallbackEncoding() 116 Ops.push_back(createConstant(ConstantInt::get(Int64, ArgNo, true))); in createCallbackEncoding() 129 auto *NewCBCalleeIdxAsCM = cast<ConstantAsMetadata>(NewCB->getOperand(0)); in mergeCallbackEncodings() 131 cast<ConstantInt>(NewCBCalleeIdxAsCM->getValue())->getZExtValue(); in mergeCallbackEncodings() [all …]
|
| /external/googleapis/google/cloud/automl/v1beta1/ |
| D | image.proto | 7 // http://www.apache.org/licenses/LICENSE-2.0 51 int64 train_budget = 2; 56 int64 train_cost = 3; 63 // * `cloud` - Model to be used via prediction calls to AutoML API. 65 // * `mobile-low-latency-1` - A model that, in addition to providing 70 // * `mobile-versatile-1` - A model that, in addition to providing 74 // * `mobile-high-accuracy-1` - A model that, in addition to providing 80 // * `mobile-core-ml-low-latency-1` - A model that, in addition to providing 85 // * `mobile-core-ml-versatile-1` - A model that, in addition to providing 89 // * `mobile-core-ml-high-accuracy-1` - A model that, in addition to [all …]
|
| /external/google-cloud-java/java-automl/proto-google-cloud-automl-v1beta1/src/main/proto/google/cloud/automl/v1beta1/ |
| D | image.proto | 7 // http://www.apache.org/licenses/LICENSE-2.0 51 int64 train_budget = 2; 56 int64 train_cost = 3; 63 // * `cloud` - Model to be used via prediction calls to AutoML API. 65 // * `mobile-low-latency-1` - A model that, in addition to providing 70 // * `mobile-versatile-1` - A model that, in addition to providing 74 // * `mobile-high-accuracy-1` - A model that, in addition to providing 80 // * `mobile-core-ml-low-latency-1` - A model that, in addition to providing 85 // * `mobile-core-ml-versatile-1` - A model that, in addition to providing 89 // * `mobile-core-ml-high-accuracy-1` - A model that, in addition to [all …]
|
| /external/llvm/lib/IR/ |
| D | MDBuilder.cpp | 1 //===---- llvm/MDBuilder.cpp - Builder for LLVM metadata ------------------===// 8 //===----------------------------------------------------------------------===// 13 //===----------------------------------------------------------------------===// 83 // To ensure uniqueness the root node is self-referential. in createAnonymousAARoot() 94 // !0 = metadata !{} <- dummy in createAnonymousAARoot() 95 // !1 = metadata !{metadata !0} <- root in createAnonymousAARoot() 96 // Replace the dummy operand with the root node itself and delete the dummy. in createAnonymousAARoot() 97 Root->replaceOperandWith(0, Root); in createAnonymousAARoot() 100 // !1 = metadata !{metadata !1} <- self-referential root in createAnonymousAARoot() 108 /// \brief Return metadata for a non-root TBAA node with the given name, [all …]
|
| /external/tensorflow/tensorflow/core/profiler/internal/ |
| D | tfprof_show_multi.cc | 7 http://www.apache.org/licenses/LICENSE-2.0 34 return ShowInternal(opts, &timeline)->proto(); in Show() 38 absl::PrintF("%s%s", prefix, ret->formatted_str); in Show() 43 prefix + ret->formatted_str); in Show() 52 return ret->proto(); in Show() 56 bool TFMultiShow::ShouldShow(const ShowMultiNode* node, const Options& opts, in ShouldShow() argument 59 if (node->name() == kTFProfRoot) return true; in ShouldShow() 61 // TODO(xpan): Think more carefully about node filtering in code view. in ShouldShow() 68 if (node->proto().total_requested_bytes() < opts.min_bytes || in ShouldShow() 69 node->proto().total_peak_bytes() < opts.min_peak_bytes || in ShouldShow() [all …]
|
| D | tfprof_timeline.cc | 7 http://www.apache.org/licenses/LICENSE-2.0 50 event["pid"] = Json::Int64(pid); in CreateEvent() 51 event["tid"] = Json::Int64(tid); in CreateEvent() 52 event["ts"] = Json::Int64(ts); in CreateEvent() 60 event["pid"] = Json::Int64(pid); in EmitPID() 71 event["dur"] = Json::Int64(duration); in EmitRegion() 80 event["id"] = Json::Int64(flow_id); in EmitFlowStart() 88 event["id"] = Json::Int64(flow_id); in EmitFlowEnd() 98 args["Allocator Bytes in Use"] = Json::Int64(bytes); in EmitCounter() 113 for (const string& t : it->second) { in EmitCounter() [all …]
|
| /external/swiftshader/third_party/llvm-16.0/llvm/lib/IR/ |
| D | MDBuilder.cpp | 1 //===---- llvm/MDBuilder.cpp - Builder for LLVM metadata ------------------===// 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 7 //===----------------------------------------------------------------------===// 12 //===----------------------------------------------------------------------===// 70 SmallVector<GlobalValue::GUID, 2> OrderID(Imports->begin(), Imports->end()); in createFunctionEntryCount() 112 Type *Int64 = Type::getInt64Ty(Context); in createCallbackEncoding() local 113 Ops.push_back(createConstant(ConstantInt::get(Int64, CalleeArgNo))); in createCallbackEncoding() 116 Ops.push_back(createConstant(ConstantInt::get(Int64, ArgNo, true))); in createCallbackEncoding() 129 auto *NewCBCalleeIdxAsCM = cast<ConstantAsMetadata>(NewCB->getOperand(0)); in mergeCallbackEncodings() 131 cast<ConstantInt>(NewCBCalleeIdxAsCM->getValue())->getZExtValue(); in mergeCallbackEncodings() [all …]
|
| /external/googleapis/google/cloud/dataproc/v1/ |
| D | shared.proto | 7 // http://www.apache.org/licenses/LICENSE-2.0 89 // [Duration](https://developers.google.com/protocol-buffers/docs/proto3#json)). 100 // [Duration](https://protobuf.dev/programming-guides/proto3/#json). 118 // workload is running, and then create and manage project-level, per-location 170 // (https://cloud.google.com/dataproc-serverless/pricing)). 176 // (https://cloud.google.com/dataproc-serverless/docs/release-notes) 190 // (https://cloud.google.com/dataproc-serverless/pricing)). 191 int64 milli_dcu_seconds = 1 [(google.api.field_behavior) = OPTIONAL]; 195 // (https://cloud.google.com/dataproc-serverless/pricing)). 196 int64 shuffle_storage_gb_seconds = 2 [(google.api.field_behavior) = OPTIONAL]; [all …]
|
| /external/tensorflow/tensorflow/compiler/xrt/ |
| D | xrt.proto | 34 // The number of "model-parallel" cores per replica. If this is 42 // The arg/result shapes for each core of a model-parallel 44 // single-core computation. 63 // stateful_input_indices is only useful when using XRT-compiled 94 // Node in a tree describing a tuple constructed from input handles. A 95 // node is an internal node if tuples is non-empty, in which case 96 // input_index and release_input_handle are ignored. Otherwise a node 97 // is a leaf node. Each leaf XLATupleNode is the index of an input 122 int64 run_id = 3; 131 // Which model-parallel computation to run from the compiled bundle. [all …]
|
| /external/angle/third_party/glslang/src/glslang/MachineIndependent/ |
| D | intermOut.cpp | 2 // Copyright (C) 2002-2005 3Dlabs Inc. Ltd. 3 // Copyright (C) 2012-2016 LunarG, Inc. 4 // Copyright (C) 2017, 2022-2024 Arm Limited. 62 // Use this class to carry along data from node to node in 75 virtual bool visitBinary(TVisit, TIntermBinary* node); 76 virtual bool visitUnary(TVisit, TIntermUnary* node); 77 virtual bool visitAggregate(TVisit, TIntermAggregate* node); 78 virtual bool visitSelection(TVisit, TIntermSelection* node); 79 virtual void visitConstantUnion(TIntermConstantUnion* node); 80 virtual void visitSymbol(TIntermSymbol* node); [all …]
|
| /external/deqp-deps/glslang/glslang/MachineIndependent/ |
| D | intermOut.cpp | 2 // Copyright (C) 2002-2005 3Dlabs Inc. Ltd. 3 // Copyright (C) 2012-2016 LunarG, Inc. 4 // Copyright (C) 2017, 2022-2024 Arm Limited. 62 // Use this class to carry along data from node to node in 75 virtual bool visitBinary(TVisit, TIntermBinary* node); 76 virtual bool visitUnary(TVisit, TIntermUnary* node); 77 virtual bool visitAggregate(TVisit, TIntermAggregate* node); 78 virtual bool visitSelection(TVisit, TIntermSelection* node); 79 virtual void visitConstantUnion(TIntermConstantUnion* node); 80 virtual void visitSymbol(TIntermSymbol* node); [all …]
|
| /external/tensorflow/tensorflow/core/ops/ |
| D | nccl_ops.cc | 7 http://www.apache.org/licenses/LICENSE-2.0 28 .Attr("T: {half, float, float64, int32, int64}") 40 .Attr("T: {half, float, float64, int32, int64}") 48 .Attr("T: {half, float, float64, int32, int64}") 54 Replacement node for NcclReduce. 57 The graph should be constructed so that 'num_devices-1' devices run 71 .Attr("T: {half, float, float64, int32, int64}") 77 Replacement node for NcclReduce. 81 The graph should be constructed so that 'num_devices-1' devices run 97 .Attr("T: {half, float, float64, int32, int64}") [all …]
|
| /external/tensorflow/tensorflow/core/kernels/mkl/ |
| D | mkl_conv_ops_test.cc | 7 http://www.apache.org/licenses/LICENSE-2.0 31 // TODO(intel-tf): Add numerical tests that will compare results of default 34 // -------------------------------------------------------------------------- // 36 // -------------------------------------------------------------------------- // 108 Node* input = test::graph::Constant(graph, input_t, "input"); in DefaultConv2D() 109 Node* filter = test::graph::Constant(graph, filter_t, "filter"); in DefaultConv2D() 111 Node* conv2d; in DefaultConv2D() 112 TF_CHECK_OK(NodeBuilder(graph->NewName("conv_2d"), "Conv2D") in DefaultConv2D() 129 Node* input = test::graph::Constant(graph, input_t, "input"); in MklConv2D() 130 Node* filter = test::graph::Constant(graph, filter_t, "filter"); in MklConv2D() [all …]
|
| /external/tensorflow/tensorflow/python/ops/ |
| D | state_ops.py | 7 # http://www.apache.org/licenses/LICENSE-2.0 27 # go/tf-wildcard-import 28 # pylint: disable=wildcard-import 30 # pylint: enable=wildcard-import 36 # pylint: disable=protected-access,g-doc-return-or-yield,g-doc-args 61 If non-empty, this variable is placed in the given container. 64 If non-empty, this variable is named in the given bucket 65 with this shared_name. Otherwise, the node name is used instead. 120 Should be from a `Variable` node. May be uninitialized. 143 `float64`, `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, [all …]
|
| /external/tensorflow/tensorflow/lite/kernels/ |
| D | fill.cc | 7 http://www.apache.org/licenses/LICENSE-2.0 39 TfLiteIntArray* output_shape = TfLiteIntArrayCreate(dims->dims->data[0]); in ResizeOutputImpl() 40 for (int i = 0; i < output_shape->size; ++i) { in ResizeOutputImpl() 44 TF_LITE_KERNEL_LOG(context, "Fill dimensions must be >= 0", dims->type); in ResizeOutputImpl() 47 output_shape->data[i] = data; in ResizeOutputImpl() 49 return context->ResizeTensor(context, output, output_shape); in ResizeOutputImpl() 54 switch (dims->type) { in ResizeOutput() 62 "Fill only currently supports int32, int64 for input 0, " in ResizeOutput() 64 dims->type); in ResizeOutput() 71 TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { in Prepare() argument [all …]
|
| /external/tensorflow/tensorflow/core/common_runtime/ |
| D | eval_const_tensor.cc | 7 http://www.apache.org/licenses/LICENSE-2.0 35 // Returns a Tensor containing the underlyiing constant value of a Node if the 36 // node contains a constant value. 37 Status EvaluateConstantNode(const Node& node, Tensor* output, bool* success) { in EvaluateConstantNode() argument 39 if (node.IsConstant()) { in EvaluateConstantNode() 40 if (output->FromProto(node.def().attr().at("value").tensor())) { in EvaluateConstantNode() 49 Status EvaluateConstantIntFromScalarEdge(const Node& node, int input_idx, in EvaluateConstantIntFromScalarEdge() argument 50 int64* output, bool* success) { in EvaluateConstantIntFromScalarEdge() 54 TF_RETURN_IF_ERROR(node.input_edge(input_idx, &edge)); in EvaluateConstantIntFromScalarEdge() 55 TF_RETURN_IF_ERROR(EvaluateConstantNode(*edge->src(), &scalar, success)); in EvaluateConstantIntFromScalarEdge() [all …]
|