1 /*
2 * Copyright 2020 Google LLC
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/gpu/ganesh/ClipStack.h"
9
10 #include "include/core/SkColorSpace.h"
11 #include "include/core/SkMatrix.h"
12 #include "src/base/SkVx.h"
13 #include "src/core/SkPathPriv.h"
14 #include "src/core/SkRRectPriv.h"
15 #include "src/core/SkRectPriv.h"
16 #include "src/core/SkTaskGroup.h"
17 #include "src/gpu/ganesh/GrClip.h"
18 #include "src/gpu/ganesh/GrDeferredProxyUploader.h"
19 #include "src/gpu/ganesh/GrDirectContextPriv.h"
20 #include "src/gpu/ganesh/GrFPArgs.h"
21 #include "src/gpu/ganesh/GrFragmentProcessor.h"
22 #include "src/gpu/ganesh/GrFragmentProcessors.h"
23 #include "src/gpu/ganesh/GrProxyProvider.h"
24 #include "src/gpu/ganesh/GrRecordingContextPriv.h"
25 #include "src/gpu/ganesh/GrSWMaskHelper.h"
26 #include "src/gpu/ganesh/StencilMaskHelper.h"
27 #include "src/gpu/ganesh/SurfaceDrawContext.h"
28 #include "src/gpu/ganesh/effects/GrBlendFragmentProcessor.h"
29 #include "src/gpu/ganesh/effects/GrConvexPolyEffect.h"
30 #include "src/gpu/ganesh/effects/GrRRectEffect.h"
31 #include "src/gpu/ganesh/effects/GrTextureEffect.h"
32 #include "src/gpu/ganesh/geometry/GrQuadUtils.h"
33 #include "src/gpu/ganesh/ops/AtlasPathRenderer.h"
34 #include "src/gpu/ganesh/ops/GrDrawOp.h"
35
36 using namespace skia_private;
37
38 namespace {
39
40 // This captures which of the two elements in (A op B) would be required when they are combined,
41 // where op is intersect or difference.
42 enum class ClipGeometry {
43 kEmpty,
44 kAOnly,
45 kBOnly,
46 kBoth
47 };
48
49 // A and B can be Element, SaveRecord, or Draw. Supported combinations are, order not mattering,
50 // (Element, Element), (Element, SaveRecord), (Element, Draw), and (SaveRecord, Draw).
51 template<typename A, typename B>
get_clip_geometry(const A & a,const B & b)52 ClipGeometry get_clip_geometry(const A& a, const B& b) {
53 // NOTE: SkIRect::Intersects() returns false when two rectangles touch at an edge (so the result
54 // is empty). This behavior is desired for the following clip effect policies.
55 if (a.op() == SkClipOp::kIntersect) {
56 if (b.op() == SkClipOp::kIntersect) {
57 // Intersect (A) + Intersect (B)
58 if (!SkIRect::Intersects(a.outerBounds(), b.outerBounds())) {
59 // Regions with non-zero coverage are disjoint, so intersection = empty
60 return ClipGeometry::kEmpty;
61 } else if (b.contains(a)) {
62 // B's full coverage region contains entirety of A, so intersection = A
63 return ClipGeometry::kAOnly;
64 } else if (a.contains(b)) {
65 // A's full coverage region contains entirety of B, so intersection = B
66 return ClipGeometry::kBOnly;
67 } else {
68 // The shapes intersect in some non-trivial manner
69 return ClipGeometry::kBoth;
70 }
71 } else {
72 SkASSERT(b.op() == SkClipOp::kDifference);
73 // Intersect (A) + Difference (B)
74 if (!SkIRect::Intersects(a.outerBounds(), b.outerBounds())) {
75 // A only intersects B's full coverage region, so intersection = A
76 return ClipGeometry::kAOnly;
77 } else if (b.contains(a)) {
78 // B's zero coverage region completely contains A, so intersection = empty
79 return ClipGeometry::kEmpty;
80 } else {
81 // Intersection cannot be simplified. Note that the combination of a intersect
82 // and difference op in this order cannot produce kBOnly
83 return ClipGeometry::kBoth;
84 }
85 }
86 } else {
87 SkASSERT(a.op() == SkClipOp::kDifference);
88 if (b.op() == SkClipOp::kIntersect) {
89 // Difference (A) + Intersect (B) - the mirror of Intersect(A) + Difference(B),
90 // but combining is commutative so this is equivalent barring naming.
91 if (!SkIRect::Intersects(b.outerBounds(), a.outerBounds())) {
92 // B only intersects A's full coverage region, so intersection = B
93 return ClipGeometry::kBOnly;
94 } else if (a.contains(b)) {
95 // A's zero coverage region completely contains B, so intersection = empty
96 return ClipGeometry::kEmpty;
97 } else {
98 // Cannot be simplified
99 return ClipGeometry::kBoth;
100 }
101 } else {
102 SkASSERT(b.op() == SkClipOp::kDifference);
103 // Difference (A) + Difference (B)
104 if (a.contains(b)) {
105 // A's zero coverage region contains B, so B doesn't remove any extra
106 // coverage from their intersection.
107 return ClipGeometry::kAOnly;
108 } else if (b.contains(a)) {
109 // Mirror of the above case, intersection = B instead
110 return ClipGeometry::kBOnly;
111 } else {
112 // Intersection of the two differences cannot be simplified. Note that for
113 // this op combination it is not possible to produce kEmpty.
114 return ClipGeometry::kBoth;
115 }
116 }
117 }
118 }
119
120 // a.contains(b) where a's local space is defined by 'aToDevice', and b's possibly separate local
121 // space is defined by 'bToDevice'. 'a' and 'b' geometry are provided in their local spaces.
122 // Automatically takes into account if the anti-aliasing policies differ. When the policies match,
123 // we assume that coverage AA or GPU's non-AA rasterization will apply to A and B equivalently, so
124 // we can compare the original shapes. When the modes are mixed, we outset B in device space first.
shape_contains_rect(const GrShape & a,const SkMatrix & aToDevice,const SkMatrix & deviceToA,const SkRect & b,const SkMatrix & bToDevice,bool mixedAAMode)125 bool shape_contains_rect(const GrShape& a, const SkMatrix& aToDevice, const SkMatrix& deviceToA,
126 const SkRect& b, const SkMatrix& bToDevice, bool mixedAAMode) {
127 if (!a.convex()) {
128 return false;
129 }
130
131 if (!mixedAAMode && aToDevice == bToDevice) {
132 // A and B are in the same coordinate space, so don't bother mapping
133 return a.conservativeContains(b);
134 } else if (bToDevice.isIdentity() && aToDevice.preservesAxisAlignment()) {
135 // Optimize the common case of draws (B, with identity matrix) and axis-aligned shapes,
136 // instead of checking the four corners separately.
137 SkRect bInA = b;
138 if (mixedAAMode) {
139 bInA.outset(0.5f, 0.5f);
140 }
141 SkAssertResult(deviceToA.mapRect(&bInA));
142 return a.conservativeContains(bInA);
143 }
144
145 // Test each corner for contains; since a is convex, if all 4 corners of b's bounds are
146 // contained, then the entirety of b is within a.
147 GrQuad deviceQuad = GrQuad::MakeFromRect(b, bToDevice);
148 if (mixedAAMode) {
149 // Outset it so its edges are 1/2px out, giving us a buffer to avoid cases where a non-AA
150 // clip or draw would snap outside an aa element.
151 GrQuadUtils::Outset({0.5f, 0.5f, 0.5f, 0.5f}, &deviceQuad);
152 }
153 if (any(deviceQuad.w4f() < SkPathPriv::kW0PlaneDistance)) {
154 // Something in B actually projects behind the W = 0 plane and would be clipped to infinity,
155 // so it's extremely unlikely that A can contain B.
156 return false;
157 }
158
159 for (int i = 0; i < 4; ++i) {
160 SkPoint cornerInA = deviceQuad.point(i);
161 deviceToA.mapPoints(&cornerInA, 1);
162 if (!a.conservativeContains(cornerInA)) {
163 return false;
164 }
165 }
166
167 return true;
168 }
169
subtract(const SkIRect & a,const SkIRect & b,bool exact)170 SkIRect subtract(const SkIRect& a, const SkIRect& b, bool exact) {
171 SkIRect diff;
172 if (SkRectPriv::Subtract(a, b, &diff) || !exact) {
173 // Either A-B is exactly the rectangle stored in diff, or we don't need an exact answer
174 // and can settle for the subrect of A excluded from B (which is also 'diff')
175 return diff;
176 } else {
177 // For our purposes, we want the original A when A-B cannot be exactly represented
178 return a;
179 }
180 }
181
get_clip_edge_type(SkClipOp op,GrAA aa)182 GrClipEdgeType get_clip_edge_type(SkClipOp op, GrAA aa) {
183 if (op == SkClipOp::kIntersect) {
184 return aa == GrAA::kYes ? GrClipEdgeType::kFillAA : GrClipEdgeType::kFillBW;
185 } else {
186 return aa == GrAA::kYes ? GrClipEdgeType::kInverseFillAA : GrClipEdgeType::kInverseFillBW;
187 }
188 }
189
190 static uint32_t kInvalidGenID = 0;
191 static uint32_t kEmptyGenID = 1;
192 static uint32_t kWideOpenGenID = 2;
193
next_gen_id()194 uint32_t next_gen_id() {
195 // 0-2 are reserved for invalid, empty & wide-open
196 static const uint32_t kFirstUnreservedGenID = 3;
197 static std::atomic<uint32_t> nextID{kFirstUnreservedGenID};
198
199 uint32_t id;
200 do {
201 id = nextID.fetch_add(1, std::memory_order_relaxed);
202 } while (id < kFirstUnreservedGenID);
203 return id;
204 }
205
206 // Functions for rendering / applying clip shapes in various ways
207 // The general strategy is:
208 // - Represent the clip element as an analytic FP that tests sk_FragCoord vs. its device shape
209 // - Render the clip element to the stencil, if stencil is allowed and supports the AA, and the
210 // size of the element indicates stenciling will be worth it, vs. making a mask.
211 // - Try to put the individual element into a clip atlas, which is then sampled during the draw
212 // - Render the element into a SW mask and upload it. If possible, the SW rasterization happens
213 // in parallel.
214 static constexpr GrSurfaceOrigin kMaskOrigin = kTopLeft_GrSurfaceOrigin;
215
analytic_clip_fp(const skgpu::ganesh::ClipStack::Element & e,const GrShaderCaps & caps,std::unique_ptr<GrFragmentProcessor> fp)216 GrFPResult analytic_clip_fp(const skgpu::ganesh::ClipStack::Element& e,
217 const GrShaderCaps& caps,
218 std::unique_ptr<GrFragmentProcessor> fp) {
219 // All analytic clip shape FPs need to be in device space
220 GrClipEdgeType edgeType = get_clip_edge_type(e.fOp, e.fAA);
221 if (e.fLocalToDevice.isIdentity()) {
222 if (e.fShape.isRect()) {
223 return GrFPSuccess(GrFragmentProcessor::Rect(std::move(fp), edgeType, e.fShape.rect()));
224 } else if (e.fShape.isRRect()) {
225 return GrRRectEffect::Make(std::move(fp), edgeType, e.fShape.rrect(), caps);
226 }
227 }
228
229 // A convex hull can be transformed into device space (this will handle rect shapes with a
230 // non-identity transform).
231 if (e.fShape.segmentMask() == SkPath::kLine_SegmentMask && e.fShape.convex()) {
232 SkPath devicePath;
233 e.fShape.asPath(&devicePath);
234 devicePath.transform(e.fLocalToDevice);
235 return GrConvexPolyEffect::Make(std::move(fp), edgeType, devicePath);
236 }
237
238 return GrFPFailure(std::move(fp));
239 }
240
241 // TODO: Currently this only works with tessellation because the tessellation path renderer owns and
242 // manages the atlas. The high-level concept could be generalized to support any path renderer going
243 // into a shared atlas.
clip_atlas_fp(const skgpu::ganesh::SurfaceDrawContext * sdc,const GrOp * opBeingClipped,skgpu::ganesh::AtlasPathRenderer * atlasPathRenderer,const SkIRect & scissorBounds,const skgpu::ganesh::ClipStack::Element & e,std::unique_ptr<GrFragmentProcessor> inputFP)244 GrFPResult clip_atlas_fp(const skgpu::ganesh::SurfaceDrawContext* sdc,
245 const GrOp* opBeingClipped,
246 skgpu::ganesh::AtlasPathRenderer* atlasPathRenderer,
247 const SkIRect& scissorBounds,
248 const skgpu::ganesh::ClipStack::Element& e,
249 std::unique_ptr<GrFragmentProcessor> inputFP) {
250 if (e.fAA != GrAA::kYes) {
251 return GrFPFailure(std::move(inputFP));
252 }
253 SkPath path;
254 e.fShape.asPath(&path);
255 SkASSERT(!path.isInverseFillType());
256 if (e.fOp == SkClipOp::kDifference) {
257 // Toggling fill type does not affect the path's "generationID" key.
258 path.toggleInverseFillType();
259 }
260 return atlasPathRenderer->makeAtlasClipEffect(sdc, opBeingClipped, std::move(inputFP),
261 scissorBounds, e.fLocalToDevice, path);
262 }
263
draw_to_sw_mask(GrSWMaskHelper * helper,const skgpu::ganesh::ClipStack::Element & e,bool clearMask)264 void draw_to_sw_mask(GrSWMaskHelper* helper,
265 const skgpu::ganesh::ClipStack::Element& e,
266 bool clearMask) {
267 // If the first element to draw is an intersect, we clear to 0 and will draw it directly with
268 // coverage 1 (subsequent intersect elements will be inverse-filled and draw 0 outside).
269 // If the first element to draw is a difference, we clear to 1, and in all cases we draw the
270 // difference element directly with coverage 0.
271 if (clearMask) {
272 helper->clear(e.fOp == SkClipOp::kIntersect ? 0x00 : 0xFF);
273 }
274
275 uint8_t alpha;
276 bool invert;
277 if (e.fOp == SkClipOp::kIntersect) {
278 // Intersect modifies pixels outside of its geometry. If this isn't the first op, we
279 // draw the inverse-filled shape with 0 coverage to erase everything outside the element
280 // But if we are the first element, we can draw directly with coverage 1 since we
281 // cleared to 0.
282 if (clearMask) {
283 alpha = 0xFF;
284 invert = false;
285 } else {
286 alpha = 0x00;
287 invert = true;
288 }
289 } else {
290 // For difference ops, can always just subtract the shape directly by drawing 0 coverage
291 SkASSERT(e.fOp == SkClipOp::kDifference);
292 alpha = 0x00;
293 invert = false;
294 }
295
296 // Draw the shape; based on how we've initialized the buffer and chosen alpha+invert,
297 // every element is drawn with the kReplace_Op
298 if (invert) {
299 // Must invert the path
300 SkASSERT(!e.fShape.inverted());
301 // TODO: this is an extra copy effectively, just so we can toggle inversion; would be
302 // better perhaps to just call a drawPath() since we know it'll use path rendering w/
303 // the inverse fill type.
304 GrShape inverted(e.fShape);
305 inverted.setInverted(true);
306 helper->drawShape(inverted, e.fLocalToDevice, e.fAA, alpha);
307 } else {
308 helper->drawShape(e.fShape, e.fLocalToDevice, e.fAA, alpha);
309 }
310 }
311
render_sw_mask(GrRecordingContext * context,const SkIRect & bounds,const skgpu::ganesh::ClipStack::Element ** elements,int count)312 GrSurfaceProxyView render_sw_mask(GrRecordingContext* context,
313 const SkIRect& bounds,
314 const skgpu::ganesh::ClipStack::Element** elements,
315 int count) {
316 SkASSERT(count > 0);
317
318 SkTaskGroup* taskGroup = nullptr;
319 if (auto direct = context->asDirectContext()) {
320 taskGroup = direct->priv().getTaskGroup();
321 }
322
323 if (taskGroup) {
324 const GrCaps* caps = context->priv().caps();
325 GrProxyProvider* proxyProvider = context->priv().proxyProvider();
326
327 // Create our texture proxy
328 GrBackendFormat format = caps->getDefaultBackendFormat(GrColorType::kAlpha_8,
329 GrRenderable::kNo);
330
331 skgpu::Swizzle swizzle = context->priv().caps()->getReadSwizzle(format,
332 GrColorType::kAlpha_8);
333 auto proxy = proxyProvider->createProxy(format,
334 bounds.size(),
335 GrRenderable::kNo,
336 1,
337 skgpu::Mipmapped::kNo,
338 SkBackingFit::kApprox,
339 skgpu::Budgeted::kYes,
340 GrProtected::kNo,
341 /*label=*/"ClipStack_RenderSwMask");
342
343 // Since this will be rendered on another thread, make a copy of the elements in case
344 // the clip stack is modified on the main thread
345 using Uploader = GrTDeferredProxyUploader<TArray<skgpu::ganesh::ClipStack::Element>>;
346 std::unique_ptr<Uploader> uploader = std::make_unique<Uploader>(count);
347 for (int i = 0; i < count; ++i) {
348 uploader->data().push_back(*(elements[i]));
349 }
350
351 Uploader* uploaderRaw = uploader.get();
352 auto drawAndUploadMask = [uploaderRaw, bounds] {
353 TRACE_EVENT0("skia.gpu", "Threaded SW Clip Mask Render");
354 GrSWMaskHelper helper(uploaderRaw->getPixels());
355 if (helper.init(bounds)) {
356 for (int i = 0; i < uploaderRaw->data().size(); ++i) {
357 draw_to_sw_mask(&helper, uploaderRaw->data()[i], i == 0);
358 }
359 } else {
360 SkDEBUGFAIL("Unable to allocate SW clip mask.");
361 }
362 uploaderRaw->signalAndFreeData();
363 };
364
365 taskGroup->add(std::move(drawAndUploadMask));
366 proxy->texPriv().setDeferredUploader(std::move(uploader));
367
368 return {std::move(proxy), kMaskOrigin, swizzle};
369 } else {
370 GrSWMaskHelper helper;
371 if (!helper.init(bounds)) {
372 return {};
373 }
374
375 for (int i = 0; i < count; ++i) {
376 draw_to_sw_mask(&helper,*(elements[i]), i == 0);
377 }
378
379 return helper.toTextureView(context, SkBackingFit::kApprox);
380 }
381 }
382
render_stencil_mask(GrRecordingContext * rContext,skgpu::ganesh::SurfaceDrawContext * sdc,uint32_t genID,const SkIRect & bounds,const skgpu::ganesh::ClipStack::Element ** elements,int count,GrAppliedClip * out)383 void render_stencil_mask(GrRecordingContext* rContext,
384 skgpu::ganesh::SurfaceDrawContext* sdc,
385 uint32_t genID,
386 const SkIRect& bounds,
387 const skgpu::ganesh::ClipStack::Element** elements,
388 int count,
389 GrAppliedClip* out) {
390 skgpu::ganesh::StencilMaskHelper helper(rContext, sdc);
391 if (helper.init(bounds, genID, out->windowRectsState().windows(), 0)) {
392 // This follows the same logic as in draw_sw_mask
393 bool startInside = elements[0]->fOp == SkClipOp::kDifference;
394 helper.clear(startInside);
395 for (int i = 0; i < count; ++i) {
396 const skgpu::ganesh::ClipStack::Element& e = *(elements[i]);
397 SkRegion::Op op;
398 if (e.fOp == SkClipOp::kIntersect) {
399 op = (i == 0) ? SkRegion::kReplace_Op : SkRegion::kIntersect_Op;
400 } else {
401 op = SkRegion::kDifference_Op;
402 }
403 helper.drawShape(e.fShape, e.fLocalToDevice, op, e.fAA);
404 }
405 helper.finish();
406 }
407 out->hardClip().addStencilClip(genID);
408 }
409
410 } // anonymous namespace
411
412 namespace skgpu::ganesh {
413
414 class ClipStack::Draw {
415 public:
Draw(const SkRect & drawBounds,GrAA aa)416 Draw(const SkRect& drawBounds, GrAA aa)
417 : fBounds(GrClip::GetPixelIBounds(drawBounds, aa, BoundsType::kExterior))
418 , fAA(aa) {
419 // Be slightly more forgiving on whether or not a draw is inside a clip element.
420 fOriginalBounds = drawBounds.makeInset(GrClip::kBoundsTolerance, GrClip::kBoundsTolerance);
421 if (fOriginalBounds.isEmpty()) {
422 fOriginalBounds = drawBounds;
423 }
424 }
425
426 // Common clip type interface
op() const427 SkClipOp op() const { return SkClipOp::kIntersect; }
outerBounds() const428 const SkIRect& outerBounds() const { return fBounds; }
429
430 // Draw does not have inner bounds so cannot contain anything.
contains(const RawElement & e) const431 bool contains(const RawElement& e) const { return false; }
contains(const SaveRecord & s) const432 bool contains(const SaveRecord& s) const { return false; }
433
applyDeviceBounds(const SkIRect & deviceBounds)434 bool applyDeviceBounds(const SkIRect& deviceBounds) {
435 return fBounds.intersect(deviceBounds);
436 }
437
bounds() const438 const SkRect& bounds() const { return fOriginalBounds; }
aa() const439 GrAA aa() const { return fAA; }
440
441 private:
442 SkRect fOriginalBounds;
443 SkIRect fBounds;
444 GrAA fAA;
445 };
446
447 ///////////////////////////////////////////////////////////////////////////////
448 // ClipStack::Element
449
RawElement(const SkMatrix & localToDevice,const GrShape & shape,GrAA aa,SkClipOp op)450 ClipStack::RawElement::RawElement(const SkMatrix& localToDevice, const GrShape& shape,
451 GrAA aa, SkClipOp op)
452 : Element{shape, localToDevice, op, aa}
453 , fInnerBounds(SkIRect::MakeEmpty())
454 , fOuterBounds(SkIRect::MakeEmpty())
455 , fInvalidatedByIndex(-1) {
456 if (!localToDevice.invert(&fDeviceToLocal)) {
457 // If the transform can't be inverted, it means that two dimensions are collapsed to 0 or
458 // 1 dimension, making the device-space geometry effectively empty.
459 fShape.reset();
460 }
461 }
462
markInvalid(const SaveRecord & current)463 void ClipStack::RawElement::markInvalid(const SaveRecord& current) {
464 SkASSERT(!this->isInvalid());
465 fInvalidatedByIndex = current.firstActiveElementIndex();
466 }
467
restoreValid(const SaveRecord & current)468 void ClipStack::RawElement::restoreValid(const SaveRecord& current) {
469 if (current.firstActiveElementIndex() < fInvalidatedByIndex) {
470 fInvalidatedByIndex = -1;
471 }
472 }
473
contains(const Draw & d) const474 bool ClipStack::RawElement::contains(const Draw& d) const {
475 if (fInnerBounds.contains(d.outerBounds())) {
476 return true;
477 } else {
478 // If the draw is non-AA, use the already computed outer bounds so we don't need to use
479 // device-space outsetting inside shape_contains_rect.
480 SkRect queryBounds = d.aa() == GrAA::kYes ? d.bounds() : SkRect::Make(d.outerBounds());
481 return shape_contains_rect(fShape, fLocalToDevice, fDeviceToLocal,
482 queryBounds, SkMatrix::I(), /* mixed-aa */ false);
483 }
484 }
485
contains(const SaveRecord & s) const486 bool ClipStack::RawElement::contains(const SaveRecord& s) const {
487 if (fInnerBounds.contains(s.outerBounds())) {
488 return true;
489 } else {
490 // This is very similar to contains(Draw) but we just have outerBounds to work with.
491 SkRect queryBounds = SkRect::Make(s.outerBounds());
492 return shape_contains_rect(fShape, fLocalToDevice, fDeviceToLocal,
493 queryBounds, SkMatrix::I(), /* mixed-aa */ false);
494 }
495 }
496
contains(const RawElement & e) const497 bool ClipStack::RawElement::contains(const RawElement& e) const {
498 // This is similar to how RawElement checks containment for a Draw, except that both the tester
499 // and testee have a transform that needs to be considered.
500 if (fInnerBounds.contains(e.fOuterBounds)) {
501 return true;
502 }
503
504 bool mixedAA = fAA != e.fAA;
505 if (!mixedAA && fLocalToDevice == e.fLocalToDevice) {
506 // Test the shapes directly against each other, with a special check for a rrect+rrect
507 // containment (a intersect b == a implies b contains a) and paths (same gen ID, or same
508 // path for small paths means they contain each other).
509 static constexpr int kMaxPathComparePoints = 16;
510 if (fShape.isRRect() && e.fShape.isRRect()) {
511 return SkRRectPriv::ConservativeIntersect(fShape.rrect(), e.fShape.rrect())
512 == e.fShape.rrect();
513 } else if (fShape.isPath() && e.fShape.isPath()) {
514 return fShape.path().getGenerationID() == e.fShape.path().getGenerationID() ||
515 (fShape.path().getPoints(nullptr, 0) <= kMaxPathComparePoints &&
516 fShape.path() == e.fShape.path());
517 } // else fall through to shape_contains_rect
518 }
519
520 return shape_contains_rect(fShape, fLocalToDevice, fDeviceToLocal,
521 e.fShape.bounds(), e.fLocalToDevice, mixedAA);
522
523 }
524
simplify(const SkIRect & deviceBounds,bool forceAA)525 void ClipStack::RawElement::simplify(const SkIRect& deviceBounds, bool forceAA) {
526 // Make sure the shape is not inverted. An inverted shape is equivalent to a non-inverted shape
527 // with the clip op toggled.
528 if (fShape.inverted()) {
529 fOp = fOp == SkClipOp::kIntersect ? SkClipOp::kDifference : SkClipOp::kIntersect;
530 fShape.setInverted(false);
531 }
532
533 // Then simplify the base shape, if it becomes empty, no need to update the bounds
534 fShape.simplify();
535 SkASSERT(!fShape.inverted());
536 if (fShape.isEmpty()) {
537 return;
538 }
539
540 // Lines and points should have been turned into empty since we assume everything is filled
541 SkASSERT(!fShape.isPoint() && !fShape.isLine());
542 // Validity check, we have no public API to create an arc at the moment
543 SkASSERT(!fShape.isArc());
544
545 SkRect outer = fLocalToDevice.mapRect(fShape.bounds());
546 if (!outer.intersect(SkRect::Make(deviceBounds))) {
547 // A non-empty shape is offscreen, so treat it as empty
548 fShape.reset();
549 return;
550 }
551
552 // Except for axis-aligned clip rects, upgrade to AA when forced. We skip axis-aligned clip
553 // rects because a non-AA axis aligned rect can always be set as just a scissor test or window
554 // rect, avoiding an expensive stencil mask generation.
555 if (forceAA && !(fShape.isRect() && fLocalToDevice.preservesAxisAlignment())) {
556 fAA = GrAA::kYes;
557 }
558
559 // Except for non-AA axis-aligned rects, the outer bounds is the rounded-out device-space
560 // mapped bounds of the shape.
561 fOuterBounds = GrClip::GetPixelIBounds(outer, fAA, BoundsType::kExterior);
562
563 if (fLocalToDevice.preservesAxisAlignment()) {
564 if (fShape.isRect()) {
565 // The actual geometry can be updated to the device-intersected bounds and we can
566 // know the inner bounds
567 fShape.rect() = outer;
568 fLocalToDevice.setIdentity();
569 fDeviceToLocal.setIdentity();
570
571 if (fAA == GrAA::kNo && outer.width() >= 1.f && outer.height() >= 1.f) {
572 // NOTE: Legacy behavior to avoid performance regressions. For non-aa axis-aligned
573 // clip rects we always just round so that they can be scissor-only (avoiding the
574 // uncertainty in how a GPU might actually round an edge on fractional coords).
575 fOuterBounds = outer.round();
576 fInnerBounds = fOuterBounds;
577 } else {
578 fInnerBounds = GrClip::GetPixelIBounds(outer, fAA, BoundsType::kInterior);
579 SkASSERT(fOuterBounds.contains(fInnerBounds) || fInnerBounds.isEmpty());
580 }
581 } else if (fShape.isRRect()) {
582 // Can't transform in place and must still check transform result since some very
583 // ill-formed scale+translate matrices can cause invalid rrect radii.
584 SkRRect src;
585 if (fShape.rrect().transform(fLocalToDevice, &src)) {
586 fShape.rrect() = src;
587 fLocalToDevice.setIdentity();
588 fDeviceToLocal.setIdentity();
589
590 SkRect inner = SkRRectPriv::InnerBounds(fShape.rrect());
591 fInnerBounds = GrClip::GetPixelIBounds(inner, fAA, BoundsType::kInterior);
592 if (!fInnerBounds.intersect(deviceBounds)) {
593 fInnerBounds = SkIRect::MakeEmpty();
594 }
595 }
596 }
597 }
598
599 if (fOuterBounds.isEmpty()) {
600 // This can happen if we have non-AA shapes smaller than a pixel that do not cover a pixel
601 // center. We could round out, but rasterization would still result in an empty clip.
602 fShape.reset();
603 }
604
605 // Post-conditions on inner and outer bounds
606 SkASSERT(fShape.isEmpty() || (!fOuterBounds.isEmpty() && deviceBounds.contains(fOuterBounds)));
607 SkASSERT(fShape.isEmpty() || fInnerBounds.isEmpty() || fOuterBounds.contains(fInnerBounds));
608 }
609
combine(const RawElement & other,const SaveRecord & current)610 bool ClipStack::RawElement::combine(const RawElement& other, const SaveRecord& current) {
611 // To reduce the number of possibilities, only consider intersect+intersect. Difference and
612 // mixed op cases could be analyzed to simplify one of the shapes, but that is a rare
613 // occurrence and the math is much more complicated.
614 if (other.fOp != SkClipOp::kIntersect || fOp != SkClipOp::kIntersect) {
615 return false;
616 }
617
618 // At the moment, only rect+rect or rrect+rrect are supported (although rect+rrect is
619 // treated as a degenerate case of rrect+rrect).
620 bool shapeUpdated = false;
621 if (fShape.isRect() && other.fShape.isRect()) {
622 bool aaMatch = fAA == other.fAA;
623 if (fLocalToDevice.isIdentity() && other.fLocalToDevice.isIdentity() && !aaMatch) {
624 if (GrClip::IsPixelAligned(fShape.rect())) {
625 // Our AA type doesn't really matter, take other's since its edges may not be
626 // pixel aligned, so after intersection clip behavior should respect its aa type.
627 fAA = other.fAA;
628 } else if (!GrClip::IsPixelAligned(other.fShape.rect())) {
629 // Neither shape is pixel aligned and AA types don't match so can't combine
630 return false;
631 }
632 // Either we've updated this->fAA to actually match, or other->fAA doesn't matter so
633 // this can be set to true. We just can't modify other to set it's aa to this->fAA.
634 // But since 'this' becomes the combo of the two, other will be deleted so that's fine.
635 aaMatch = true;
636 }
637
638 if (aaMatch && fLocalToDevice == other.fLocalToDevice) {
639 if (!fShape.rect().intersect(other.fShape.rect())) {
640 // By floating point, it turns out the combination should be empty
641 this->fShape.reset();
642 this->markInvalid(current);
643 return true;
644 }
645 shapeUpdated = true;
646 }
647 } else if ((fShape.isRect() || fShape.isRRect()) &&
648 (other.fShape.isRect() || other.fShape.isRRect())) {
649 // No such pixel-aligned disregard for AA for round rects
650 if (fAA == other.fAA && fLocalToDevice == other.fLocalToDevice) {
651 // Treat rrect+rect intersections as rrect+rrect
652 SkRRect a = fShape.isRect() ? SkRRect::MakeRect(fShape.rect()) : fShape.rrect();
653 SkRRect b = other.fShape.isRect() ? SkRRect::MakeRect(other.fShape.rect())
654 : other.fShape.rrect();
655
656 SkRRect joined = SkRRectPriv::ConservativeIntersect(a, b);
657 if (!joined.isEmpty()) {
658 // Can reduce to a single element
659 if (joined.isRect()) {
660 // And with a simplified type
661 fShape.setRect(joined.rect());
662 } else {
663 fShape.setRRect(joined);
664 }
665 shapeUpdated = true;
666 } else if (!a.getBounds().intersects(b.getBounds())) {
667 // Like the rect+rect combination, the intersection is actually empty
668 fShape.reset();
669 this->markInvalid(current);
670 return true;
671 }
672 }
673 }
674
675 if (shapeUpdated) {
676 // This logic works under the assumption that both combined elements were intersect, so we
677 // don't do the full bounds computations like in simplify().
678 SkASSERT(fOp == SkClipOp::kIntersect && other.fOp == SkClipOp::kIntersect);
679 SkAssertResult(fOuterBounds.intersect(other.fOuterBounds));
680 if (!fInnerBounds.intersect(other.fInnerBounds)) {
681 fInnerBounds = SkIRect::MakeEmpty();
682 }
683 return true;
684 } else {
685 return false;
686 }
687 }
688
updateForElement(RawElement * added,const SaveRecord & current)689 void ClipStack::RawElement::updateForElement(RawElement* added, const SaveRecord& current) {
690 if (this->isInvalid()) {
691 // Already doesn't do anything, so skip this element
692 return;
693 }
694
695 // 'A' refers to this element, 'B' refers to 'added'.
696 switch (get_clip_geometry(*this, *added)) {
697 case ClipGeometry::kEmpty:
698 // Mark both elements as invalid to signal that the clip is fully empty
699 this->markInvalid(current);
700 added->markInvalid(current);
701 break;
702
703 case ClipGeometry::kAOnly:
704 // This element already clips more than 'added', so mark 'added' is invalid to skip it
705 added->markInvalid(current);
706 break;
707
708 case ClipGeometry::kBOnly:
709 // 'added' clips more than this element, so mark this as invalid
710 this->markInvalid(current);
711 break;
712
713 case ClipGeometry::kBoth:
714 // Else the bounds checks think we need to keep both, but depending on the combination
715 // of the ops and shape kinds, we may be able to do better.
716 if (added->combine(*this, current)) {
717 // 'added' now fully represents the combination of the two elements
718 this->markInvalid(current);
719 }
720 break;
721 }
722 }
723
clipType() const724 ClipStack::ClipState ClipStack::RawElement::clipType() const {
725 // Map from the internal shape kind to the clip state enum
726 switch (fShape.type()) {
727 case GrShape::Type::kEmpty:
728 return ClipState::kEmpty;
729
730 case GrShape::Type::kRect:
731 return fOp == SkClipOp::kIntersect && fLocalToDevice.isIdentity()
732 ? ClipState::kDeviceRect : ClipState::kComplex;
733
734 case GrShape::Type::kRRect:
735 return fOp == SkClipOp::kIntersect && fLocalToDevice.isIdentity()
736 ? ClipState::kDeviceRRect : ClipState::kComplex;
737
738 case GrShape::Type::kArc:
739 case GrShape::Type::kLine:
740 case GrShape::Type::kPoint:
741 // These types should never become RawElements
742 SkASSERT(false);
743 [[fallthrough]];
744
745 case GrShape::Type::kPath:
746 return ClipState::kComplex;
747 }
748 SkUNREACHABLE;
749 }
750
751 ///////////////////////////////////////////////////////////////////////////////
752 // ClipStack::Mask
753
Mask(const SaveRecord & current,const SkIRect & drawBounds)754 ClipStack::Mask::Mask(const SaveRecord& current, const SkIRect& drawBounds)
755 : fBounds(drawBounds)
756 , fGenID(current.genID()) {
757 static const UniqueKey::Domain kDomain = UniqueKey::GenerateDomain();
758
759 // The gen ID should not be invalid, empty, or wide open, since those do not require masks
760 SkASSERT(fGenID != kInvalidGenID && fGenID != kEmptyGenID && fGenID != kWideOpenGenID);
761
762 UniqueKey::Builder builder(&fKey, kDomain, 5, "clip_mask");
763 builder[0] = fGenID;
764 builder[1] = drawBounds.fLeft;
765 builder[2] = drawBounds.fRight;
766 builder[3] = drawBounds.fTop;
767 builder[4] = drawBounds.fBottom;
768 SkASSERT(fKey.isValid());
769
770 SkDEBUGCODE(fOwner = ¤t;)
771 }
772
appliesToDraw(const SaveRecord & current,const SkIRect & drawBounds) const773 bool ClipStack::Mask::appliesToDraw(const SaveRecord& current, const SkIRect& drawBounds) const {
774 // For the same save record, a larger mask will have the same or more elements
775 // baked into it, so it can be reused to clip the smaller draw.
776 SkASSERT(fGenID != current.genID() || ¤t == fOwner);
777 return fGenID == current.genID() && fBounds.contains(drawBounds);
778 }
779
invalidate(GrProxyProvider * proxyProvider)780 void ClipStack::Mask::invalidate(GrProxyProvider* proxyProvider) {
781 SkASSERT(proxyProvider);
782 SkASSERT(fKey.isValid()); // Should only be invalidated once
783 proxyProvider->processInvalidUniqueKey(
784 fKey, nullptr, GrProxyProvider::InvalidateGPUResource::kYes);
785 fKey.reset();
786 }
787
788 ///////////////////////////////////////////////////////////////////////////////
789 // ClipStack::SaveRecord
790
SaveRecord(const SkIRect & deviceBounds)791 ClipStack::SaveRecord::SaveRecord(const SkIRect& deviceBounds)
792 : fInnerBounds(deviceBounds)
793 , fOuterBounds(deviceBounds)
794 , fShader(nullptr)
795 , fStartingMaskIndex(0)
796 , fStartingElementIndex(0)
797 , fOldestValidIndex(0)
798 , fDeferredSaveCount(0)
799 , fStackOp(SkClipOp::kIntersect)
800 , fState(ClipState::kWideOpen)
801 , fGenID(kInvalidGenID) {}
802
SaveRecord(const SaveRecord & prior,int startingMaskIndex,int startingElementIndex)803 ClipStack::SaveRecord::SaveRecord(const SaveRecord& prior,
804 int startingMaskIndex,
805 int startingElementIndex)
806 : fInnerBounds(prior.fInnerBounds)
807 , fOuterBounds(prior.fOuterBounds)
808 , fShader(prior.fShader)
809 , fStartingMaskIndex(startingMaskIndex)
810 , fStartingElementIndex(startingElementIndex)
811 , fOldestValidIndex(prior.fOldestValidIndex)
812 , fDeferredSaveCount(0)
813 , fStackOp(prior.fStackOp)
814 , fState(prior.fState)
815 , fGenID(kInvalidGenID) {
816 // If the prior record never needed a mask, this one will insert into the same index
817 // (that's okay since we'll remove it when this record is popped off the stack).
818 SkASSERT(startingMaskIndex >= prior.fStartingMaskIndex);
819 // The same goes for elements (the prior could have been wide open).
820 SkASSERT(startingElementIndex >= prior.fStartingElementIndex);
821 }
822
genID() const823 uint32_t ClipStack::SaveRecord::genID() const {
824 if (fState == ClipState::kEmpty) {
825 return kEmptyGenID;
826 } else if (fState == ClipState::kWideOpen) {
827 return kWideOpenGenID;
828 } else {
829 // The gen ID shouldn't be empty or wide open, since they are reserved for the above
830 // if-cases. It may be kInvalid if the record hasn't had any elements added to it yet.
831 SkASSERT(fGenID != kEmptyGenID && fGenID != kWideOpenGenID);
832 return fGenID;
833 }
834 }
835
state() const836 ClipStack::ClipState ClipStack::SaveRecord::state() const {
837 if (fShader && fState != ClipState::kEmpty) {
838 return ClipState::kComplex;
839 } else {
840 return fState;
841 }
842 }
843
contains(const ClipStack::Draw & draw) const844 bool ClipStack::SaveRecord::contains(const ClipStack::Draw& draw) const {
845 return fInnerBounds.contains(draw.outerBounds());
846 }
847
contains(const ClipStack::RawElement & element) const848 bool ClipStack::SaveRecord::contains(const ClipStack::RawElement& element) const {
849 return fInnerBounds.contains(element.outerBounds());
850 }
851
removeElements(RawElement::Stack * elements)852 void ClipStack::SaveRecord::removeElements(RawElement::Stack* elements) {
853 while (elements->count() > fStartingElementIndex) {
854 elements->pop_back();
855 }
856 }
857
restoreElements(RawElement::Stack * elements)858 void ClipStack::SaveRecord::restoreElements(RawElement::Stack* elements) {
859 // Presumably this SaveRecord is the new top of the stack, and so it owns the elements
860 // from its starting index to restoreCount - 1. Elements from the old save record have
861 // been destroyed already, so their indices would have been >= restoreCount, and any
862 // still-present element can be un-invalidated based on that.
863 int i = elements->count() - 1;
864 for (RawElement& e : elements->ritems()) {
865 if (i < fOldestValidIndex) {
866 break;
867 }
868 e.restoreValid(*this);
869 --i;
870 }
871 }
872
invalidateMasks(GrProxyProvider * proxyProvider,Mask::Stack * masks)873 void ClipStack::SaveRecord::invalidateMasks(GrProxyProvider* proxyProvider,
874 Mask::Stack* masks) {
875 // Must explicitly invalidate the key before removing the mask object from the stack
876 while (masks->count() > fStartingMaskIndex) {
877 SkASSERT(masks->back().owner() == this && proxyProvider);
878 masks->back().invalidate(proxyProvider);
879 masks->pop_back();
880 }
881 SkASSERT(masks->empty() || masks->back().genID() != fGenID);
882 }
883
reset(const SkIRect & bounds)884 void ClipStack::SaveRecord::reset(const SkIRect& bounds) {
885 SkASSERT(this->canBeUpdated());
886 fOldestValidIndex = fStartingElementIndex;
887 fOuterBounds = bounds;
888 fInnerBounds = bounds;
889 fStackOp = SkClipOp::kIntersect;
890 fState = ClipState::kWideOpen;
891 fShader = nullptr;
892 }
893
addShader(sk_sp<SkShader> shader)894 void ClipStack::SaveRecord::addShader(sk_sp<SkShader> shader) {
895 SkASSERT(shader);
896 SkASSERT(this->canBeUpdated());
897 if (!fShader) {
898 fShader = std::move(shader);
899 } else {
900 // The total coverage is computed by multiplying the coverage from each element (shape or
901 // shader), but since multiplication is associative, we can use kSrcIn blending to make
902 // a new shader that represents 'shader' * 'fShader'
903 fShader = SkShaders::Blend(SkBlendMode::kSrcIn, std::move(shader), fShader);
904 }
905 }
906
addElement(RawElement && toAdd,RawElement::Stack * elements)907 bool ClipStack::SaveRecord::addElement(RawElement&& toAdd, RawElement::Stack* elements) {
908 // Validity check the element's state first; if the shape class isn't empty, the outer bounds
909 // shouldn't be empty; if the inner bounds are not empty, they must be contained in outer.
910 SkASSERT((toAdd.shape().isEmpty() || !toAdd.outerBounds().isEmpty()) &&
911 (toAdd.innerBounds().isEmpty() || toAdd.outerBounds().contains(toAdd.innerBounds())));
912 // And we shouldn't be adding an element if we have a deferred save
913 SkASSERT(this->canBeUpdated());
914
915 if (fState == ClipState::kEmpty) {
916 // The clip is already empty, and we only shrink, so there's no need to record this element.
917 return false;
918 } else if (toAdd.shape().isEmpty()) {
919 // An empty difference op should have been detected earlier, since it's a no-op
920 SkASSERT(toAdd.op() == SkClipOp::kIntersect);
921 fState = ClipState::kEmpty;
922 return true;
923 }
924
925 // In this invocation, 'A' refers to the existing stack's bounds and 'B' refers to the new
926 // element.
927 switch (get_clip_geometry(*this, toAdd)) {
928 case ClipGeometry::kEmpty:
929 // The combination results in an empty clip
930 fState = ClipState::kEmpty;
931 return true;
932
933 case ClipGeometry::kAOnly:
934 // The combination would not be any different than the existing clip
935 return false;
936
937 case ClipGeometry::kBOnly:
938 // The combination would invalidate the entire existing stack and can be replaced with
939 // just the new element.
940 this->replaceWithElement(std::move(toAdd), elements);
941 return true;
942
943 case ClipGeometry::kBoth:
944 // The new element combines in a complex manner, so update the stack's bounds based on
945 // the combination of its and the new element's ops (handled below)
946 break;
947 }
948
949 if (fState == ClipState::kWideOpen) {
950 // When the stack was wide open and the clip effect was kBoth, the "complex" manner is
951 // simply to keep the element and update the stack bounds to be the element's intersected
952 // with the device.
953 this->replaceWithElement(std::move(toAdd), elements);
954 return true;
955 }
956
957 // Some form of actual clip element(s) to combine with.
958 if (fStackOp == SkClipOp::kIntersect) {
959 if (toAdd.op() == SkClipOp::kIntersect) {
960 // Intersect (stack) + Intersect (toAdd)
961 // - Bounds updates is simply the paired intersections of outer and inner.
962 SkAssertResult(fOuterBounds.intersect(toAdd.outerBounds()));
963 if (!fInnerBounds.intersect(toAdd.innerBounds())) {
964 // NOTE: this does the right thing if either rect is empty, since we set the
965 // inner bounds to empty here
966 fInnerBounds = SkIRect::MakeEmpty();
967 }
968 } else {
969 // Intersect (stack) + Difference (toAdd)
970 // - Shrink the stack's outer bounds if the difference op's inner bounds completely
971 // cuts off an edge.
972 // - Shrink the stack's inner bounds to completely exclude the op's outer bounds.
973 fOuterBounds = subtract(fOuterBounds, toAdd.innerBounds(), /* exact */ true);
974 fInnerBounds = subtract(fInnerBounds, toAdd.outerBounds(), /* exact */ false);
975 }
976 } else {
977 if (toAdd.op() == SkClipOp::kIntersect) {
978 // Difference (stack) + Intersect (toAdd)
979 // - Bounds updates are just the mirror of Intersect(stack) + Difference(toAdd)
980 SkIRect oldOuter = fOuterBounds;
981 fOuterBounds = subtract(toAdd.outerBounds(), fInnerBounds, /* exact */ true);
982 fInnerBounds = subtract(toAdd.innerBounds(), oldOuter, /* exact */ false);
983 } else {
984 // Difference (stack) + Difference (toAdd)
985 // - The updated outer bounds is the union of outer bounds and the inner becomes the
986 // largest of the two possible inner bounds
987 fOuterBounds.join(toAdd.outerBounds());
988 if (toAdd.innerBounds().width() * toAdd.innerBounds().height() >
989 fInnerBounds.width() * fInnerBounds.height()) {
990 fInnerBounds = toAdd.innerBounds();
991 }
992 }
993 }
994
995 // If we get here, we're keeping the new element and the stack's bounds have been updated.
996 // We ought to have caught the cases where the stack bounds resemble an empty or wide open
997 // clip, so assert that's the case.
998 SkASSERT(!fOuterBounds.isEmpty() &&
999 (fInnerBounds.isEmpty() || fOuterBounds.contains(fInnerBounds)));
1000
1001 return this->appendElement(std::move(toAdd), elements);
1002 }
1003
appendElement(RawElement && toAdd,RawElement::Stack * elements)1004 bool ClipStack::SaveRecord::appendElement(RawElement&& toAdd, RawElement::Stack* elements) {
1005 // Update past elements to account for the new element
1006 int i = elements->count() - 1;
1007
1008 // After the loop, elements between [max(youngestValid, startingIndex)+1, count-1] can be
1009 // removed from the stack (these are the active elements that have been invalidated by the
1010 // newest element; since it's the active part of the stack, no restore() can bring them back).
1011 int youngestValid = fStartingElementIndex - 1;
1012 // After the loop, elements between [0, oldestValid-1] are all invalid. The value of oldestValid
1013 // becomes the save record's new fLastValidIndex value.
1014 int oldestValid = elements->count();
1015 // After the loop, this is the earliest active element that was invalidated. It may be
1016 // older in the stack than earliestValid, so cannot be popped off, but can be used to store
1017 // the new element instead of allocating more.
1018 RawElement* oldestActiveInvalid = nullptr;
1019 int oldestActiveInvalidIndex = elements->count();
1020
1021 for (RawElement& existing : elements->ritems()) {
1022 if (i < fOldestValidIndex) {
1023 break;
1024 }
1025 // We don't need to pass the actual index that toAdd will be saved to; just the minimum
1026 // index of this save record, since that will result in the same restoration behavior later.
1027 existing.updateForElement(&toAdd, *this);
1028
1029 if (toAdd.isInvalid()) {
1030 if (existing.isInvalid()) {
1031 // Both new and old invalid implies the entire clip becomes empty
1032 fState = ClipState::kEmpty;
1033 return true;
1034 } else {
1035 // The new element doesn't change the clip beyond what the old element already does
1036 return false;
1037 }
1038 } else if (existing.isInvalid()) {
1039 // The new element cancels out the old element. The new element may have been modified
1040 // to account for the old element's geometry.
1041 if (i >= fStartingElementIndex) {
1042 // Still active, so the invalidated index could be used to store the new element
1043 oldestActiveInvalid = &existing;
1044 oldestActiveInvalidIndex = i;
1045 }
1046 } else {
1047 // Keep both new and old elements
1048 oldestValid = i;
1049 if (i > youngestValid) {
1050 youngestValid = i;
1051 }
1052 }
1053
1054 --i;
1055 }
1056
1057 // Post-iteration validity check
1058 SkASSERT(oldestValid == elements->count() ||
1059 (oldestValid >= fOldestValidIndex && oldestValid < elements->count()));
1060 SkASSERT(youngestValid == fStartingElementIndex - 1 ||
1061 (youngestValid >= fStartingElementIndex && youngestValid < elements->count()));
1062 SkASSERT((oldestActiveInvalid && oldestActiveInvalidIndex >= fStartingElementIndex &&
1063 oldestActiveInvalidIndex < elements->count()) || !oldestActiveInvalid);
1064
1065 // Update final state
1066 SkASSERT(oldestValid >= fOldestValidIndex);
1067 fOldestValidIndex = std::min(oldestValid, oldestActiveInvalidIndex);
1068 fState = oldestValid == elements->count() ? toAdd.clipType() : ClipState::kComplex;
1069 if (fStackOp == SkClipOp::kDifference && toAdd.op() == SkClipOp::kIntersect) {
1070 // The stack remains in difference mode only as long as all elements are difference
1071 fStackOp = SkClipOp::kIntersect;
1072 }
1073
1074 int targetCount = youngestValid + 1;
1075 if (!oldestActiveInvalid || oldestActiveInvalidIndex >= targetCount) {
1076 // toAdd will be stored right after youngestValid
1077 targetCount++;
1078 oldestActiveInvalid = nullptr;
1079 }
1080 while (elements->count() > targetCount) {
1081 SkASSERT(oldestActiveInvalid != &elements->back()); // shouldn't delete what we'll reuse
1082 elements->pop_back();
1083 }
1084 if (oldestActiveInvalid) {
1085 *oldestActiveInvalid = std::move(toAdd);
1086 } else if (elements->count() < targetCount) {
1087 elements->push_back(std::move(toAdd));
1088 } else {
1089 elements->back() = std::move(toAdd);
1090 }
1091
1092 // Changing this will prompt ClipStack to invalidate any masks associated with this record.
1093 fGenID = next_gen_id();
1094 return true;
1095 }
1096
replaceWithElement(RawElement && toAdd,RawElement::Stack * elements)1097 void ClipStack::SaveRecord::replaceWithElement(RawElement&& toAdd, RawElement::Stack* elements) {
1098 // The aggregate state of the save record mirrors the element
1099 fInnerBounds = toAdd.innerBounds();
1100 fOuterBounds = toAdd.outerBounds();
1101 fStackOp = toAdd.op();
1102 fState = toAdd.clipType();
1103
1104 // All prior active element can be removed from the stack: [startingIndex, count - 1]
1105 int targetCount = fStartingElementIndex + 1;
1106 while (elements->count() > targetCount) {
1107 elements->pop_back();
1108 }
1109 if (elements->count() < targetCount) {
1110 elements->push_back(std::move(toAdd));
1111 } else {
1112 elements->back() = std::move(toAdd);
1113 }
1114
1115 SkASSERT(elements->count() == fStartingElementIndex + 1);
1116
1117 // This invalidates all older elements that are owned by save records lower in the clip stack.
1118 fOldestValidIndex = fStartingElementIndex;
1119 fGenID = next_gen_id();
1120 }
1121
1122 ///////////////////////////////////////////////////////////////////////////////
1123 // ClipStack
1124
1125 // NOTE: Based on draw calls in all GMs, SKPs, and SVGs as of 08/20, 98% use a clip stack with
1126 // one Element and up to two SaveRecords, thus the inline size for RawElement::Stack and
1127 // SaveRecord::Stack (this conveniently keeps the size of ClipStack manageable). The max
1128 // encountered element stack depth was 5 and the max save depth was 6. Using an increment of 8 for
1129 // these stacks means that clip management will incur a single allocation for the remaining 2%
1130 // of the draws, with extra head room for more complex clips encountered in the wild.
1131 //
1132 // The mask stack increment size was chosen to be smaller since only 0.2% of the evaluated draw call
1133 // set ever used a mask (which includes stencil masks), or up to 0.3% when the atlas is disabled.
1134 static constexpr int kElementStackIncrement = 8;
1135 static constexpr int kSaveStackIncrement = 8;
1136 static constexpr int kMaskStackIncrement = 4;
1137
1138 // And from this same draw call set, the most complex clip could only use 5 analytic coverage FPs.
1139 // Historically we limited it to 4 based on Blink's call pattern, so we keep the limit as-is since
1140 // it's so close to the empirically encountered max.
1141 static constexpr int kMaxAnalyticFPs = 4;
1142 // The number of stack-allocated mask pointers to store before extending the arrays.
1143 // Stack size determined empirically, the maximum number of elements put in a SW mask was 4
1144 // across our set of GMs, SKPs, and SVGs used for testing.
1145 static constexpr int kNumStackMasks = 4;
1146
ClipStack(const SkIRect & deviceBounds,const SkMatrix * ctm,bool forceAA)1147 ClipStack::ClipStack(const SkIRect& deviceBounds, const SkMatrix* ctm, bool forceAA)
1148 : fElements(kElementStackIncrement)
1149 , fSaves(kSaveStackIncrement)
1150 , fMasks(kMaskStackIncrement)
1151 , fProxyProvider(nullptr)
1152 , fDeviceBounds(deviceBounds)
1153 , fCTM(ctm)
1154 , fForceAA(forceAA) {
1155 // Start with a save record that is wide open
1156 fSaves.emplace_back(deviceBounds);
1157 }
1158
~ClipStack()1159 ClipStack::~ClipStack() {
1160 // Invalidate all mask keys that remain. Since we're tearing the clip stack down, we don't need
1161 // to go through SaveRecord.
1162 SkASSERT(fProxyProvider || fMasks.empty());
1163 if (fProxyProvider) {
1164 for (Mask& m : fMasks.ritems()) {
1165 m.invalidate(fProxyProvider);
1166 }
1167 }
1168 }
1169
save()1170 void ClipStack::save() {
1171 SkASSERT(!fSaves.empty());
1172 fSaves.back().pushSave();
1173 }
1174
restore()1175 void ClipStack::restore() {
1176 SkASSERT(!fSaves.empty());
1177 SaveRecord& current = fSaves.back();
1178 if (current.popSave()) {
1179 // This was just a deferred save being undone, so the record doesn't need to be removed yet
1180 return;
1181 }
1182
1183 // When we remove a save record, we delete all elements >= its starting index and any masks
1184 // that were rasterized for it.
1185 current.removeElements(&fElements);
1186 SkASSERT(fProxyProvider || fMasks.empty());
1187 if (fProxyProvider) {
1188 current.invalidateMasks(fProxyProvider, &fMasks);
1189 }
1190 fSaves.pop_back();
1191 // Restore any remaining elements that were only invalidated by the now-removed save record.
1192 fSaves.back().restoreElements(&fElements);
1193 }
1194
getConservativeBounds() const1195 SkIRect ClipStack::getConservativeBounds() const {
1196 const SaveRecord& current = this->currentSaveRecord();
1197 if (current.state() == ClipState::kEmpty) {
1198 return SkIRect::MakeEmpty();
1199 } else if (current.state() == ClipState::kWideOpen) {
1200 return fDeviceBounds;
1201 } else {
1202 if (current.op() == SkClipOp::kDifference) {
1203 // The outer/inner bounds represent what's cut out, so full bounds remains the device
1204 // bounds, minus any fully clipped content that spans the device edge.
1205 return subtract(fDeviceBounds, current.innerBounds(), /* exact */ true);
1206 } else {
1207 SkASSERT(fDeviceBounds.contains(current.outerBounds()));
1208 return current.outerBounds();
1209 }
1210 }
1211 }
1212
preApply(const SkRect & bounds,GrAA aa) const1213 GrClip::PreClipResult ClipStack::preApply(const SkRect& bounds, GrAA aa) const {
1214 Draw draw(bounds, fForceAA ? GrAA::kYes : aa);
1215 if (!draw.applyDeviceBounds(fDeviceBounds)) {
1216 return GrClip::Effect::kClippedOut;
1217 }
1218
1219 const SaveRecord& cs = this->currentSaveRecord();
1220 // Early out if we know a priori that the clip is full 0s or full 1s.
1221 if (cs.state() == ClipState::kEmpty) {
1222 return GrClip::Effect::kClippedOut;
1223 } else if (cs.state() == ClipState::kWideOpen) {
1224 SkASSERT(!cs.shader());
1225 return GrClip::Effect::kUnclipped;
1226 }
1227
1228 // Given argument order, 'A' == current clip, 'B' == draw
1229 switch (get_clip_geometry(cs, draw)) {
1230 case ClipGeometry::kEmpty:
1231 // Can ignore the shader since the geometry removed everything already
1232 return GrClip::Effect::kClippedOut;
1233
1234 case ClipGeometry::kBOnly:
1235 // Geometrically, the draw is unclipped, but can't ignore a shader
1236 return cs.shader() ? GrClip::Effect::kClipped : GrClip::Effect::kUnclipped;
1237
1238 case ClipGeometry::kAOnly:
1239 // Shouldn't happen since the inner bounds of a draw are unknown
1240 SkASSERT(false);
1241 // But if it did, it technically means the draw covered the clip and should be
1242 // considered kClipped or similar, which is what the next case handles.
1243 [[fallthrough]];
1244
1245 case ClipGeometry::kBoth: {
1246 SkASSERT(fElements.count() > 0);
1247 const RawElement& back = fElements.back();
1248 if (cs.state() == ClipState::kDeviceRect) {
1249 SkASSERT(back.clipType() == ClipState::kDeviceRect);
1250 return {back.shape().rect(), back.aa()};
1251 } else if (cs.state() == ClipState::kDeviceRRect) {
1252 SkASSERT(back.clipType() == ClipState::kDeviceRRect);
1253 return {back.shape().rrect(), back.aa()};
1254 } else {
1255 // The clip stack has complex shapes, multiple elements, or a shader; we could
1256 // iterate per element like we would in apply(), but preApply() is meant to be
1257 // conservative and efficient.
1258 SkASSERT(cs.state() == ClipState::kComplex);
1259 return GrClip::Effect::kClipped;
1260 }
1261 }
1262 }
1263
1264 SkUNREACHABLE;
1265 }
1266
apply(GrRecordingContext * rContext,SurfaceDrawContext * sdc,GrDrawOp * op,GrAAType aa,GrAppliedClip * out,SkRect * bounds) const1267 GrClip::Effect ClipStack::apply(GrRecordingContext* rContext,
1268 SurfaceDrawContext* sdc,
1269 GrDrawOp* op,
1270 GrAAType aa,
1271 GrAppliedClip* out,
1272 SkRect* bounds) const {
1273 // TODO: Once we no longer store SW masks, we don't need to sneak the provider in like this
1274 if (!fProxyProvider) {
1275 fProxyProvider = rContext->priv().proxyProvider();
1276 }
1277 SkASSERT(fProxyProvider == rContext->priv().proxyProvider());
1278 const GrCaps* caps = rContext->priv().caps();
1279
1280 // Convert the bounds to a Draw and apply device bounds clipping, making our query as tight
1281 // as possible.
1282 Draw draw(*bounds, GrAA(fForceAA || aa != GrAAType::kNone));
1283 if (!draw.applyDeviceBounds(fDeviceBounds)) {
1284 return Effect::kClippedOut;
1285 }
1286 SkAssertResult(bounds->intersect(SkRect::Make(fDeviceBounds)));
1287
1288 const SaveRecord& cs = this->currentSaveRecord();
1289 // Early out if we know a priori that the clip is full 0s or full 1s.
1290 if (cs.state() == ClipState::kEmpty) {
1291 return Effect::kClippedOut;
1292 } else if (cs.state() == ClipState::kWideOpen) {
1293 SkASSERT(!cs.shader());
1294 return Effect::kUnclipped;
1295 }
1296
1297 // Convert any clip shader first, since it's not geometrically related to the draw bounds
1298 std::unique_ptr<GrFragmentProcessor> clipFP = nullptr;
1299 if (cs.shader()) {
1300 static const GrColorInfo kCoverageColorInfo{GrColorType::kUnknown, kPremul_SkAlphaType,
1301 nullptr};
1302 GrFPArgs args(
1303 rContext, &kCoverageColorInfo, sdc->surfaceProps(), GrFPArgs::Scope::kDefault);
1304 clipFP = GrFragmentProcessors::Make(cs.shader(), args, *fCTM);
1305 if (clipFP) {
1306 // The initial input is the coverage from the geometry processor, so this ensures it
1307 // is multiplied properly with the alpha of the clip shader.
1308 clipFP = GrFragmentProcessor::MulInputByChildAlpha(std::move(clipFP));
1309 }
1310 }
1311
1312 // A refers to the entire clip stack, B refers to the draw
1313 switch (get_clip_geometry(cs, draw)) {
1314 case ClipGeometry::kEmpty:
1315 return Effect::kClippedOut;
1316
1317 case ClipGeometry::kBOnly:
1318 // Geometrically unclipped, but may need to add the shader as a coverage FP
1319 if (clipFP) {
1320 out->addCoverageFP(std::move(clipFP));
1321 return Effect::kClipped;
1322 } else {
1323 return Effect::kUnclipped;
1324 }
1325
1326 case ClipGeometry::kAOnly:
1327 // Shouldn't happen since draws don't report inner bounds
1328 SkASSERT(false);
1329 [[fallthrough]];
1330
1331 case ClipGeometry::kBoth:
1332 // The draw is combined with the saved clip elements; the below logic tries to skip
1333 // as many elements as possible.
1334 SkASSERT(cs.state() == ClipState::kDeviceRect ||
1335 cs.state() == ClipState::kDeviceRRect ||
1336 cs.state() == ClipState::kComplex);
1337 break;
1338 }
1339
1340 // We can determine a scissor based on the draw and the overall stack bounds.
1341 SkIRect scissorBounds;
1342 if (cs.op() == SkClipOp::kIntersect) {
1343 // Initially we keep this as large as possible; if the clip is applied solely with coverage
1344 // FPs then using a loose scissor increases the chance we can batch the draws.
1345 // We tighten it later if any form of mask or atlas element is needed.
1346 scissorBounds = cs.outerBounds();
1347 } else {
1348 scissorBounds = subtract(draw.outerBounds(), cs.innerBounds(), /* exact */ true);
1349 }
1350
1351 // We mark this true once we have a coverage FP (since complex clipping is occurring), or we
1352 // have an element that wouldn't affect the scissored draw bounds, but does affect the regular
1353 // draw bounds. In that case, the scissor is sufficient for clipping and we can skip the
1354 // element but definitely cannot then drop the scissor.
1355 bool scissorIsNeeded = SkToBool(cs.shader());
1356 SkDEBUGCODE(bool opClippedInternally = false;)
1357
1358 int remainingAnalyticFPs = kMaxAnalyticFPs;
1359
1360 // If window rectangles are supported, we can use them to exclude inner bounds of difference ops
1361 int maxWindowRectangles = sdc->maxWindowRectangles();
1362 GrWindowRectangles windowRects;
1363
1364 // Elements not represented as an analytic FP or skipped will be collected here and later
1365 // applied by using the stencil buffer or a cached SW mask.
1366 STArray<kNumStackMasks, const Element*> elementsForMask;
1367
1368 bool maskRequiresAA = false;
1369 auto atlasPathRenderer = rContext->priv().drawingManager()->getAtlasPathRenderer();
1370
1371 int i = fElements.count();
1372 for (const RawElement& e : fElements.ritems()) {
1373 --i;
1374 if (i < cs.oldestElementIndex()) {
1375 // All earlier elements have been invalidated by elements already processed
1376 break;
1377 } else if (e.isInvalid()) {
1378 continue;
1379 }
1380
1381 switch (get_clip_geometry(e, draw)) {
1382 case ClipGeometry::kEmpty:
1383 // This can happen for difference op elements that have a larger fInnerBounds than
1384 // can be preserved at the next level.
1385 return Effect::kClippedOut;
1386
1387 case ClipGeometry::kBOnly:
1388 // We don't need to produce a coverage FP or mask for the element
1389 break;
1390
1391 case ClipGeometry::kAOnly:
1392 // Shouldn't happen for draws, fall through to regular element processing
1393 SkASSERT(false);
1394 [[fallthrough]];
1395
1396 case ClipGeometry::kBoth: {
1397 // The element must apply coverage to the draw, enable the scissor to limit overdraw
1398 scissorIsNeeded = true;
1399
1400 // First apply using HW methods (scissor and window rects). When the inner and outer
1401 // bounds match, nothing else needs to be done.
1402 bool fullyApplied = false;
1403
1404 // First check if the op knows how to apply this clip internally.
1405 SkASSERT(!e.shape().inverted());
1406 auto result = op->clipToShape(sdc, e.op(), e.localToDevice(), e.shape(),
1407 GrAA(e.aa() == GrAA::kYes || fForceAA));
1408 if (result != GrDrawOp::ClipResult::kFail) {
1409 if (result == GrDrawOp::ClipResult::kClippedOut) {
1410 return Effect::kClippedOut;
1411 }
1412 if (result == GrDrawOp::ClipResult::kClippedGeometrically) {
1413 // The op clipped its own geometry. Tighten the draw bounds.
1414 bounds->intersect(SkRect::Make(e.outerBounds()));
1415 }
1416 fullyApplied = true;
1417 SkDEBUGCODE(opClippedInternally = true;)
1418 }
1419
1420 if (!fullyApplied) {
1421 if (e.op() == SkClipOp::kIntersect) {
1422 // The second test allows clipped draws that are scissored by multiple
1423 // elements to remain scissor-only.
1424 fullyApplied = e.innerBounds() == e.outerBounds() ||
1425 e.innerBounds().contains(scissorBounds);
1426 } else {
1427 if (!e.innerBounds().isEmpty() &&
1428 windowRects.count() < maxWindowRectangles) {
1429 // TODO: If we have more difference ops than available window rects, we
1430 // should prioritize those with the largest inner bounds.
1431 windowRects.addWindow(e.innerBounds());
1432 fullyApplied = e.innerBounds() == e.outerBounds();
1433 }
1434 }
1435 }
1436
1437 if (!fullyApplied && remainingAnalyticFPs > 0) {
1438 std::tie(fullyApplied, clipFP) = analytic_clip_fp(e.asElement(),
1439 *caps->shaderCaps(),
1440 std::move(clipFP));
1441 if (!fullyApplied && atlasPathRenderer) {
1442 std::tie(fullyApplied, clipFP) = clip_atlas_fp(sdc, op,
1443 atlasPathRenderer,
1444 scissorBounds, e.asElement(),
1445 std::move(clipFP));
1446 }
1447 if (fullyApplied) {
1448 remainingAnalyticFPs--;
1449 }
1450 }
1451
1452 if (!fullyApplied) {
1453 elementsForMask.push_back(&e.asElement());
1454 maskRequiresAA |= (e.aa() == GrAA::kYes);
1455 }
1456
1457 break;
1458 }
1459 }
1460 }
1461
1462 if (!scissorIsNeeded) {
1463 // More detailed analysis of the element shapes determined no clip is needed
1464 SkASSERT(elementsForMask.empty() && !clipFP);
1465 return Effect::kUnclipped;
1466 }
1467
1468 // Fill out the GrAppliedClip with what we know so far, possibly with a tightened scissor
1469 if (cs.op() == SkClipOp::kIntersect && !elementsForMask.empty()) {
1470 SkAssertResult(scissorBounds.intersect(draw.outerBounds()));
1471 }
1472 if (!GrClip::IsInsideClip(scissorBounds, *bounds, draw.aa())) {
1473 out->hardClip().addScissor(scissorBounds, bounds);
1474 }
1475 if (!windowRects.empty()) {
1476 out->hardClip().addWindowRectangles(windowRects, GrWindowRectsState::Mode::kExclusive);
1477 }
1478
1479 // Now rasterize any remaining elements, either to the stencil or a SW mask. All elements are
1480 // flattened into a single mask.
1481 if (!elementsForMask.empty()) {
1482 bool stencilUnavailable =
1483 !sdc->asRenderTargetProxy()->canUseStencil(*rContext->priv().caps());
1484
1485 bool hasSWMask = false;
1486 if ((sdc->numSamples() <= 1 && !sdc->canUseDynamicMSAA() && maskRequiresAA) ||
1487 stencilUnavailable) {
1488 // Must use a texture mask to represent the combined clip elements since the stencil
1489 // cannot be used, or cannot handle smooth clips.
1490 std::tie(hasSWMask, clipFP) = GetSWMaskFP(
1491 rContext, &fMasks, cs, scissorBounds, elementsForMask.begin(),
1492 elementsForMask.size(), std::move(clipFP));
1493 }
1494
1495 if (!hasSWMask) {
1496 if (stencilUnavailable) {
1497 SkDebugf("WARNING: Clip mask requires stencil, but stencil unavailable. "
1498 "Draw will be ignored.\n");
1499 return Effect::kClippedOut;
1500 } else {
1501 // Rasterize the remaining elements to the stencil buffer
1502 render_stencil_mask(rContext, sdc, cs.genID(), scissorBounds,
1503 elementsForMask.begin(), elementsForMask.size(), out);
1504 }
1505 }
1506 }
1507
1508 if (clipFP) {
1509 // This will include all analytic FPs, all atlas FPs, and a SW mask FP.
1510 out->addCoverageFP(std::move(clipFP));
1511 }
1512
1513 SkASSERT(out->doesClip() || opClippedInternally);
1514 return Effect::kClipped;
1515 }
1516
writableSaveRecord(bool * wasDeferred)1517 ClipStack::SaveRecord& ClipStack::writableSaveRecord(bool* wasDeferred) {
1518 SaveRecord& current = fSaves.back();
1519 if (current.canBeUpdated()) {
1520 // Current record is still open, so it can be modified directly
1521 *wasDeferred = false;
1522 return current;
1523 } else {
1524 // Must undefer the save to get a new record.
1525 SkAssertResult(current.popSave());
1526 *wasDeferred = true;
1527 return fSaves.emplace_back(current, fMasks.count(), fElements.count());
1528 }
1529 }
1530
clipShader(sk_sp<SkShader> shader)1531 void ClipStack::clipShader(sk_sp<SkShader> shader) {
1532 // Shaders can't bring additional coverage
1533 if (this->currentSaveRecord().state() == ClipState::kEmpty) {
1534 return;
1535 }
1536
1537 bool wasDeferred;
1538 this->writableSaveRecord(&wasDeferred).addShader(std::move(shader));
1539 // Masks and geometry elements are not invalidated by updating the clip shader
1540 }
1541
replaceClip(const SkIRect & rect)1542 void ClipStack::replaceClip(const SkIRect& rect) {
1543 bool wasDeferred;
1544 SaveRecord& save = this->writableSaveRecord(&wasDeferred);
1545
1546 if (!wasDeferred) {
1547 save.removeElements(&fElements);
1548 save.invalidateMasks(fProxyProvider, &fMasks);
1549 }
1550
1551 save.reset(fDeviceBounds);
1552 if (rect != fDeviceBounds) {
1553 this->clipRect(SkMatrix::I(), SkRect::Make(rect), GrAA::kNo, SkClipOp::kIntersect);
1554 }
1555 }
1556
clip(RawElement && element)1557 void ClipStack::clip(RawElement&& element) {
1558 if (this->currentSaveRecord().state() == ClipState::kEmpty) {
1559 return;
1560 }
1561
1562 // Reduce the path to anything simpler, will apply the transform if it's a scale+translate
1563 // and ensures the element's bounds are clipped to the device (NOT the conservative clip bounds,
1564 // since those are based on the net effect of all elements while device bounds clipping happens
1565 // implicitly. During addElement, we may still be able to invalidate some older elements).
1566 element.simplify(fDeviceBounds, fForceAA);
1567 SkASSERT(!element.shape().inverted());
1568
1569 // An empty op means do nothing (for difference), or close the save record, so we try and detect
1570 // that early before doing additional unnecessary save record allocation.
1571 if (element.shape().isEmpty()) {
1572 if (element.op() == SkClipOp::kDifference) {
1573 // If the shape is empty and we're subtracting, this has no effect on the clip
1574 return;
1575 }
1576 // else we will make the clip empty, but we need a new save record to record that change
1577 // in the clip state; fall through to below and updateForElement() will handle it.
1578 }
1579
1580 bool wasDeferred;
1581 SaveRecord& save = this->writableSaveRecord(&wasDeferred);
1582 SkDEBUGCODE(uint32_t oldGenID = save.genID();)
1583 SkDEBUGCODE(int elementCount = fElements.count();)
1584 if (!save.addElement(std::move(element), &fElements)) {
1585 if (wasDeferred) {
1586 // We made a new save record, but ended up not adding an element to the stack.
1587 // So instead of keeping an empty save record around, pop it off and restore the counter
1588 SkASSERT(elementCount == fElements.count());
1589 fSaves.pop_back();
1590 fSaves.back().pushSave();
1591 } else {
1592 // Should not have changed gen ID if the element and save were not modified
1593 SkASSERT(oldGenID == save.genID());
1594 }
1595 } else {
1596 // The gen ID should be new, and should not be invalid
1597 SkASSERT(oldGenID != save.genID() && save.genID() != kInvalidGenID);
1598 if (fProxyProvider && !wasDeferred) {
1599 // We modified an active save record so any old masks it had can be invalidated
1600 save.invalidateMasks(fProxyProvider, &fMasks);
1601 }
1602 }
1603 }
1604
GetSWMaskFP(GrRecordingContext * context,Mask::Stack * masks,const SaveRecord & current,const SkIRect & bounds,const Element ** elements,int count,std::unique_ptr<GrFragmentProcessor> clipFP)1605 GrFPResult ClipStack::GetSWMaskFP(GrRecordingContext* context, Mask::Stack* masks,
1606 const SaveRecord& current, const SkIRect& bounds,
1607 const Element** elements, int count,
1608 std::unique_ptr<GrFragmentProcessor> clipFP) {
1609 GrProxyProvider* proxyProvider = context->priv().proxyProvider();
1610 GrSurfaceProxyView maskProxy;
1611
1612 SkIRect maskBounds; // may not be 'bounds' if we reuse a large clip mask
1613 // Check the existing masks from this save record for compatibility
1614 for (const Mask& m : masks->ritems()) {
1615 if (m.genID() != current.genID()) {
1616 break;
1617 }
1618 if (m.appliesToDraw(current, bounds)) {
1619 maskProxy = proxyProvider->findCachedProxyWithColorTypeFallback(
1620 m.key(), kMaskOrigin, GrColorType::kAlpha_8, 1);
1621 if (maskProxy) {
1622 maskBounds = m.bounds();
1623 break;
1624 }
1625 }
1626 }
1627
1628 if (!maskProxy) {
1629 // No existing mask was found, so need to render a new one
1630 maskProxy = render_sw_mask(context, bounds, elements, count);
1631 if (!maskProxy) {
1632 // If we still don't have one, there's nothing we can do
1633 return GrFPFailure(std::move(clipFP));
1634 }
1635
1636 // Register the mask for later invalidation
1637 Mask& mask = masks->emplace_back(current, bounds);
1638 proxyProvider->assignUniqueKeyToProxy(mask.key(), maskProxy.asTextureProxy());
1639 maskBounds = bounds;
1640 }
1641
1642 // Wrap the mask in an FP that samples it for coverage
1643 SkASSERT(maskProxy && maskProxy.origin() == kMaskOrigin);
1644
1645 GrSamplerState samplerState(GrSamplerState::WrapMode::kClampToBorder,
1646 GrSamplerState::Filter::kNearest);
1647 // Maps the device coords passed to the texture effect to the top-left corner of the mask, and
1648 // make sure that the draw bounds are pre-mapped into the mask's space as well.
1649 auto m = SkMatrix::Translate(-maskBounds.fLeft, -maskBounds.fTop);
1650 auto subset = SkRect::Make(bounds);
1651 subset.offset(-maskBounds.fLeft, -maskBounds.fTop);
1652 // We scissor to bounds. The mask's texel centers are aligned to device space
1653 // pixel centers. Hence this domain of texture coordinates.
1654 auto domain = subset.makeInset(0.5, 0.5);
1655 auto fp = GrTextureEffect::MakeSubset(std::move(maskProxy), kPremul_SkAlphaType, m,
1656 samplerState, subset, domain, *context->priv().caps());
1657 fp = GrFragmentProcessor::DeviceSpace(std::move(fp));
1658
1659 // Must combine the coverage sampled from the texture effect with the previous coverage
1660 fp = GrBlendFragmentProcessor::Make<SkBlendMode::kDstIn>(std::move(fp), std::move(clipFP));
1661 return GrFPSuccess(std::move(fp));
1662 }
1663
1664 } // namespace skgpu::ganesh
1665