1 /*
2 * Copyright (C) 2009 Nicolai Haehnle.
3 *
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining
7 * a copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sublicense, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial
16 * portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 */
27
28 #include "radeon_program_pair.h"
29
30 #include <stdio.h>
31
32 #include "radeon_compiler.h"
33 #include "radeon_compiler_util.h"
34 #include "radeon_dataflow.h"
35 #include "radeon_list.h"
36 #include "radeon_variable.h"
37
38 #include "util/u_debug.h"
39
40 #define VERBOSE 0
41
42 #define DBG(...) do { if (VERBOSE) fprintf(stderr, __VA_ARGS__); } while(0)
43
44 struct schedule_instruction {
45 struct rc_instruction * Instruction;
46
47 /** Next instruction in the linked list of ready instructions. */
48 struct schedule_instruction *NextReady;
49
50 /** Values that this instruction reads and writes */
51 struct reg_value * WriteValues[4];
52 struct reg_value * ReadValues[12];
53 unsigned int NumWriteValues:3;
54 unsigned int NumReadValues:4;
55
56 /**
57 * Number of (read and write) dependencies that must be resolved before
58 * this instruction can be scheduled.
59 */
60 unsigned int NumDependencies:5;
61
62 /** List of all readers (see rc_get_readers() for the definition of
63 * "all readers"), even those outside the basic block this instruction
64 * lives in. */
65 struct rc_reader_data GlobalReaders;
66
67 /** If the scheduler has paired an RGB and an Alpha instruction together,
68 * PairedInst references the alpha instruction's dependency information.
69 */
70 struct schedule_instruction * PairedInst;
71
72 /** This scheduler uses the value of Score to determine which
73 * instruction to schedule. Instructions with a higher value of Score
74 * will be scheduled first. */
75 int Score;
76
77 /** The number of components that read from a TEX instruction. */
78 unsigned TexReadCount;
79
80 /** For TEX instructions a list of readers */
81 struct rc_list * TexReaders;
82 };
83
84
85 /**
86 * Used to keep track of which instructions read a value.
87 */
88 struct reg_value_reader {
89 struct schedule_instruction *Reader;
90 struct reg_value_reader *Next;
91 };
92
93 /**
94 * Used to keep track which values are stored in each component of a
95 * RC_FILE_TEMPORARY.
96 */
97 struct reg_value {
98 struct schedule_instruction * Writer;
99
100 /**
101 * Unordered linked list of instructions that read from this value.
102 * When this value becomes available, we increase all readers'
103 * dependency count.
104 */
105 struct reg_value_reader *Readers;
106
107 /**
108 * Number of readers of this value. This is decremented each time
109 * a reader of the value is committed.
110 * When the reader count reaches zero, the dependency count
111 * of the instruction writing \ref Next is decremented.
112 */
113 unsigned int NumReaders;
114
115 struct reg_value *Next; /**< Pointer to the next value to be written to the same register */
116 };
117
118 struct register_state {
119 struct reg_value * Values[4];
120 };
121
122 struct remap_reg {
123 struct rc_instruction * Inst;
124 unsigned int OldIndex:(RC_REGISTER_INDEX_BITS+1);
125 unsigned int OldSwizzle:3;
126 unsigned int NewIndex:(RC_REGISTER_INDEX_BITS+1);
127 unsigned int NewSwizzle:3;
128 unsigned int OnlyTexReads:1;
129 struct remap_reg * Next;
130 };
131
132 struct schedule_state {
133 struct radeon_compiler * C;
134 struct schedule_instruction * Current;
135 /** Array of the previous writers of Current's destination register
136 * indexed by channel. */
137 struct schedule_instruction * PrevWriter[4];
138
139 struct register_state Temporary[RC_REGISTER_MAX_INDEX];
140
141 /**
142 * Linked lists of instructions that can be scheduled right now,
143 * based on which ALU/TEX resources they require.
144 */
145 /*@{*/
146 struct schedule_instruction *ReadyFullALU;
147 struct schedule_instruction *ReadyRGB;
148 struct schedule_instruction *ReadyAlpha;
149 struct schedule_instruction *ReadyTEX;
150 /*@}*/
151 struct rc_list *PendingTEX;
152
153 void (*CalcScore)(struct schedule_instruction *);
154 long max_tex_group;
155 unsigned PrevBlockHasTex:1;
156 unsigned PrevBlockHasKil:1;
157 unsigned TEXCount;
158 unsigned Opt:1;
159 };
160
get_reg_valuep(struct schedule_state * s,rc_register_file file,unsigned int index,unsigned int chan)161 static struct reg_value ** get_reg_valuep(struct schedule_state * s,
162 rc_register_file file, unsigned int index, unsigned int chan)
163 {
164 if (file != RC_FILE_TEMPORARY)
165 return NULL;
166
167 if (index >= RC_REGISTER_MAX_INDEX) {
168 rc_error(s->C, "%s: index %i out of bounds\n", __func__, index);
169 return NULL;
170 }
171
172 return &s->Temporary[index].Values[chan];
173 }
174
get_tex_read_count(struct schedule_instruction * sinst)175 static unsigned get_tex_read_count(struct schedule_instruction * sinst)
176 {
177 unsigned tex_read_count = sinst->TexReadCount;
178 if (sinst->PairedInst) {
179 tex_read_count += sinst->PairedInst->TexReadCount;
180 }
181 return tex_read_count;
182 }
183
184 #if VERBOSE
print_list(struct schedule_instruction * sinst)185 static void print_list(struct schedule_instruction * sinst)
186 {
187 struct schedule_instruction * ptr;
188 for (ptr = sinst; ptr; ptr=ptr->NextReady) {
189 unsigned tex_read_count = get_tex_read_count(ptr);
190 unsigned score = sinst->Score;
191 fprintf(stderr,"%u (%d) [%u],", ptr->Instruction->IP, score,
192 tex_read_count);
193 }
194 fprintf(stderr, "\n");
195 }
196 #endif
197
remove_inst_from_list(struct schedule_instruction ** list,struct schedule_instruction * inst)198 static void remove_inst_from_list(struct schedule_instruction ** list,
199 struct schedule_instruction * inst)
200 {
201 struct schedule_instruction * prev = NULL;
202 struct schedule_instruction * list_ptr;
203 for (list_ptr = *list; list_ptr; prev = list_ptr,
204 list_ptr = list_ptr->NextReady) {
205 if (list_ptr == inst) {
206 if (prev) {
207 prev->NextReady = inst->NextReady;
208 } else {
209 *list = inst->NextReady;
210 }
211 inst->NextReady = NULL;
212 break;
213 }
214 }
215 }
216
add_inst_to_list(struct schedule_instruction ** list,struct schedule_instruction * inst)217 static void add_inst_to_list(struct schedule_instruction ** list, struct schedule_instruction * inst)
218 {
219 inst->NextReady = *list;
220 *list = inst;
221 }
222
add_inst_to_list_score(struct schedule_instruction ** list,struct schedule_instruction * inst)223 static void add_inst_to_list_score(struct schedule_instruction ** list,
224 struct schedule_instruction * inst)
225 {
226 struct schedule_instruction * temp;
227 struct schedule_instruction * prev;
228 if (!*list) {
229 *list = inst;
230 return;
231 }
232 temp = *list;
233 prev = NULL;
234 while(temp && inst->Score <= temp->Score) {
235 prev = temp;
236 temp = temp->NextReady;
237 }
238
239 if (!prev) {
240 inst->NextReady = temp;
241 *list = inst;
242 } else {
243 prev->NextReady = inst;
244 inst->NextReady = temp;
245 }
246 }
247
instruction_ready(struct schedule_state * s,struct schedule_instruction * sinst)248 static void instruction_ready(struct schedule_state * s, struct schedule_instruction * sinst)
249 {
250 DBG("%i is now ready\n", sinst->Instruction->IP);
251
252 /* Adding Ready TEX instructions to the end of the "Ready List" helps
253 * us emit TEX instructions in blocks without losing our place. */
254 if (sinst->Instruction->Type == RC_INSTRUCTION_NORMAL)
255 add_inst_to_list_score(&s->ReadyTEX, sinst);
256 else if (sinst->Instruction->U.P.Alpha.Opcode == RC_OPCODE_NOP)
257 add_inst_to_list_score(&s->ReadyRGB, sinst);
258 else if (sinst->Instruction->U.P.RGB.Opcode == RC_OPCODE_NOP)
259 add_inst_to_list_score(&s->ReadyAlpha, sinst);
260 else
261 add_inst_to_list_score(&s->ReadyFullALU, sinst);
262 }
263
decrease_dependencies(struct schedule_state * s,struct schedule_instruction * sinst)264 static void decrease_dependencies(struct schedule_state * s, struct schedule_instruction * sinst)
265 {
266 assert(sinst->NumDependencies > 0);
267 sinst->NumDependencies--;
268 if (!sinst->NumDependencies)
269 instruction_ready(s, sinst);
270 }
271
272 /* These functions provide different heuristics for scheduling instructions.
273 * The default is calc_score_readers. */
274
275 #if 0
276
277 static void calc_score_zero(struct schedule_instruction * sinst)
278 {
279 sinst->Score = 0;
280 }
281
282 static void calc_score_deps(struct schedule_instruction * sinst)
283 {
284 int i;
285 sinst->Score = 0;
286 for (i = 0; i < sinst->NumWriteValues; i++) {
287 struct reg_value * v = sinst->WriteValues[i];
288 if (v->NumReaders) {
289 struct reg_value_reader * r;
290 for (r = v->Readers; r; r = r->Next) {
291 if (r->Reader->NumDependencies == 1) {
292 sinst->Score += 100;
293 }
294 sinst->Score += r->Reader->NumDependencies;
295 }
296 }
297 }
298 }
299
300 #endif
301
302 #define NO_OUTPUT_SCORE (1 << 24)
303
score_no_output(struct schedule_instruction * sinst)304 static void score_no_output(struct schedule_instruction * sinst)
305 {
306 assert(sinst->Instruction->Type != RC_INSTRUCTION_NORMAL);
307 if (!sinst->Instruction->U.P.RGB.OutputWriteMask &&
308 !sinst->Instruction->U.P.Alpha.OutputWriteMask) {
309 if (sinst->PairedInst) {
310 if (!sinst->PairedInst->Instruction->U.P.
311 RGB.OutputWriteMask
312 && !sinst->PairedInst->Instruction->U.P.
313 Alpha.OutputWriteMask) {
314 sinst->Score |= NO_OUTPUT_SCORE;
315 }
316
317 } else {
318 sinst->Score |= NO_OUTPUT_SCORE;
319 }
320 }
321 }
322
323 #define PAIRED_SCORE (1 << 16)
324
calc_score_r300(struct schedule_instruction * sinst)325 static void calc_score_r300(struct schedule_instruction * sinst)
326 {
327 unsigned src_idx;
328
329 if (sinst->Instruction->Type == RC_INSTRUCTION_NORMAL) {
330 sinst->Score = 0;
331 return;
332 }
333
334 score_no_output(sinst);
335
336 if (sinst->PairedInst) {
337 sinst->Score |= PAIRED_SCORE;
338 return;
339 }
340
341 for (src_idx = 0; src_idx < 4; src_idx++) {
342 sinst->Score += sinst->Instruction->U.P.RGB.Src[src_idx].Used +
343 sinst->Instruction->U.P.Alpha.Src[src_idx].Used;
344 }
345 }
346
347 #define NO_READ_TEX_SCORE (1 << 16)
348
calc_score_readers(struct schedule_instruction * sinst)349 static void calc_score_readers(struct schedule_instruction * sinst)
350 {
351 if (sinst->Instruction->Type == RC_INSTRUCTION_NORMAL) {
352 sinst->Score = 0;
353 } else {
354 sinst->Score = sinst->NumReadValues;
355 if (sinst->PairedInst) {
356 sinst->Score += sinst->PairedInst->NumReadValues;
357 }
358 if (get_tex_read_count(sinst) == 0) {
359 sinst->Score |= NO_READ_TEX_SCORE;
360 }
361 score_no_output(sinst);
362 }
363 }
364
365 /**
366 * This function decreases the dependencies of the next instruction that
367 * wants to write to each of sinst's read values.
368 */
commit_update_reads(struct schedule_state * s,struct schedule_instruction * sinst)369 static void commit_update_reads(struct schedule_state * s,
370 struct schedule_instruction * sinst){
371 do {
372 for(unsigned int i = 0; i < sinst->NumReadValues; ++i) {
373 struct reg_value * v = sinst->ReadValues[i];
374 assert(v->NumReaders > 0);
375 v->NumReaders--;
376 if (!v->NumReaders) {
377 if (v->Next) {
378 decrease_dependencies(s, v->Next->Writer);
379 }
380 }
381 }
382 } while ((sinst = sinst->PairedInst));
383 }
384
commit_update_writes(struct schedule_state * s,struct schedule_instruction * sinst)385 static void commit_update_writes(struct schedule_state * s,
386 struct schedule_instruction * sinst){
387 do {
388 for(unsigned int i = 0; i < sinst->NumWriteValues; ++i) {
389 struct reg_value * v = sinst->WriteValues[i];
390 if (v->NumReaders) {
391 for(struct reg_value_reader * r = v->Readers; r; r = r->Next) {
392 decrease_dependencies(s, r->Reader);
393 }
394 } else {
395 /* This happens in instruction sequences of the type
396 * OP r.x, ...;
397 * OP r.x, r.x, ...;
398 * See also the subtlety in how instructions that both
399 * read and write the same register are scanned.
400 */
401 if (v->Next)
402 decrease_dependencies(s, v->Next->Writer);
403 }
404 }
405 } while ((sinst = sinst->PairedInst));
406 }
407
notify_sem_wait(struct schedule_state * s)408 static void notify_sem_wait(struct schedule_state *s)
409 {
410 struct rc_list * pend_ptr;
411 for (pend_ptr = s->PendingTEX; pend_ptr; pend_ptr = pend_ptr->Next) {
412 struct rc_list * read_ptr;
413 struct schedule_instruction * pending = pend_ptr->Item;
414 for (read_ptr = pending->TexReaders; read_ptr;
415 read_ptr = read_ptr->Next) {
416 struct schedule_instruction * reader = read_ptr->Item;
417 reader->TexReadCount--;
418 }
419 }
420 s->PendingTEX = NULL;
421 }
422
commit_alu_instruction(struct schedule_state * s,struct schedule_instruction * sinst)423 static void commit_alu_instruction(struct schedule_state * s, struct schedule_instruction * sinst)
424 {
425 DBG("%i: commit score = %d\n", sinst->Instruction->IP, sinst->Score);
426
427 commit_update_reads(s, sinst);
428
429 commit_update_writes(s, sinst);
430
431 if (get_tex_read_count(sinst) > 0) {
432 sinst->Instruction->U.P.SemWait = 1;
433 notify_sem_wait(s);
434 }
435 }
436
437 /**
438 * Emit all ready texture instructions in a single block.
439 *
440 * Emit as a single block to (hopefully) sample many textures in parallel,
441 * and to avoid hardware indirections on R300.
442 */
emit_all_tex(struct schedule_state * s,struct rc_instruction * before)443 static void emit_all_tex(struct schedule_state * s, struct rc_instruction * before)
444 {
445 struct schedule_instruction *readytex;
446 struct rc_instruction * inst_begin;
447
448 assert(s->ReadyTEX);
449 notify_sem_wait(s);
450
451 /* Node marker for R300 */
452 inst_begin = rc_insert_new_instruction(s->C, before->Prev);
453 inst_begin->U.I.Opcode = RC_OPCODE_BEGIN_TEX;
454
455 /* Link texture instructions back in */
456 readytex = s->ReadyTEX;
457 while(readytex) {
458 rc_insert_instruction(before->Prev, readytex->Instruction);
459 DBG("%i: commit TEX reads\n", readytex->Instruction->IP);
460
461 /* All of the TEX instructions in the same TEX block have
462 * their source registers read from before any of the
463 * instructions in that block write to their destination
464 * registers. This means that when we commit a TEX
465 * instruction, any other TEX instruction that wants to write
466 * to one of the committed instruction's source register can be
467 * marked as ready and should be emitted in the same TEX
468 * block. This prevents the following sequence from being
469 * emitted in two different TEX blocks:
470 * 0: TEX temp[0].xyz, temp[1].xy__, 2D[0];
471 * 1: TEX temp[1].xyz, temp[2].xy__, 2D[0];
472 */
473 commit_update_reads(s, readytex);
474 readytex = readytex->NextReady;
475 }
476 readytex = s->ReadyTEX;
477 s->ReadyTEX = NULL;
478 while(readytex){
479 DBG("%i: commit TEX writes\n", readytex->Instruction->IP);
480 commit_update_writes(s, readytex);
481 /* Set semaphore bits for last TEX instruction in the block */
482 if (!readytex->NextReady) {
483 readytex->Instruction->U.I.TexSemAcquire = 1;
484 readytex->Instruction->U.I.TexSemWait = 1;
485 }
486 rc_list_add(&s->PendingTEX, rc_list(&s->C->Pool, readytex));
487 readytex = readytex->NextReady;
488 }
489 }
490
491 /* This is a helper function for destructive_merge_instructions(). It helps
492 * merge presubtract sources from two instructions and makes sure the
493 * presubtract sources end up in the correct spot. This function assumes that
494 * dst_full is an rgb instruction, meaning that it has a vector instruction(rgb)
495 * but no scalar instruction (alpha).
496 * @return 0 if merging the presubtract sources fails.
497 * @return 1 if merging the presubtract sources succeeds.
498 */
merge_presub_sources(struct rc_pair_instruction * dst_full,struct rc_pair_sub_instruction src,unsigned int type)499 static int merge_presub_sources(
500 struct rc_pair_instruction * dst_full,
501 struct rc_pair_sub_instruction src,
502 unsigned int type)
503 {
504 unsigned int srcp_src, srcp_regs, is_rgb, is_alpha;
505 struct rc_pair_sub_instruction * dst_sub;
506 const struct rc_opcode_info * info;
507
508 assert(dst_full->Alpha.Opcode == RC_OPCODE_NOP);
509
510 switch(type) {
511 case RC_SOURCE_RGB:
512 is_rgb = 1;
513 is_alpha = 0;
514 dst_sub = &dst_full->RGB;
515 break;
516 case RC_SOURCE_ALPHA:
517 is_rgb = 0;
518 is_alpha = 1;
519 dst_sub = &dst_full->Alpha;
520 break;
521 default:
522 assert(0);
523 return 0;
524 }
525
526 info = rc_get_opcode_info(dst_full->RGB.Opcode);
527
528 if (dst_sub->Src[RC_PAIR_PRESUB_SRC].Used)
529 return 0;
530
531 srcp_regs = rc_presubtract_src_reg_count(
532 src.Src[RC_PAIR_PRESUB_SRC].Index);
533 for(srcp_src = 0; srcp_src < srcp_regs; srcp_src++) {
534 unsigned int arg;
535 int free_source;
536 unsigned int one_way = 0;
537 struct rc_pair_instruction_source srcp = src.Src[srcp_src];
538 struct rc_pair_instruction_source temp;
539
540 free_source = rc_pair_alloc_source(dst_full, is_rgb, is_alpha,
541 srcp.File, srcp.Index);
542
543 /* If free_source < 0 then there are no free source
544 * slots. */
545 if (free_source < 0)
546 return 0;
547
548 temp = dst_sub->Src[srcp_src];
549 dst_sub->Src[srcp_src] = dst_sub->Src[free_source];
550
551 /* srcp needs src0 and src1 to be the same */
552 if (free_source < srcp_src) {
553 if (!temp.Used)
554 continue;
555 free_source = rc_pair_alloc_source(dst_full, is_rgb,
556 is_alpha, temp.File, temp.Index);
557 if (free_source < 0)
558 return 0;
559 one_way = 1;
560 } else {
561 dst_sub->Src[free_source] = temp;
562 }
563
564 /* If free_source == srcp_src, then the presubtract
565 * source is already in the correct place. */
566 if (free_source == srcp_src)
567 continue;
568
569 /* Shuffle the sources, so we can put the
570 * presubtract source in the correct place. */
571 for(arg = 0; arg < info->NumSrcRegs; arg++) {
572 /* If the arg does read both from rgb and alpha, then we need to rewrite
573 * both sources and the code currently doesn't handle this.
574 * FIXME: This is definitely solvable, however shader-db shows it is
575 * not worth the effort.
576 */
577 if (rc_source_type_swz(dst_full->RGB.Arg[arg].Swizzle) & RC_SOURCE_ALPHA &&
578 rc_source_type_swz(dst_full->RGB.Arg[arg].Swizzle) & RC_SOURCE_RGB)
579 return 0;
580
581 /*If this arg does not read from an rgb source,
582 * do nothing. */
583 if (!(rc_source_type_swz(dst_full->RGB.Arg[arg].Swizzle)
584 & type)) {
585 continue;
586 }
587
588 if (dst_full->RGB.Arg[arg].Source == srcp_src)
589 dst_full->RGB.Arg[arg].Source = free_source;
590 /* We need to do this just in case register
591 * is one of the sources already, but in the
592 * wrong spot. */
593 else if(dst_full->RGB.Arg[arg].Source == free_source
594 && !one_way) {
595 dst_full->RGB.Arg[arg].Source = srcp_src;
596 }
597 }
598 }
599 return 1;
600 }
601
602
603 /* This function assumes that rgb.Alpha and alpha.RGB are unused */
destructive_merge_instructions(struct rc_pair_instruction * rgb,struct rc_pair_instruction * alpha)604 static int destructive_merge_instructions(
605 struct rc_pair_instruction * rgb,
606 struct rc_pair_instruction * alpha)
607 {
608 const struct rc_opcode_info * opcode;
609
610 assert(rgb->Alpha.Opcode == RC_OPCODE_NOP);
611 assert(alpha->RGB.Opcode == RC_OPCODE_NOP);
612
613 /* Presubtract registers need to be merged first so that registers
614 * needed by the presubtract operation can be placed in src0 and/or
615 * src1. */
616
617 /* Merge the rgb presubtract registers. */
618 if (alpha->RGB.Src[RC_PAIR_PRESUB_SRC].Used) {
619 if (!merge_presub_sources(rgb, alpha->RGB, RC_SOURCE_RGB)) {
620 return 0;
621 }
622 }
623 /* Merge the alpha presubtract registers */
624 if (alpha->Alpha.Src[RC_PAIR_PRESUB_SRC].Used) {
625 if(!merge_presub_sources(rgb, alpha->Alpha, RC_SOURCE_ALPHA)){
626 return 0;
627 }
628 }
629
630 /* Copy alpha args into rgb */
631 opcode = rc_get_opcode_info(alpha->Alpha.Opcode);
632
633 for(unsigned int arg = 0; arg < opcode->NumSrcRegs; ++arg) {
634 unsigned int srcrgb = 0;
635 unsigned int srcalpha = 0;
636 unsigned int oldsrc = alpha->Alpha.Arg[arg].Source;
637 rc_register_file file = 0;
638 unsigned int index = 0;
639 int source;
640
641 if (GET_SWZ(alpha->Alpha.Arg[arg].Swizzle, 0) < 3) {
642 srcrgb = 1;
643 file = alpha->RGB.Src[oldsrc].File;
644 index = alpha->RGB.Src[oldsrc].Index;
645 } else if (GET_SWZ(alpha->Alpha.Arg[arg].Swizzle, 0) < 4) {
646 srcalpha = 1;
647 file = alpha->Alpha.Src[oldsrc].File;
648 index = alpha->Alpha.Src[oldsrc].Index;
649 }
650
651 source = rc_pair_alloc_source(rgb, srcrgb, srcalpha, file, index);
652 if (source < 0)
653 return 0;
654
655 rgb->Alpha.Arg[arg].Source = source;
656 rgb->Alpha.Arg[arg].Swizzle = alpha->Alpha.Arg[arg].Swizzle;
657 rgb->Alpha.Arg[arg].Abs = alpha->Alpha.Arg[arg].Abs;
658 rgb->Alpha.Arg[arg].Negate = alpha->Alpha.Arg[arg].Negate;
659 }
660
661 /* Copy alpha opcode into rgb */
662 rgb->Alpha.Opcode = alpha->Alpha.Opcode;
663 rgb->Alpha.DestIndex = alpha->Alpha.DestIndex;
664 rgb->Alpha.WriteMask = alpha->Alpha.WriteMask;
665 rgb->Alpha.OutputWriteMask = alpha->Alpha.OutputWriteMask;
666 rgb->Alpha.DepthWriteMask = alpha->Alpha.DepthWriteMask;
667 rgb->Alpha.Saturate = alpha->Alpha.Saturate;
668 rgb->Alpha.Omod = alpha->Alpha.Omod;
669
670 /* Merge ALU result writing */
671 if (alpha->WriteALUResult) {
672 if (rgb->WriteALUResult)
673 return 0;
674
675 rgb->WriteALUResult = alpha->WriteALUResult;
676 rgb->ALUResultCompare = alpha->ALUResultCompare;
677 }
678
679 /* Copy SemWait */
680 rgb->SemWait |= alpha->SemWait;
681
682 return 1;
683 }
684
685 /**
686 * Try to merge the given instructions into the rgb instructions.
687 *
688 * Return true on success; on failure, return false, and keep
689 * the instructions untouched.
690 */
merge_instructions(struct rc_pair_instruction * rgb,struct rc_pair_instruction * alpha)691 static int merge_instructions(struct rc_pair_instruction * rgb, struct rc_pair_instruction * alpha)
692 {
693 struct rc_pair_instruction backup;
694
695 /*Instructions can't write output registers and ALU result at the
696 * same time. */
697 if ((rgb->WriteALUResult && alpha->Alpha.OutputWriteMask)
698 || (rgb->RGB.OutputWriteMask && alpha->WriteALUResult)) {
699 return 0;
700 }
701
702 /* Writing output registers in the middle of shaders is slow, so
703 * we don't want to pair output writes with temp writes. */
704 if ((rgb->RGB.OutputWriteMask && !alpha->Alpha.OutputWriteMask)
705 || (!rgb->RGB.OutputWriteMask && alpha->Alpha.OutputWriteMask)) {
706 return 0;
707 }
708
709 memcpy(&backup, rgb, sizeof(struct rc_pair_instruction));
710
711 if (destructive_merge_instructions(rgb, alpha))
712 return 1;
713
714 memcpy(rgb, &backup, sizeof(struct rc_pair_instruction));
715 return 0;
716 }
717
presub_nop(struct rc_instruction * emitted)718 static void presub_nop(struct rc_instruction * emitted) {
719 int prev_rgb_index, prev_alpha_index, i, num_src;
720
721 /* We don't need a nop if the previous instruction is a TEX. */
722 if (emitted->Prev->Type != RC_INSTRUCTION_PAIR) {
723 return;
724 }
725 if (emitted->Prev->U.P.RGB.WriteMask)
726 prev_rgb_index = emitted->Prev->U.P.RGB.DestIndex;
727 else
728 prev_rgb_index = -1;
729 if (emitted->Prev->U.P.Alpha.WriteMask)
730 prev_alpha_index = emitted->Prev->U.P.Alpha.DestIndex;
731 else
732 prev_alpha_index = 1;
733
734 /* Check the previous rgb instruction */
735 if (emitted->U.P.RGB.Src[RC_PAIR_PRESUB_SRC].Used) {
736 num_src = rc_presubtract_src_reg_count(
737 emitted->U.P.RGB.Src[RC_PAIR_PRESUB_SRC].Index);
738 for (i = 0; i < num_src; i++) {
739 unsigned int index = emitted->U.P.RGB.Src[i].Index;
740 if (emitted->U.P.RGB.Src[i].File == RC_FILE_TEMPORARY
741 && (index == prev_rgb_index
742 || index == prev_alpha_index)) {
743 emitted->Prev->U.P.Nop = 1;
744 return;
745 }
746 }
747 }
748
749 /* Check the previous alpha instruction. */
750 if (!emitted->U.P.Alpha.Src[RC_PAIR_PRESUB_SRC].Used)
751 return;
752
753 num_src = rc_presubtract_src_reg_count(
754 emitted->U.P.Alpha.Src[RC_PAIR_PRESUB_SRC].Index);
755 for (i = 0; i < num_src; i++) {
756 unsigned int index = emitted->U.P.Alpha.Src[i].Index;
757 if(emitted->U.P.Alpha.Src[i].File == RC_FILE_TEMPORARY
758 && (index == prev_rgb_index || index == prev_alpha_index)) {
759 emitted->Prev->U.P.Nop = 1;
760 return;
761 }
762 }
763 }
764
rgb_to_alpha_remap(struct schedule_state * s,struct rc_instruction * inst,struct rc_pair_instruction_arg * arg,rc_register_file old_file,rc_swizzle old_swz,unsigned int new_index)765 static void rgb_to_alpha_remap (
766 struct schedule_state * s,
767 struct rc_instruction * inst,
768 struct rc_pair_instruction_arg * arg,
769 rc_register_file old_file,
770 rc_swizzle old_swz,
771 unsigned int new_index)
772 {
773 int new_src_index;
774 unsigned int i;
775
776 for (i = 0; i < 3; i++) {
777 if (get_swz(arg->Swizzle, i) == old_swz) {
778 SET_SWZ(arg->Swizzle, i, RC_SWIZZLE_W);
779 }
780 }
781 new_src_index = rc_pair_alloc_source(&inst->U.P, 0, 1,
782 old_file, new_index);
783 /* This conversion is not possible, we must have made a mistake in
784 * is_rgb_to_alpha_possible. */
785 if (new_src_index < 0) {
786 rc_error(s->C, "rgb_to_alpha_remap failed to allocate src.\n");
787 return;
788 }
789
790 arg->Source = new_src_index;
791 }
792
can_remap(unsigned int opcode)793 static int can_remap(unsigned int opcode)
794 {
795 switch(opcode) {
796 case RC_OPCODE_DDX:
797 case RC_OPCODE_DDY:
798 return 0;
799 default:
800 return 1;
801 }
802 }
803
can_convert_opcode_to_alpha(unsigned int opcode)804 static int can_convert_opcode_to_alpha(unsigned int opcode)
805 {
806 switch(opcode) {
807 case RC_OPCODE_DDX:
808 case RC_OPCODE_DDY:
809 case RC_OPCODE_DP2:
810 case RC_OPCODE_DP3:
811 case RC_OPCODE_DP4:
812 return 0;
813 default:
814 return 1;
815 }
816 }
817
is_rgb_to_alpha_possible(void * userdata,struct rc_instruction * inst,struct rc_pair_instruction_arg * arg,struct rc_pair_instruction_source * src)818 static void is_rgb_to_alpha_possible(
819 void * userdata,
820 struct rc_instruction * inst,
821 struct rc_pair_instruction_arg * arg,
822 struct rc_pair_instruction_source * src)
823 {
824 unsigned int read_chan = RC_SWIZZLE_UNUSED;
825 unsigned int alpha_sources = 0;
826 unsigned int i;
827 struct rc_reader_data * reader_data = userdata;
828
829 if (!can_remap(inst->U.P.RGB.Opcode)
830 || !can_remap(inst->U.P.Alpha.Opcode)) {
831 reader_data->Abort = 1;
832 return;
833 }
834
835 if (!src)
836 return;
837
838 /* XXX There are some cases where we can still do the conversion if
839 * a reader reads from a presubtract source, but for now we'll prevent
840 * it. */
841 if (arg->Source == RC_PAIR_PRESUB_SRC) {
842 reader_data->Abort = 1;
843 return;
844 }
845
846 /* Make sure the source only reads the register component that we
847 * are going to be converting from. It is OK if the instruction uses
848 * this component more than once.
849 * XXX If the index we will be converting to is the same as the
850 * current index, then it is OK to read from more than one component.
851 */
852 for (i = 0; i < 3; i++) {
853 rc_swizzle swz = get_swz(arg->Swizzle, i);
854 switch(swz) {
855 case RC_SWIZZLE_X:
856 case RC_SWIZZLE_Y:
857 case RC_SWIZZLE_Z:
858 case RC_SWIZZLE_W:
859 if (read_chan == RC_SWIZZLE_UNUSED) {
860 read_chan = swz;
861 } else if (read_chan != swz) {
862 reader_data->Abort = 1;
863 return;
864 }
865 break;
866 default:
867 break;
868 }
869 }
870
871 /* Make sure there are enough alpha sources.
872 * XXX If we know what register all the readers are going
873 * to be remapped to, then in some situations we can still do
874 * the substitution, even if all 3 alpha sources are being used.*/
875 for (i = 0; i < 3; i++) {
876 if (inst->U.P.Alpha.Src[i].Used) {
877 alpha_sources++;
878 }
879 }
880 if (alpha_sources > 2) {
881 reader_data->Abort = 1;
882 return;
883 }
884 }
885
convert_rgb_to_alpha(struct schedule_state * s,struct schedule_instruction * sched_inst)886 static int convert_rgb_to_alpha(
887 struct schedule_state * s,
888 struct schedule_instruction * sched_inst)
889 {
890 struct rc_pair_instruction * pair_inst = &sched_inst->Instruction->U.P;
891 unsigned int old_mask = pair_inst->RGB.WriteMask;
892 unsigned int old_swz = rc_mask_to_swizzle(old_mask);
893 const struct rc_opcode_info * info =
894 rc_get_opcode_info(pair_inst->RGB.Opcode);
895 int new_index = -1;
896 unsigned int i;
897
898 if (sched_inst->GlobalReaders.Abort)
899 return 0;
900
901 /* Even though we checked that we can convert to alpha previously, it is
902 * possible that another rgb source of the reader instructions was already
903 * converted to alpha and we thus have no longer free alpha sources.
904 */
905 for(i = 0; i < sched_inst->GlobalReaders.ReaderCount; i++) {
906 struct rc_reader reader = sched_inst->GlobalReaders.Readers[i];
907 if (reader.Inst->U.P.Alpha.Src[2].Used)
908 return 0;
909 }
910
911 if (!pair_inst->RGB.WriteMask)
912 return 0;
913
914 if (!can_convert_opcode_to_alpha(pair_inst->RGB.Opcode)
915 || !can_convert_opcode_to_alpha(pair_inst->Alpha.Opcode)) {
916 return 0;
917 }
918
919 assert(sched_inst->NumWriteValues == 1);
920
921 if (!sched_inst->WriteValues[0]) {
922 assert(0);
923 return 0;
924 }
925
926 /* We start at the old index, because if we can reuse the same
927 * register and just change the swizzle then it is more likely we
928 * will be able to convert all the readers. */
929 for (i = pair_inst->RGB.DestIndex; i < RC_REGISTER_MAX_INDEX; i++) {
930 struct reg_value ** new_regvalp = get_reg_valuep(
931 s, RC_FILE_TEMPORARY, i, 3);
932 if (!*new_regvalp) {
933 struct reg_value ** old_regvalp =
934 get_reg_valuep(s,
935 RC_FILE_TEMPORARY,
936 pair_inst->RGB.DestIndex,
937 rc_mask_to_swizzle(old_mask));
938 new_index = i;
939 *new_regvalp = *old_regvalp;
940 break;
941 }
942 }
943 if (new_index < 0) {
944 return 0;
945 }
946
947 /* If we are converting a full instruction with RC_OPCODE_REPL_ALPHA
948 * as the RGB opcode, then the Alpha instruction will already contain
949 * the correct opcode and instruction args, so we do not want to
950 * overwrite them.
951 */
952 if (pair_inst->RGB.Opcode != RC_OPCODE_REPL_ALPHA) {
953 pair_inst->Alpha.Opcode = pair_inst->RGB.Opcode;
954 memcpy(pair_inst->Alpha.Arg, pair_inst->RGB.Arg,
955 sizeof(pair_inst->Alpha.Arg));
956 }
957 pair_inst->Alpha.DestIndex = new_index;
958 pair_inst->Alpha.WriteMask = RC_MASK_W;
959 pair_inst->Alpha.Target = pair_inst->RGB.Target;
960 pair_inst->Alpha.OutputWriteMask = pair_inst->RGB.OutputWriteMask;
961 pair_inst->Alpha.DepthWriteMask = pair_inst->RGB.DepthWriteMask;
962 pair_inst->Alpha.Saturate = pair_inst->RGB.Saturate;
963 pair_inst->Alpha.Omod = pair_inst->RGB.Omod;
964 /* Move the swizzles into the first chan */
965 for (i = 0; i < info->NumSrcRegs; i++) {
966 unsigned int j;
967 for (j = 0; j < 3; j++) {
968 unsigned int swz = get_swz(pair_inst->Alpha.Arg[i].Swizzle, j);
969 if (swz != RC_SWIZZLE_UNUSED) {
970 pair_inst->Alpha.Arg[i].Swizzle =
971 rc_init_swizzle(swz, 1);
972 break;
973 }
974 }
975 }
976 pair_inst->RGB.Opcode = RC_OPCODE_NOP;
977 pair_inst->RGB.DestIndex = 0;
978 pair_inst->RGB.WriteMask = 0;
979 pair_inst->RGB.Target = 0;
980 pair_inst->RGB.OutputWriteMask = 0;
981 pair_inst->RGB.DepthWriteMask = 0;
982 pair_inst->RGB.Saturate = 0;
983 memset(pair_inst->RGB.Arg, 0, sizeof(pair_inst->RGB.Arg));
984
985 for(i = 0; i < sched_inst->GlobalReaders.ReaderCount; i++) {
986 struct rc_reader reader = sched_inst->GlobalReaders.Readers[i];
987 rgb_to_alpha_remap(s, reader.Inst, reader.U.P.Arg,
988 RC_FILE_TEMPORARY, old_swz, new_index);
989 }
990 return 1;
991 }
992
try_convert_and_pair(struct schedule_state * s,struct schedule_instruction ** inst_list)993 static void try_convert_and_pair(
994 struct schedule_state *s,
995 struct schedule_instruction ** inst_list)
996 {
997 struct schedule_instruction * list_ptr = *inst_list;
998 while (list_ptr && *inst_list && (*inst_list)->NextReady) {
999 int paired = 0;
1000 if (list_ptr->Instruction->U.P.Alpha.Opcode != RC_OPCODE_NOP
1001 && list_ptr->Instruction->U.P.RGB.Opcode
1002 != RC_OPCODE_REPL_ALPHA) {
1003 goto next;
1004 }
1005 if (list_ptr->NumWriteValues == 1
1006 && convert_rgb_to_alpha(s, list_ptr)) {
1007
1008 struct schedule_instruction * pair_ptr;
1009 remove_inst_from_list(inst_list, list_ptr);
1010 add_inst_to_list_score(&s->ReadyAlpha, list_ptr);
1011
1012 for (pair_ptr = s->ReadyRGB; pair_ptr;
1013 pair_ptr = pair_ptr->NextReady) {
1014 if (merge_instructions(&pair_ptr->Instruction->U.P,
1015 &list_ptr->Instruction->U.P)) {
1016 remove_inst_from_list(&s->ReadyAlpha, list_ptr);
1017 remove_inst_from_list(&s->ReadyRGB, pair_ptr);
1018 pair_ptr->PairedInst = list_ptr;
1019
1020 add_inst_to_list(&s->ReadyFullALU, pair_ptr);
1021 list_ptr = *inst_list;
1022 paired = 1;
1023 break;
1024 }
1025
1026 }
1027 }
1028 if (!paired) {
1029 next:
1030 list_ptr = list_ptr->NextReady;
1031 }
1032 }
1033 }
1034
1035 /**
1036 * This function attempts to merge RGB and Alpha instructions together.
1037 */
pair_instructions(struct schedule_state * s)1038 static void pair_instructions(struct schedule_state * s)
1039 {
1040 struct schedule_instruction *rgb_ptr;
1041 struct schedule_instruction *alpha_ptr;
1042
1043 /* Some pairings might fail because they require too
1044 * many source slots; try all possible pairings if necessary */
1045 rgb_ptr = s->ReadyRGB;
1046 while(rgb_ptr) {
1047 struct schedule_instruction * rgb_next = rgb_ptr->NextReady;
1048 alpha_ptr = s->ReadyAlpha;
1049 while(alpha_ptr) {
1050 struct schedule_instruction * alpha_next = alpha_ptr->NextReady;
1051 if (merge_instructions(&rgb_ptr->Instruction->U.P, &alpha_ptr->Instruction->U.P)) {
1052 /* Remove RGB and Alpha from their ready lists.
1053 */
1054 remove_inst_from_list(&s->ReadyRGB, rgb_ptr);
1055 remove_inst_from_list(&s->ReadyAlpha, alpha_ptr);
1056 rgb_ptr->PairedInst = alpha_ptr;
1057 add_inst_to_list(&s->ReadyFullALU, rgb_ptr);
1058 break;
1059 }
1060 alpha_ptr = alpha_next;
1061 }
1062 rgb_ptr = rgb_next;
1063 }
1064
1065 if (!s->Opt) {
1066 return;
1067 }
1068
1069 /* Full instructions that have RC_OPCODE_REPL_ALPHA in the RGB
1070 * slot can be converted into Alpha instructions. */
1071 try_convert_and_pair(s, &s->ReadyFullALU);
1072
1073 /* Try to convert some of the RGB instructions to Alpha and
1074 * try to pair it with another RGB. */
1075 try_convert_and_pair(s, &s->ReadyRGB);
1076 }
1077
update_max_score(struct schedule_state * s,struct schedule_instruction ** list,int * max_score,struct schedule_instruction ** max_inst_out,struct schedule_instruction *** list_out)1078 static void update_max_score(
1079 struct schedule_state * s,
1080 struct schedule_instruction ** list,
1081 int * max_score,
1082 struct schedule_instruction ** max_inst_out,
1083 struct schedule_instruction *** list_out)
1084 {
1085 struct schedule_instruction * list_ptr;
1086 for (list_ptr = *list; list_ptr; list_ptr = list_ptr->NextReady) {
1087 int score;
1088 s->CalcScore(list_ptr);
1089 score = list_ptr->Score;
1090 if (!*max_inst_out || score > *max_score) {
1091 *max_score = score;
1092 *max_inst_out = list_ptr;
1093 *list_out = list;
1094 }
1095 }
1096 }
1097
emit_instruction(struct schedule_state * s,struct rc_instruction * before)1098 static void emit_instruction(
1099 struct schedule_state * s,
1100 struct rc_instruction * before)
1101 {
1102 int max_score = -1;
1103 struct schedule_instruction * max_inst = NULL;
1104 struct schedule_instruction ** max_list = NULL;
1105 unsigned tex_count = 0;
1106 struct schedule_instruction * tex_ptr;
1107
1108 pair_instructions(s);
1109 #if VERBOSE
1110 fprintf(stderr, "Full:\n");
1111 print_list(s->ReadyFullALU);
1112 fprintf(stderr, "RGB:\n");
1113 print_list(s->ReadyRGB);
1114 fprintf(stderr, "Alpha:\n");
1115 print_list(s->ReadyAlpha);
1116 fprintf(stderr, "TEX:\n");
1117 print_list(s->ReadyTEX);
1118 #endif
1119
1120 for (tex_ptr = s->ReadyTEX; tex_ptr; tex_ptr = tex_ptr->NextReady) {
1121 if (tex_ptr->Instruction->U.I.Opcode == RC_OPCODE_KIL) {
1122 emit_all_tex(s, before);
1123 s->PrevBlockHasKil = 1;
1124 return;
1125 }
1126 tex_count++;
1127 }
1128 update_max_score(s, &s->ReadyFullALU, &max_score, &max_inst, &max_list);
1129 update_max_score(s, &s->ReadyRGB, &max_score, &max_inst, &max_list);
1130 update_max_score(s, &s->ReadyAlpha, &max_score, &max_inst, &max_list);
1131
1132 if (tex_count >= s->max_tex_group || max_score == -1
1133 || (s->TEXCount > 0 && tex_count == s->TEXCount)
1134 || (tex_count > 0 && max_score < NO_OUTPUT_SCORE)) {
1135 emit_all_tex(s, before);
1136 } else {
1137
1138
1139 remove_inst_from_list(max_list, max_inst);
1140 rc_insert_instruction(before->Prev, max_inst->Instruction);
1141 commit_alu_instruction(s, max_inst);
1142
1143 presub_nop(before->Prev);
1144 }
1145 }
1146
add_tex_reader(struct schedule_state * s,struct schedule_instruction * writer,struct schedule_instruction * reader)1147 static void add_tex_reader(
1148 struct schedule_state * s,
1149 struct schedule_instruction * writer,
1150 struct schedule_instruction * reader)
1151 {
1152 if (!writer || writer->Instruction->Type != RC_INSTRUCTION_NORMAL) {
1153 /*Not a TEX instructions */
1154 return;
1155 }
1156 reader->TexReadCount++;
1157 rc_list_add(&writer->TexReaders, rc_list(&s->C->Pool, reader));
1158 }
1159
scan_read(void * data,struct rc_instruction * inst,rc_register_file file,unsigned int index,unsigned int chan)1160 static void scan_read(void * data, struct rc_instruction * inst,
1161 rc_register_file file, unsigned int index, unsigned int chan)
1162 {
1163 struct schedule_state * s = data;
1164 struct reg_value ** v = get_reg_valuep(s, file, index, chan);
1165 struct reg_value_reader * reader;
1166
1167 if (!v)
1168 return;
1169
1170 if (*v && (*v)->Writer == s->Current) {
1171 /* The instruction reads and writes to a register component.
1172 * In this case, we only want to increment dependencies by one.
1173 * Why?
1174 * Because each instruction depends on the writers of its source
1175 * registers _and_ the most recent writer of its destination
1176 * register. In this case, the current instruction (s->Current)
1177 * has a dependency that both writes to one of its source
1178 * registers and was the most recent writer to its destination
1179 * register. We have already marked this dependency in
1180 * scan_write(), so we don't need to do it again.
1181 */
1182
1183 /* We need to make sure we are adding s->Current to the
1184 * previous writer's list of TexReaders, if the previous writer
1185 * was a TEX instruction.
1186 */
1187 add_tex_reader(s, s->PrevWriter[chan], s->Current);
1188
1189 return;
1190 }
1191
1192 DBG("%i: read %i[%i] chan %i\n", s->Current->Instruction->IP, file, index, chan);
1193
1194 reader = memory_pool_malloc(&s->C->Pool, sizeof(*reader));
1195 reader->Reader = s->Current;
1196 if (!*v) {
1197 /* In this situation, the instruction reads from a register
1198 * that hasn't been written to or read from in the current
1199 * block. */
1200 *v = memory_pool_malloc(&s->C->Pool, sizeof(struct reg_value));
1201 memset(*v, 0, sizeof(struct reg_value));
1202 (*v)->Readers = reader;
1203 } else {
1204 reader->Next = (*v)->Readers;
1205 (*v)->Readers = reader;
1206 /* Only update the current instruction's dependencies if the
1207 * register it reads from has been written to in this block. */
1208 if ((*v)->Writer) {
1209 add_tex_reader(s, (*v)->Writer, s->Current);
1210 s->Current->NumDependencies++;
1211 }
1212 }
1213 (*v)->NumReaders++;
1214
1215 if (s->Current->NumReadValues >= 12) {
1216 rc_error(s->C, "%s: NumReadValues overflow\n", __func__);
1217 } else {
1218 s->Current->ReadValues[s->Current->NumReadValues++] = *v;
1219 }
1220 }
1221
scan_write(void * data,struct rc_instruction * inst,rc_register_file file,unsigned int index,unsigned int chan)1222 static void scan_write(void * data, struct rc_instruction * inst,
1223 rc_register_file file, unsigned int index, unsigned int chan)
1224 {
1225 struct schedule_state * s = data;
1226 struct reg_value ** pv = get_reg_valuep(s, file, index, chan);
1227 struct reg_value * newv;
1228
1229 if (!pv)
1230 return;
1231
1232 DBG("%i: write %i[%i] chan %i\n", s->Current->Instruction->IP, file, index, chan);
1233
1234 newv = memory_pool_malloc(&s->C->Pool, sizeof(*newv));
1235 memset(newv, 0, sizeof(*newv));
1236
1237 newv->Writer = s->Current;
1238
1239 if (*pv) {
1240 (*pv)->Next = newv;
1241 s->Current->NumDependencies++;
1242 /* Keep track of the previous writer to s->Current's destination
1243 * register */
1244 s->PrevWriter[chan] = (*pv)->Writer;
1245 }
1246
1247 *pv = newv;
1248
1249 if (s->Current->NumWriteValues >= 4) {
1250 rc_error(s->C, "%s: NumWriteValues overflow\n", __func__);
1251 } else {
1252 s->Current->WriteValues[s->Current->NumWriteValues++] = newv;
1253 }
1254 }
1255
is_rgb_to_alpha_possible_normal(void * userdata,struct rc_instruction * inst,struct rc_src_register * src)1256 static void is_rgb_to_alpha_possible_normal(
1257 void * userdata,
1258 struct rc_instruction * inst,
1259 struct rc_src_register * src)
1260 {
1261 struct rc_reader_data * reader_data = userdata;
1262 reader_data->Abort = 1;
1263
1264 }
1265
schedule_block(struct schedule_state * s,struct rc_instruction * begin,struct rc_instruction * end)1266 static void schedule_block(struct schedule_state * s,
1267 struct rc_instruction * begin, struct rc_instruction * end)
1268 {
1269 unsigned int ip;
1270
1271 /* Scan instructions for data dependencies */
1272 ip = 0;
1273 for(struct rc_instruction * inst = begin; inst != end; inst = inst->Next) {
1274 s->Current = memory_pool_malloc(&s->C->Pool, sizeof(*s->Current));
1275 memset(s->Current, 0, sizeof(struct schedule_instruction));
1276
1277 if (inst->Type == RC_INSTRUCTION_NORMAL) {
1278 const struct rc_opcode_info * info =
1279 rc_get_opcode_info(inst->U.I.Opcode);
1280 if (info->HasTexture) {
1281 s->TEXCount++;
1282 }
1283 }
1284
1285 /* XXX: This causes SemWait to be set for all instructions in
1286 * a block if the previous block contained a TEX instruction.
1287 * We can do better here, but it will take a lot of work. */
1288 if (s->PrevBlockHasTex) {
1289 s->Current->TexReadCount = 1;
1290 }
1291
1292 s->Current->Instruction = inst;
1293 inst->IP = ip++;
1294
1295 DBG("%i: Scanning\n", inst->IP);
1296
1297 /* The order of things here is subtle and maybe slightly
1298 * counter-intuitive, to account for the case where an
1299 * instruction writes to the same register as it reads
1300 * from. */
1301 rc_for_all_writes_chan(inst, &scan_write, s);
1302 rc_for_all_reads_chan(inst, &scan_read, s);
1303
1304 DBG("%i: Has %i dependencies\n", inst->IP, s->Current->NumDependencies);
1305
1306 if (!s->Current->NumDependencies) {
1307 instruction_ready(s, s->Current);
1308 }
1309
1310 /* Get global readers for possible RGB->Alpha conversion. */
1311 s->Current->GlobalReaders.ExitOnAbort = 1;
1312 rc_get_readers(s->C, inst, &s->Current->GlobalReaders,
1313 is_rgb_to_alpha_possible_normal,
1314 is_rgb_to_alpha_possible, NULL);
1315 }
1316
1317 /* Temporarily unlink all instructions */
1318 begin->Prev->Next = end;
1319 end->Prev = begin->Prev;
1320
1321 /* Schedule instructions back */
1322 while(!s->C->Error &&
1323 (s->ReadyTEX || s->ReadyRGB || s->ReadyAlpha || s->ReadyFullALU)) {
1324 emit_instruction(s, end);
1325 }
1326 }
1327
is_controlflow(struct rc_instruction * inst)1328 static int is_controlflow(struct rc_instruction * inst)
1329 {
1330 if (inst->Type == RC_INSTRUCTION_NORMAL) {
1331 const struct rc_opcode_info * opcode = rc_get_opcode_info(inst->U.I.Opcode);
1332 return opcode->IsFlowControl;
1333 }
1334 return 0;
1335 }
1336
rc_pair_schedule(struct radeon_compiler * cc,void * user)1337 void rc_pair_schedule(struct radeon_compiler *cc, void *user)
1338 {
1339 struct r300_fragment_program_compiler *c = (struct r300_fragment_program_compiler*)cc;
1340 struct schedule_state s;
1341 struct rc_instruction * inst = c->Base.Program.Instructions.Next;
1342 unsigned int * opt = user;
1343
1344 memset(&s, 0, sizeof(s));
1345 s.Opt = *opt;
1346 s.C = &c->Base;
1347 if (s.C->is_r500) {
1348 s.CalcScore = calc_score_readers;
1349 } else {
1350 s.CalcScore = calc_score_r300;
1351 }
1352 s.max_tex_group = debug_get_num_option("RADEON_TEX_GROUP", 8);
1353 while(inst != &c->Base.Program.Instructions) {
1354 struct rc_instruction * first;
1355
1356 if (is_controlflow(inst)) {
1357 /* The TexSemWait flag is already properly set for ALU
1358 * instructions using the results of normal TEX lookup,
1359 * however it was found empirically that TEXKIL also needs
1360 * synchronization with the control flow. This might not be optimal,
1361 * however the docs don't offer any guidance in this matter.
1362 */
1363 if (s.PrevBlockHasKil) {
1364 inst->U.I.TexSemWait = 1;
1365 s.PrevBlockHasKil = 0;
1366 }
1367 inst = inst->Next;
1368 continue;
1369 }
1370
1371 first = inst;
1372
1373 while(inst != &c->Base.Program.Instructions && !is_controlflow(inst))
1374 inst = inst->Next;
1375
1376 DBG("Schedule one block\n");
1377 memset(s.Temporary, 0, sizeof(s.Temporary));
1378 s.TEXCount = 0;
1379 schedule_block(&s, first, inst);
1380 if (s.PendingTEX) {
1381 s.PrevBlockHasTex = 1;
1382 }
1383 }
1384 }
1385