• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2011 The Chromium Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "partition_alloc/partition_alloc_base/rand_util.h"
6 
7 #include <stddef.h>
8 #include <stdint.h>
9 
10 #include <algorithm>
11 #include <cmath>
12 #include <limits>
13 #include <memory>
14 #include <vector>
15 
16 #include "partition_alloc/partition_alloc_base/check.h"
17 #include "partition_alloc/partition_alloc_base/logging.h"
18 #include "partition_alloc/partition_alloc_base/time/time.h"
19 #include "testing/gtest/include/gtest/gtest.h"
20 
21 namespace partition_alloc::internal::base {
22 
TEST(PartitionAllocBaseRandUtilTest,RandBytes)23 TEST(PartitionAllocBaseRandUtilTest, RandBytes) {
24   const size_t buffer_size = 50;
25   char buffer[buffer_size];
26   memset(buffer, 0, buffer_size);
27   base::RandBytes(buffer, buffer_size);
28   std::sort(buffer, buffer + buffer_size);
29   // Probability of occurrence of less than 25 unique bytes in 50 random bytes
30   // is below 10^-25.
31   EXPECT_GT(std::unique(buffer, buffer + buffer_size) - buffer, 25);
32 }
33 
34 // Verify that calling base::RandBytes with an empty buffer doesn't fail.
TEST(PartitionAllocBaseRandUtilTest,RandBytes0)35 TEST(PartitionAllocBaseRandUtilTest, RandBytes0) {
36   base::RandBytes(nullptr, 0);
37 }
38 
39 // Make sure that it is still appropriate to use RandGenerator in conjunction
40 // with std::random_shuffle().
TEST(PartitionAllocBaseRandUtilTest,RandGeneratorForRandomShuffle)41 TEST(PartitionAllocBaseRandUtilTest, RandGeneratorForRandomShuffle) {
42   EXPECT_EQ(base::RandGenerator(1), 0U);
43   EXPECT_LE(std::numeric_limits<ptrdiff_t>::max(),
44             std::numeric_limits<int64_t>::max());
45 }
46 
TEST(PartitionAllocBaseRandUtilTest,RandGeneratorIsUniform)47 TEST(PartitionAllocBaseRandUtilTest, RandGeneratorIsUniform) {
48   // Verify that RandGenerator has a uniform distribution. This is a
49   // regression test that consistently failed when RandGenerator was
50   // implemented this way:
51   //
52   //   return base::RandUint64() % max;
53   //
54   // A degenerate case for such an implementation is e.g. a top of
55   // range that is 2/3rds of the way to MAX_UINT64, in which case the
56   // bottom half of the range would be twice as likely to occur as the
57   // top half. A bit of calculus care of jar@ shows that the largest
58   // measurable delta is when the top of the range is 3/4ths of the
59   // way, so that's what we use in the test.
60   constexpr uint64_t kTopOfRange =
61       (std::numeric_limits<uint64_t>::max() / 4ULL) * 3ULL;
62   constexpr double kExpectedAverage = static_cast<double>(kTopOfRange / 2);
63   constexpr double kAllowedVariance = kExpectedAverage / 50.0;  // +/- 2%
64   constexpr int kMinAttempts = 1000;
65   constexpr int kMaxAttempts = 1000000;
66 
67   double cumulative_average = 0.0;
68   int count = 0;
69   while (count < kMaxAttempts) {
70     uint64_t value = base::RandGenerator(kTopOfRange);
71     cumulative_average = (count * cumulative_average + value) / (count + 1);
72 
73     // Don't quit too quickly for things to start converging, or we may have
74     // a false positive.
75     if (count > kMinAttempts &&
76         kExpectedAverage - kAllowedVariance < cumulative_average &&
77         cumulative_average < kExpectedAverage + kAllowedVariance) {
78       break;
79     }
80 
81     ++count;
82   }
83 
84   ASSERT_LT(count, kMaxAttempts) << "Expected average was " << kExpectedAverage
85                                  << ", average ended at " << cumulative_average;
86 }
87 
TEST(PartitionAllocBaseRandUtilTest,RandUint64ProducesBothValuesOfAllBits)88 TEST(PartitionAllocBaseRandUtilTest, RandUint64ProducesBothValuesOfAllBits) {
89   // This tests to see that our underlying random generator is good
90   // enough, for some value of good enough.
91   uint64_t kAllZeros = 0ULL;
92   uint64_t kAllOnes = ~kAllZeros;
93   uint64_t found_ones = kAllZeros;
94   uint64_t found_zeros = kAllOnes;
95 
96   for (size_t i = 0; i < 1000; ++i) {
97     uint64_t value = base::RandUint64();
98     found_ones |= value;
99     found_zeros &= value;
100 
101     if (found_zeros == kAllZeros && found_ones == kAllOnes) {
102       return;
103     }
104   }
105 
106   FAIL() << "Didn't achieve all bit values in maximum number of tries.";
107 }
108 
109 // Benchmark test for RandBytes().  Disabled since it's intentionally slow and
110 // does not test anything that isn't already tested by the existing RandBytes()
111 // tests.
TEST(PartitionAllocBaseRandUtilTest,DISABLED_RandBytesPerf)112 TEST(PartitionAllocBaseRandUtilTest, DISABLED_RandBytesPerf) {
113   // Benchmark the performance of |kTestIterations| of RandBytes() using a
114   // buffer size of |kTestBufferSize|.
115   const int kTestIterations = 10;
116   const size_t kTestBufferSize = 1 * 1024 * 1024;
117 
118   std::unique_ptr<uint8_t[]> buffer(new uint8_t[kTestBufferSize]);
119   const TimeTicks now = TimeTicks::Now();
120   for (int i = 0; i < kTestIterations; ++i) {
121     base::RandBytes(buffer.get(), kTestBufferSize);
122   }
123   const TimeTicks end = TimeTicks::Now();
124 
125   PA_LOG(INFO) << "RandBytes(" << kTestBufferSize
126                << ") took: " << (end - now).InMicroseconds() << "µs";
127 }
128 
TEST(PartitionAllocBaseRandUtilTest,InsecureRandomGeneratorProducesBothValuesOfAllBits)129 TEST(PartitionAllocBaseRandUtilTest,
130      InsecureRandomGeneratorProducesBothValuesOfAllBits) {
131   // This tests to see that our underlying random generator is good
132   // enough, for some value of good enough.
133   uint64_t kAllZeros = 0ULL;
134   uint64_t kAllOnes = ~kAllZeros;
135   uint64_t found_ones = kAllZeros;
136   uint64_t found_zeros = kAllOnes;
137 
138   InsecureRandomGenerator generator =
139       InsecureRandomGenerator::ConstructForTesting();
140 
141   for (size_t i = 0; i < 1000; ++i) {
142     uint64_t value = generator.RandUint64();
143     found_ones |= value;
144     found_zeros &= value;
145 
146     if (found_zeros == kAllZeros && found_ones == kAllOnes) {
147       return;
148     }
149   }
150 
151   FAIL() << "Didn't achieve all bit values in maximum number of tries.";
152 }
153 
154 namespace {
155 
156 constexpr double kXp1Percent = -2.33;
157 constexpr double kXp99Percent = 2.33;
158 
ChiSquaredCriticalValue(double nu,double x_p)159 double ChiSquaredCriticalValue(double nu, double x_p) {
160   // From "The Art Of Computer Programming" (TAOCP), Volume 2, Section 3.3.1,
161   // Table 1. This is the asymptotic value for nu > 30, up to O(1 / sqrt(nu)).
162   return nu + sqrt(2. * nu) * x_p + 2. / 3. * (x_p * x_p) - 2. / 3.;
163 }
164 
ExtractBits(uint64_t value,int from_bit,int num_bits)165 int ExtractBits(uint64_t value, int from_bit, int num_bits) {
166   return (value >> from_bit) & ((1 << num_bits) - 1);
167 }
168 
169 // Performs a Chi-Squared test on a subset of |num_bits| extracted starting from
170 // |from_bit| in the generated value.
171 //
172 // See TAOCP, Volume 2, Section 3.3.1, and
173 // https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test for details.
174 //
175 // This is only one of the many, many random number generator test we could do,
176 // but they are cumbersome, as they are typically very slow, and expected to
177 // fail from time to time, due to their probabilistic nature.
178 //
179 // The generator we use has however been vetted with the BigCrush test suite
180 // from Marsaglia, so this should suffice as a smoke test that our
181 // implementation is wrong.
ChiSquaredTest(InsecureRandomGenerator & gen,size_t n,int from_bit,int num_bits)182 bool ChiSquaredTest(InsecureRandomGenerator& gen,
183                     size_t n,
184                     int from_bit,
185                     int num_bits) {
186   const int range = 1 << num_bits;
187   PA_BASE_CHECK(static_cast<int>(n % range) == 0)
188       << "Makes computations simpler";
189   std::vector<size_t> samples(range, 0);
190 
191   // Count how many samples pf each value are found. All buckets should be
192   // almost equal if the generator is suitably uniformly random.
193   for (size_t i = 0; i < n; i++) {
194     int sample = ExtractBits(gen.RandUint64(), from_bit, num_bits);
195     samples[sample] += 1;
196   }
197 
198   // Compute the Chi-Squared statistic, which is:
199   // \Sum_{k=0}^{range-1} \frac{(count - expected)^2}{expected}
200   double chi_squared = 0.;
201   double expected_count = n / range;
202   for (size_t sample_count : samples) {
203     double deviation = sample_count - expected_count;
204     chi_squared += (deviation * deviation) / expected_count;
205   }
206 
207   // The generator should produce numbers that are not too far of (chi_squared
208   // lower than a given quantile), but not too close to the ideal distribution
209   // either (chi_squared is too low).
210   //
211   // See The Art Of Computer Programming, Volume 2, Section 3.3.1 for details.
212   return chi_squared > ChiSquaredCriticalValue(range - 1, kXp1Percent) &&
213          chi_squared < ChiSquaredCriticalValue(range - 1, kXp99Percent);
214 }
215 
216 }  // namespace
217 
TEST(PartitionAllocBaseRandUtilTest,InsecureRandomGeneratorChiSquared)218 TEST(PartitionAllocBaseRandUtilTest, InsecureRandomGeneratorChiSquared) {
219   constexpr int kIterations = 50;
220 
221   // Specifically test the low bits, which are usually weaker in random number
222   // generators. We don't use them for the 32 bit number generation, but let's
223   // make sure they are still suitable.
224   for (int start_bit : {1, 2, 3, 8, 12, 20, 32, 48, 54}) {
225     int pass_count = 0;
226     for (int i = 0; i < kIterations; i++) {
227       size_t samples = 1 << 16;
228       InsecureRandomGenerator gen =
229           InsecureRandomGenerator::ConstructForTesting();
230       // Fix the seed to make the test non-flaky.
231       gen.ReseedForTesting(kIterations + 1);
232       bool pass = ChiSquaredTest(gen, samples, start_bit, 8);
233       pass_count += pass;
234     }
235 
236     // We exclude 1% on each side, so we expect 98% of tests to pass, meaning 98
237     // * kIterations / 100. However this is asymptotic, so add a bit of leeway.
238     int expected_pass_count = (kIterations * 98) / 100;
239     EXPECT_GE(pass_count, expected_pass_count - ((kIterations * 2) / 100))
240         << "For start_bit = " << start_bit;
241   }
242 }
243 
244 }  // namespace partition_alloc::internal::base
245