• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright 2002 The ANGLE Project Authors. All rights reserved.
3 // Use of this source code is governed by a BSD-style license that can be
4 // found in the LICENSE file.
5 //
6 
7 // mathutil.h: Math and bit manipulation functions.
8 
9 #ifndef COMMON_MATHUTIL_H_
10 #define COMMON_MATHUTIL_H_
11 
12 #include <math.h>
13 #include <stdint.h>
14 #include <stdlib.h>
15 #include <string.h>
16 #include <algorithm>
17 #include <limits>
18 
19 #include <anglebase/numerics/safe_math.h>
20 
21 #include "common/debug.h"
22 #include "common/platform.h"
23 
24 namespace angle
25 {
26 using base::CheckedNumeric;
27 using base::IsValueInRangeForNumericType;
28 }  // namespace angle
29 
30 namespace gl
31 {
32 
33 const unsigned int Float32One   = 0x3F800000;
34 const unsigned short Float16One = 0x3C00;
35 
36 template <typename T>
isPow2(T x)37 inline constexpr bool isPow2(T x)
38 {
39     static_assert(std::is_integral<T>::value, "isPow2 must be called on an integer type.");
40     return (x & (x - 1)) == 0 && (x != 0);
41 }
42 
43 template <typename T>
log2(T x)44 inline int log2(T x)
45 {
46     static_assert(std::is_integral<T>::value, "log2 must be called on an integer type.");
47     int r = 0;
48     while ((x >> r) > 1)
49         r++;
50     return r;
51 }
52 
ceilPow2(unsigned int x)53 inline unsigned int ceilPow2(unsigned int x)
54 {
55     if (x != 0)
56         x--;
57     x |= x >> 1;
58     x |= x >> 2;
59     x |= x >> 4;
60     x |= x >> 8;
61     x |= x >> 16;
62     x++;
63 
64     return x;
65 }
66 
67 template <typename DestT, typename SrcT>
clampCast(SrcT value)68 inline DestT clampCast(SrcT value)
69 {
70     // For floating-point types with denormalization, min returns the minimum positive normalized
71     // value. To find the value that has no values less than it, use numeric_limits::lowest.
72     constexpr const long double destLo =
73         static_cast<long double>(std::numeric_limits<DestT>::lowest());
74     constexpr const long double destHi =
75         static_cast<long double>(std::numeric_limits<DestT>::max());
76     constexpr const long double srcLo =
77         static_cast<long double>(std::numeric_limits<SrcT>::lowest());
78     constexpr long double srcHi = static_cast<long double>(std::numeric_limits<SrcT>::max());
79 
80     if (destHi < srcHi)
81     {
82         DestT destMax = std::numeric_limits<DestT>::max();
83         if (value >= static_cast<SrcT>(destMax))
84         {
85             return destMax;
86         }
87     }
88 
89     if (destLo > srcLo)
90     {
91         DestT destLow = std::numeric_limits<DestT>::lowest();
92         if (value <= static_cast<SrcT>(destLow))
93         {
94             return destLow;
95         }
96     }
97 
98     return static_cast<DestT>(value);
99 }
100 
101 // Specialize clampCast for bool->int conversion to avoid MSVS 2015 performance warning when the max
102 // value is casted to the source type.
103 template <>
clampCast(bool value)104 inline unsigned int clampCast(bool value)
105 {
106     return static_cast<unsigned int>(value);
107 }
108 
109 template <>
clampCast(bool value)110 inline int clampCast(bool value)
111 {
112     return static_cast<int>(value);
113 }
114 
115 template <typename T, typename MIN, typename MAX>
clamp(T x,MIN min,MAX max)116 inline T clamp(T x, MIN min, MAX max)
117 {
118     // Since NaNs fail all comparison tests, a NaN value will default to min
119     return x > min ? (x > max ? max : x) : min;
120 }
121 
122 template <typename T>
clampForBitCount(T value,size_t bitCount)123 T clampForBitCount(T value, size_t bitCount)
124 {
125     static_assert(std::numeric_limits<T>::is_integer, "T must be an integer.");
126 
127     if (bitCount == 0)
128     {
129         constexpr T kZero = 0;
130         return kZero;
131     }
132     ASSERT(bitCount <= sizeof(T) * 8);
133 
134     constexpr bool kIsSigned = std::numeric_limits<T>::is_signed;
135     ASSERT((bitCount > 1) || !kIsSigned);
136 
137     T min = 0;
138     T max = 0;
139     if (bitCount == sizeof(T) * 8)
140     {
141         min = std::numeric_limits<T>::min();
142         max = std::numeric_limits<T>::max();
143     }
144     else
145     {
146         constexpr T kOne = 1;
147         min              = (kIsSigned) ? -1 * (kOne << (bitCount - 1)) : 0;
148         max              = (kIsSigned) ? (kOne << (bitCount - 1)) - 1 : (kOne << bitCount) - 1;
149     }
150 
151     return gl::clamp(value, min, max);
152 }
153 
clamp01(float x)154 inline float clamp01(float x)
155 {
156     return clamp(x, 0.0f, 1.0f);
157 }
158 
159 template <const int n>
unorm(float x)160 inline unsigned int unorm(float x)
161 {
162     const unsigned int max = 0xFFFFFFFF >> (32 - n);
163 
164     if (x > 1)
165     {
166         return max;
167     }
168     else if (x < 0)
169     {
170         return 0;
171     }
172     else
173     {
174         return (unsigned int)(max * x + 0.5f);
175     }
176 }
177 
supportsSSE2()178 inline bool supportsSSE2()
179 {
180 #if defined(ANGLE_USE_SSE)
181     static bool checked  = false;
182     static bool supports = false;
183 
184     if (checked)
185     {
186         return supports;
187     }
188 
189 #    if defined(ANGLE_PLATFORM_WINDOWS) && !defined(_M_ARM) && !defined(_M_ARM64)
190     {
191         int info[4];
192         __cpuid(info, 0);
193 
194         if (info[0] >= 1)
195         {
196             __cpuid(info, 1);
197 
198             supports = (info[3] >> 26) & 1;
199         }
200     }
201 #    endif  // defined(ANGLE_PLATFORM_WINDOWS) && !defined(_M_ARM) && !defined(_M_ARM64)
202     checked = true;
203     return supports;
204 #else  // defined(ANGLE_USE_SSE)
205     return false;
206 #endif
207 }
208 
209 template <typename destType, typename sourceType>
bitCast(const sourceType & source)210 destType bitCast(const sourceType &source)
211 {
212     size_t copySize = std::min(sizeof(destType), sizeof(sourceType));
213     destType output;
214     memcpy(&output, &source, copySize);
215     return output;
216 }
217 
218 template <typename DestT, typename SrcT>
unsafe_int_to_pointer_cast(SrcT src)219 DestT unsafe_int_to_pointer_cast(SrcT src)
220 {
221     return reinterpret_cast<DestT>(static_cast<uintptr_t>(src));
222 }
223 
224 template <typename DestT, typename SrcT>
unsafe_pointer_to_int_cast(SrcT src)225 DestT unsafe_pointer_to_int_cast(SrcT src)
226 {
227     return static_cast<DestT>(reinterpret_cast<uintptr_t>(src));
228 }
229 
230 // https://stackoverflow.com/a/37581284
231 template <typename T>
normalize(T value)232 static constexpr double normalize(T value)
233 {
234     return value < 0 ? -static_cast<double>(value) / std::numeric_limits<T>::min()
235                      : static_cast<double>(value) / std::numeric_limits<T>::max();
236 }
237 
float32ToFloat16(float fp32)238 inline unsigned short float32ToFloat16(float fp32)
239 {
240     unsigned int fp32i = bitCast<unsigned int>(fp32);
241     unsigned int sign  = (fp32i & 0x80000000) >> 16;
242     unsigned int abs   = fp32i & 0x7FFFFFFF;
243 
244     if (abs > 0x7F800000)
245     {  // NaN
246         return 0x7FFF;
247     }
248     else if (abs > 0x47FFEFFF)
249     {  // Infinity
250         return static_cast<uint16_t>(sign | 0x7C00);
251     }
252     else if (abs < 0x38800000)  // Denormal
253     {
254         unsigned int mantissa = (abs & 0x007FFFFF) | 0x00800000;
255         int e                 = 113 - (abs >> 23);
256 
257         if (e < 24)
258         {
259             abs = mantissa >> e;
260         }
261         else
262         {
263             abs = 0;
264         }
265 
266         return static_cast<unsigned short>(sign | (abs + 0x00000FFF + ((abs >> 13) & 1)) >> 13);
267     }
268     else
269     {
270         return static_cast<unsigned short>(
271             sign | (abs + 0xC8000000 + 0x00000FFF + ((abs >> 13) & 1)) >> 13);
272     }
273 }
274 
275 float float16ToFloat32(unsigned short h);
276 
277 unsigned int convertRGBFloatsTo999E5(float red, float green, float blue);
278 void convert999E5toRGBFloats(unsigned int input, float *red, float *green, float *blue);
279 
float32ToFloat11(float fp32)280 inline unsigned short float32ToFloat11(float fp32)
281 {
282     const unsigned int float32MantissaMask     = 0x7FFFFF;
283     const unsigned int float32ExponentMask     = 0x7F800000;
284     const unsigned int float32SignMask         = 0x80000000;
285     const unsigned int float32ValueMask        = ~float32SignMask;
286     const unsigned int float32ExponentFirstBit = 23;
287     const unsigned int float32ExponentBias     = 127;
288 
289     const unsigned short float11Max          = 0x7BF;
290     const unsigned short float11MantissaMask = 0x3F;
291     const unsigned short float11ExponentMask = 0x7C0;
292     const unsigned short float11BitMask      = 0x7FF;
293     const unsigned int float11ExponentBias   = 14;
294 
295     const unsigned int float32Maxfloat11       = 0x477E0000;
296     const unsigned int float32MinNormfloat11   = 0x38800000;
297     const unsigned int float32MinDenormfloat11 = 0x35000080;
298 
299     const unsigned int float32Bits = bitCast<unsigned int>(fp32);
300     const bool float32Sign         = (float32Bits & float32SignMask) == float32SignMask;
301 
302     unsigned int float32Val = float32Bits & float32ValueMask;
303 
304     if ((float32Val & float32ExponentMask) == float32ExponentMask)
305     {
306         // INF or NAN
307         if ((float32Val & float32MantissaMask) != 0)
308         {
309             return float11ExponentMask |
310                    (((float32Val >> 17) | (float32Val >> 11) | (float32Val >> 6) | (float32Val)) &
311                     float11MantissaMask);
312         }
313         else if (float32Sign)
314         {
315             // -INF is clamped to 0 since float11 is positive only
316             return 0;
317         }
318         else
319         {
320             return float11ExponentMask;
321         }
322     }
323     else if (float32Sign)
324     {
325         // float11 is positive only, so clamp to zero
326         return 0;
327     }
328     else if (float32Val > float32Maxfloat11)
329     {
330         // The number is too large to be represented as a float11, set to max
331         return float11Max;
332     }
333     else if (float32Val < float32MinDenormfloat11)
334     {
335         // The number is too small to be represented as a denormalized float11, set to 0
336         return 0;
337     }
338     else
339     {
340         if (float32Val < float32MinNormfloat11)
341         {
342             // The number is too small to be represented as a normalized float11
343             // Convert it to a denormalized value.
344             const unsigned int shift = (float32ExponentBias - float11ExponentBias) -
345                                        (float32Val >> float32ExponentFirstBit);
346             ASSERT(shift < 32);
347             float32Val =
348                 ((1 << float32ExponentFirstBit) | (float32Val & float32MantissaMask)) >> shift;
349         }
350         else
351         {
352             // Rebias the exponent to represent the value as a normalized float11
353             float32Val += 0xC8000000;
354         }
355 
356         return ((float32Val + 0xFFFF + ((float32Val >> 17) & 1)) >> 17) & float11BitMask;
357     }
358 }
359 
float32ToFloat10(float fp32)360 inline unsigned short float32ToFloat10(float fp32)
361 {
362     const unsigned int float32MantissaMask     = 0x7FFFFF;
363     const unsigned int float32ExponentMask     = 0x7F800000;
364     const unsigned int float32SignMask         = 0x80000000;
365     const unsigned int float32ValueMask        = ~float32SignMask;
366     const unsigned int float32ExponentFirstBit = 23;
367     const unsigned int float32ExponentBias     = 127;
368 
369     const unsigned short float10Max          = 0x3DF;
370     const unsigned short float10MantissaMask = 0x1F;
371     const unsigned short float10ExponentMask = 0x3E0;
372     const unsigned short float10BitMask      = 0x3FF;
373     const unsigned int float10ExponentBias   = 14;
374 
375     const unsigned int float32Maxfloat10       = 0x477C0000;
376     const unsigned int float32MinNormfloat10   = 0x38800000;
377     const unsigned int float32MinDenormfloat10 = 0x35800040;
378 
379     const unsigned int float32Bits = bitCast<unsigned int>(fp32);
380     const bool float32Sign         = (float32Bits & float32SignMask) == float32SignMask;
381 
382     unsigned int float32Val = float32Bits & float32ValueMask;
383 
384     if ((float32Val & float32ExponentMask) == float32ExponentMask)
385     {
386         // INF or NAN
387         if ((float32Val & float32MantissaMask) != 0)
388         {
389             return float10ExponentMask |
390                    (((float32Val >> 18) | (float32Val >> 13) | (float32Val >> 3) | (float32Val)) &
391                     float10MantissaMask);
392         }
393         else if (float32Sign)
394         {
395             // -INF is clamped to 0 since float10 is positive only
396             return 0;
397         }
398         else
399         {
400             return float10ExponentMask;
401         }
402     }
403     else if (float32Sign)
404     {
405         // float10 is positive only, so clamp to zero
406         return 0;
407     }
408     else if (float32Val > float32Maxfloat10)
409     {
410         // The number is too large to be represented as a float10, set to max
411         return float10Max;
412     }
413     else if (float32Val < float32MinDenormfloat10)
414     {
415         // The number is too small to be represented as a denormalized float10, set to 0
416         return 0;
417     }
418     else
419     {
420         if (float32Val < float32MinNormfloat10)
421         {
422             // The number is too small to be represented as a normalized float10
423             // Convert it to a denormalized value.
424             const unsigned int shift = (float32ExponentBias - float10ExponentBias) -
425                                        (float32Val >> float32ExponentFirstBit);
426             ASSERT(shift < 32);
427             float32Val =
428                 ((1 << float32ExponentFirstBit) | (float32Val & float32MantissaMask)) >> shift;
429         }
430         else
431         {
432             // Rebias the exponent to represent the value as a normalized float10
433             float32Val += 0xC8000000;
434         }
435 
436         return ((float32Val + 0x1FFFF + ((float32Val >> 18) & 1)) >> 18) & float10BitMask;
437     }
438 }
439 
float11ToFloat32(unsigned short fp11)440 inline float float11ToFloat32(unsigned short fp11)
441 {
442     unsigned short exponent = (fp11 >> 6) & 0x1F;
443     unsigned short mantissa = fp11 & 0x3F;
444 
445     if (exponent == 0x1F)
446     {
447         // INF or NAN
448         return bitCast<float>(0x7f800000 | (mantissa << 17));
449     }
450     else
451     {
452         if (exponent != 0)
453         {
454             // normalized
455         }
456         else if (mantissa != 0)
457         {
458             // The value is denormalized
459             exponent = 1;
460 
461             do
462             {
463                 exponent--;
464                 mantissa <<= 1;
465             } while ((mantissa & 0x40) == 0);
466 
467             mantissa = mantissa & 0x3F;
468         }
469         else  // The value is zero
470         {
471             exponent = static_cast<unsigned short>(-112);
472         }
473 
474         return bitCast<float>(((exponent + 112) << 23) | (mantissa << 17));
475     }
476 }
477 
float10ToFloat32(unsigned short fp10)478 inline float float10ToFloat32(unsigned short fp10)
479 {
480     unsigned short exponent = (fp10 >> 5) & 0x1F;
481     unsigned short mantissa = fp10 & 0x1F;
482 
483     if (exponent == 0x1F)
484     {
485         // INF or NAN
486         return bitCast<float>(0x7f800000 | (mantissa << 17));
487     }
488     else
489     {
490         if (exponent != 0)
491         {
492             // normalized
493         }
494         else if (mantissa != 0)
495         {
496             // The value is denormalized
497             exponent = 1;
498 
499             do
500             {
501                 exponent--;
502                 mantissa <<= 1;
503             } while ((mantissa & 0x20) == 0);
504 
505             mantissa = mantissa & 0x1F;
506         }
507         else  // The value is zero
508         {
509             exponent = static_cast<unsigned short>(-112);
510         }
511 
512         return bitCast<float>(((exponent + 112) << 23) | (mantissa << 18));
513     }
514 }
515 
516 // Converts to and from float and 16.16 fixed point format.
ConvertFixedToFloat(int32_t fixedInput)517 inline float ConvertFixedToFloat(int32_t fixedInput)
518 {
519     return static_cast<float>(fixedInput) / 65536.0f;
520 }
521 
ConvertFloatToFixed(float floatInput)522 inline uint32_t ConvertFloatToFixed(float floatInput)
523 {
524     static constexpr uint32_t kHighest = 32767 * 65536 + 65535;
525     static constexpr uint32_t kLowest  = static_cast<uint32_t>(-32768 * 65536 + 65535);
526 
527     if (floatInput > 32767.65535)
528     {
529         return kHighest;
530     }
531     else if (floatInput < -32768.65535)
532     {
533         return kLowest;
534     }
535     else
536     {
537         return static_cast<uint32_t>(floatInput * 65536);
538     }
539 }
540 
541 template <typename T>
normalizedToFloat(T input)542 inline float normalizedToFloat(T input)
543 {
544     static_assert(std::numeric_limits<T>::is_integer, "T must be an integer.");
545 
546     if constexpr (sizeof(T) > 2)
547     {
548         // float has only a 23 bit mantissa, so we need to do the calculation in double precision
549         constexpr double inverseMax = 1.0 / std::numeric_limits<T>::max();
550         return static_cast<float>(input * inverseMax);
551     }
552     else
553     {
554         constexpr float inverseMax = 1.0f / std::numeric_limits<T>::max();
555         return input * inverseMax;
556     }
557 }
558 
559 template <unsigned int inputBitCount, typename T>
normalizedToFloat(T input)560 inline float normalizedToFloat(T input)
561 {
562     static_assert(std::numeric_limits<T>::is_integer, "T must be an integer.");
563     static_assert(inputBitCount < (sizeof(T) * 8), "T must have more bits than inputBitCount.");
564     ASSERT((input & ~((1 << inputBitCount) - 1)) == 0);
565 
566     if (inputBitCount > 23)
567     {
568         // float has only a 23 bit mantissa, so we need to do the calculation in double precision
569         constexpr double inverseMax = 1.0 / ((1 << inputBitCount) - 1);
570         return static_cast<float>(input * inverseMax);
571     }
572     else
573     {
574         constexpr float inverseMax = 1.0f / ((1 << inputBitCount) - 1);
575         return input * inverseMax;
576     }
577 }
578 
579 template <typename T>
floatToNormalized(float input)580 inline T floatToNormalized(float input)
581 {
582     if constexpr (sizeof(T) > 2)
583     {
584         // float has only a 23 bit mantissa, so we need to do the calculation in double precision
585         return static_cast<T>(std::numeric_limits<T>::max() * static_cast<double>(input) + 0.5);
586     }
587     else
588     {
589         return static_cast<T>(std::numeric_limits<T>::max() * input + 0.5f);
590     }
591 }
592 
593 template <unsigned int outputBitCount, typename T>
floatToNormalized(float input)594 inline T floatToNormalized(float input)
595 {
596     static_assert(outputBitCount < (sizeof(T) * 8), "T must have more bits than outputBitCount.");
597 
598     if (outputBitCount > 23)
599     {
600         // float has only a 23 bit mantissa, so we need to do the calculation in double precision
601         return static_cast<T>(((1 << outputBitCount) - 1) * static_cast<double>(input) + 0.5);
602     }
603     else
604     {
605         return static_cast<T>(((1 << outputBitCount) - 1) * input + 0.5f);
606     }
607 }
608 
609 template <unsigned int inputBitCount, unsigned int inputBitStart, typename T>
getShiftedData(T input)610 inline T getShiftedData(T input)
611 {
612     static_assert(inputBitCount + inputBitStart <= (sizeof(T) * 8),
613                   "T must have at least as many bits as inputBitCount + inputBitStart.");
614     const T mask = (1 << inputBitCount) - 1;
615     return (input >> inputBitStart) & mask;
616 }
617 
618 template <unsigned int inputBitCount, unsigned int inputBitStart, typename T>
shiftData(T input)619 inline T shiftData(T input)
620 {
621     static_assert(inputBitCount + inputBitStart <= (sizeof(T) * 8),
622                   "T must have at least as many bits as inputBitCount + inputBitStart.");
623     const T mask = (1 << inputBitCount) - 1;
624     return (input & mask) << inputBitStart;
625 }
626 
CountLeadingZeros(uint32_t x)627 inline unsigned int CountLeadingZeros(uint32_t x)
628 {
629     // Use binary search to find the amount of leading zeros.
630     unsigned int zeros = 32u;
631     uint32_t y;
632 
633     y = x >> 16u;
634     if (y != 0)
635     {
636         zeros = zeros - 16u;
637         x     = y;
638     }
639     y = x >> 8u;
640     if (y != 0)
641     {
642         zeros = zeros - 8u;
643         x     = y;
644     }
645     y = x >> 4u;
646     if (y != 0)
647     {
648         zeros = zeros - 4u;
649         x     = y;
650     }
651     y = x >> 2u;
652     if (y != 0)
653     {
654         zeros = zeros - 2u;
655         x     = y;
656     }
657     y = x >> 1u;
658     if (y != 0)
659     {
660         return zeros - 2u;
661     }
662     return zeros - x;
663 }
664 
average(unsigned char a,unsigned char b)665 inline unsigned char average(unsigned char a, unsigned char b)
666 {
667     return ((a ^ b) >> 1) + (a & b);
668 }
669 
average(signed char a,signed char b)670 inline signed char average(signed char a, signed char b)
671 {
672     return ((short)a + (short)b) / 2;
673 }
674 
average(unsigned short a,unsigned short b)675 inline unsigned short average(unsigned short a, unsigned short b)
676 {
677     return ((a ^ b) >> 1) + (a & b);
678 }
679 
average(signed short a,signed short b)680 inline signed short average(signed short a, signed short b)
681 {
682     return ((int)a + (int)b) / 2;
683 }
684 
average(unsigned int a,unsigned int b)685 inline unsigned int average(unsigned int a, unsigned int b)
686 {
687     return ((a ^ b) >> 1) + (a & b);
688 }
689 
average(int a,int b)690 inline int average(int a, int b)
691 {
692     long long average = (static_cast<long long>(a) + static_cast<long long>(b)) / 2LL;
693     return static_cast<int>(average);
694 }
695 
average(float a,float b)696 inline float average(float a, float b)
697 {
698     return (a + b) * 0.5f;
699 }
700 
averageHalfFloat(unsigned short a,unsigned short b)701 inline unsigned short averageHalfFloat(unsigned short a, unsigned short b)
702 {
703     return float32ToFloat16((float16ToFloat32(a) + float16ToFloat32(b)) * 0.5f);
704 }
705 
averageFloat11(unsigned int a,unsigned int b)706 inline unsigned int averageFloat11(unsigned int a, unsigned int b)
707 {
708     return float32ToFloat11((float11ToFloat32(static_cast<unsigned short>(a)) +
709                              float11ToFloat32(static_cast<unsigned short>(b))) *
710                             0.5f);
711 }
712 
averageFloat10(unsigned int a,unsigned int b)713 inline unsigned int averageFloat10(unsigned int a, unsigned int b)
714 {
715     return float32ToFloat10((float10ToFloat32(static_cast<unsigned short>(a)) +
716                              float10ToFloat32(static_cast<unsigned short>(b))) *
717                             0.5f);
718 }
719 
720 template <typename T>
721 class Range
722 {
723   public:
Range()724     Range() {}
Range(T lo,T hi)725     Range(T lo, T hi) : mLow(lo), mHigh(hi) {}
726 
length()727     T length() const { return (empty() ? 0 : (mHigh - mLow)); }
728 
intersects(Range<T> other)729     bool intersects(Range<T> other)
730     {
731         if (mLow <= other.mLow)
732         {
733             return other.mLow < mHigh;
734         }
735         else
736         {
737             return mLow < other.mHigh;
738         }
739     }
740 
741     // Assumes that end is non-inclusive.. for example, extending to 5 will make "end" 6.
extend(T value)742     void extend(T value)
743     {
744         mLow  = value < mLow ? value : mLow;
745         mHigh = value >= mHigh ? (value + 1) : mHigh;
746     }
747 
empty()748     bool empty() const { return mHigh <= mLow; }
749 
contains(T value)750     bool contains(T value) const { return value >= mLow && value < mHigh; }
751 
752     class Iterator final
753     {
754       public:
Iterator(T value)755         Iterator(T value) : mCurrent(value) {}
756 
757         Iterator &operator++()
758         {
759             mCurrent++;
760             return *this;
761         }
762         bool operator==(const Iterator &other) const { return mCurrent == other.mCurrent; }
763         bool operator!=(const Iterator &other) const { return mCurrent != other.mCurrent; }
764         T operator*() const { return mCurrent; }
765 
766       private:
767         T mCurrent;
768     };
769 
begin()770     Iterator begin() const { return Iterator(mLow); }
771 
end()772     Iterator end() const { return Iterator(mHigh); }
773 
low()774     T low() const { return mLow; }
high()775     T high() const { return mHigh; }
776 
invalidate()777     void invalidate()
778     {
779         mLow  = std::numeric_limits<T>::max();
780         mHigh = std::numeric_limits<T>::min();
781     }
782 
783   private:
784     T mLow;
785     T mHigh;
786 };
787 
788 typedef Range<int> RangeI;
789 typedef Range<unsigned int> RangeUI;
790 static_assert(std::is_trivially_copyable<RangeUI>(),
791               "RangeUI should be trivial copyable so that we can memcpy");
792 
793 struct IndexRange
794 {
795     struct Undefined
796     {};
IndexRangeIndexRange797     IndexRange(Undefined) {}
IndexRangeIndexRange798     IndexRange() : IndexRange(0, 0, 0) {}
IndexRangeIndexRange799     IndexRange(size_t start_, size_t end_, size_t vertexIndexCount_)
800         : start(start_), end(end_), vertexIndexCount(vertexIndexCount_)
801     {
802         ASSERT(start <= end);
803     }
804 
805     // Number of vertices in the range.
vertexCountIndexRange806     size_t vertexCount() const { return (end - start) + 1; }
807 
808     // Inclusive range of indices that are not primitive restart
809     size_t start;
810     size_t end;
811 
812     // Number of non-primitive restart indices
813     size_t vertexIndexCount;
814 };
815 
816 // Combine a floating-point value representing a mantissa (x) and an integer exponent (exp) into a
817 // floating-point value. As in GLSL ldexp() built-in.
Ldexp(float x,int exp)818 inline float Ldexp(float x, int exp)
819 {
820     if (exp > 128)
821     {
822         return std::numeric_limits<float>::infinity();
823     }
824     if (exp < -126)
825     {
826         return 0.0f;
827     }
828     double result = static_cast<double>(x) * std::pow(2.0, static_cast<double>(exp));
829     return static_cast<float>(result);
830 }
831 
832 // First, both normalized floating-point values are converted into 16-bit integer values.
833 // Then, the results are packed into the returned 32-bit unsigned integer.
834 // The first float value will be written to the least significant bits of the output;
835 // the last float value will be written to the most significant bits.
836 // The conversion of each value to fixed point is done as follows :
837 // packSnorm2x16 : round(clamp(c, -1, +1) * 32767.0)
packSnorm2x16(float f1,float f2)838 inline uint32_t packSnorm2x16(float f1, float f2)
839 {
840     int16_t leastSignificantBits = static_cast<int16_t>(roundf(clamp(f1, -1.0f, 1.0f) * 32767.0f));
841     int16_t mostSignificantBits  = static_cast<int16_t>(roundf(clamp(f2, -1.0f, 1.0f) * 32767.0f));
842     return static_cast<uint32_t>(mostSignificantBits) << 16 |
843            (static_cast<uint32_t>(leastSignificantBits) & 0xFFFF);
844 }
845 
846 // First, unpacks a single 32-bit unsigned integer u into a pair of 16-bit unsigned integers. Then,
847 // each component is converted to a normalized floating-point value to generate the returned two
848 // float values. The first float value will be extracted from the least significant bits of the
849 // input; the last float value will be extracted from the most-significant bits. The conversion for
850 // unpacked fixed-point value to floating point is done as follows: unpackSnorm2x16 : clamp(f /
851 // 32767.0, -1, +1)
unpackSnorm2x16(uint32_t u,float * f1,float * f2)852 inline void unpackSnorm2x16(uint32_t u, float *f1, float *f2)
853 {
854     int16_t leastSignificantBits = static_cast<int16_t>(u & 0xFFFF);
855     int16_t mostSignificantBits  = static_cast<int16_t>(u >> 16);
856     *f1 = clamp(static_cast<float>(leastSignificantBits) / 32767.0f, -1.0f, 1.0f);
857     *f2 = clamp(static_cast<float>(mostSignificantBits) / 32767.0f, -1.0f, 1.0f);
858 }
859 
860 // First, both normalized floating-point values are converted into 16-bit integer values.
861 // Then, the results are packed into the returned 32-bit unsigned integer.
862 // The first float value will be written to the least significant bits of the output;
863 // the last float value will be written to the most significant bits.
864 // The conversion of each value to fixed point is done as follows:
865 // packUnorm2x16 : round(clamp(c, 0, +1) * 65535.0)
packUnorm2x16(float f1,float f2)866 inline uint32_t packUnorm2x16(float f1, float f2)
867 {
868     uint16_t leastSignificantBits = static_cast<uint16_t>(roundf(clamp(f1, 0.0f, 1.0f) * 65535.0f));
869     uint16_t mostSignificantBits  = static_cast<uint16_t>(roundf(clamp(f2, 0.0f, 1.0f) * 65535.0f));
870     return static_cast<uint32_t>(mostSignificantBits) << 16 |
871            static_cast<uint32_t>(leastSignificantBits);
872 }
873 
874 // First, unpacks a single 32-bit unsigned integer u into a pair of 16-bit unsigned integers. Then,
875 // each component is converted to a normalized floating-point value to generate the returned two
876 // float values. The first float value will be extracted from the least significant bits of the
877 // input; the last float value will be extracted from the most-significant bits. The conversion for
878 // unpacked fixed-point value to floating point is done as follows: unpackUnorm2x16 : f / 65535.0
unpackUnorm2x16(uint32_t u,float * f1,float * f2)879 inline void unpackUnorm2x16(uint32_t u, float *f1, float *f2)
880 {
881     uint16_t leastSignificantBits = static_cast<uint16_t>(u & 0xFFFF);
882     uint16_t mostSignificantBits  = static_cast<uint16_t>(u >> 16);
883     *f1                           = static_cast<float>(leastSignificantBits) / 65535.0f;
884     *f2                           = static_cast<float>(mostSignificantBits) / 65535.0f;
885 }
886 
887 // Helper functions intended to be used only here.
888 namespace priv
889 {
890 
ToPackedUnorm8(float f)891 inline uint8_t ToPackedUnorm8(float f)
892 {
893     return static_cast<uint8_t>(roundf(clamp(f, 0.0f, 1.0f) * 255.0f));
894 }
895 
ToPackedSnorm8(float f)896 inline int8_t ToPackedSnorm8(float f)
897 {
898     return static_cast<int8_t>(roundf(clamp(f, -1.0f, 1.0f) * 127.0f));
899 }
900 
901 }  // namespace priv
902 
903 // Packs 4 normalized unsigned floating-point values to a single 32-bit unsigned integer. Works
904 // similarly to packUnorm2x16. The floats are clamped to the range 0.0 to 1.0, and written to the
905 // unsigned integer starting from the least significant bits.
PackUnorm4x8(float f1,float f2,float f3,float f4)906 inline uint32_t PackUnorm4x8(float f1, float f2, float f3, float f4)
907 {
908     uint8_t bits[4];
909     bits[0]         = priv::ToPackedUnorm8(f1);
910     bits[1]         = priv::ToPackedUnorm8(f2);
911     bits[2]         = priv::ToPackedUnorm8(f3);
912     bits[3]         = priv::ToPackedUnorm8(f4);
913     uint32_t result = 0u;
914     for (int i = 0; i < 4; ++i)
915     {
916         int shift = i * 8;
917         result |= (static_cast<uint32_t>(bits[i]) << shift);
918     }
919     return result;
920 }
921 
922 // Unpacks 4 normalized unsigned floating-point values from a single 32-bit unsigned integer into f.
923 // Works similarly to unpackUnorm2x16. The floats are unpacked starting from the least significant
924 // bits.
UnpackUnorm4x8(uint32_t u,float * f)925 inline void UnpackUnorm4x8(uint32_t u, float *f)
926 {
927     for (int i = 0; i < 4; ++i)
928     {
929         int shift    = i * 8;
930         uint8_t bits = static_cast<uint8_t>((u >> shift) & 0xFF);
931         f[i]         = static_cast<float>(bits) / 255.0f;
932     }
933 }
934 
935 // Packs 4 normalized signed floating-point values to a single 32-bit unsigned integer. The floats
936 // are clamped to the range -1.0 to 1.0, and written to the unsigned integer starting from the least
937 // significant bits.
PackSnorm4x8(float f1,float f2,float f3,float f4)938 inline uint32_t PackSnorm4x8(float f1, float f2, float f3, float f4)
939 {
940     int8_t bits[4];
941     bits[0]         = priv::ToPackedSnorm8(f1);
942     bits[1]         = priv::ToPackedSnorm8(f2);
943     bits[2]         = priv::ToPackedSnorm8(f3);
944     bits[3]         = priv::ToPackedSnorm8(f4);
945     uint32_t result = 0u;
946     for (int i = 0; i < 4; ++i)
947     {
948         int shift = i * 8;
949         result |= ((static_cast<uint32_t>(bits[i]) & 0xFF) << shift);
950     }
951     return result;
952 }
953 
954 // Unpacks 4 normalized signed floating-point values from a single 32-bit unsigned integer into f.
955 // Works similarly to unpackSnorm2x16. The floats are unpacked starting from the least significant
956 // bits, and clamped to the range -1.0 to 1.0.
UnpackSnorm4x8(uint32_t u,float * f)957 inline void UnpackSnorm4x8(uint32_t u, float *f)
958 {
959     for (int i = 0; i < 4; ++i)
960     {
961         int shift   = i * 8;
962         int8_t bits = static_cast<int8_t>((u >> shift) & 0xFF);
963         f[i]        = clamp(static_cast<float>(bits) / 127.0f, -1.0f, 1.0f);
964     }
965 }
966 
967 // Returns an unsigned integer obtained by converting the two floating-point values to the 16-bit
968 // floating-point representation found in the OpenGL ES Specification, and then packing these
969 // two 16-bit integers into a 32-bit unsigned integer.
970 // f1: The 16 least-significant bits of the result;
971 // f2: The 16 most-significant bits.
packHalf2x16(float f1,float f2)972 inline uint32_t packHalf2x16(float f1, float f2)
973 {
974     uint16_t leastSignificantBits = static_cast<uint16_t>(float32ToFloat16(f1));
975     uint16_t mostSignificantBits  = static_cast<uint16_t>(float32ToFloat16(f2));
976     return static_cast<uint32_t>(mostSignificantBits) << 16 |
977            static_cast<uint32_t>(leastSignificantBits);
978 }
979 
980 // Returns two floating-point values obtained by unpacking a 32-bit unsigned integer into a pair of
981 // 16-bit values, interpreting those values as 16-bit floating-point numbers according to the OpenGL
982 // ES Specification, and converting them to 32-bit floating-point values. The first float value is
983 // obtained from the 16 least-significant bits of u; the second component is obtained from the 16
984 // most-significant bits of u.
unpackHalf2x16(uint32_t u,float * f1,float * f2)985 inline void unpackHalf2x16(uint32_t u, float *f1, float *f2)
986 {
987     uint16_t leastSignificantBits = static_cast<uint16_t>(u & 0xFFFF);
988     uint16_t mostSignificantBits  = static_cast<uint16_t>(u >> 16);
989 
990     *f1 = float16ToFloat32(leastSignificantBits);
991     *f2 = float16ToFloat32(mostSignificantBits);
992 }
993 
sRGBToLinear(uint8_t srgbValue)994 inline float sRGBToLinear(uint8_t srgbValue)
995 {
996     float value = srgbValue / 255.0f;
997     if (value <= 0.04045f)
998     {
999         value = value / 12.92f;
1000     }
1001     else
1002     {
1003         value = std::pow((value + 0.055f) / 1.055f, 2.4f);
1004     }
1005     ASSERT(value >= 0.0f && value <= 1.0f);
1006     return value;
1007 }
1008 
linearToSRGB(float value)1009 inline uint8_t linearToSRGB(float value)
1010 {
1011     ASSERT(value >= 0.0f && value <= 1.0f);
1012     if (value < 0.0031308f)
1013     {
1014         value = value * 12.92f;
1015     }
1016     else
1017     {
1018         value = std::pow(value, 0.41666f) * 1.055f - 0.055f;
1019     }
1020     return static_cast<uint8_t>(value * 255.0f + 0.5f);
1021 }
1022 
1023 // Reverse the order of the bits.
BitfieldReverse(uint32_t value)1024 inline uint32_t BitfieldReverse(uint32_t value)
1025 {
1026     // TODO(oetuaho@nvidia.com): Optimize this if needed. There don't seem to be compiler intrinsics
1027     // for this, and right now it's not used in performance-critical paths.
1028     uint32_t result = 0u;
1029     for (size_t j = 0u; j < 32u; ++j)
1030     {
1031         result |= (((value >> j) & 1u) << (31u - j));
1032     }
1033     return result;
1034 }
1035 
1036 // Count the 1 bits.
1037 #if defined(_MSC_VER) && !defined(__clang__)
1038 #    if defined(_M_IX86) || defined(_M_X64)
1039 namespace priv
1040 {
1041 // Check POPCNT instruction support and cache the result.
1042 // https://docs.microsoft.com/en-us/cpp/intrinsics/popcnt16-popcnt-popcnt64#remarks
1043 static const bool kHasPopcnt = [] {
1044     int info[4];
1045     __cpuid(&info[0], 1);
1046     return static_cast<bool>(info[2] & 0x800000);
1047 }();
1048 }  // namespace priv
1049 
1050 // Polyfills for x86/x64 CPUs without POPCNT.
1051 // https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
BitCountPolyfill(uint32_t bits)1052 inline int BitCountPolyfill(uint32_t bits)
1053 {
1054     bits = bits - ((bits >> 1) & 0x55555555);
1055     bits = (bits & 0x33333333) + ((bits >> 2) & 0x33333333);
1056     bits = ((bits + (bits >> 4) & 0x0F0F0F0F) * 0x01010101) >> 24;
1057     return static_cast<int>(bits);
1058 }
1059 
BitCountPolyfill(uint64_t bits)1060 inline int BitCountPolyfill(uint64_t bits)
1061 {
1062     bits = bits - ((bits >> 1) & 0x5555555555555555ull);
1063     bits = (bits & 0x3333333333333333ull) + ((bits >> 2) & 0x3333333333333333ull);
1064     bits = ((bits + (bits >> 4) & 0x0F0F0F0F0F0F0F0Full) * 0x0101010101010101ull) >> 56;
1065     return static_cast<int>(bits);
1066 }
1067 
BitCount(uint32_t bits)1068 inline int BitCount(uint32_t bits)
1069 {
1070     if (priv::kHasPopcnt)
1071     {
1072         return static_cast<int>(__popcnt(bits));
1073     }
1074     return BitCountPolyfill(bits);
1075 }
1076 
BitCount(uint64_t bits)1077 inline int BitCount(uint64_t bits)
1078 {
1079     if (priv::kHasPopcnt)
1080     {
1081 #        if defined(_M_X64)
1082         return static_cast<int>(__popcnt64(bits));
1083 #        else   // x86
1084         return static_cast<int>(__popcnt(static_cast<uint32_t>(bits >> 32)) +
1085                                 __popcnt(static_cast<uint32_t>(bits)));
1086 #        endif  // defined(_M_X64)
1087     }
1088     return BitCountPolyfill(bits);
1089 }
1090 
1091 #    elif defined(_M_ARM) || defined(_M_ARM64)
1092 
1093 // MSVC's _CountOneBits* intrinsics are not defined for ARM64, moreover they do not use dedicated
1094 // NEON instructions.
1095 
BitCount(uint32_t bits)1096 inline int BitCount(uint32_t bits)
1097 {
1098     // cast bits to 8x8 datatype and use VCNT on it
1099     const uint8x8_t vsum = vcnt_u8(vcreate_u8(static_cast<uint64_t>(bits)));
1100 
1101     // pairwise sums: 8x8 -> 16x4 -> 32x2
1102     return static_cast<int>(vget_lane_u32(vpaddl_u16(vpaddl_u8(vsum)), 0));
1103 }
1104 
BitCount(uint64_t bits)1105 inline int BitCount(uint64_t bits)
1106 {
1107     // cast bits to 8x8 datatype and use VCNT on it
1108     const uint8x8_t vsum = vcnt_u8(vcreate_u8(bits));
1109 
1110     // pairwise sums: 8x8 -> 16x4 -> 32x2 -> 64x1
1111     return static_cast<int>(vget_lane_u64(vpaddl_u32(vpaddl_u16(vpaddl_u8(vsum))), 0));
1112 }
1113 #    endif  // defined(_M_IX86) || defined(_M_X64)
1114 #endif      // defined(_MSC_VER) && !defined(__clang__)
1115 
1116 #if defined(ANGLE_PLATFORM_POSIX) || defined(__clang__) || defined(__GNUC__)
BitCount(uint32_t bits)1117 inline int BitCount(uint32_t bits)
1118 {
1119     return __builtin_popcount(bits);
1120 }
1121 
BitCount(uint64_t bits)1122 inline int BitCount(uint64_t bits)
1123 {
1124     return __builtin_popcountll(bits);
1125 }
1126 #endif  // defined(ANGLE_PLATFORM_POSIX) || defined(__clang__) || defined(__GNUC__)
1127 
BitCount(uint8_t bits)1128 inline int BitCount(uint8_t bits)
1129 {
1130     return BitCount(static_cast<uint32_t>(bits));
1131 }
1132 
BitCount(uint16_t bits)1133 inline int BitCount(uint16_t bits)
1134 {
1135     return BitCount(static_cast<uint32_t>(bits));
1136 }
1137 
1138 #if defined(ANGLE_PLATFORM_WINDOWS)
1139 // Return the index of the least significant bit set. Indexing is such that bit 0 is the least
1140 // significant bit. Implemented for different bit widths on different platforms.
ScanForward(uint32_t bits)1141 inline unsigned long ScanForward(uint32_t bits)
1142 {
1143     ASSERT(bits != 0u);
1144     unsigned long firstBitIndex = 0ul;
1145     unsigned char ret           = _BitScanForward(&firstBitIndex, bits);
1146     ASSERT(ret != 0u);
1147     return firstBitIndex;
1148 }
1149 
ScanForward(uint64_t bits)1150 inline unsigned long ScanForward(uint64_t bits)
1151 {
1152     ASSERT(bits != 0u);
1153     unsigned long firstBitIndex = 0ul;
1154 #    if defined(ANGLE_IS_64_BIT_CPU)
1155     unsigned char ret = _BitScanForward64(&firstBitIndex, bits);
1156 #    else
1157     unsigned char ret;
1158     if (static_cast<uint32_t>(bits) == 0)
1159     {
1160         ret = _BitScanForward(&firstBitIndex, static_cast<uint32_t>(bits >> 32));
1161         firstBitIndex += 32ul;
1162     }
1163     else
1164     {
1165         ret = _BitScanForward(&firstBitIndex, static_cast<uint32_t>(bits));
1166     }
1167 #    endif  // defined(ANGLE_IS_64_BIT_CPU)
1168     ASSERT(ret != 0u);
1169     return firstBitIndex;
1170 }
1171 
1172 // Return the index of the most significant bit set. Indexing is such that bit 0 is the least
1173 // significant bit.
ScanReverse(uint32_t bits)1174 inline unsigned long ScanReverse(uint32_t bits)
1175 {
1176     ASSERT(bits != 0u);
1177     unsigned long lastBitIndex = 0ul;
1178     unsigned char ret          = _BitScanReverse(&lastBitIndex, bits);
1179     ASSERT(ret != 0u);
1180     return lastBitIndex;
1181 }
1182 
ScanReverse(uint64_t bits)1183 inline unsigned long ScanReverse(uint64_t bits)
1184 {
1185     ASSERT(bits != 0u);
1186     unsigned long lastBitIndex = 0ul;
1187 #    if defined(ANGLE_IS_64_BIT_CPU)
1188     unsigned char ret = _BitScanReverse64(&lastBitIndex, bits);
1189 #    else
1190     unsigned char ret;
1191     if (static_cast<uint32_t>(bits >> 32) == 0)
1192     {
1193         ret = _BitScanReverse(&lastBitIndex, static_cast<uint32_t>(bits));
1194     }
1195     else
1196     {
1197         ret = _BitScanReverse(&lastBitIndex, static_cast<uint32_t>(bits >> 32));
1198         lastBitIndex += 32ul;
1199     }
1200 #    endif  // defined(ANGLE_IS_64_BIT_CPU)
1201     ASSERT(ret != 0u);
1202     return lastBitIndex;
1203 }
1204 #endif  // defined(ANGLE_PLATFORM_WINDOWS)
1205 
1206 #if defined(ANGLE_PLATFORM_POSIX)
ScanForward(uint32_t bits)1207 inline unsigned long ScanForward(uint32_t bits)
1208 {
1209     ASSERT(bits != 0u);
1210     return static_cast<unsigned long>(__builtin_ctz(bits));
1211 }
1212 
ScanForward(uint64_t bits)1213 inline unsigned long ScanForward(uint64_t bits)
1214 {
1215     ASSERT(bits != 0u);
1216 #    if defined(ANGLE_IS_64_BIT_CPU)
1217     return static_cast<unsigned long>(__builtin_ctzll(bits));
1218 #    else
1219     return static_cast<unsigned long>(static_cast<uint32_t>(bits) == 0
1220                                           ? __builtin_ctz(static_cast<uint32_t>(bits >> 32)) + 32
1221                                           : __builtin_ctz(static_cast<uint32_t>(bits)));
1222 #    endif  // defined(ANGLE_IS_64_BIT_CPU)
1223 }
1224 
ScanReverse(uint32_t bits)1225 inline unsigned long ScanReverse(uint32_t bits)
1226 {
1227     ASSERT(bits != 0u);
1228     return static_cast<unsigned long>(sizeof(uint32_t) * CHAR_BIT - 1 - __builtin_clz(bits));
1229 }
1230 
ScanReverse(uint64_t bits)1231 inline unsigned long ScanReverse(uint64_t bits)
1232 {
1233     ASSERT(bits != 0u);
1234 #    if defined(ANGLE_IS_64_BIT_CPU)
1235     return static_cast<unsigned long>(sizeof(uint64_t) * CHAR_BIT - 1 - __builtin_clzll(bits));
1236 #    else
1237     if (static_cast<uint32_t>(bits >> 32) == 0)
1238     {
1239         return sizeof(uint32_t) * CHAR_BIT - 1 - __builtin_clz(static_cast<uint32_t>(bits));
1240     }
1241     else
1242     {
1243         return sizeof(uint32_t) * CHAR_BIT - 1 - __builtin_clz(static_cast<uint32_t>(bits >> 32)) +
1244                32;
1245     }
1246 #    endif  // defined(ANGLE_IS_64_BIT_CPU)
1247 }
1248 #endif  // defined(ANGLE_PLATFORM_POSIX)
1249 
ScanForward(uint8_t bits)1250 inline unsigned long ScanForward(uint8_t bits)
1251 {
1252     return ScanForward(static_cast<uint32_t>(bits));
1253 }
1254 
ScanForward(uint16_t bits)1255 inline unsigned long ScanForward(uint16_t bits)
1256 {
1257     return ScanForward(static_cast<uint32_t>(bits));
1258 }
1259 
ScanReverse(uint8_t bits)1260 inline unsigned long ScanReverse(uint8_t bits)
1261 {
1262     return ScanReverse(static_cast<uint32_t>(bits));
1263 }
1264 
ScanReverse(uint16_t bits)1265 inline unsigned long ScanReverse(uint16_t bits)
1266 {
1267     return ScanReverse(static_cast<uint32_t>(bits));
1268 }
1269 
1270 // Returns -1 on 0, otherwise the index of the least significant 1 bit as in GLSL.
1271 template <typename T>
FindLSB(T bits)1272 int FindLSB(T bits)
1273 {
1274     static_assert(std::is_integral<T>::value, "must be integral type.");
1275     if (bits == 0u)
1276     {
1277         return -1;
1278     }
1279     else
1280     {
1281         return static_cast<int>(ScanForward(bits));
1282     }
1283 }
1284 
1285 // Returns -1 on 0, otherwise the index of the most significant 1 bit as in GLSL.
1286 template <typename T>
FindMSB(T bits)1287 int FindMSB(T bits)
1288 {
1289     static_assert(std::is_integral<T>::value, "must be integral type.");
1290     if (bits == 0u)
1291     {
1292         return -1;
1293     }
1294     else
1295     {
1296         return static_cast<int>(ScanReverse(bits));
1297     }
1298 }
1299 
1300 // Returns whether the argument is Not a Number.
1301 // IEEE 754 single precision NaN representation: Exponent(8 bits) - 255, Mantissa(23 bits) -
1302 // non-zero.
isNaN(float f)1303 inline bool isNaN(float f)
1304 {
1305     // Exponent mask: ((1u << 8) - 1u) << 23 = 0x7f800000u
1306     // Mantissa mask: ((1u << 23) - 1u) = 0x7fffffu
1307     return ((bitCast<uint32_t>(f) & 0x7f800000u) == 0x7f800000u) &&
1308            (bitCast<uint32_t>(f) & 0x7fffffu);
1309 }
1310 
1311 // Returns whether the argument is infinity.
1312 // IEEE 754 single precision infinity representation: Exponent(8 bits) - 255, Mantissa(23 bits) -
1313 // zero.
isInf(float f)1314 inline bool isInf(float f)
1315 {
1316     // Exponent mask: ((1u << 8) - 1u) << 23 = 0x7f800000u
1317     // Mantissa mask: ((1u << 23) - 1u) = 0x7fffffu
1318     return ((bitCast<uint32_t>(f) & 0x7f800000u) == 0x7f800000u) &&
1319            !(bitCast<uint32_t>(f) & 0x7fffffu);
1320 }
1321 
1322 namespace priv
1323 {
1324 template <unsigned int N, unsigned int R>
1325 struct iSquareRoot
1326 {
solveiSquareRoot1327     static constexpr unsigned int solve()
1328     {
1329         return (R * R > N)
1330                    ? 0
1331                    : ((R * R == N) ? R : static_cast<unsigned int>(iSquareRoot<N, R + 1>::value));
1332     }
1333     enum Result
1334     {
1335         value = iSquareRoot::solve()
1336     };
1337 };
1338 
1339 template <unsigned int N>
1340 struct iSquareRoot<N, N>
1341 {
1342     enum result
1343     {
1344         value = N
1345     };
1346 };
1347 
1348 }  // namespace priv
1349 
1350 template <unsigned int N>
1351 constexpr unsigned int iSquareRoot()
1352 {
1353     return priv::iSquareRoot<N, 1>::value;
1354 }
1355 
1356 // Sum, difference and multiplication operations for signed ints that wrap on 32-bit overflow.
1357 //
1358 // Unsigned types are defined to do arithmetic modulo 2^n in C++. For signed types, overflow
1359 // behavior is undefined.
1360 
1361 template <typename T>
1362 inline T WrappingSum(T lhs, T rhs)
1363 {
1364     uint32_t lhsUnsigned = static_cast<uint32_t>(lhs);
1365     uint32_t rhsUnsigned = static_cast<uint32_t>(rhs);
1366     return static_cast<T>(lhsUnsigned + rhsUnsigned);
1367 }
1368 
1369 template <typename T>
1370 inline T WrappingDiff(T lhs, T rhs)
1371 {
1372     uint32_t lhsUnsigned = static_cast<uint32_t>(lhs);
1373     uint32_t rhsUnsigned = static_cast<uint32_t>(rhs);
1374     return static_cast<T>(lhsUnsigned - rhsUnsigned);
1375 }
1376 
1377 inline int32_t WrappingMul(int32_t lhs, int32_t rhs)
1378 {
1379     int64_t lhsWide = static_cast<int64_t>(lhs);
1380     int64_t rhsWide = static_cast<int64_t>(rhs);
1381     // The multiplication is guaranteed not to overflow.
1382     int64_t resultWide = lhsWide * rhsWide;
1383     // Implement the desired wrapping behavior by masking out the high-order 32 bits.
1384     resultWide = resultWide & 0xffffffffLL;
1385     // Casting to a narrower signed type is fine since the casted value is representable in the
1386     // narrower type.
1387     return static_cast<int32_t>(resultWide);
1388 }
1389 
1390 inline float scaleScreenDimensionToNdc(float dimensionScreen, float viewportDimension)
1391 {
1392     return 2.0f * dimensionScreen / viewportDimension;
1393 }
1394 
1395 inline float scaleScreenCoordinateToNdc(float coordinateScreen, float viewportDimension)
1396 {
1397     float halfShifted = coordinateScreen / viewportDimension;
1398     return 2.0f * (halfShifted - 0.5f);
1399 }
1400 
1401 }  // namespace gl
1402 
1403 namespace rx
1404 {
1405 
1406 template <typename T>
1407 T roundUp(const T value, const T alignment)
1408 {
1409     auto temp = value + alignment - static_cast<T>(1);
1410     return temp - temp % alignment;
1411 }
1412 
1413 template <typename T>
1414 constexpr T roundUpPow2(const T value, const T alignment)
1415 {
1416     ASSERT(gl::isPow2(alignment));
1417     return (value + alignment - 1) & ~(alignment - 1);
1418 }
1419 
1420 template <typename T>
1421 constexpr T roundDownPow2(const T value, const T alignment)
1422 {
1423     ASSERT(gl::isPow2(alignment));
1424     return value & ~(alignment - 1);
1425 }
1426 
1427 template <typename T>
1428 angle::CheckedNumeric<T> CheckedRoundUp(const T value, const T alignment)
1429 {
1430     angle::CheckedNumeric<T> checkedValue(value);
1431     angle::CheckedNumeric<T> checkedAlignment(alignment);
1432     return roundUp(checkedValue, checkedAlignment);
1433 }
1434 
1435 inline constexpr unsigned int UnsignedCeilDivide(unsigned int value, unsigned int divisor)
1436 {
1437     unsigned int divided = value / divisor;
1438     return (divided + ((value % divisor == 0) ? 0 : 1));
1439 }
1440 
1441 #if defined(__has_builtin)
1442 #    define ANGLE_HAS_BUILTIN(x) __has_builtin(x)
1443 #else
1444 #    define ANGLE_HAS_BUILTIN(x) 0
1445 #endif
1446 
1447 #if defined(_MSC_VER)
1448 
1449 #    define ANGLE_ROTL(x, y) _rotl(x, y)
1450 #    define ANGLE_ROTL64(x, y) _rotl64(x, y)
1451 #    define ANGLE_ROTR16(x, y) _rotr16(x, y)
1452 
1453 #elif defined(__clang__) && ANGLE_HAS_BUILTIN(__builtin_rotateleft32) && \
1454     ANGLE_HAS_BUILTIN(__builtin_rotateleft64) && ANGLE_HAS_BUILTIN(__builtin_rotateright16)
1455 
1456 #    define ANGLE_ROTL(x, y) __builtin_rotateleft32(x, y)
1457 #    define ANGLE_ROTL64(x, y) __builtin_rotateleft64(x, y)
1458 #    define ANGLE_ROTR16(x, y) __builtin_rotateright16(x, y)
1459 
1460 #else
1461 
1462 inline uint32_t RotL(uint32_t x, int8_t r)
1463 {
1464     return (x << r) | (x >> (32 - r));
1465 }
1466 
1467 inline uint64_t RotL64(uint64_t x, int8_t r)
1468 {
1469     return (x << r) | (x >> (64 - r));
1470 }
1471 
1472 inline uint16_t RotR16(uint16_t x, int8_t r)
1473 {
1474     return (x >> r) | (x << (16 - r));
1475 }
1476 
1477 #    define ANGLE_ROTL(x, y) ::rx::RotL(x, y)
1478 #    define ANGLE_ROTL64(x, y) ::rx::RotL64(x, y)
1479 #    define ANGLE_ROTR16(x, y) ::rx::RotR16(x, y)
1480 
1481 #endif  // namespace rx
1482 
1483 constexpr unsigned int Log2(unsigned int bytes)
1484 {
1485     return bytes == 1 ? 0 : (1 + Log2(bytes / 2));
1486 }
1487 }  // namespace rx
1488 
1489 #endif  // COMMON_MATHUTIL_H_
1490