1 /*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/gpu/ganesh/geometry/GrTriangulator.h"
9
10 #include "include/core/SkPathTypes.h"
11 #include "include/core/SkRect.h"
12 #include "include/private/base/SkDebug.h"
13 #include "include/private/base/SkFloatingPoint.h"
14 #include "include/private/base/SkMath.h"
15 #include "include/private/base/SkTPin.h"
16 #include "src/base/SkVx.h"
17 #include "src/core/SkGeometry.h"
18 #include "src/core/SkPointPriv.h"
19 #include "src/gpu/BufferWriter.h"
20 #include "src/gpu/ganesh/GrColor.h"
21 #include "src/gpu/ganesh/GrEagerVertexAllocator.h"
22 #include "src/gpu/ganesh/geometry/GrPathUtils.h"
23
24 #include <algorithm>
25 #include <cstddef>
26 #include <limits>
27 #include <memory>
28 #include <tuple>
29 #include <utility>
30
31 #if !defined(SK_ENABLE_OPTIMIZE_SIZE)
32
33 #if TRIANGULATOR_LOGGING
34 #define TESS_LOG printf
35 #define DUMP_MESH(M) (M).dump()
36 #else
37 #define TESS_LOG(...)
38 #define DUMP_MESH(M)
39 #endif
40
41 using EdgeType = GrTriangulator::EdgeType;
42 using Vertex = GrTriangulator::Vertex;
43 using VertexList = GrTriangulator::VertexList;
44 using Line = GrTriangulator::Line;
45 using Edge = GrTriangulator::Edge;
46 using EdgeList = GrTriangulator::EdgeList;
47 using Poly = GrTriangulator::Poly;
48 using MonotonePoly = GrTriangulator::MonotonePoly;
49 using Comparator = GrTriangulator::Comparator;
50
51 template <class T, T* T::*Prev, T* T::*Next>
list_insert(T * t,T * prev,T * next,T ** head,T ** tail)52 static void list_insert(T* t, T* prev, T* next, T** head, T** tail) {
53 t->*Prev = prev;
54 t->*Next = next;
55 if (prev) {
56 prev->*Next = t;
57 } else if (head) {
58 *head = t;
59 }
60 if (next) {
61 next->*Prev = t;
62 } else if (tail) {
63 *tail = t;
64 }
65 }
66
67 template <class T, T* T::*Prev, T* T::*Next>
list_remove(T * t,T ** head,T ** tail)68 static void list_remove(T* t, T** head, T** tail) {
69 if (t->*Prev) {
70 t->*Prev->*Next = t->*Next;
71 } else if (head) {
72 *head = t->*Next;
73 }
74 if (t->*Next) {
75 t->*Next->*Prev = t->*Prev;
76 } else if (tail) {
77 *tail = t->*Prev;
78 }
79 t->*Prev = t->*Next = nullptr;
80 }
81
82 typedef bool (*CompareFunc)(const SkPoint& a, const SkPoint& b);
83
sweep_lt_horiz(const SkPoint & a,const SkPoint & b)84 static bool sweep_lt_horiz(const SkPoint& a, const SkPoint& b) {
85 return a.fX < b.fX || (a.fX == b.fX && a.fY > b.fY);
86 }
87
sweep_lt_vert(const SkPoint & a,const SkPoint & b)88 static bool sweep_lt_vert(const SkPoint& a, const SkPoint& b) {
89 return a.fY < b.fY || (a.fY == b.fY && a.fX < b.fX);
90 }
91
sweep_lt(const SkPoint & a,const SkPoint & b) const92 bool GrTriangulator::Comparator::sweep_lt(const SkPoint& a, const SkPoint& b) const {
93 return fDirection == Direction::kHorizontal ? sweep_lt_horiz(a, b) : sweep_lt_vert(a, b);
94 }
95
emit_vertex(Vertex * v,bool emitCoverage,skgpu::VertexWriter data)96 static inline skgpu::VertexWriter emit_vertex(Vertex* v,
97 bool emitCoverage,
98 skgpu::VertexWriter data) {
99 data << v->fPoint;
100
101 if (emitCoverage) {
102 data << GrNormalizeByteToFloat(v->fAlpha);
103 }
104
105 return data;
106 }
107
emit_triangle(Vertex * v0,Vertex * v1,Vertex * v2,bool emitCoverage,skgpu::VertexWriter data)108 static skgpu::VertexWriter emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2,
109 bool emitCoverage, skgpu::VertexWriter data) {
110 TESS_LOG("emit_triangle %g (%g, %g) %d\n", v0->fID, v0->fPoint.fX, v0->fPoint.fY, v0->fAlpha);
111 TESS_LOG(" %g (%g, %g) %d\n", v1->fID, v1->fPoint.fX, v1->fPoint.fY, v1->fAlpha);
112 TESS_LOG(" %g (%g, %g) %d\n", v2->fID, v2->fPoint.fX, v2->fPoint.fY, v2->fAlpha);
113 #if TRIANGULATOR_WIREFRAME
114 data = emit_vertex(v0, emitCoverage, std::move(data));
115 data = emit_vertex(v1, emitCoverage, std::move(data));
116 data = emit_vertex(v1, emitCoverage, std::move(data));
117 data = emit_vertex(v2, emitCoverage, std::move(data));
118 data = emit_vertex(v2, emitCoverage, std::move(data));
119 data = emit_vertex(v0, emitCoverage, std::move(data));
120 #else
121 data = emit_vertex(v0, emitCoverage, std::move(data));
122 data = emit_vertex(v1, emitCoverage, std::move(data));
123 data = emit_vertex(v2, emitCoverage, std::move(data));
124 #endif
125 return data;
126 }
127
insert(Vertex * v,Vertex * prev,Vertex * next)128 void GrTriangulator::VertexList::insert(Vertex* v, Vertex* prev, Vertex* next) {
129 list_insert<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, prev, next, &fHead, &fTail);
130 }
131
remove(Vertex * v)132 void GrTriangulator::VertexList::remove(Vertex* v) {
133 list_remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, &fHead, &fTail);
134 }
135
136 // Round to nearest quarter-pixel. This is used for screenspace tessellation.
137
round(SkPoint * p)138 static inline void round(SkPoint* p) {
139 p->fX = SkScalarRoundToScalar(p->fX * 4.0f) * 0.25f;
140 p->fY = SkScalarRoundToScalar(p->fY * 4.0f) * 0.25f;
141 }
142
double_to_clamped_scalar(double d)143 static inline SkScalar double_to_clamped_scalar(double d) {
144 // Clamps large values to what's finitely representable when cast back to a float.
145 static const double kMaxLimit = (double) SK_ScalarMax;
146 // It's not perfect, but a using a value larger than float_min helps protect from denormalized
147 // values and ill-conditions in intermediate calculations on coordinates.
148 static const double kNearZeroLimit = 16 * (double) std::numeric_limits<float>::min();
149 if (std::abs(d) < kNearZeroLimit) {
150 d = 0.f;
151 }
152 return SkDoubleToScalar(std::max(-kMaxLimit, std::min(d, kMaxLimit)));
153 }
154
intersect(const Line & other,SkPoint * point) const155 bool GrTriangulator::Line::intersect(const Line& other, SkPoint* point) const {
156 double denom = fA * other.fB - fB * other.fA;
157 if (denom == 0.0) {
158 return false;
159 }
160 double scale = 1.0 / denom;
161 point->fX = double_to_clamped_scalar((fB * other.fC - other.fB * fC) * scale);
162 point->fY = double_to_clamped_scalar((other.fA * fC - fA * other.fC) * scale);
163 round(point);
164 return point->isFinite();
165 }
166
167 // If the edge's vertices differ by many orders of magnitude, the computed line equation can have
168 // significant error in its distance and intersection tests. To avoid this, we recursively subdivide
169 // long edges and effectively perform a binary search to perform a more accurate intersection test.
edge_line_needs_recursion(const SkPoint & p0,const SkPoint & p1)170 static bool edge_line_needs_recursion(const SkPoint& p0, const SkPoint& p1) {
171 // ilogbf(0) returns an implementation-defined constant, but we are choosing to saturate
172 // negative exponents to 0 for comparisons sake. We're only trying to recurse on lines with
173 // very large coordinates.
174 int expDiffX = std::abs((std::abs(p0.fX) < 1.f ? 0 : std::ilogbf(p0.fX)) -
175 (std::abs(p1.fX) < 1.f ? 0 : std::ilogbf(p1.fX)));
176 int expDiffY = std::abs((std::abs(p0.fY) < 1.f ? 0 : std::ilogbf(p0.fY)) -
177 (std::abs(p1.fY) < 1.f ? 0 : std::ilogbf(p1.fY)));
178 // Differ by more than 2^20, or roughly a factor of one million.
179 return expDiffX > 20 || expDiffY > 20;
180 }
181
recursive_edge_intersect(const Line & u,SkPoint u0,SkPoint u1,const Line & v,SkPoint v0,SkPoint v1,SkPoint * p,double * s,double * t)182 static bool recursive_edge_intersect(const Line& u, SkPoint u0, SkPoint u1,
183 const Line& v, SkPoint v0, SkPoint v1,
184 SkPoint* p, double* s, double* t) {
185 // First check if the bounding boxes of [u0,u1] intersects [v0,v1]. If they do not, then the
186 // two line segments cannot intersect in their domain (even if the lines themselves might).
187 // - don't use SkRect::intersect since the vertices aren't sorted and horiz/vertical lines
188 // appear as empty rects, which then never "intersect" according to SkRect.
189 if (std::min(u0.fX, u1.fX) > std::max(v0.fX, v1.fX) ||
190 std::max(u0.fX, u1.fX) < std::min(v0.fX, v1.fX) ||
191 std::min(u0.fY, u1.fY) > std::max(v0.fY, v1.fY) ||
192 std::max(u0.fY, u1.fY) < std::min(v0.fY, v1.fY)) {
193 return false;
194 }
195
196 // Compute intersection based on current segment vertices; if an intersection is found but the
197 // vertices differ too much in magnitude, we recurse using the midpoint of the segment to
198 // reject false positives. We don't currently try to avoid false negatives (e.g. large magnitude
199 // line reports no intersection but there is one).
200 double denom = u.fA * v.fB - u.fB * v.fA;
201 if (denom == 0.0) {
202 return false;
203 }
204 double dx = static_cast<double>(v0.fX) - u0.fX;
205 double dy = static_cast<double>(v0.fY) - u0.fY;
206 double sNumer = dy * v.fB + dx * v.fA;
207 double tNumer = dy * u.fB + dx * u.fA;
208 // If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early.
209 // This saves us doing the divide below unless absolutely necessary.
210 if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom)
211 : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) {
212 return false;
213 }
214
215 *s = sNumer / denom;
216 *t = tNumer / denom;
217 SkASSERT(*s >= 0.0 && *s <= 1.0 && *t >= 0.0 && *t <= 1.0);
218
219 const bool uNeedsSplit = edge_line_needs_recursion(u0, u1);
220 const bool vNeedsSplit = edge_line_needs_recursion(v0, v1);
221 if (!uNeedsSplit && !vNeedsSplit) {
222 p->fX = double_to_clamped_scalar(u0.fX - (*s) * u.fB);
223 p->fY = double_to_clamped_scalar(u0.fY + (*s) * u.fA);
224 return true;
225 } else {
226 double sScale = 1.0, sShift = 0.0;
227 double tScale = 1.0, tShift = 0.0;
228
229 if (uNeedsSplit) {
230 SkPoint uM = {(float) (0.5 * u0.fX + 0.5 * u1.fX),
231 (float) (0.5 * u0.fY + 0.5 * u1.fY)};
232 sScale = 0.5;
233 if (*s >= 0.5) {
234 u0 = uM;
235 sShift = 0.5;
236 } else {
237 u1 = uM;
238 }
239 }
240 if (vNeedsSplit) {
241 SkPoint vM = {(float) (0.5 * v0.fX + 0.5 * v1.fX),
242 (float) (0.5 * v0.fY + 0.5 * v1.fY)};
243 tScale = 0.5;
244 if (*t >= 0.5) {
245 v0 = vM;
246 tShift = 0.5;
247 } else {
248 v1 = vM;
249 }
250 }
251
252 // Just recompute both lines, even if only one was split; we're already in a slow path.
253 if (recursive_edge_intersect(Line(u0, u1), u0, u1, Line(v0, v1), v0, v1, p, s, t)) {
254 // Adjust s and t back to full range
255 *s = sScale * (*s) + sShift;
256 *t = tScale * (*t) + tShift;
257 return true;
258 } else {
259 // False positive
260 return false;
261 }
262 }
263 }
264
intersect(const Edge & other,SkPoint * p,uint8_t * alpha) const265 bool GrTriangulator::Edge::intersect(const Edge& other, SkPoint* p, uint8_t* alpha) const {
266 TESS_LOG("intersecting %g -> %g with %g -> %g\n",
267 fTop->fID, fBottom->fID, other.fTop->fID, other.fBottom->fID);
268 if (fTop == other.fTop || fBottom == other.fBottom ||
269 fTop == other.fBottom || fBottom == other.fTop) {
270 // If the two edges share a vertex by construction, they have already been split and
271 // shouldn't be considered "intersecting" anymore.
272 return false;
273 }
274
275 double s, t; // needed to interpolate vertex alpha
276 const bool intersects = recursive_edge_intersect(
277 fLine, fTop->fPoint, fBottom->fPoint,
278 other.fLine, other.fTop->fPoint, other.fBottom->fPoint,
279 p, &s, &t);
280 if (!intersects) {
281 return false;
282 }
283
284 if (alpha) {
285 if (fType == EdgeType::kInner || other.fType == EdgeType::kInner) {
286 // If the intersection is on any interior edge, it needs to stay fully opaque or later
287 // triangulation could leech transparency into the inner fill region.
288 *alpha = 255;
289 } else if (fType == EdgeType::kOuter && other.fType == EdgeType::kOuter) {
290 // Trivially, the intersection will be fully transparent since since it is by
291 // construction on the outer edge.
292 *alpha = 0;
293 } else {
294 // Could be two connectors crossing, or a connector crossing an outer edge.
295 // Take the max interpolated alpha
296 SkASSERT(fType == EdgeType::kConnector || other.fType == EdgeType::kConnector);
297 *alpha = std::max((1.0 - s) * fTop->fAlpha + s * fBottom->fAlpha,
298 (1.0 - t) * other.fTop->fAlpha + t * other.fBottom->fAlpha);
299 }
300 }
301 return true;
302 }
303
insert(Edge * edge,Edge * prev,Edge * next)304 void GrTriangulator::EdgeList::insert(Edge* edge, Edge* prev, Edge* next) {
305 list_insert<Edge, &Edge::fLeft, &Edge::fRight>(edge, prev, next, &fHead, &fTail);
306 }
307
remove(Edge * edge)308 bool GrTriangulator::EdgeList::remove(Edge* edge) {
309 TESS_LOG("removing edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
310 // SkASSERT(this->contains(edge)); // Leave this here for future debugging.
311 if (!this->contains(edge)) {
312 return false;
313 }
314 list_remove<Edge, &Edge::fLeft, &Edge::fRight>(edge, &fHead, &fTail);
315 return true;
316 }
317
addEdge(Edge * edge)318 void GrTriangulator::MonotonePoly::addEdge(Edge* edge) {
319 if (fSide == kRight_Side) {
320 SkASSERT(!edge->fUsedInRightPoly);
321 list_insert<Edge, &Edge::fRightPolyPrev, &Edge::fRightPolyNext>(
322 edge, fLastEdge, nullptr, &fFirstEdge, &fLastEdge);
323 edge->fUsedInRightPoly = true;
324 } else {
325 SkASSERT(!edge->fUsedInLeftPoly);
326 list_insert<Edge, &Edge::fLeftPolyPrev, &Edge::fLeftPolyNext>(
327 edge, fLastEdge, nullptr, &fFirstEdge, &fLastEdge);
328 edge->fUsedInLeftPoly = true;
329 }
330 }
331
emitMonotonePoly(const MonotonePoly * monotonePoly,skgpu::VertexWriter data) const332 skgpu::VertexWriter GrTriangulator::emitMonotonePoly(const MonotonePoly* monotonePoly,
333 skgpu::VertexWriter data) const {
334 SkASSERT(monotonePoly->fWinding != 0);
335 Edge* e = monotonePoly->fFirstEdge;
336 VertexList vertices;
337 vertices.append(e->fTop);
338 int count = 1;
339 while (e != nullptr) {
340 if (kRight_Side == monotonePoly->fSide) {
341 vertices.append(e->fBottom);
342 e = e->fRightPolyNext;
343 } else {
344 vertices.prepend(e->fBottom);
345 e = e->fLeftPolyNext;
346 }
347 count++;
348 }
349 Vertex* first = vertices.fHead;
350 Vertex* v = first->fNext;
351 while (v != vertices.fTail) {
352 SkASSERT(v && v->fPrev && v->fNext);
353 Vertex* prev = v->fPrev;
354 Vertex* curr = v;
355 Vertex* next = v->fNext;
356 if (count == 3) {
357 return this->emitTriangle(prev, curr, next, monotonePoly->fWinding, std::move(data));
358 }
359 double ax = static_cast<double>(curr->fPoint.fX) - prev->fPoint.fX;
360 double ay = static_cast<double>(curr->fPoint.fY) - prev->fPoint.fY;
361 double bx = static_cast<double>(next->fPoint.fX) - curr->fPoint.fX;
362 double by = static_cast<double>(next->fPoint.fY) - curr->fPoint.fY;
363 if (ax * by - ay * bx >= 0.0) {
364 data = this->emitTriangle(prev, curr, next, monotonePoly->fWinding, std::move(data));
365 v->fPrev->fNext = v->fNext;
366 v->fNext->fPrev = v->fPrev;
367 count--;
368 if (v->fPrev == first) {
369 v = v->fNext;
370 } else {
371 v = v->fPrev;
372 }
373 } else {
374 v = v->fNext;
375 }
376 }
377 return data;
378 }
379
emitTriangle(Vertex * prev,Vertex * curr,Vertex * next,int winding,skgpu::VertexWriter data) const380 skgpu::VertexWriter GrTriangulator::emitTriangle(
381 Vertex* prev, Vertex* curr, Vertex* next, int winding, skgpu::VertexWriter data) const {
382 if (winding > 0) {
383 // Ensure our triangles always wind in the same direction as if the path had been
384 // triangulated as a simple fan (a la red book).
385 std::swap(prev, next);
386 }
387 if (fCollectBreadcrumbTriangles && abs(winding) > 1 &&
388 fPath.getFillType() == SkPathFillType::kWinding) {
389 // The first winding count will come from the actual triangle we emit. The remaining counts
390 // come from the breadcrumb triangle.
391 fBreadcrumbList.append(fAlloc, prev->fPoint, curr->fPoint, next->fPoint, abs(winding) - 1);
392 }
393 return emit_triangle(prev, curr, next, fEmitCoverage, std::move(data));
394 }
395
Poly(Vertex * v,int winding)396 GrTriangulator::Poly::Poly(Vertex* v, int winding)
397 : fFirstVertex(v)
398 , fWinding(winding)
399 , fHead(nullptr)
400 , fTail(nullptr)
401 , fNext(nullptr)
402 , fPartner(nullptr)
403 , fCount(0)
404 {
405 #if TRIANGULATOR_LOGGING
406 static int gID = 0;
407 fID = gID++;
408 TESS_LOG("*** created Poly %d\n", fID);
409 #endif
410 }
411
addEdge(Edge * e,Side side,GrTriangulator * tri)412 Poly* GrTriangulator::Poly::addEdge(Edge* e, Side side, GrTriangulator* tri) {
413 TESS_LOG("addEdge (%g -> %g) to poly %d, %s side\n",
414 e->fTop->fID, e->fBottom->fID, fID, side == kLeft_Side ? "left" : "right");
415 Poly* partner = fPartner;
416 Poly* poly = this;
417 if (side == kRight_Side) {
418 if (e->fUsedInRightPoly) {
419 return this;
420 }
421 } else {
422 if (e->fUsedInLeftPoly) {
423 return this;
424 }
425 }
426 if (partner) {
427 fPartner = partner->fPartner = nullptr;
428 }
429 if (!fTail) {
430 fHead = fTail = tri->allocateMonotonePoly(e, side, fWinding);
431 fCount += 2;
432 } else if (e->fBottom == fTail->fLastEdge->fBottom) {
433 return poly;
434 } else if (side == fTail->fSide) {
435 fTail->addEdge(e);
436 fCount++;
437 } else {
438 e = tri->allocateEdge(fTail->fLastEdge->fBottom, e->fBottom, 1, EdgeType::kInner);
439 fTail->addEdge(e);
440 fCount++;
441 if (partner) {
442 partner->addEdge(e, side, tri);
443 poly = partner;
444 } else {
445 MonotonePoly* m = tri->allocateMonotonePoly(e, side, fWinding);
446 m->fPrev = fTail;
447 fTail->fNext = m;
448 fTail = m;
449 }
450 }
451 return poly;
452 }
emitPoly(const Poly * poly,skgpu::VertexWriter data) const453 skgpu::VertexWriter GrTriangulator::emitPoly(const Poly* poly, skgpu::VertexWriter data) const {
454 if (poly->fCount < 3) {
455 return data;
456 }
457 TESS_LOG("emit() %d, size %d\n", poly->fID, poly->fCount);
458 for (MonotonePoly* m = poly->fHead; m != nullptr; m = m->fNext) {
459 data = this->emitMonotonePoly(m, std::move(data));
460 }
461 return data;
462 }
463
coincident(const SkPoint & a,const SkPoint & b)464 static bool coincident(const SkPoint& a, const SkPoint& b) {
465 return a == b;
466 }
467
makePoly(Poly ** head,Vertex * v,int winding) const468 Poly* GrTriangulator::makePoly(Poly** head, Vertex* v, int winding) const {
469 Poly* poly = fAlloc->make<Poly>(v, winding);
470 poly->fNext = *head;
471 *head = poly;
472 return poly;
473 }
474
appendPointToContour(const SkPoint & p,VertexList * contour) const475 void GrTriangulator::appendPointToContour(const SkPoint& p, VertexList* contour) const {
476 Vertex* v = fAlloc->make<Vertex>(p, 255);
477 #if TRIANGULATOR_LOGGING
478 static float gID = 0.0f;
479 v->fID = gID++;
480 #endif
481 contour->append(v);
482 }
483
quad_error_at(const SkPoint pts[3],SkScalar t,SkScalar u)484 static SkScalar quad_error_at(const SkPoint pts[3], SkScalar t, SkScalar u) {
485 SkQuadCoeff quad(pts);
486 SkPoint p0 = to_point(quad.eval(t - 0.5f * u));
487 SkPoint mid = to_point(quad.eval(t));
488 SkPoint p1 = to_point(quad.eval(t + 0.5f * u));
489 if (!p0.isFinite() || !mid.isFinite() || !p1.isFinite()) {
490 return 0;
491 }
492 return SkPointPriv::DistanceToLineSegmentBetweenSqd(mid, p0, p1);
493 }
494
appendQuadraticToContour(const SkPoint pts[3],SkScalar toleranceSqd,VertexList * contour) const495 void GrTriangulator::appendQuadraticToContour(const SkPoint pts[3], SkScalar toleranceSqd,
496 VertexList* contour) const {
497 SkQuadCoeff quad(pts);
498 skvx::float2 aa = quad.fA * quad.fA;
499 SkScalar denom = 2.0f * (aa[0] + aa[1]);
500 skvx::float2 ab = quad.fA * quad.fB;
501 SkScalar t = denom ? (-ab[0] - ab[1]) / denom : 0.0f;
502 int nPoints = 1;
503 SkScalar u = 1.0f;
504 // Test possible subdivision values only at the point of maximum curvature.
505 // If it passes the flatness metric there, it'll pass everywhere.
506 while (nPoints < GrPathUtils::kMaxPointsPerCurve) {
507 u = 1.0f / nPoints;
508 if (quad_error_at(pts, t, u) < toleranceSqd) {
509 break;
510 }
511 nPoints++;
512 }
513 for (int j = 1; j <= nPoints; j++) {
514 this->appendPointToContour(to_point(quad.eval(j * u)), contour);
515 }
516 }
517
generateCubicPoints(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,const SkPoint & p3,SkScalar tolSqd,VertexList * contour,int pointsLeft) const518 void GrTriangulator::generateCubicPoints(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2,
519 const SkPoint& p3, SkScalar tolSqd, VertexList* contour,
520 int pointsLeft) const {
521 SkScalar d1 = SkPointPriv::DistanceToLineSegmentBetweenSqd(p1, p0, p3);
522 SkScalar d2 = SkPointPriv::DistanceToLineSegmentBetweenSqd(p2, p0, p3);
523 if (pointsLeft < 2 || (d1 < tolSqd && d2 < tolSqd) || !SkIsFinite(d1, d2)) {
524 this->appendPointToContour(p3, contour);
525 return;
526 }
527 const SkPoint q[] = {
528 { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
529 { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
530 { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
531 };
532 const SkPoint r[] = {
533 { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
534 { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
535 };
536 const SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
537 pointsLeft >>= 1;
538 this->generateCubicPoints(p0, q[0], r[0], s, tolSqd, contour, pointsLeft);
539 this->generateCubicPoints(s, r[1], q[2], p3, tolSqd, contour, pointsLeft);
540 }
541
542 // Stage 1: convert the input path to a set of linear contours (linked list of Vertices).
543
pathToContours(float tolerance,const SkRect & clipBounds,VertexList * contours,bool * isLinear) const544 void GrTriangulator::pathToContours(float tolerance, const SkRect& clipBounds,
545 VertexList* contours, bool* isLinear) const {
546 SkScalar toleranceSqd = tolerance * tolerance;
547 SkPoint pts[4];
548 *isLinear = true;
549 VertexList* contour = contours;
550 SkPath::Iter iter(fPath, false);
551 if (fPath.isInverseFillType()) {
552 SkPoint quad[4];
553 clipBounds.toQuad(quad);
554 for (int i = 3; i >= 0; i--) {
555 this->appendPointToContour(quad[i], contours);
556 }
557 contour++;
558 }
559 SkAutoConicToQuads converter;
560 SkPath::Verb verb;
561 while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
562 switch (verb) {
563 case SkPath::kConic_Verb: {
564 *isLinear = false;
565 if (toleranceSqd == 0) {
566 this->appendPointToContour(pts[2], contour);
567 break;
568 }
569 SkScalar weight = iter.conicWeight();
570 const SkPoint* quadPts = converter.computeQuads(pts, weight, toleranceSqd);
571 for (int i = 0; i < converter.countQuads(); ++i) {
572 this->appendQuadraticToContour(quadPts, toleranceSqd, contour);
573 quadPts += 2;
574 }
575 break;
576 }
577 case SkPath::kMove_Verb:
578 if (contour->fHead) {
579 contour++;
580 }
581 this->appendPointToContour(pts[0], contour);
582 break;
583 case SkPath::kLine_Verb: {
584 this->appendPointToContour(pts[1], contour);
585 break;
586 }
587 case SkPath::kQuad_Verb: {
588 *isLinear = false;
589 if (toleranceSqd == 0) {
590 this->appendPointToContour(pts[2], contour);
591 break;
592 }
593 this->appendQuadraticToContour(pts, toleranceSqd, contour);
594 break;
595 }
596 case SkPath::kCubic_Verb: {
597 *isLinear = false;
598 if (toleranceSqd == 0) {
599 this->appendPointToContour(pts[3], contour);
600 break;
601 }
602 int pointsLeft = GrPathUtils::cubicPointCount(pts, tolerance);
603 this->generateCubicPoints(pts[0], pts[1], pts[2], pts[3], toleranceSqd, contour,
604 pointsLeft);
605 break;
606 }
607 case SkPath::kClose_Verb:
608 case SkPath::kDone_Verb:
609 break;
610 }
611 }
612 }
613
apply_fill_type(SkPathFillType fillType,int winding)614 static inline bool apply_fill_type(SkPathFillType fillType, int winding) {
615 switch (fillType) {
616 case SkPathFillType::kWinding:
617 return winding != 0;
618 case SkPathFillType::kEvenOdd:
619 return (winding & 1) != 0;
620 case SkPathFillType::kInverseWinding:
621 return winding == 1;
622 case SkPathFillType::kInverseEvenOdd:
623 return (winding & 1) == 1;
624 default:
625 SkASSERT(false);
626 return false;
627 }
628 }
629
applyFillType(int winding) const630 bool GrTriangulator::applyFillType(int winding) const {
631 return apply_fill_type(fPath.getFillType(), winding);
632 }
633
apply_fill_type(SkPathFillType fillType,Poly * poly)634 static inline bool apply_fill_type(SkPathFillType fillType, Poly* poly) {
635 return poly && apply_fill_type(fillType, poly->fWinding);
636 }
637
allocateMonotonePoly(Edge * edge,Side side,int winding)638 MonotonePoly* GrTriangulator::allocateMonotonePoly(Edge* edge, Side side, int winding) {
639 ++fNumMonotonePolys;
640 return fAlloc->make<MonotonePoly>(edge, side, winding);
641 }
642
allocateEdge(Vertex * top,Vertex * bottom,int winding,EdgeType type)643 Edge* GrTriangulator::allocateEdge(Vertex* top, Vertex* bottom, int winding, EdgeType type) {
644 ++fNumEdges;
645 return fAlloc->make<Edge>(top, bottom, winding, type);
646 }
647
makeEdge(Vertex * prev,Vertex * next,EdgeType type,const Comparator & c)648 Edge* GrTriangulator::makeEdge(Vertex* prev, Vertex* next, EdgeType type,
649 const Comparator& c) {
650 SkASSERT(prev->fPoint != next->fPoint);
651 int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1;
652 Vertex* top = winding < 0 ? next : prev;
653 Vertex* bottom = winding < 0 ? prev : next;
654 return this->allocateEdge(top, bottom, winding, type);
655 }
656
insert(Edge * edge,Edge * prev)657 bool EdgeList::insert(Edge* edge, Edge* prev) {
658 TESS_LOG("inserting edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
659 // SkASSERT(!this->contains(edge)); // Leave this here for debugging.
660 if (this->contains(edge)) {
661 return false;
662 }
663 Edge* next = prev ? prev->fRight : fHead;
664 this->insert(edge, prev, next);
665 return true;
666 }
667
FindEnclosingEdges(const Vertex & v,const EdgeList & edges,Edge ** left,Edge ** right)668 void GrTriangulator::FindEnclosingEdges(const Vertex& v,
669 const EdgeList& edges,
670 Edge** left, Edge**right) {
671 if (v.fFirstEdgeAbove && v.fLastEdgeAbove) {
672 *left = v.fFirstEdgeAbove->fLeft;
673 *right = v.fLastEdgeAbove->fRight;
674 return;
675 }
676 Edge* next = nullptr;
677 Edge* prev;
678 for (prev = edges.fTail; prev != nullptr; prev = prev->fLeft) {
679 if (prev->isLeftOf(v)) {
680 break;
681 }
682 next = prev;
683 }
684 *left = prev;
685 *right = next;
686 }
687
insertAbove(Vertex * v,const Comparator & c)688 void GrTriangulator::Edge::insertAbove(Vertex* v, const Comparator& c) {
689 if (fTop->fPoint == fBottom->fPoint ||
690 c.sweep_lt(fBottom->fPoint, fTop->fPoint)) {
691 return;
692 }
693 TESS_LOG("insert edge (%g -> %g) above vertex %g\n", fTop->fID, fBottom->fID, v->fID);
694 Edge* prev = nullptr;
695 Edge* next;
696 for (next = v->fFirstEdgeAbove; next; next = next->fNextEdgeAbove) {
697 if (next->isRightOf(*fTop)) {
698 break;
699 }
700 prev = next;
701 }
702 list_insert<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
703 this, prev, next, &v->fFirstEdgeAbove, &v->fLastEdgeAbove);
704 }
705
insertBelow(Vertex * v,const Comparator & c)706 void GrTriangulator::Edge::insertBelow(Vertex* v, const Comparator& c) {
707 if (fTop->fPoint == fBottom->fPoint ||
708 c.sweep_lt(fBottom->fPoint, fTop->fPoint)) {
709 return;
710 }
711 TESS_LOG("insert edge (%g -> %g) below vertex %g\n", fTop->fID, fBottom->fID, v->fID);
712 Edge* prev = nullptr;
713 Edge* next;
714 for (next = v->fFirstEdgeBelow; next; next = next->fNextEdgeBelow) {
715 if (next->isRightOf(*fBottom)) {
716 break;
717 }
718 prev = next;
719 }
720 list_insert<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
721 this, prev, next, &v->fFirstEdgeBelow, &v->fLastEdgeBelow);
722 }
723
remove_edge_above(Edge * edge)724 static void remove_edge_above(Edge* edge) {
725 SkASSERT(edge->fTop && edge->fBottom);
726 TESS_LOG("removing edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
727 edge->fBottom->fID);
728 list_remove<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
729 edge, &edge->fBottom->fFirstEdgeAbove, &edge->fBottom->fLastEdgeAbove);
730 }
731
remove_edge_below(Edge * edge)732 static void remove_edge_below(Edge* edge) {
733 SkASSERT(edge->fTop && edge->fBottom);
734 TESS_LOG("removing edge (%g -> %g) below vertex %g\n",
735 edge->fTop->fID, edge->fBottom->fID, edge->fTop->fID);
736 list_remove<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
737 edge, &edge->fTop->fFirstEdgeBelow, &edge->fTop->fLastEdgeBelow);
738 }
739
disconnect()740 void GrTriangulator::Edge::disconnect() {
741 remove_edge_above(this);
742 remove_edge_below(this);
743 }
744
rewind(EdgeList * activeEdges,Vertex ** current,Vertex * dst,const Comparator & c)745 static bool rewind(EdgeList* activeEdges, Vertex** current, Vertex* dst, const Comparator& c) {
746 if (!current || *current == dst || c.sweep_lt((*current)->fPoint, dst->fPoint)) {
747 return true;
748 }
749 Vertex* v = *current;
750 TESS_LOG("rewinding active edges from vertex %g to vertex %g\n", v->fID, dst->fID);
751 while (v != dst) {
752 v = v->fPrev;
753 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
754 if (!activeEdges->remove(e)) {
755 return false;
756 }
757 }
758 Edge* leftEdge = v->fLeftEnclosingEdge;
759 for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
760 if (!activeEdges->insert(e, leftEdge)) {
761 return false;
762 }
763 leftEdge = e;
764 Vertex* top = e->fTop;
765 if (c.sweep_lt(top->fPoint, dst->fPoint) &&
766 ((top->fLeftEnclosingEdge && !top->fLeftEnclosingEdge->isLeftOf(*e->fTop)) ||
767 (top->fRightEnclosingEdge && !top->fRightEnclosingEdge->isRightOf(*e->fTop)))) {
768 dst = top;
769 }
770 }
771 }
772 *current = v;
773 return true;
774 }
775
rewind_if_necessary(Edge * edge,EdgeList * activeEdges,Vertex ** current,const Comparator & c)776 static bool rewind_if_necessary(Edge* edge, EdgeList* activeEdges, Vertex** current,
777 const Comparator& c) {
778 if (!activeEdges || !current) {
779 return true;
780 }
781 if (!edge) {
782 return false;
783 }
784 Vertex* top = edge->fTop;
785 Vertex* bottom = edge->fBottom;
786 if (edge->fLeft) {
787 Vertex* leftTop = edge->fLeft->fTop;
788 Vertex* leftBottom = edge->fLeft->fBottom;
789 if (leftTop && leftBottom) {
790 if (c.sweep_lt(leftTop->fPoint, top->fPoint) && !edge->fLeft->isLeftOf(*top)) {
791 if (!rewind(activeEdges, current, leftTop, c)) {
792 return false;
793 }
794 } else if (c.sweep_lt(top->fPoint, leftTop->fPoint) && !edge->isRightOf(*leftTop)) {
795 if (!rewind(activeEdges, current, top, c)) {
796 return false;
797 }
798 } else if (c.sweep_lt(bottom->fPoint, leftBottom->fPoint) &&
799 !edge->fLeft->isLeftOf(*bottom)) {
800 if (!rewind(activeEdges, current, leftTop, c)) {
801 return false;
802 }
803 } else if (c.sweep_lt(leftBottom->fPoint, bottom->fPoint) &&
804 !edge->isRightOf(*leftBottom)) {
805 if (!rewind(activeEdges, current, top, c)) {
806 return false;
807 }
808 }
809 }
810 }
811 if (edge->fRight) {
812 Vertex* rightTop = edge->fRight->fTop;
813 Vertex* rightBottom = edge->fRight->fBottom;
814 if (rightTop && rightBottom) {
815 if (c.sweep_lt(rightTop->fPoint, top->fPoint) && !edge->fRight->isRightOf(*top)) {
816 if (!rewind(activeEdges, current, rightTop, c)) {
817 return false;
818 }
819 } else if (c.sweep_lt(top->fPoint, rightTop->fPoint) && !edge->isLeftOf(*rightTop)) {
820 if (!rewind(activeEdges, current, top, c)) {
821 return false;
822 }
823 } else if (c.sweep_lt(bottom->fPoint, rightBottom->fPoint) &&
824 !edge->fRight->isRightOf(*bottom)) {
825 if (!rewind(activeEdges, current, rightTop, c)) {
826 return false;
827 }
828 } else if (c.sweep_lt(rightBottom->fPoint, bottom->fPoint) &&
829 !edge->isLeftOf(*rightBottom)) {
830 if (!rewind(activeEdges, current, top, c)) {
831 return false;
832 }
833 }
834 }
835 }
836 return true;
837 }
838
setTop(Edge * edge,Vertex * v,EdgeList * activeEdges,Vertex ** current,const Comparator & c) const839 bool GrTriangulator::setTop(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current,
840 const Comparator& c) const {
841 remove_edge_below(edge);
842 if (fCollectBreadcrumbTriangles) {
843 fBreadcrumbList.append(fAlloc, edge->fTop->fPoint, edge->fBottom->fPoint, v->fPoint,
844 edge->fWinding);
845 }
846 edge->fTop = v;
847 edge->recompute();
848 edge->insertBelow(v, c);
849 if (!rewind_if_necessary(edge, activeEdges, current, c)) {
850 return false;
851 }
852 return this->mergeCollinearEdges(edge, activeEdges, current, c);
853 }
854
setBottom(Edge * edge,Vertex * v,EdgeList * activeEdges,Vertex ** current,const Comparator & c) const855 bool GrTriangulator::setBottom(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current,
856 const Comparator& c) const {
857 remove_edge_above(edge);
858 if (fCollectBreadcrumbTriangles) {
859 fBreadcrumbList.append(fAlloc, edge->fTop->fPoint, edge->fBottom->fPoint, v->fPoint,
860 edge->fWinding);
861 }
862 edge->fBottom = v;
863 edge->recompute();
864 edge->insertAbove(v, c);
865 if (!rewind_if_necessary(edge, activeEdges, current, c)) {
866 return false;
867 }
868 return this->mergeCollinearEdges(edge, activeEdges, current, c);
869 }
870
mergeEdgesAbove(Edge * edge,Edge * other,EdgeList * activeEdges,Vertex ** current,const Comparator & c) const871 bool GrTriangulator::mergeEdgesAbove(Edge* edge, Edge* other, EdgeList* activeEdges,
872 Vertex** current, const Comparator& c) const {
873 if (!edge || !other) {
874 return false;
875 }
876 if (coincident(edge->fTop->fPoint, other->fTop->fPoint)) {
877 TESS_LOG("merging coincident above edges (%g, %g) -> (%g, %g)\n",
878 edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
879 edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
880 if (!rewind(activeEdges, current, edge->fTop, c)) {
881 return false;
882 }
883 other->fWinding += edge->fWinding;
884 edge->disconnect();
885 edge->fTop = edge->fBottom = nullptr;
886 } else if (c.sweep_lt(edge->fTop->fPoint, other->fTop->fPoint)) {
887 if (!rewind(activeEdges, current, edge->fTop, c)) {
888 return false;
889 }
890 other->fWinding += edge->fWinding;
891 if (!this->setBottom(edge, other->fTop, activeEdges, current, c)) {
892 return false;
893 }
894 } else {
895 if (!rewind(activeEdges, current, other->fTop, c)) {
896 return false;
897 }
898 edge->fWinding += other->fWinding;
899 if (!this->setBottom(other, edge->fTop, activeEdges, current, c)) {
900 return false;
901 }
902 }
903 return true;
904 }
905
mergeEdgesBelow(Edge * edge,Edge * other,EdgeList * activeEdges,Vertex ** current,const Comparator & c) const906 bool GrTriangulator::mergeEdgesBelow(Edge* edge, Edge* other, EdgeList* activeEdges,
907 Vertex** current, const Comparator& c) const {
908 if (!edge || !other) {
909 return false;
910 }
911 if (coincident(edge->fBottom->fPoint, other->fBottom->fPoint)) {
912 TESS_LOG("merging coincident below edges (%g, %g) -> (%g, %g)\n",
913 edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
914 edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
915 if (!rewind(activeEdges, current, edge->fTop, c)) {
916 return false;
917 }
918 other->fWinding += edge->fWinding;
919 edge->disconnect();
920 edge->fTop = edge->fBottom = nullptr;
921 } else if (c.sweep_lt(edge->fBottom->fPoint, other->fBottom->fPoint)) {
922 if (!rewind(activeEdges, current, other->fTop, c)) {
923 return false;
924 }
925 edge->fWinding += other->fWinding;
926 if (!this->setTop(other, edge->fBottom, activeEdges, current, c)) {
927 return false;
928 }
929 } else {
930 if (!rewind(activeEdges, current, edge->fTop, c)) {
931 return false;
932 }
933 other->fWinding += edge->fWinding;
934 if (!this->setTop(edge, other->fBottom, activeEdges, current, c)) {
935 return false;
936 }
937 }
938 return true;
939 }
940
top_collinear(Edge * left,Edge * right)941 static bool top_collinear(Edge* left, Edge* right) {
942 if (!left || !right) {
943 return false;
944 }
945 return left->fTop->fPoint == right->fTop->fPoint ||
946 !left->isLeftOf(*right->fTop) || !right->isRightOf(*left->fTop);
947 }
948
bottom_collinear(Edge * left,Edge * right)949 static bool bottom_collinear(Edge* left, Edge* right) {
950 if (!left || !right) {
951 return false;
952 }
953 return left->fBottom->fPoint == right->fBottom->fPoint ||
954 !left->isLeftOf(*right->fBottom) || !right->isRightOf(*left->fBottom);
955 }
956
mergeCollinearEdges(Edge * edge,EdgeList * activeEdges,Vertex ** current,const Comparator & c) const957 bool GrTriangulator::mergeCollinearEdges(Edge* edge, EdgeList* activeEdges, Vertex** current,
958 const Comparator& c) const {
959 for (;;) {
960 if (top_collinear(edge->fPrevEdgeAbove, edge)) {
961 if (!this->mergeEdgesAbove(edge->fPrevEdgeAbove, edge, activeEdges, current, c)) {
962 return false;
963 }
964 } else if (top_collinear(edge, edge->fNextEdgeAbove)) {
965 if (!this->mergeEdgesAbove(edge->fNextEdgeAbove, edge, activeEdges, current, c)) {
966 return false;
967 }
968 } else if (bottom_collinear(edge->fPrevEdgeBelow, edge)) {
969 if (!this->mergeEdgesBelow(edge->fPrevEdgeBelow, edge, activeEdges, current, c)) {
970 return false;
971 }
972 } else if (bottom_collinear(edge, edge->fNextEdgeBelow)) {
973 if (!this->mergeEdgesBelow(edge->fNextEdgeBelow, edge, activeEdges, current, c)) {
974 return false;
975 }
976 } else {
977 break;
978 }
979 }
980 SkASSERT(!top_collinear(edge->fPrevEdgeAbove, edge));
981 SkASSERT(!top_collinear(edge, edge->fNextEdgeAbove));
982 SkASSERT(!bottom_collinear(edge->fPrevEdgeBelow, edge));
983 SkASSERT(!bottom_collinear(edge, edge->fNextEdgeBelow));
984 return true;
985 }
986
splitEdge(Edge * edge,Vertex * v,EdgeList * activeEdges,Vertex ** current,const Comparator & c)987 GrTriangulator::BoolFail GrTriangulator::splitEdge(
988 Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current, const Comparator& c) {
989 if (!edge->fTop || !edge->fBottom || v == edge->fTop || v == edge->fBottom) {
990 return BoolFail::kFalse;
991 }
992 TESS_LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n",
993 edge->fTop->fID, edge->fBottom->fID, v->fID, v->fPoint.fX, v->fPoint.fY);
994 Vertex* top;
995 Vertex* bottom;
996 int winding = edge->fWinding;
997 // Theoretically, and ideally, the edge betwee p0 and p1 is being split by v, and v is "between"
998 // the segment end points according to c. This is equivalent to p0 < v < p1. Unfortunately, if
999 // v was clamped/rounded this relation doesn't always hold.
1000 if (c.sweep_lt(v->fPoint, edge->fTop->fPoint)) {
1001 // Actually "v < p0 < p1": update 'edge' to be v->p1 and add v->p0. We flip the winding on
1002 // the new edge so that it winds as if it were p0->v.
1003 top = v;
1004 bottom = edge->fTop;
1005 winding *= -1;
1006 if (!this->setTop(edge, v, activeEdges, current, c)) {
1007 return BoolFail::kFail;
1008 }
1009 } else if (c.sweep_lt(edge->fBottom->fPoint, v->fPoint)) {
1010 // Actually "p0 < p1 < v": update 'edge' to be p0->v and add p1->v. We flip the winding on
1011 // the new edge so that it winds as if it were v->p1.
1012 top = edge->fBottom;
1013 bottom = v;
1014 winding *= -1;
1015 if (!this->setBottom(edge, v, activeEdges, current, c)) {
1016 return BoolFail::kFail;
1017 }
1018 } else {
1019 // The ideal case, "p0 < v < p1": update 'edge' to be p0->v and add v->p1. Original winding
1020 // is valid for both edges.
1021 top = v;
1022 bottom = edge->fBottom;
1023 if (!this->setBottom(edge, v, activeEdges, current, c)) {
1024 return BoolFail::kFail;
1025 }
1026 }
1027 Edge* newEdge = this->allocateEdge(top, bottom, winding, edge->fType);
1028 newEdge->insertBelow(top, c);
1029 newEdge->insertAbove(bottom, c);
1030 if (!this->mergeCollinearEdges(newEdge, activeEdges, current, c)) {
1031 return BoolFail::kFail;
1032 }
1033 return BoolFail::kTrue;
1034 }
1035
intersectEdgePair(Edge * left,Edge * right,EdgeList * activeEdges,Vertex ** current,const Comparator & c)1036 GrTriangulator::BoolFail GrTriangulator::intersectEdgePair(
1037 Edge* left, Edge* right, EdgeList* activeEdges, Vertex** current, const Comparator& c) {
1038 if (!left->fTop || !left->fBottom || !right->fTop || !right->fBottom) {
1039 return BoolFail::kFalse;
1040 }
1041 if (left->fTop == right->fTop || left->fBottom == right->fBottom) {
1042 return BoolFail::kFalse;
1043 }
1044
1045 // Check if the lines intersect as determined by isLeftOf and isRightOf, since that is the
1046 // source of ground truth. It may suggest an intersection even if Edge::intersect() did not have
1047 // the precision to check it. In this case we are explicitly correcting the edge topology to
1048 // match the sided-ness checks.
1049 Edge* split = nullptr;
1050 Vertex* splitAt = nullptr;
1051 if (c.sweep_lt(left->fTop->fPoint, right->fTop->fPoint)) {
1052 if (!left->isLeftOf(*right->fTop)) {
1053 split = left;
1054 splitAt = right->fTop;
1055 }
1056 } else {
1057 if (!right->isRightOf(*left->fTop)) {
1058 split = right;
1059 splitAt = left->fTop;
1060 }
1061 }
1062 if (c.sweep_lt(right->fBottom->fPoint, left->fBottom->fPoint)) {
1063 if (!left->isLeftOf(*right->fBottom)) {
1064 split = left;
1065 splitAt = right->fBottom;
1066 }
1067 } else {
1068 if (!right->isRightOf(*left->fBottom)) {
1069 split = right;
1070 splitAt = left->fBottom;
1071 }
1072 }
1073
1074 if (!split) {
1075 return BoolFail::kFalse;
1076 }
1077
1078 // Rewind to the top of the edge that is "moving" since this topology correction can change the
1079 // geometry of the split edge.
1080 if (!rewind(activeEdges, current, split->fTop, c)) {
1081 return BoolFail::kFail;
1082 }
1083 return this->splitEdge(split, splitAt, activeEdges, current, c);
1084 }
1085
makeConnectingEdge(Vertex * prev,Vertex * next,EdgeType type,const Comparator & c,int windingScale)1086 Edge* GrTriangulator::makeConnectingEdge(Vertex* prev, Vertex* next, EdgeType type,
1087 const Comparator& c, int windingScale) {
1088 if (!prev || !next || prev->fPoint == next->fPoint) {
1089 return nullptr;
1090 }
1091 Edge* edge = this->makeEdge(prev, next, type, c);
1092 edge->insertBelow(edge->fTop, c);
1093 edge->insertAbove(edge->fBottom, c);
1094 edge->fWinding *= windingScale;
1095 this->mergeCollinearEdges(edge, nullptr, nullptr, c);
1096 return edge;
1097 }
1098
mergeVertices(Vertex * src,Vertex * dst,VertexList * mesh,const Comparator & c) const1099 void GrTriangulator::mergeVertices(Vertex* src, Vertex* dst, VertexList* mesh,
1100 const Comparator& c) const {
1101 TESS_LOG("found coincident verts at %g, %g; merging %g into %g\n",
1102 src->fPoint.fX, src->fPoint.fY, src->fID, dst->fID);
1103 dst->fAlpha = std::max(src->fAlpha, dst->fAlpha);
1104 if (src->fPartner) {
1105 src->fPartner->fPartner = dst;
1106 }
1107 while (Edge* edge = src->fFirstEdgeAbove) {
1108 std::ignore = this->setBottom(edge, dst, nullptr, nullptr, c);
1109 }
1110 while (Edge* edge = src->fFirstEdgeBelow) {
1111 std::ignore = this->setTop(edge, dst, nullptr, nullptr, c);
1112 }
1113 mesh->remove(src);
1114 dst->fSynthetic = true;
1115 }
1116
makeSortedVertex(const SkPoint & p,uint8_t alpha,VertexList * mesh,Vertex * reference,const Comparator & c) const1117 Vertex* GrTriangulator::makeSortedVertex(const SkPoint& p, uint8_t alpha, VertexList* mesh,
1118 Vertex* reference, const Comparator& c) const {
1119 Vertex* prevV = reference;
1120 while (prevV && c.sweep_lt(p, prevV->fPoint)) {
1121 prevV = prevV->fPrev;
1122 }
1123 Vertex* nextV = prevV ? prevV->fNext : mesh->fHead;
1124 while (nextV && c.sweep_lt(nextV->fPoint, p)) {
1125 prevV = nextV;
1126 nextV = nextV->fNext;
1127 }
1128 Vertex* v;
1129 if (prevV && coincident(prevV->fPoint, p)) {
1130 v = prevV;
1131 } else if (nextV && coincident(nextV->fPoint, p)) {
1132 v = nextV;
1133 } else {
1134 v = fAlloc->make<Vertex>(p, alpha);
1135 #if TRIANGULATOR_LOGGING
1136 if (!prevV) {
1137 v->fID = mesh->fHead->fID - 1.0f;
1138 } else if (!nextV) {
1139 v->fID = mesh->fTail->fID + 1.0f;
1140 } else {
1141 v->fID = (prevV->fID + nextV->fID) * 0.5f;
1142 }
1143 #endif
1144 mesh->insert(v, prevV, nextV);
1145 }
1146 return v;
1147 }
1148
1149 // Clamps x and y coordinates independently, so the returned point will lie within the bounding
1150 // box formed by the corners of 'min' and 'max' (although min/max here refer to the ordering
1151 // imposed by 'c').
clamp(SkPoint p,SkPoint min,SkPoint max,const Comparator & c)1152 static SkPoint clamp(SkPoint p, SkPoint min, SkPoint max, const Comparator& c) {
1153 if (c.fDirection == Comparator::Direction::kHorizontal) {
1154 // With horizontal sorting, we know min.x <= max.x, but there's no relation between
1155 // Y components unless min.x == max.x.
1156 return {SkTPin(p.fX, min.fX, max.fX),
1157 min.fY < max.fY ? SkTPin(p.fY, min.fY, max.fY)
1158 : SkTPin(p.fY, max.fY, min.fY)};
1159 } else {
1160 // And with vertical sorting, we know Y's relation but not necessarily X's.
1161 return {min.fX < max.fX ? SkTPin(p.fX, min.fX, max.fX)
1162 : SkTPin(p.fX, max.fX, min.fX),
1163 SkTPin(p.fY, min.fY, max.fY)};
1164 }
1165 }
1166
computeBisector(Edge * edge1,Edge * edge2,Vertex * v) const1167 void GrTriangulator::computeBisector(Edge* edge1, Edge* edge2, Vertex* v) const {
1168 SkASSERT(fEmitCoverage); // Edge-AA only!
1169 Line line1 = edge1->fLine;
1170 Line line2 = edge2->fLine;
1171 line1.normalize();
1172 line2.normalize();
1173 double cosAngle = line1.fA * line2.fA + line1.fB * line2.fB;
1174 if (cosAngle > 0.999) {
1175 return;
1176 }
1177 line1.fC += edge1->fWinding > 0 ? -1 : 1;
1178 line2.fC += edge2->fWinding > 0 ? -1 : 1;
1179 SkPoint p;
1180 if (line1.intersect(line2, &p)) {
1181 uint8_t alpha = edge1->fType == EdgeType::kOuter ? 255 : 0;
1182 v->fPartner = fAlloc->make<Vertex>(p, alpha);
1183 TESS_LOG("computed bisector (%g,%g) alpha %d for vertex %g\n", p.fX, p.fY, alpha, v->fID);
1184 }
1185 }
1186
checkForIntersection(Edge * left,Edge * right,EdgeList * activeEdges,Vertex ** current,VertexList * mesh,const Comparator & c)1187 GrTriangulator::BoolFail GrTriangulator::checkForIntersection(
1188 Edge* left, Edge* right, EdgeList* activeEdges,
1189 Vertex** current, VertexList* mesh,
1190 const Comparator& c) {
1191 if (!left || !right) {
1192 return BoolFail::kFalse;
1193 }
1194 SkPoint p;
1195 uint8_t alpha;
1196 // If we are going to call intersect, then there must be tops and bottoms.
1197 if (!left->fTop || !left->fBottom || !right->fTop || !right->fBottom) {
1198 return BoolFail::kFail;
1199 }
1200 if (left->intersect(*right, &p, &alpha) && p.isFinite()) {
1201 Vertex* v;
1202 TESS_LOG("found intersection, pt is %g, %g\n", p.fX, p.fY);
1203 Vertex* top = *current;
1204 // If the intersection point is above the current vertex, rewind to the vertex above the
1205 // intersection.
1206 while (top && c.sweep_lt(p, top->fPoint)) {
1207 top = top->fPrev;
1208 }
1209
1210 // Always clamp the intersection to lie between the vertices of each segment, since
1211 // in theory that's where the intersection is, but in reality, floating point error may
1212 // have computed an intersection beyond a vertex's component(s).
1213 p = clamp(p, left->fTop->fPoint, left->fBottom->fPoint, c);
1214 p = clamp(p, right->fTop->fPoint, right->fBottom->fPoint, c);
1215
1216 if (coincident(p, left->fTop->fPoint)) {
1217 v = left->fTop;
1218 } else if (coincident(p, left->fBottom->fPoint)) {
1219 v = left->fBottom;
1220 } else if (coincident(p, right->fTop->fPoint)) {
1221 v = right->fTop;
1222 } else if (coincident(p, right->fBottom->fPoint)) {
1223 v = right->fBottom;
1224 } else {
1225 v = this->makeSortedVertex(p, alpha, mesh, top, c);
1226 if (left->fTop->fPartner) {
1227 SkASSERT(fEmitCoverage); // Edge-AA only!
1228 v->fSynthetic = true;
1229 this->computeBisector(left, right, v);
1230 }
1231 }
1232 if (!rewind(activeEdges, current, top ? top : v, c)) {
1233 return BoolFail::kFail;
1234 }
1235 if (this->splitEdge(left, v, activeEdges, current, c) == BoolFail::kFail) {
1236 return BoolFail::kFail;
1237 }
1238 if (this->splitEdge(right, v, activeEdges, current, c) == BoolFail::kFail) {
1239 return BoolFail::kFail;
1240 }
1241 v->fAlpha = std::max(v->fAlpha, alpha);
1242 return BoolFail::kTrue;
1243 }
1244 return this->intersectEdgePair(left, right, activeEdges, current, c);
1245 }
1246
sanitizeContours(VertexList * contours,int contourCnt) const1247 void GrTriangulator::sanitizeContours(VertexList* contours, int contourCnt) const {
1248 for (VertexList* contour = contours; contourCnt > 0; --contourCnt, ++contour) {
1249 SkASSERT(contour->fHead);
1250 Vertex* prev = contour->fTail;
1251 prev->fPoint.fX = double_to_clamped_scalar((double) prev->fPoint.fX);
1252 prev->fPoint.fY = double_to_clamped_scalar((double) prev->fPoint.fY);
1253 if (fRoundVerticesToQuarterPixel) {
1254 round(&prev->fPoint);
1255 }
1256 for (Vertex* v = contour->fHead; v;) {
1257 v->fPoint.fX = double_to_clamped_scalar((double) v->fPoint.fX);
1258 v->fPoint.fY = double_to_clamped_scalar((double) v->fPoint.fY);
1259 if (fRoundVerticesToQuarterPixel) {
1260 round(&v->fPoint);
1261 }
1262 Vertex* next = v->fNext;
1263 Vertex* nextWrap = next ? next : contour->fHead;
1264 if (coincident(prev->fPoint, v->fPoint)) {
1265 TESS_LOG("vertex %g,%g coincident; removing\n", v->fPoint.fX, v->fPoint.fY);
1266 contour->remove(v);
1267 } else if (!v->fPoint.isFinite()) {
1268 TESS_LOG("vertex %g,%g non-finite; removing\n", v->fPoint.fX, v->fPoint.fY);
1269 contour->remove(v);
1270 } else if (!fPreserveCollinearVertices &&
1271 Line(prev->fPoint, nextWrap->fPoint).dist(v->fPoint) == 0.0) {
1272 TESS_LOG("vertex %g,%g collinear; removing\n", v->fPoint.fX, v->fPoint.fY);
1273 contour->remove(v);
1274 } else {
1275 prev = v;
1276 }
1277 v = next;
1278 }
1279 }
1280 }
1281
mergeCoincidentVertices(VertexList * mesh,const Comparator & c) const1282 bool GrTriangulator::mergeCoincidentVertices(VertexList* mesh, const Comparator& c) const {
1283 if (!mesh->fHead) {
1284 return false;
1285 }
1286 bool merged = false;
1287 for (Vertex* v = mesh->fHead->fNext; v;) {
1288 Vertex* next = v->fNext;
1289 if (c.sweep_lt(v->fPoint, v->fPrev->fPoint)) {
1290 v->fPoint = v->fPrev->fPoint;
1291 }
1292 if (coincident(v->fPrev->fPoint, v->fPoint)) {
1293 this->mergeVertices(v, v->fPrev, mesh, c);
1294 merged = true;
1295 }
1296 v = next;
1297 }
1298 return merged;
1299 }
1300
1301 // Stage 2: convert the contours to a mesh of edges connecting the vertices.
1302
buildEdges(VertexList * contours,int contourCnt,VertexList * mesh,const Comparator & c)1303 void GrTriangulator::buildEdges(VertexList* contours, int contourCnt, VertexList* mesh,
1304 const Comparator& c) {
1305 for (VertexList* contour = contours; contourCnt > 0; --contourCnt, ++contour) {
1306 Vertex* prev = contour->fTail;
1307 for (Vertex* v = contour->fHead; v;) {
1308 Vertex* next = v->fNext;
1309 this->makeConnectingEdge(prev, v, EdgeType::kInner, c);
1310 mesh->append(v);
1311 prev = v;
1312 v = next;
1313 }
1314 }
1315 }
1316
1317 template <CompareFunc sweep_lt>
sorted_merge(VertexList * front,VertexList * back,VertexList * result)1318 static void sorted_merge(VertexList* front, VertexList* back, VertexList* result) {
1319 Vertex* a = front->fHead;
1320 Vertex* b = back->fHead;
1321 while (a && b) {
1322 if (sweep_lt(a->fPoint, b->fPoint)) {
1323 front->remove(a);
1324 result->append(a);
1325 a = front->fHead;
1326 } else {
1327 back->remove(b);
1328 result->append(b);
1329 b = back->fHead;
1330 }
1331 }
1332 result->append(*front);
1333 result->append(*back);
1334 }
1335
SortedMerge(VertexList * front,VertexList * back,VertexList * result,const Comparator & c)1336 void GrTriangulator::SortedMerge(VertexList* front, VertexList* back, VertexList* result,
1337 const Comparator& c) {
1338 if (c.fDirection == Comparator::Direction::kHorizontal) {
1339 sorted_merge<sweep_lt_horiz>(front, back, result);
1340 } else {
1341 sorted_merge<sweep_lt_vert>(front, back, result);
1342 }
1343 #if TRIANGULATOR_LOGGING
1344 float id = 0.0f;
1345 for (Vertex* v = result->fHead; v; v = v->fNext) {
1346 v->fID = id++;
1347 }
1348 #endif
1349 }
1350
1351 // Stage 3: sort the vertices by increasing sweep direction.
1352
1353 template <CompareFunc sweep_lt>
merge_sort(VertexList * vertices)1354 static void merge_sort(VertexList* vertices) {
1355 Vertex* slow = vertices->fHead;
1356 if (!slow) {
1357 return;
1358 }
1359 Vertex* fast = slow->fNext;
1360 if (!fast) {
1361 return;
1362 }
1363 do {
1364 fast = fast->fNext;
1365 if (fast) {
1366 fast = fast->fNext;
1367 slow = slow->fNext;
1368 }
1369 } while (fast);
1370 VertexList front(vertices->fHead, slow);
1371 VertexList back(slow->fNext, vertices->fTail);
1372 front.fTail->fNext = back.fHead->fPrev = nullptr;
1373
1374 merge_sort<sweep_lt>(&front);
1375 merge_sort<sweep_lt>(&back);
1376
1377 vertices->fHead = vertices->fTail = nullptr;
1378 sorted_merge<sweep_lt>(&front, &back, vertices);
1379 }
1380
1381 #if TRIANGULATOR_LOGGING
dump() const1382 void VertexList::dump() const {
1383 for (Vertex* v = fHead; v; v = v->fNext) {
1384 TESS_LOG("vertex %g (%g, %g) alpha %d", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
1385 if (Vertex* p = v->fPartner) {
1386 TESS_LOG(", partner %g (%g, %g) alpha %d\n",
1387 p->fID, p->fPoint.fX, p->fPoint.fY, p->fAlpha);
1388 } else {
1389 TESS_LOG(", null partner\n");
1390 }
1391 for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1392 TESS_LOG(" edge %g -> %g, winding %d\n", e->fTop->fID, e->fBottom->fID, e->fWinding);
1393 }
1394 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1395 TESS_LOG(" edge %g -> %g, winding %d\n", e->fTop->fID, e->fBottom->fID, e->fWinding);
1396 }
1397 }
1398 }
1399 #endif
1400
1401 #ifdef SK_DEBUG
validate_edge_pair(Edge * left,Edge * right,const Comparator & c)1402 static void validate_edge_pair(Edge* left, Edge* right, const Comparator& c) {
1403 if (!left || !right) {
1404 return;
1405 }
1406 if (left->fTop == right->fTop) {
1407 SkASSERT(left->isLeftOf(*right->fBottom));
1408 SkASSERT(right->isRightOf(*left->fBottom));
1409 } else if (c.sweep_lt(left->fTop->fPoint, right->fTop->fPoint)) {
1410 SkASSERT(left->isLeftOf(*right->fTop));
1411 } else {
1412 SkASSERT(right->isRightOf(*left->fTop));
1413 }
1414 if (left->fBottom == right->fBottom) {
1415 SkASSERT(left->isLeftOf(*right->fTop));
1416 SkASSERT(right->isRightOf(*left->fTop));
1417 } else if (c.sweep_lt(right->fBottom->fPoint, left->fBottom->fPoint)) {
1418 SkASSERT(left->isLeftOf(*right->fBottom));
1419 } else {
1420 SkASSERT(right->isRightOf(*left->fBottom));
1421 }
1422 }
1423
validate_edge_list(EdgeList * edges,const Comparator & c)1424 static void validate_edge_list(EdgeList* edges, const Comparator& c) {
1425 Edge* left = edges->fHead;
1426 if (!left) {
1427 return;
1428 }
1429 for (Edge* right = left->fRight; right; right = right->fRight) {
1430 validate_edge_pair(left, right, c);
1431 left = right;
1432 }
1433 }
1434 #endif
1435
1436 // Stage 4: Simplify the mesh by inserting new vertices at intersecting edges.
1437
simplify(VertexList * mesh,const Comparator & c)1438 GrTriangulator::SimplifyResult GrTriangulator::simplify(VertexList* mesh,
1439 const Comparator& c) {
1440 TESS_LOG("simplifying complex polygons\n");
1441
1442 int initialNumEdges = fNumEdges;
1443 int numSelfIntersections = 0;
1444
1445 EdgeList activeEdges;
1446 auto result = SimplifyResult::kAlreadySimple;
1447 for (Vertex* v = mesh->fHead; v != nullptr; v = v->fNext) {
1448 if (!v->isConnected()) {
1449 continue;
1450 }
1451
1452 // The max increase across all skps, svgs and gms with only the triangulating and SW path
1453 // renderers enabled and with the triangulator's maxVerbCount set to the Chrome value is
1454 // 17x.
1455 if (fNumEdges > 170*initialNumEdges) {
1456 return SimplifyResult::kFailed;
1457 }
1458
1459 // In pathological cases, a path can intersect itself millions of times. After 500,000
1460 // self-intersections are found, reject the path.
1461 if (numSelfIntersections > 500000) {
1462 return SimplifyResult::kFailed;
1463 }
1464
1465 Edge* leftEnclosingEdge;
1466 Edge* rightEnclosingEdge;
1467 bool restartChecks;
1468 do {
1469 TESS_LOG("\nvertex %g: (%g,%g), alpha %d\n",
1470 v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
1471 restartChecks = false;
1472 FindEnclosingEdges(*v, activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1473 v->fLeftEnclosingEdge = leftEnclosingEdge;
1474 v->fRightEnclosingEdge = rightEnclosingEdge;
1475 if (v->fFirstEdgeBelow) {
1476 for (Edge* edge = v->fFirstEdgeBelow; edge; edge = edge->fNextEdgeBelow) {
1477 BoolFail l = this->checkForIntersection(
1478 leftEnclosingEdge, edge, &activeEdges, &v, mesh, c);
1479 if (l == BoolFail::kFail) {
1480 return SimplifyResult::kFailed;
1481 }
1482 if (l == BoolFail::kFalse) {
1483 BoolFail r = this->checkForIntersection(
1484 edge, rightEnclosingEdge, &activeEdges, &v, mesh, c);
1485 if (r == BoolFail::kFail) {
1486 return SimplifyResult::kFailed;
1487 }
1488 if (r == BoolFail::kFalse) {
1489 // Neither l and r are both false.
1490 continue;
1491 }
1492 }
1493
1494 // Either l or r are true.
1495 result = SimplifyResult::kFoundSelfIntersection;
1496 restartChecks = true;
1497 ++numSelfIntersections;
1498 break;
1499 } // for
1500 } else {
1501 BoolFail bf = this->checkForIntersection(
1502 leftEnclosingEdge, rightEnclosingEdge, &activeEdges, &v, mesh, c);
1503 if (bf == BoolFail::kFail) {
1504 return SimplifyResult::kFailed;
1505 }
1506 if (bf == BoolFail::kTrue) {
1507 result = SimplifyResult::kFoundSelfIntersection;
1508 restartChecks = true;
1509 ++numSelfIntersections;
1510 }
1511 }
1512 } while (restartChecks);
1513 #ifdef SK_DEBUG
1514 validate_edge_list(&activeEdges, c);
1515 #endif
1516 for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1517 if (!activeEdges.remove(e)) {
1518 return SimplifyResult::kFailed;
1519 }
1520 }
1521 Edge* leftEdge = leftEnclosingEdge;
1522 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1523 activeEdges.insert(e, leftEdge);
1524 leftEdge = e;
1525 }
1526 }
1527 SkASSERT(!activeEdges.fHead && !activeEdges.fTail);
1528 return result;
1529 }
1530
1531 // Stage 5: Tessellate the simplified mesh into monotone polygons.
1532
tessellate(const VertexList & vertices,const Comparator &)1533 std::tuple<Poly*, bool> GrTriangulator::tessellate(const VertexList& vertices, const Comparator&) {
1534 TESS_LOG("\ntessellating simple polygons\n");
1535 EdgeList activeEdges;
1536 Poly* polys = nullptr;
1537 for (Vertex* v = vertices.fHead; v != nullptr; v = v->fNext) {
1538 if (!v->isConnected()) {
1539 continue;
1540 }
1541 #if TRIANGULATOR_LOGGING
1542 TESS_LOG("\nvertex %g: (%g,%g), alpha %d\n", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
1543 #endif
1544 Edge* leftEnclosingEdge;
1545 Edge* rightEnclosingEdge;
1546 FindEnclosingEdges(*v, activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1547 Poly* leftPoly;
1548 Poly* rightPoly;
1549 if (v->fFirstEdgeAbove) {
1550 leftPoly = v->fFirstEdgeAbove->fLeftPoly;
1551 rightPoly = v->fLastEdgeAbove->fRightPoly;
1552 } else {
1553 leftPoly = leftEnclosingEdge ? leftEnclosingEdge->fRightPoly : nullptr;
1554 rightPoly = rightEnclosingEdge ? rightEnclosingEdge->fLeftPoly : nullptr;
1555 }
1556 #if TRIANGULATOR_LOGGING
1557 TESS_LOG("edges above:\n");
1558 for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1559 TESS_LOG("%g -> %g, lpoly %d, rpoly %d\n",
1560 e->fTop->fID, e->fBottom->fID,
1561 e->fLeftPoly ? e->fLeftPoly->fID : -1,
1562 e->fRightPoly ? e->fRightPoly->fID : -1);
1563 }
1564 TESS_LOG("edges below:\n");
1565 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1566 TESS_LOG("%g -> %g, lpoly %d, rpoly %d\n",
1567 e->fTop->fID, e->fBottom->fID,
1568 e->fLeftPoly ? e->fLeftPoly->fID : -1,
1569 e->fRightPoly ? e->fRightPoly->fID : -1);
1570 }
1571 #endif
1572 if (v->fFirstEdgeAbove) {
1573 if (leftPoly) {
1574 leftPoly = leftPoly->addEdge(v->fFirstEdgeAbove, kRight_Side, this);
1575 }
1576 if (rightPoly) {
1577 rightPoly = rightPoly->addEdge(v->fLastEdgeAbove, kLeft_Side, this);
1578 }
1579 for (Edge* e = v->fFirstEdgeAbove; e != v->fLastEdgeAbove; e = e->fNextEdgeAbove) {
1580 Edge* rightEdge = e->fNextEdgeAbove;
1581 activeEdges.remove(e);
1582 if (e->fRightPoly) {
1583 e->fRightPoly->addEdge(e, kLeft_Side, this);
1584 }
1585 if (rightEdge->fLeftPoly && rightEdge->fLeftPoly != e->fRightPoly) {
1586 rightEdge->fLeftPoly->addEdge(e, kRight_Side, this);
1587 }
1588 }
1589 activeEdges.remove(v->fLastEdgeAbove);
1590 if (!v->fFirstEdgeBelow) {
1591 if (leftPoly && rightPoly && leftPoly != rightPoly) {
1592 SkASSERT(leftPoly->fPartner == nullptr && rightPoly->fPartner == nullptr);
1593 rightPoly->fPartner = leftPoly;
1594 leftPoly->fPartner = rightPoly;
1595 }
1596 }
1597 }
1598 if (v->fFirstEdgeBelow) {
1599 if (!v->fFirstEdgeAbove) {
1600 if (leftPoly && rightPoly) {
1601 if (leftPoly == rightPoly) {
1602 if (leftPoly->fTail && leftPoly->fTail->fSide == kLeft_Side) {
1603 leftPoly = this->makePoly(&polys, leftPoly->lastVertex(),
1604 leftPoly->fWinding);
1605 leftEnclosingEdge->fRightPoly = leftPoly;
1606 } else {
1607 rightPoly = this->makePoly(&polys, rightPoly->lastVertex(),
1608 rightPoly->fWinding);
1609 rightEnclosingEdge->fLeftPoly = rightPoly;
1610 }
1611 }
1612 Edge* join = this->allocateEdge(leftPoly->lastVertex(), v, 1, EdgeType::kInner);
1613 leftPoly = leftPoly->addEdge(join, kRight_Side, this);
1614 rightPoly = rightPoly->addEdge(join, kLeft_Side, this);
1615 }
1616 }
1617 Edge* leftEdge = v->fFirstEdgeBelow;
1618 leftEdge->fLeftPoly = leftPoly;
1619 activeEdges.insert(leftEdge, leftEnclosingEdge);
1620 for (Edge* rightEdge = leftEdge->fNextEdgeBelow; rightEdge;
1621 rightEdge = rightEdge->fNextEdgeBelow) {
1622 activeEdges.insert(rightEdge, leftEdge);
1623 int winding = leftEdge->fLeftPoly ? leftEdge->fLeftPoly->fWinding : 0;
1624 winding += leftEdge->fWinding;
1625 if (winding != 0) {
1626 Poly* poly = this->makePoly(&polys, v, winding);
1627 leftEdge->fRightPoly = rightEdge->fLeftPoly = poly;
1628 }
1629 leftEdge = rightEdge;
1630 }
1631 v->fLastEdgeBelow->fRightPoly = rightPoly;
1632 }
1633 #if TRIANGULATOR_LOGGING
1634 TESS_LOG("\nactive edges:\n");
1635 for (Edge* e = activeEdges.fHead; e != nullptr; e = e->fRight) {
1636 TESS_LOG("%g -> %g, lpoly %d, rpoly %d\n",
1637 e->fTop->fID, e->fBottom->fID,
1638 e->fLeftPoly ? e->fLeftPoly->fID : -1,
1639 e->fRightPoly ? e->fRightPoly->fID : -1);
1640 }
1641 #endif
1642 }
1643 return { polys, true };
1644 }
1645
1646 // This is a driver function that calls stages 2-5 in turn.
1647
contoursToMesh(VertexList * contours,int contourCnt,VertexList * mesh,const Comparator & c)1648 void GrTriangulator::contoursToMesh(VertexList* contours, int contourCnt, VertexList* mesh,
1649 const Comparator& c) {
1650 #if TRIANGULATOR_LOGGING
1651 for (int i = 0; i < contourCnt; ++i) {
1652 Vertex* v = contours[i].fHead;
1653 SkASSERT(v);
1654 TESS_LOG("path.moveTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
1655 for (v = v->fNext; v; v = v->fNext) {
1656 TESS_LOG("path.lineTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
1657 }
1658 }
1659 #endif
1660 this->sanitizeContours(contours, contourCnt);
1661 this->buildEdges(contours, contourCnt, mesh, c);
1662 }
1663
SortMesh(VertexList * vertices,const Comparator & c)1664 void GrTriangulator::SortMesh(VertexList* vertices, const Comparator& c) {
1665 if (!vertices || !vertices->fHead) {
1666 return;
1667 }
1668
1669 // Sort vertices in Y (secondarily in X).
1670 if (c.fDirection == Comparator::Direction::kHorizontal) {
1671 merge_sort<sweep_lt_horiz>(vertices);
1672 } else {
1673 merge_sort<sweep_lt_vert>(vertices);
1674 }
1675 #if TRIANGULATOR_LOGGING
1676 for (Vertex* v = vertices->fHead; v != nullptr; v = v->fNext) {
1677 static float gID = 0.0f;
1678 v->fID = gID++;
1679 }
1680 #endif
1681 }
1682
contoursToPolys(VertexList * contours,int contourCnt)1683 std::tuple<Poly*, bool> GrTriangulator::contoursToPolys(VertexList* contours, int contourCnt) {
1684 const SkRect& pathBounds = fPath.getBounds();
1685 Comparator c(pathBounds.width() > pathBounds.height() ? Comparator::Direction::kHorizontal
1686 : Comparator::Direction::kVertical);
1687 VertexList mesh;
1688 this->contoursToMesh(contours, contourCnt, &mesh, c);
1689 TESS_LOG("\ninitial mesh:\n");
1690 DUMP_MESH(mesh);
1691 SortMesh(&mesh, c);
1692 TESS_LOG("\nsorted mesh:\n");
1693 DUMP_MESH(mesh);
1694 this->mergeCoincidentVertices(&mesh, c);
1695 TESS_LOG("\nsorted+merged mesh:\n");
1696 DUMP_MESH(mesh);
1697 auto result = this->simplify(&mesh, c);
1698 if (result == SimplifyResult::kFailed) {
1699 return { nullptr, false };
1700 }
1701 TESS_LOG("\nsimplified mesh:\n");
1702 DUMP_MESH(mesh);
1703 return this->tessellate(mesh, c);
1704 }
1705
1706 // Stage 6: Triangulate the monotone polygons into a vertex buffer.
polysToTriangles(Poly * polys,SkPathFillType overrideFillType,skgpu::VertexWriter data) const1707 skgpu::VertexWriter GrTriangulator::polysToTriangles(Poly* polys,
1708 SkPathFillType overrideFillType,
1709 skgpu::VertexWriter data) const {
1710 for (Poly* poly = polys; poly; poly = poly->fNext) {
1711 if (apply_fill_type(overrideFillType, poly)) {
1712 data = this->emitPoly(poly, std::move(data));
1713 }
1714 }
1715 return data;
1716 }
1717
get_contour_count(const SkPath & path,SkScalar tolerance)1718 static int get_contour_count(const SkPath& path, SkScalar tolerance) {
1719 // We could theoretically be more aggressive about not counting empty contours, but we need to
1720 // actually match the exact number of contour linked lists the tessellator will create later on.
1721 int contourCnt = 1;
1722 bool hasPoints = false;
1723
1724 SkPath::Iter iter(path, false);
1725 SkPath::Verb verb;
1726 SkPoint pts[4];
1727 bool first = true;
1728 while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
1729 switch (verb) {
1730 case SkPath::kMove_Verb:
1731 if (!first) {
1732 ++contourCnt;
1733 }
1734 [[fallthrough]];
1735 case SkPath::kLine_Verb:
1736 case SkPath::kConic_Verb:
1737 case SkPath::kQuad_Verb:
1738 case SkPath::kCubic_Verb:
1739 hasPoints = true;
1740 break;
1741 default:
1742 break;
1743 }
1744 first = false;
1745 }
1746 if (!hasPoints) {
1747 return 0;
1748 }
1749 return contourCnt;
1750 }
1751
pathToPolys(float tolerance,const SkRect & clipBounds,bool * isLinear)1752 std::tuple<Poly*, bool> GrTriangulator::pathToPolys(float tolerance, const SkRect& clipBounds, bool* isLinear) {
1753 int contourCnt = get_contour_count(fPath, tolerance);
1754 if (contourCnt <= 0) {
1755 *isLinear = true;
1756 return { nullptr, true };
1757 }
1758
1759 if (SkPathFillType_IsInverse(fPath.getFillType())) {
1760 contourCnt++;
1761 }
1762 std::unique_ptr<VertexList[]> contours(new VertexList[contourCnt]);
1763
1764 this->pathToContours(tolerance, clipBounds, contours.get(), isLinear);
1765 return this->contoursToPolys(contours.get(), contourCnt);
1766 }
1767
CountPoints(Poly * polys,SkPathFillType overrideFillType)1768 int64_t GrTriangulator::CountPoints(Poly* polys, SkPathFillType overrideFillType) {
1769 int64_t count = 0;
1770 for (Poly* poly = polys; poly; poly = poly->fNext) {
1771 if (apply_fill_type(overrideFillType, poly) && poly->fCount >= 3) {
1772 count += (poly->fCount - 2) * (TRIANGULATOR_WIREFRAME ? 6 : 3);
1773 }
1774 }
1775 return count;
1776 }
1777
1778 // Stage 6: Triangulate the monotone polygons into a vertex buffer.
1779
polysToTriangles(Poly * polys,GrEagerVertexAllocator * vertexAllocator) const1780 int GrTriangulator::polysToTriangles(Poly* polys, GrEagerVertexAllocator* vertexAllocator) const {
1781 int64_t count64 = CountPoints(polys, fPath.getFillType());
1782 if (0 == count64 || count64 > SK_MaxS32) {
1783 return 0;
1784 }
1785 int count = count64;
1786
1787 size_t vertexStride = sizeof(SkPoint);
1788 if (fEmitCoverage) {
1789 vertexStride += sizeof(float);
1790 }
1791 skgpu::VertexWriter verts = vertexAllocator->lockWriter(vertexStride, count);
1792 if (!verts) {
1793 SkDebugf("Could not allocate vertices\n");
1794 return 0;
1795 }
1796
1797 TESS_LOG("emitting %d verts\n", count);
1798
1799 skgpu::BufferWriter::Mark start = verts.mark();
1800 verts = this->polysToTriangles(polys, fPath.getFillType(), std::move(verts));
1801
1802 int actualCount = static_cast<int>((verts.mark() - start) / vertexStride);
1803 SkASSERT(actualCount <= count);
1804 vertexAllocator->unlock(actualCount);
1805 return actualCount;
1806 }
1807
1808 #endif // SK_ENABLE_OPTIMIZE_SIZE
1809