• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2019 Google LLC.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "src/gpu/ganesh/tessellate/GrPathTessellationShader.h"
9 
10 #include "src/base/SkMathPriv.h"
11 #include "src/gpu/KeyBuilder.h"
12 #include "src/gpu/ganesh/effects/GrDisableColorXP.h"
13 #include "src/gpu/ganesh/glsl/GrGLSLFragmentShaderBuilder.h"
14 #include "src/gpu/ganesh/glsl/GrGLSLVarying.h"
15 #include "src/gpu/ganesh/glsl/GrGLSLVertexGeoBuilder.h"
16 #include "src/gpu/tessellate/FixedCountBufferUtils.h"
17 #include "src/gpu/tessellate/Tessellation.h"
18 #include "src/gpu/tessellate/WangsFormula.h"
19 
20 using namespace skia_private;
21 
22 namespace {
23 
24 using namespace skgpu::tess;
25 
26 // Draws a simple array of triangles.
27 class SimpleTriangleShader : public GrPathTessellationShader {
28 public:
SimpleTriangleShader(const SkMatrix & viewMatrix,SkPMColor4f color)29     SimpleTriangleShader(const SkMatrix& viewMatrix, SkPMColor4f color)
30             : GrPathTessellationShader(kTessellate_SimpleTriangleShader_ClassID,
31                                        GrPrimitiveType::kTriangles,
32                                        viewMatrix,
33                                        color,
34                                        PatchAttribs::kNone) {
35         constexpr static Attribute kInputPointAttrib{"inputPoint", kFloat2_GrVertexAttribType,
36                                                      SkSLType::kFloat2};
37         this->setVertexAttributesWithImplicitOffsets(&kInputPointAttrib, 1);
38     }
39 
40 private:
name() const41     const char* name() const final { return "tessellate_SimpleTriangleShader"; }
addToKey(const GrShaderCaps &,skgpu::KeyBuilder *) const42     void addToKey(const GrShaderCaps&, skgpu::KeyBuilder*) const final {}
43     std::unique_ptr<ProgramImpl> makeProgramImpl(const GrShaderCaps&) const final;
44 };
45 
makeProgramImpl(const GrShaderCaps &) const46 std::unique_ptr<GrGeometryProcessor::ProgramImpl> SimpleTriangleShader::makeProgramImpl(
47         const GrShaderCaps&) const {
48     class Impl : public GrPathTessellationShader::Impl {
49         void emitVertexCode(const GrShaderCaps&,
50                             const GrPathTessellationShader&,
51                             GrGLSLVertexBuilder* v,
52                             GrGLSLVaryingHandler*,
53                             GrGPArgs* gpArgs) override {
54             v->codeAppend(
55             "float2 localcoord = inputPoint;"
56             "float2 vertexpos = AFFINE_MATRIX * localcoord + TRANSLATE;");
57             gpArgs->fLocalCoordVar.set(SkSLType::kFloat2, "localcoord");
58             gpArgs->fPositionVar.set(SkSLType::kFloat2, "vertexpos");
59         }
60     };
61     return std::make_unique<Impl>();
62 }
63 
64 
65 // Uses instanced draws to triangulate standalone closed curves with a "middle-out" topology.
66 // Middle-out draws a triangle with vertices at T=[0, 1/2, 1] and then recurses breadth first:
67 //
68 //   depth=0: T=[0, 1/2, 1]
69 //   depth=1: T=[0, 1/4, 2/4], T=[2/4, 3/4, 1]
70 //   depth=2: T=[0, 1/8, 2/8], T=[2/8, 3/8, 4/8], T=[4/8, 5/8, 6/8], T=[6/8, 7/8, 1]
71 //   ...
72 //
73 // The shader determines how many segments are required to render each individual curve smoothly,
74 // and emits empty triangles at any vertices whose sk_VertexIDs are higher than necessary. It is the
75 // caller's responsibility to draw enough vertices per instance for the most complex curve in the
76 // batch to render smoothly (i.e., NumTrianglesAtResolveLevel() * 3).
77 class MiddleOutShader : public GrPathTessellationShader {
78 public:
MiddleOutShader(const GrShaderCaps & shaderCaps,const SkMatrix & viewMatrix,const SkPMColor4f & color,PatchAttribs attribs)79     MiddleOutShader(const GrShaderCaps& shaderCaps, const SkMatrix& viewMatrix,
80                     const SkPMColor4f& color, PatchAttribs attribs)
81             : GrPathTessellationShader(kTessellate_MiddleOutShader_ClassID,
82                                        GrPrimitiveType::kTriangles, viewMatrix, color, attribs) {
83         fInstanceAttribs.emplace_back("p01", kFloat4_GrVertexAttribType, SkSLType::kFloat4);
84         fInstanceAttribs.emplace_back("p23", kFloat4_GrVertexAttribType, SkSLType::kFloat4);
85         if (fAttribs & PatchAttribs::kFanPoint) {
86             fInstanceAttribs.emplace_back("fanPointAttrib",
87                                           kFloat2_GrVertexAttribType,
88                                           SkSLType::kFloat2);
89         }
90         if (fAttribs & PatchAttribs::kColor) {
91             fInstanceAttribs.emplace_back("colorAttrib",
92                                           (fAttribs & PatchAttribs::kWideColorIfEnabled)
93                                                   ? kFloat4_GrVertexAttribType
94                                                   : kUByte4_norm_GrVertexAttribType,
95                                           SkSLType::kHalf4);
96         }
97         if (fAttribs & PatchAttribs::kExplicitCurveType) {
98             // A conic curve is written out with p3=[w,Infinity], but GPUs that don't support
99             // infinity can't detect this. On these platforms we also write out an extra float with
100             // each patch that explicitly tells the shader what type of curve it is.
101             fInstanceAttribs.emplace_back("curveType", kFloat_GrVertexAttribType, SkSLType::kFloat);
102         }
103         this->setInstanceAttributesWithImplicitOffsets(fInstanceAttribs.data(),
104                                                        fInstanceAttribs.size());
105         SkASSERT(fInstanceAttribs.size() <= kMaxInstanceAttribCount);
106         SkASSERT(this->instanceStride() ==
107                  sizeof(SkPoint) * 4 + PatchAttribsStride(fAttribs));
108 
109         constexpr static Attribute kVertexAttrib("resolveLevel_and_idx", kFloat2_GrVertexAttribType,
110                                                  SkSLType::kFloat2);
111         this->setVertexAttributesWithImplicitOffsets(&kVertexAttrib, 1);
112     }
113 
114 private:
name() const115     const char* name() const final { return "tessellate_MiddleOutShader"; }
addToKey(const GrShaderCaps &,skgpu::KeyBuilder * b) const116     void addToKey(const GrShaderCaps&, skgpu::KeyBuilder* b) const final {
117         // When color is in a uniform, it's always wide so we need to ignore kWideColorIfEnabled.
118         // When color is in an attrib, its wideness is accounted for as part of the attrib key in
119         // GrGeometryProcessor::getAttributeKey().
120         // Either way, we get the correct key by ignoring .
121         b->add32((uint32_t)(fAttribs & ~PatchAttribs::kWideColorIfEnabled));
122     }
123     std::unique_ptr<ProgramImpl> makeProgramImpl(const GrShaderCaps&) const final;
124 
125     constexpr static int kMaxInstanceAttribCount = 5;
126     STArray<kMaxInstanceAttribCount, Attribute> fInstanceAttribs;
127 };
128 
makeProgramImpl(const GrShaderCaps &) const129 std::unique_ptr<GrGeometryProcessor::ProgramImpl> MiddleOutShader::makeProgramImpl(
130         const GrShaderCaps&) const {
131     class Impl : public GrPathTessellationShader::Impl {
132         void emitVertexCode(const GrShaderCaps& shaderCaps,
133                             const GrPathTessellationShader& shader,
134                             GrGLSLVertexBuilder* v,
135                             GrGLSLVaryingHandler* varyingHandler,
136                             GrGPArgs* gpArgs) override {
137             const MiddleOutShader& middleOutShader = shader.cast<MiddleOutShader>();
138             v->defineConstant("PRECISION", skgpu::tess::kPrecision);
139             v->defineConstant("MAX_FIXED_RESOLVE_LEVEL",
140                               (float)skgpu::tess::kMaxResolveLevel);
141             v->defineConstant("MAX_FIXED_SEGMENTS",
142                               (float)(skgpu::tess::kMaxParametricSegments));
143             v->insertFunction(GrTessellationShader::WangsFormulaSkSL());
144             if (middleOutShader.fAttribs & PatchAttribs::kExplicitCurveType) {
145                 v->insertFunction(SkStringPrintf(
146                 "bool is_conic_curve() {"
147                     "return curveType != %g;"
148                 "}", skgpu::tess::kCubicCurveType).c_str());
149                 v->insertFunction(SkStringPrintf(
150                 "bool is_triangular_conic_curve() {"
151                     "return curveType == %g;"
152                 "}", skgpu::tess::kTriangularConicCurveType).c_str());
153             } else {
154                 SkASSERT(shaderCaps.fInfinitySupport);
155                 v->insertFunction(
156                 "bool is_conic_curve() { return isinf(p23.w); }"
157                 "bool is_triangular_conic_curve() { return isinf(p23.z); }");
158             }
159             if (shaderCaps.fBitManipulationSupport) {
160                 v->insertFunction(
161                 "float ldexp_portable(float x, float p) {"
162                     "return ldexp(x, int(p));"
163                 "}");
164             } else {
165                 v->insertFunction(
166                 "float ldexp_portable(float x, float p) {"
167                     "return x * exp2(p);"
168                 "}");
169             }
170             v->codeAppend(
171             "float resolveLevel = resolveLevel_and_idx.x;"
172             "float idxInResolveLevel = resolveLevel_and_idx.y;"
173             "float2 localcoord;");
174             if (middleOutShader.fAttribs & PatchAttribs::kFanPoint) {
175                 v->codeAppend(
176                 // A negative resolve level means this is the fan point.
177                 "if (resolveLevel < 0) {"
178                     "localcoord = fanPointAttrib;"
179                 "} else ");  // Fall through to next if (). Trailing space is important.
180             }
181             v->codeAppend(
182             "if (is_triangular_conic_curve()) {"
183                 // This patch is an exact triangle.
184                 "localcoord = (resolveLevel != 0) ? p01.zw"
185                            ": (idxInResolveLevel != 0) ? p23.xy"
186                                                       ": p01.xy;"
187             "} else {"
188                 "float2 p0=p01.xy, p1=p01.zw, p2=p23.xy, p3=p23.zw;"
189                 "float w = -1;"  // w < 0 tells us to treat the instance as an integral cubic.
190                 "float maxResolveLevel;"
191                 "if (is_conic_curve()) {"
192                     // Conics are 3 points, with the weight in p3.
193                     "w = p3.x;"
194                     "maxResolveLevel = wangs_formula_conic_log2(PRECISION, AFFINE_MATRIX * p0,"
195                                                                           "AFFINE_MATRIX * p1,"
196                                                                           "AFFINE_MATRIX * p2, w);"
197                     "p1 *= w;"  // Unproject p1.
198                     "p3 = p2;"  // Duplicate the endpoint for shared code that also runs on cubics.
199                 "} else {"
200                     // The patch is an integral cubic.
201                     "maxResolveLevel = wangs_formula_cubic_log2(PRECISION, p0, p1, p2, p3,"
202                                                                "AFFINE_MATRIX);"
203                 "}"
204                 "if (resolveLevel > maxResolveLevel) {"
205                     // This vertex is at a higher resolve level than we need. Demote to a lower
206                     // resolveLevel, which will produce a degenerate triangle.
207                     "idxInResolveLevel = floor(ldexp_portable(idxInResolveLevel,"
208                                                              "maxResolveLevel - resolveLevel));"
209                     "resolveLevel = maxResolveLevel;"
210                 "}"
211                 // Promote our location to a discrete position in the maximum fixed resolve level.
212                 // This is extra paranoia to ensure we get the exact same fp32 coordinates for
213                 // colocated points from different resolve levels (e.g., the vertices T=3/4 and
214                 // T=6/8 should be exactly colocated).
215                 "float fixedVertexID = floor(.5 + ldexp_portable("
216                         "idxInResolveLevel, MAX_FIXED_RESOLVE_LEVEL - resolveLevel));"
217                 "if (0 < fixedVertexID && fixedVertexID < MAX_FIXED_SEGMENTS) {"
218                     "float T = fixedVertexID * (1 / MAX_FIXED_SEGMENTS);"
219 
220                     // Evaluate at T. Use De Casteljau's for its accuracy and stability.
221                     "float2 ab = mix(p0, p1, T);"
222                     "float2 bc = mix(p1, p2, T);"
223                     "float2 cd = mix(p2, p3, T);"
224                     "float2 abc = mix(ab, bc, T);"
225                     "float2 bcd = mix(bc, cd, T);"
226                     "float2 abcd = mix(abc, bcd, T);"
227 
228                     // Evaluate the conic weight at T.
229                     "float u = mix(1.0, w, T);"
230                     "float v = w + 1 - u;"  // == mix(w, 1, T)
231                     "float uv = mix(u, v, T);"
232 
233                     "localcoord = (w < 0) ?" /*cubic*/ "abcd:" /*conic*/ "abc/uv;"
234                 "} else {"
235                     "localcoord = (fixedVertexID == 0) ? p0.xy : p3.xy;"
236                 "}"
237             "}"
238             "float2 vertexpos = AFFINE_MATRIX * localcoord + TRANSLATE;");
239             gpArgs->fLocalCoordVar.set(SkSLType::kFloat2, "localcoord");
240             gpArgs->fPositionVar.set(SkSLType::kFloat2, "vertexpos");
241             if (middleOutShader.fAttribs & PatchAttribs::kColor) {
242                 GrGLSLVarying colorVarying(SkSLType::kHalf4);
243                 varyingHandler->addVarying("color",
244                                            &colorVarying,
245                                            GrGLSLVaryingHandler::Interpolation::kCanBeFlat);
246                 v->codeAppendf("%s = colorAttrib;", colorVarying.vsOut());
247                 fVaryingColorName = colorVarying.fsIn();
248             }
249         }
250     };
251     return std::make_unique<Impl>();
252 }
253 
254 }  // namespace
255 
Make(const GrShaderCaps & shaderCaps,SkArenaAlloc * arena,const SkMatrix & viewMatrix,const SkPMColor4f & color,PatchAttribs attribs)256 GrPathTessellationShader* GrPathTessellationShader::Make(const GrShaderCaps& shaderCaps,
257                                                          SkArenaAlloc* arena,
258                                                          const SkMatrix& viewMatrix,
259                                                          const SkPMColor4f& color,
260                                                          PatchAttribs attribs) {
261     // We should use explicit curve type when, and only when, there isn't infinity support.
262     // Otherwise the GPU can infer curve type based on infinity.
263     SkASSERT(shaderCaps.fInfinitySupport != (attribs & PatchAttribs::kExplicitCurveType));
264     return arena->make<MiddleOutShader>(shaderCaps, viewMatrix, color, attribs);
265 }
266 
MakeSimpleTriangleShader(SkArenaAlloc * arena,const SkMatrix & viewMatrix,const SkPMColor4f & color)267 GrPathTessellationShader* GrPathTessellationShader::MakeSimpleTriangleShader(
268         SkArenaAlloc* arena, const SkMatrix& viewMatrix, const SkPMColor4f& color) {
269     return arena->make<SimpleTriangleShader>(viewMatrix, color);
270 }
271 
MakeStencilOnlyPipeline(const ProgramArgs & args,GrAAType aaType,const GrAppliedHardClip & hardClip,GrPipeline::InputFlags pipelineFlags)272 const GrPipeline* GrPathTessellationShader::MakeStencilOnlyPipeline(
273         const ProgramArgs& args,
274         GrAAType aaType,
275         const GrAppliedHardClip& hardClip,
276         GrPipeline::InputFlags pipelineFlags) {
277     GrPipeline::InitArgs pipelineArgs;
278     pipelineArgs.fInputFlags = pipelineFlags;
279     pipelineArgs.fCaps = args.fCaps;
280     return args.fArena->make<GrPipeline>(pipelineArgs,
281                                          GrDisableColorXPFactory::MakeXferProcessor(),
282                                          hardClip);
283 }
284 
285 // Evaluate our point of interest using numerically stable linear interpolations. We add our own
286 // "safe_mix" method to guarantee we get exactly "b" when T=1. The builtin mix() function seems
287 // spec'd to behave this way, but empirical results results have shown it does not always.
288 const char* GrPathTessellationShader::Impl::kEvalRationalCubicFn =
289 "float3 safe_mix(float3 a, float3 b, float T, float one_minus_T) {"
290     "return a*one_minus_T + b*T;"
291 "}"
292 "float2 eval_rational_cubic(float4x3 P, float T) {"
293     "float one_minus_T = 1.0 - T;"
294     "float3 ab = safe_mix(P[0], P[1], T, one_minus_T);"
295     "float3 bc = safe_mix(P[1], P[2], T, one_minus_T);"
296     "float3 cd = safe_mix(P[2], P[3], T, one_minus_T);"
297     "float3 abc = safe_mix(ab, bc, T, one_minus_T);"
298     "float3 bcd = safe_mix(bc, cd, T, one_minus_T);"
299     "float3 abcd = safe_mix(abc, bcd, T, one_minus_T);"
300     "return abcd.xy / abcd.z;"
301 "}";
302 
onEmitCode(EmitArgs & args,GrGPArgs * gpArgs)303 void GrPathTessellationShader::Impl::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) {
304     const auto& shader = args.fGeomProc.cast<GrPathTessellationShader>();
305     args.fVaryingHandler->emitAttributes(shader);
306 
307     // Vertex shader.
308     const char* affineMatrix, *translate;
309     fAffineMatrixUniform = args.fUniformHandler->addUniform(nullptr, kVertex_GrShaderFlag,
310                                                             SkSLType::kFloat4, "affineMatrix",
311                                                             &affineMatrix);
312     fTranslateUniform = args.fUniformHandler->addUniform(nullptr, kVertex_GrShaderFlag,
313                                                          SkSLType::kFloat2, "translate", &translate);
314     args.fVertBuilder->codeAppendf("float2x2 AFFINE_MATRIX = float2x2(%s.xy, %s.zw);",
315                                    affineMatrix, affineMatrix);
316     args.fVertBuilder->codeAppendf("float2 TRANSLATE = %s;", translate);
317     this->emitVertexCode(*args.fShaderCaps,
318                          shader,
319                          args.fVertBuilder,
320                          args.fVaryingHandler,
321                          gpArgs);
322 
323     // Fragment shader.
324     if (!(shader.fAttribs & PatchAttribs::kColor)) {
325         const char* color;
326         fColorUniform = args.fUniformHandler->addUniform(nullptr, kFragment_GrShaderFlag,
327                                                          SkSLType::kHalf4, "color", &color);
328         args.fFragBuilder->codeAppendf("half4 %s = %s;", args.fOutputColor, color);
329     } else {
330         args.fFragBuilder->codeAppendf("half4 %s = %s;",
331                                        args.fOutputColor, fVaryingColorName.c_str());
332     }
333     args.fFragBuilder->codeAppendf("const half4 %s = half4(1);", args.fOutputCoverage);
334 }
335 
setData(const GrGLSLProgramDataManager & pdman,const GrShaderCaps &,const GrGeometryProcessor & geomProc)336 void GrPathTessellationShader::Impl::setData(const GrGLSLProgramDataManager& pdman, const
337                                              GrShaderCaps&, const GrGeometryProcessor& geomProc) {
338     const auto& shader = geomProc.cast<GrPathTessellationShader>();
339     const SkMatrix& m = shader.viewMatrix();
340     pdman.set4f(fAffineMatrixUniform, m.getScaleX(), m.getSkewY(), m.getSkewX(), m.getScaleY());
341     pdman.set2f(fTranslateUniform, m.getTranslateX(), m.getTranslateY());
342 
343     if (!(shader.fAttribs & PatchAttribs::kColor)) {
344         const SkPMColor4f& color = shader.color();
345         pdman.set4f(fColorUniform, color.fR, color.fG, color.fB, color.fA);
346     }
347 }
348