• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2019 Advanced Micro Devices, Inc.
3  * Copyright 2021 Valve Corporation
4  *
5  * SPDX-License-Identifier: MIT
6  */
7 
8 #include "ac_nir.h"
9 #include "nir_builder.h"
10 
11 /* This code is adapted from ac_llvm_cull.c, hence the copyright to AMD. */
12 
13 typedef struct
14 {
15    nir_def *w_reflection;
16    nir_def *all_w_negative;
17    nir_def *any_w_negative;
18 } position_w_info;
19 
20 static void
analyze_position_w(nir_builder * b,nir_def * pos[][4],unsigned num_vertices,position_w_info * w_info)21 analyze_position_w(nir_builder *b, nir_def *pos[][4], unsigned num_vertices,
22                    position_w_info *w_info)
23 {
24    w_info->all_w_negative = nir_imm_true(b);
25    w_info->w_reflection = nir_imm_false(b);
26    w_info->any_w_negative = nir_imm_false(b);
27 
28    for (unsigned i = 0; i < num_vertices; ++i) {
29       nir_def *neg_w = nir_flt_imm(b, pos[i][3], 0.0f);
30       w_info->w_reflection = nir_ixor(b, neg_w, w_info->w_reflection);
31       w_info->any_w_negative = nir_ior(b, neg_w, w_info->any_w_negative);
32       w_info->all_w_negative = nir_iand(b, neg_w, w_info->all_w_negative);
33    }
34 }
35 
36 static nir_def *
cull_face_triangle(nir_builder * b,nir_def * pos[3][4],const position_w_info * w_info)37 cull_face_triangle(nir_builder *b, nir_def *pos[3][4], const position_w_info *w_info)
38 {
39    nir_def *det_t0 = nir_fsub(b, pos[2][0], pos[0][0]);
40    nir_def *det_t1 = nir_fsub(b, pos[1][1], pos[0][1]);
41    nir_def *det_t2 = nir_fsub(b, pos[0][0], pos[1][0]);
42    nir_def *det_t3 = nir_fsub(b, pos[0][1], pos[2][1]);
43    nir_def *det_p0 = nir_fmul(b, det_t0, det_t1);
44    nir_def *det_p1 = nir_fmul(b, det_t2, det_t3);
45    nir_def *det = nir_fsub(b, det_p0, det_p1);
46 
47    det = nir_bcsel(b, w_info->w_reflection, nir_fneg(b, det), det);
48 
49    nir_def *front_facing_ccw = nir_fgt_imm(b, det, 0.0f);
50    nir_def *zero_area = nir_feq_imm(b, det, 0.0f);
51    nir_def *ccw = nir_load_cull_ccw_amd(b);
52    nir_def *front_facing = nir_ieq(b, front_facing_ccw, ccw);
53    nir_def *cull_front = nir_load_cull_front_face_enabled_amd(b);
54    nir_def *cull_back = nir_load_cull_back_face_enabled_amd(b);
55 
56    nir_def *face_culled = nir_bcsel(b, front_facing, cull_front, cull_back);
57    face_culled = nir_ior(b, face_culled, zero_area);
58 
59    /* Don't reject NaN and +/-infinity, these are tricky.
60     * Just trust fixed-function HW to handle these cases correctly.
61     */
62    return nir_iand(b, face_culled, nir_fisfinite(b, det));
63 }
64 
65 static void
calc_bbox_triangle(nir_builder * b,nir_def * pos[3][4],nir_def * bbox_min[2],nir_def * bbox_max[2])66 calc_bbox_triangle(nir_builder *b, nir_def *pos[3][4], nir_def *bbox_min[2], nir_def *bbox_max[2])
67 {
68    for (unsigned chan = 0; chan < 2; ++chan) {
69       bbox_min[chan] = nir_fmin(b, pos[0][chan], nir_fmin(b, pos[1][chan], pos[2][chan]));
70       bbox_max[chan] = nir_fmax(b, pos[0][chan], nir_fmax(b, pos[1][chan], pos[2][chan]));
71    }
72 }
73 
74 static nir_def *
cull_frustrum(nir_builder * b,nir_def * bbox_min[2],nir_def * bbox_max[2])75 cull_frustrum(nir_builder *b, nir_def *bbox_min[2], nir_def *bbox_max[2])
76 {
77    nir_def *prim_outside_view = nir_imm_false(b);
78 
79    for (unsigned chan = 0; chan < 2; ++chan) {
80       prim_outside_view = nir_ior(b, prim_outside_view, nir_flt_imm(b, bbox_max[chan], -1.0f));
81       prim_outside_view = nir_ior(b, prim_outside_view, nir_fgt_imm(b, bbox_min[chan], 1.0f));
82    }
83 
84    return prim_outside_view;
85 }
86 
87 static nir_def *
cull_small_primitive_triangle(nir_builder * b,nir_def * bbox_min[2],nir_def * bbox_max[2],nir_def * prim_is_small_else)88 cull_small_primitive_triangle(nir_builder *b, nir_def *bbox_min[2], nir_def *bbox_max[2],
89                               nir_def *prim_is_small_else)
90 {
91    nir_def *prim_is_small = NULL;
92 
93    nir_if *if_cull_small_prims = nir_push_if(b, nir_load_cull_small_primitives_enabled_amd(b));
94    {
95       nir_def *vp = nir_load_viewport_xy_scale_and_offset(b);
96       nir_def *small_prim_precision = nir_load_cull_small_prim_precision_amd(b);
97       prim_is_small = prim_is_small_else;
98 
99       for (unsigned chan = 0; chan < 2; ++chan) {
100          nir_def *vp_scale = nir_channel(b, vp, chan);
101          nir_def *vp_translate = nir_channel(b, vp, 2 + chan);
102 
103          /* Convert the position to screen-space coordinates. */
104          nir_def *min = nir_ffma(b, bbox_min[chan], vp_scale, vp_translate);
105          nir_def *max = nir_ffma(b, bbox_max[chan], vp_scale, vp_translate);
106 
107          /* Scale the bounding box according to precision. */
108          min = nir_fsub(b, min, small_prim_precision);
109          max = nir_fadd(b, max, small_prim_precision);
110 
111          /* Determine if the bbox intersects the sample point, by checking if the min and max round to the same int. */
112          min = nir_fround_even(b, min);
113          max = nir_fround_even(b, max);
114 
115          nir_def *rounded_to_eq = nir_feq(b, min, max);
116          prim_is_small = nir_ior(b, prim_is_small, rounded_to_eq);
117       }
118    }
119    nir_pop_if(b, if_cull_small_prims);
120 
121    return nir_if_phi(b, prim_is_small, prim_is_small_else);
122 }
123 
124 static nir_def *
ac_nir_cull_triangle(nir_builder * b,nir_def * initially_accepted,nir_def * pos[3][4],position_w_info * w_info,ac_nir_cull_accepted accept_func,void * state)125 ac_nir_cull_triangle(nir_builder *b,
126                      nir_def *initially_accepted,
127                      nir_def *pos[3][4],
128                      position_w_info *w_info,
129                      ac_nir_cull_accepted accept_func,
130                      void *state)
131 {
132    nir_def *accepted = initially_accepted;
133    accepted = nir_iand(b, accepted, nir_inot(b, w_info->all_w_negative));
134    accepted = nir_iand(b, accepted, nir_inot(b, cull_face_triangle(b, pos, w_info)));
135 
136    nir_def *bbox_accepted = NULL;
137 
138    nir_if *if_accepted = nir_push_if(b, accepted);
139    {
140       nir_def *bbox_min[2] = {0}, *bbox_max[2] = {0};
141       calc_bbox_triangle(b, pos, bbox_min, bbox_max);
142 
143       nir_def *prim_outside_view = cull_frustrum(b, bbox_min, bbox_max);
144       nir_def *prim_invisible =
145          cull_small_primitive_triangle(b, bbox_min, bbox_max, prim_outside_view);
146 
147       bbox_accepted = nir_ior(b, nir_inot(b, prim_invisible), w_info->any_w_negative);
148 
149       /* for caller which need to react when primitive is accepted */
150       if (accept_func) {
151          nir_if *if_still_accepted = nir_push_if(b, bbox_accepted);
152          if_still_accepted->control = nir_selection_control_divergent_always_taken;
153          {
154             accept_func(b, state);
155          }
156          nir_pop_if(b, if_still_accepted);
157       }
158    }
159    nir_pop_if(b, if_accepted);
160 
161    return nir_if_phi(b, bbox_accepted, accepted);
162 }
163 
164 static void
rotate_45degrees(nir_builder * b,nir_def * v[2])165 rotate_45degrees(nir_builder *b, nir_def *v[2])
166 {
167    /* Rotating a triangle by 45 degrees:
168     *
169     *    x2  =  x*cos(45) - y*sin(45)
170     *    y2  =  x*sin(45) + y*cos(45)
171     *
172     * Since sin(45) == cos(45), we can write:
173     *
174     *    x2  =  x*cos(45) - y*cos(45)  =  (x - y) * cos(45)
175     *    y2  =  x*cos(45) + y*cos(45)  =  (x + y) * cos(45)
176     *
177     * The width of each square (rotated diamond) is sqrt(0.5), so we have to scale it to 1
178     * by multiplying by 1/sqrt(0.5) = sqrt(2) because we want round() to give us the position
179     * of the closest center of the square (rotated diamond). After scaling, we get:
180     *
181     *    x2  =  (x - y) * cos(45) * sqrt(2)
182     *    y2  =  (x + y) * cos(45) * sqrt(2)
183     *
184     * Since cos(45) * sqrt(2) = 1, we get:
185     *
186     *    x2  =  x - y
187     *    y2  =  x + y
188     */
189    nir_def *result[2];
190    result[0] = nir_fsub(b, v[0], v[1]);
191    result[1] = nir_fadd(b, v[0], v[1]);
192 
193    memcpy(v, result, sizeof(result));
194 }
195 
196 static void
calc_bbox_line(nir_builder * b,nir_def * pos[3][4],nir_def * bbox_min[2],nir_def * bbox_max[2])197 calc_bbox_line(nir_builder *b, nir_def *pos[3][4], nir_def *bbox_min[2], nir_def *bbox_max[2])
198 {
199    nir_def *clip_half_line_width = nir_load_clip_half_line_width_amd(b);
200 
201    for (unsigned chan = 0; chan < 2; ++chan) {
202       bbox_min[chan] = nir_fmin(b, pos[0][chan], pos[1][chan]);
203       bbox_max[chan] = nir_fmax(b, pos[0][chan], pos[1][chan]);
204 
205       nir_def *width = nir_channel(b, clip_half_line_width, chan);
206       bbox_min[chan] = nir_fsub(b, bbox_min[chan], width);
207       bbox_max[chan] = nir_fadd(b, bbox_max[chan], width);
208    }
209 }
210 
211 static nir_def *
cull_small_primitive_line(nir_builder * b,nir_def * pos[3][4],nir_def * bbox_min[2],nir_def * bbox_max[2],nir_def * prim_is_small_else)212 cull_small_primitive_line(nir_builder *b, nir_def *pos[3][4],
213                           nir_def *bbox_min[2], nir_def *bbox_max[2],
214                           nir_def *prim_is_small_else)
215 {
216    nir_def *prim_is_small = NULL;
217 
218    /* Small primitive filter - eliminate lines that are too small to affect a sample. */
219    nir_if *if_cull_small_prims = nir_push_if(b, nir_load_cull_small_primitives_enabled_amd(b));
220    {
221       /* This only works with lines without perpendicular end caps (lines with perpendicular
222        * end caps are rasterized as quads and thus can't be culled as small prims in 99% of
223        * cases because line_width >= 1).
224        *
225        * This takes advantage of the diamond exit rule, which says that every pixel
226        * has a diamond inside it touching the pixel boundary and only if a line exits
227        * the diamond, that pixel is filled. If a line enters the diamond or stays
228        * outside the diamond, the pixel isn't filled.
229        *
230        * This algorithm is a little simpler than that. The space outside all diamonds also
231        * has the same diamond shape, which we'll call corner diamonds.
232        *
233        * The idea is to cull all lines that are entirely inside a diamond, including
234        * corner diamonds. If a line is entirely inside a diamond, it can be culled because
235        * it doesn't exit it. If a line is entirely inside a corner diamond, it can be culled
236        * because it doesn't enter any diamond and thus can't exit any diamond.
237        *
238        * The viewport is rotated by 45 degrees to turn diamonds into squares, and a bounding
239        * box test is used to determine whether a line is entirely inside any square (diamond).
240        *
241        * The line width doesn't matter. Wide lines only duplicate filled pixels in either X or
242        * Y direction from the filled pixels. MSAA also doesn't matter. MSAA should ideally use
243        * perpendicular end caps that enable quad rasterization for lines. Thus, this should
244        * always use non-MSAA viewport transformation and non-MSAA small prim precision.
245        *
246        * A good test is piglit/lineloop because it draws 10k subpixel lines in a circle.
247        * It should contain no holes if this matches hw behavior.
248        */
249       nir_def *v0[2], *v1[2];
250       nir_def *vp = nir_load_viewport_xy_scale_and_offset(b);
251 
252       /* Get vertex positions in pixels. */
253       for (unsigned chan = 0; chan < 2; chan++) {
254          nir_def *vp_scale = nir_channel(b, vp, chan);
255          nir_def *vp_translate = nir_channel(b, vp, 2 + chan);
256 
257          v0[chan] = nir_ffma(b, pos[0][chan], vp_scale, vp_translate);
258          v1[chan] = nir_ffma(b, pos[1][chan], vp_scale, vp_translate);
259       }
260 
261       /* Rotate the viewport by 45 degrees, so that diamonds become squares. */
262       rotate_45degrees(b, v0);
263       rotate_45degrees(b, v1);
264 
265       nir_def *small_prim_precision = nir_load_cull_small_prim_precision_amd(b);
266 
267       nir_def *rounded_to_eq[2];
268       for (unsigned chan = 0; chan < 2; chan++) {
269          /* Compute the bounding box around both vertices. We do this because we must
270           * enlarge the line area by the precision of the rasterizer.
271           */
272          nir_def *min = nir_fmin(b, v0[chan], v1[chan]);
273          nir_def *max = nir_fmax(b, v0[chan], v1[chan]);
274 
275          /* Enlarge the bounding box by the precision of the rasterizer. */
276          min = nir_fsub(b, min, small_prim_precision);
277          max = nir_fadd(b, max, small_prim_precision);
278 
279          /* Round the bounding box corners. If both rounded corners are equal,
280           * the bounding box is entirely inside a square (diamond).
281           */
282          min = nir_fround_even(b, min);
283          max = nir_fround_even(b, max);
284 
285          rounded_to_eq[chan] = nir_feq(b, min, max);
286       }
287 
288       prim_is_small = nir_iand(b, rounded_to_eq[0], rounded_to_eq[1]);
289       prim_is_small = nir_ior(b, prim_is_small, prim_is_small_else);
290    }
291    nir_pop_if(b, if_cull_small_prims);
292 
293    return nir_if_phi(b, prim_is_small, prim_is_small_else);
294 }
295 
296 static nir_def *
ac_nir_cull_line(nir_builder * b,nir_def * initially_accepted,nir_def * pos[3][4],position_w_info * w_info,ac_nir_cull_accepted accept_func,void * state)297 ac_nir_cull_line(nir_builder *b,
298                  nir_def *initially_accepted,
299                  nir_def *pos[3][4],
300                  position_w_info *w_info,
301                  ac_nir_cull_accepted accept_func,
302                  void *state)
303 {
304    nir_def *accepted = initially_accepted;
305    accepted = nir_iand(b, accepted, nir_inot(b, w_info->all_w_negative));
306 
307    nir_def *bbox_accepted = NULL;
308 
309    nir_if *if_accepted = nir_push_if(b, accepted);
310    {
311       nir_def *bbox_min[2] = {0}, *bbox_max[2] = {0};
312       calc_bbox_line(b, pos, bbox_min, bbox_max);
313 
314       /* Frustrum culling - eliminate lines that are fully outside the view. */
315       nir_def *prim_outside_view = cull_frustrum(b, bbox_min, bbox_max);
316       nir_def *prim_invisible =
317          cull_small_primitive_line(b, pos, bbox_min, bbox_max, prim_outside_view);
318 
319       bbox_accepted = nir_ior(b, nir_inot(b, prim_invisible), w_info->any_w_negative);
320 
321       /* for caller which need to react when primitive is accepted */
322       if (accept_func) {
323          nir_if *if_still_accepted = nir_push_if(b, bbox_accepted);
324          {
325             accept_func(b, state);
326          }
327          nir_pop_if(b, if_still_accepted);
328       }
329    }
330    nir_pop_if(b, if_accepted);
331 
332    return nir_if_phi(b, bbox_accepted, accepted);
333 }
334 
335 nir_def *
ac_nir_cull_primitive(nir_builder * b,nir_def * initially_accepted,nir_def * pos[3][4],unsigned num_vertices,ac_nir_cull_accepted accept_func,void * state)336 ac_nir_cull_primitive(nir_builder *b,
337                       nir_def *initially_accepted,
338                       nir_def *pos[3][4],
339                       unsigned num_vertices,
340                       ac_nir_cull_accepted accept_func,
341                       void *state)
342 {
343    position_w_info w_info = {0};
344    analyze_position_w(b, pos, num_vertices, &w_info);
345 
346    if (num_vertices == 3)
347       return ac_nir_cull_triangle(b, initially_accepted, pos, &w_info, accept_func, state);
348    else if (num_vertices == 2)
349       return ac_nir_cull_line(b, initially_accepted, pos, &w_info, accept_func, state);
350    else
351       unreachable("point culling not implemented");
352 
353    return NULL;
354 }
355