1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_resolve.c
25 *
26 * This file handles resolve tracking for main and auxiliary surfaces.
27 *
28 * It also handles our cache tracking. We have sets for the render cache,
29 * depth cache, and so on. If a BO is in a cache's set, then it may have
30 * data in that cache. The helpers take care of emitting flushes for
31 * render-to-texture, format reinterpretation issues, and other situations.
32 */
33
34 #include "util/hash_table.h"
35 #include "util/set.h"
36 #include "iris_context.h"
37 #include "compiler/nir/nir.h"
38
39 /**
40 * Disable auxiliary buffers if a renderbuffer is also bound as a texture.
41 * This causes a self-dependency, where both rendering and sampling may
42 * concurrently read or write the CCS buffer, causing incorrect pixels.
43 */
44 static bool
disable_rb_aux_buffer(struct iris_context * ice,bool * draw_aux_buffer_disabled,struct iris_resource * tex_res,unsigned min_level,unsigned num_levels,const char * usage)45 disable_rb_aux_buffer(struct iris_context *ice,
46 bool *draw_aux_buffer_disabled,
47 struct iris_resource *tex_res,
48 unsigned min_level, unsigned num_levels,
49 const char *usage)
50 {
51 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
52 bool found = false;
53
54 /* We only need to worry about color compression and fast clears. */
55 if (tex_res->aux.usage != ISL_AUX_USAGE_CCS_D &&
56 tex_res->aux.usage != ISL_AUX_USAGE_CCS_E &&
57 tex_res->aux.usage != ISL_AUX_USAGE_FCV_CCS_E)
58 return false;
59
60 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
61 struct iris_surface *surf = (void *) cso_fb->cbufs[i];
62 if (!surf)
63 continue;
64
65 struct iris_resource *rb_res = (void *) surf->base.texture;
66
67 if (rb_res->bo == tex_res->bo &&
68 surf->base.u.tex.level >= min_level &&
69 surf->base.u.tex.level < min_level + num_levels) {
70 found = draw_aux_buffer_disabled[i] = true;
71 }
72 }
73
74 if (found) {
75 perf_debug(&ice->dbg,
76 "Disabling CCS because a renderbuffer is also bound %s.\n",
77 usage);
78 }
79
80 return found;
81 }
82
83 static void
resolve_sampler_views(struct iris_context * ice,struct iris_batch * batch,struct iris_shader_state * shs,const struct shader_info * info,bool * draw_aux_buffer_disabled,bool consider_framebuffer)84 resolve_sampler_views(struct iris_context *ice,
85 struct iris_batch *batch,
86 struct iris_shader_state *shs,
87 const struct shader_info *info,
88 bool *draw_aux_buffer_disabled,
89 bool consider_framebuffer)
90 {
91 if (info == NULL)
92 return;
93
94 int i;
95 BITSET_FOREACH_SET(i, shs->bound_sampler_views, IRIS_MAX_TEXTURES) {
96 if (!BITSET_TEST(info->textures_used, i))
97 continue;
98
99 struct iris_sampler_view *isv = shs->textures[i];
100
101 if (isv->res->base.b.target != PIPE_BUFFER) {
102 if (consider_framebuffer) {
103 disable_rb_aux_buffer(ice, draw_aux_buffer_disabled, isv->res,
104 isv->view.base_level, isv->view.levels,
105 "for sampling");
106 }
107
108 iris_resource_prepare_texture(ice, isv->res, isv->view.format,
109 isv->view.base_level, isv->view.levels,
110 isv->view.base_array_layer,
111 isv->view.array_len);
112 }
113
114 iris_emit_buffer_barrier_for(batch, isv->res->bo,
115 IRIS_DOMAIN_SAMPLER_READ);
116 }
117 }
118
119 static void
resolve_image_views(struct iris_context * ice,struct iris_batch * batch,struct iris_shader_state * shs,const struct shader_info * info)120 resolve_image_views(struct iris_context *ice,
121 struct iris_batch *batch,
122 struct iris_shader_state *shs,
123 const struct shader_info *info)
124 {
125 if (info == NULL)
126 return;
127
128 const uint64_t images_used =
129 (info->images_used[0] | ((uint64_t)info->images_used[1]) << 32);
130 uint64_t views = shs->bound_image_views & images_used;
131
132 while (views) {
133 const int i = u_bit_scan64(&views);
134 struct pipe_image_view *pview = &shs->image[i].base;
135 struct iris_resource *res = (void *) pview->resource;
136
137 if (res->base.b.target != PIPE_BUFFER) {
138 unsigned num_layers =
139 pview->u.tex.last_layer - pview->u.tex.first_layer + 1;
140
141 enum isl_aux_usage aux_usage =
142 iris_image_view_aux_usage(ice, pview, info);
143
144 enum isl_format view_format = iris_image_view_get_format(ice, pview);
145
146 bool clear_supported = isl_aux_usage_has_fast_clears(aux_usage);
147
148 if (!iris_render_formats_color_compatible(view_format,
149 res->surf.format,
150 res->aux.clear_color,
151 res->aux.clear_color_unknown))
152 clear_supported = false;
153
154 iris_resource_prepare_access(ice, res,
155 pview->u.tex.level, 1,
156 pview->u.tex.first_layer, num_layers,
157 aux_usage, clear_supported);
158
159 shs->image_aux_usage[i] = aux_usage;
160 } else {
161 shs->image_aux_usage[i] = ISL_AUX_USAGE_NONE;
162 }
163
164 iris_emit_buffer_barrier_for(batch, res->bo, IRIS_DOMAIN_DATA_WRITE);
165 }
166 }
167
168 /**
169 * \brief Resolve buffers before drawing.
170 *
171 * Resolve the depth buffer's HiZ buffer, resolve the depth buffer of each
172 * enabled depth texture, and flush the render cache for any dirty textures.
173 */
174 void
iris_predraw_resolve_inputs(struct iris_context * ice,struct iris_batch * batch,bool * draw_aux_buffer_disabled,gl_shader_stage stage,bool consider_framebuffer)175 iris_predraw_resolve_inputs(struct iris_context *ice,
176 struct iris_batch *batch,
177 bool *draw_aux_buffer_disabled,
178 gl_shader_stage stage,
179 bool consider_framebuffer)
180 {
181 struct iris_shader_state *shs = &ice->state.shaders[stage];
182 const struct shader_info *info = iris_get_shader_info(ice, stage);
183
184 uint64_t stage_dirty = (IRIS_STAGE_DIRTY_BINDINGS_VS << stage) |
185 (consider_framebuffer ? IRIS_STAGE_DIRTY_BINDINGS_FS : 0);
186
187 if (ice->state.stage_dirty & stage_dirty) {
188 resolve_sampler_views(ice, batch, shs, info, draw_aux_buffer_disabled,
189 consider_framebuffer);
190 resolve_image_views(ice, batch, shs, info);
191 }
192 }
193
194 void
iris_predraw_resolve_framebuffer(struct iris_context * ice,struct iris_batch * batch,bool * draw_aux_buffer_disabled)195 iris_predraw_resolve_framebuffer(struct iris_context *ice,
196 struct iris_batch *batch,
197 bool *draw_aux_buffer_disabled)
198 {
199 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
200 struct iris_screen *screen = (void *) ice->ctx.screen;
201 const struct intel_device_info *devinfo = screen->devinfo;
202 struct iris_uncompiled_shader *ish =
203 ice->shaders.uncompiled[MESA_SHADER_FRAGMENT];
204 const nir_shader *nir = ish->nir;
205
206 if (ice->state.dirty & IRIS_DIRTY_DEPTH_BUFFER) {
207 struct pipe_surface *zs_surf = cso_fb->zsbuf;
208
209 if (zs_surf) {
210 struct iris_resource *z_res, *s_res;
211 iris_get_depth_stencil_resources(zs_surf->texture, &z_res, &s_res);
212 unsigned num_layers =
213 zs_surf->u.tex.last_layer - zs_surf->u.tex.first_layer + 1;
214
215 if (z_res) {
216 iris_resource_prepare_render(ice, z_res, z_res->surf.format,
217 zs_surf->u.tex.level,
218 zs_surf->u.tex.first_layer,
219 num_layers, ice->state.hiz_usage);
220 iris_emit_buffer_barrier_for(batch, z_res->bo,
221 IRIS_DOMAIN_DEPTH_WRITE);
222 }
223
224 if (s_res) {
225 iris_emit_buffer_barrier_for(batch, s_res->bo,
226 IRIS_DOMAIN_DEPTH_WRITE);
227 }
228 }
229 }
230
231 if (devinfo->ver == 8 && nir->info.outputs_read != 0) {
232 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
233 if (cso_fb->cbufs[i]) {
234 struct iris_surface *surf = (void *) cso_fb->cbufs[i];
235 struct iris_resource *res = (void *) cso_fb->cbufs[i]->texture;
236
237 iris_resource_prepare_texture(ice, res, surf->view.format,
238 surf->view.base_level, 1,
239 surf->view.base_array_layer,
240 surf->view.array_len);
241 }
242 }
243 }
244
245 if (ice->state.stage_dirty & IRIS_STAGE_DIRTY_BINDINGS_FS) {
246 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
247 struct iris_surface *surf = (void *) cso_fb->cbufs[i];
248 if (!surf)
249 continue;
250
251 struct iris_resource *res = (void *) surf->base.texture;
252
253 /* Undocumented workaround:
254 *
255 * Disable auxiliary buffer if MSRT is bound as texture.
256 */
257 if (intel_device_info_is_dg2(devinfo) && res->surf.samples > 1 &&
258 nir->info.outputs_read != 0)
259 draw_aux_buffer_disabled[i] = true;
260
261 enum isl_aux_usage aux_usage =
262 iris_resource_render_aux_usage(ice, res, surf->view.format,
263 surf->view.base_level,
264 draw_aux_buffer_disabled[i]);
265
266 if (ice->state.draw_aux_usage[i] != aux_usage) {
267 ice->state.draw_aux_usage[i] = aux_usage;
268 /* XXX: Need to track which bindings to make dirty */
269 ice->state.dirty |= IRIS_DIRTY_RENDER_BUFFER;
270 ice->state.stage_dirty |= IRIS_ALL_STAGE_DIRTY_BINDINGS;
271 }
272
273 iris_resource_prepare_render(ice, res, surf->view.format,
274 surf->view.base_level,
275 surf->view.base_array_layer,
276 surf->view.array_len,
277 aux_usage);
278
279 iris_emit_buffer_barrier_for(batch, res->bo,
280 IRIS_DOMAIN_RENDER_WRITE);
281 }
282 }
283 }
284
285 void
iris_postdraw_update_image_resolve_tracking(struct iris_context * ice,gl_shader_stage stage)286 iris_postdraw_update_image_resolve_tracking(struct iris_context *ice,
287 gl_shader_stage stage)
288 {
289 struct iris_screen *screen = (void *) ice->ctx.screen;
290 ASSERTED const struct intel_device_info *devinfo = screen->devinfo;
291
292 assert(devinfo->ver >= 12);
293
294 const struct iris_shader_state *shs = &ice->state.shaders[stage];
295 const struct shader_info *info = iris_get_shader_info(ice, stage);
296
297 const uint64_t images_used = !info ? 0 :
298 (info->images_used[0] | ((uint64_t)info->images_used[1]) << 32);
299 uint64_t views = shs->bound_image_views & images_used;
300
301 while (views) {
302 const int i = u_bit_scan64(&views);
303 const struct pipe_image_view *pview = &shs->image[i].base;
304 struct iris_resource *res = (void *) pview->resource;
305
306 if (pview->shader_access & PIPE_IMAGE_ACCESS_WRITE &&
307 res->base.b.target != PIPE_BUFFER) {
308 unsigned num_layers =
309 pview->u.tex.last_layer - pview->u.tex.first_layer + 1;
310
311 iris_resource_finish_write(ice, res, pview->u.tex.level,
312 pview->u.tex.first_layer, num_layers,
313 shs->image_aux_usage[i]);
314 }
315 }
316 }
317
318 /**
319 * \brief Call this after drawing to mark which buffers need resolving
320 *
321 * If the depth buffer was written to and if it has an accompanying HiZ
322 * buffer, then mark that it needs a depth resolve.
323 *
324 * If the color buffer is a multisample window system buffer, then
325 * mark that it needs a downsample.
326 *
327 * Also mark any render targets which will be textured as needing a render
328 * cache flush.
329 */
330 void
iris_postdraw_update_resolve_tracking(struct iris_context * ice)331 iris_postdraw_update_resolve_tracking(struct iris_context *ice)
332 {
333 struct iris_screen *screen = (void *) ice->ctx.screen;
334 const struct intel_device_info *devinfo = screen->devinfo;
335 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
336
337 // XXX: front buffer drawing?
338
339 bool may_have_resolved_depth =
340 ice->state.dirty & (IRIS_DIRTY_DEPTH_BUFFER |
341 IRIS_DIRTY_WM_DEPTH_STENCIL);
342
343 struct pipe_surface *zs_surf = cso_fb->zsbuf;
344 if (zs_surf) {
345 struct iris_resource *z_res, *s_res;
346 iris_get_depth_stencil_resources(zs_surf->texture, &z_res, &s_res);
347 unsigned num_layers =
348 zs_surf->u.tex.last_layer - zs_surf->u.tex.first_layer + 1;
349
350 if (z_res) {
351 if (may_have_resolved_depth && ice->state.depth_writes_enabled) {
352 iris_resource_finish_render(ice, z_res, zs_surf->u.tex.level,
353 zs_surf->u.tex.first_layer,
354 num_layers, ice->state.hiz_usage);
355 }
356 }
357
358 if (s_res) {
359 if (may_have_resolved_depth && ice->state.stencil_writes_enabled) {
360 iris_resource_finish_write(ice, s_res, zs_surf->u.tex.level,
361 zs_surf->u.tex.first_layer, num_layers,
362 s_res->aux.usage);
363 }
364 }
365 }
366
367 bool may_have_resolved_color =
368 ice->state.stage_dirty & IRIS_STAGE_DIRTY_BINDINGS_FS;
369
370 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
371 struct iris_surface *surf = (void *) cso_fb->cbufs[i];
372 if (!surf)
373 continue;
374
375 struct iris_resource *res = (void *) surf->base.texture;
376 enum isl_aux_usage aux_usage = ice->state.draw_aux_usage[i];
377
378 if (may_have_resolved_color) {
379 union pipe_surface_desc *desc = &surf->base.u;
380 unsigned num_layers =
381 desc->tex.last_layer - desc->tex.first_layer + 1;
382 iris_resource_finish_render(ice, res, desc->tex.level,
383 desc->tex.first_layer, num_layers,
384 aux_usage);
385 }
386 }
387
388 if (devinfo->ver >= 12) {
389 for (gl_shader_stage stage = 0; stage < MESA_SHADER_COMPUTE; stage++) {
390 iris_postdraw_update_image_resolve_tracking(ice, stage);
391 }
392 }
393 }
394
395 static void
flush_previous_aux_mode(struct iris_batch * batch,const struct iris_bo * bo,enum isl_aux_usage aux_usage)396 flush_previous_aux_mode(struct iris_batch *batch,
397 const struct iris_bo *bo,
398 enum isl_aux_usage aux_usage)
399 {
400 /* Check to see if this BO has been put into caches by a previous operation
401 * but with a different aux usage. If it has, flush those caches to ensure
402 * that it's only in there with one aux usage at a time.
403 *
404 * Even though it's not obvious, this could easily happen in practice.
405 * Suppose a client is blending on a surface with sRGB encode enabled on
406 * gfx9. This implies that you get AUX_USAGE_CCS_D at best. If the client
407 * then disables sRGB decode and continues blending we could flip on
408 * AUX_USAGE_CCS_E without doing any sort of resolve in-between (this is
409 * perfectly valid since CCS_E is a subset of CCS_D). However, this means
410 * that we have fragments in-flight which are rendering with UNORM+CCS_E
411 * and other fragments in-flight with SRGB+CCS_D on the same surface at the
412 * same time and the pixel scoreboard and color blender are trying to sort
413 * it all out. This ends badly (i.e. GPU hangs).
414 *
415 * There are comments in various docs which indicate that the render cache
416 * isn't 100% resilient to format changes. However, to date, we have never
417 * observed GPU hangs or even corruption to be associated with switching the
418 * format, only the aux usage. So we let that slide for now.
419 *
420 * We haven't seen issues on gfx12 hardware when switching between
421 * FCV_CCS_E and plain CCS_E. A switch could indicate a transition in
422 * accessing data through a different cache domain. The flushes and
423 * invalidates that come from the cache tracker and memory barrier
424 * functions seem to be enough to handle this. Treat the two as equivalent
425 * to avoid extra cache flushing.
426 */
427 void *v_aux_usage = (void *) (uintptr_t)
428 (aux_usage == ISL_AUX_USAGE_FCV_CCS_E ?
429 ISL_AUX_USAGE_CCS_E : aux_usage);
430
431 struct hash_entry *entry =
432 _mesa_hash_table_search_pre_hashed(batch->bo_aux_modes, bo->hash, bo);
433 if (!entry) {
434 _mesa_hash_table_insert_pre_hashed(batch->bo_aux_modes, bo->hash, bo,
435 v_aux_usage);
436 } else if (entry->data != v_aux_usage) {
437 iris_emit_pipe_control_flush(batch,
438 "cache tracker: aux usage mismatch",
439 PIPE_CONTROL_RENDER_TARGET_FLUSH |
440 PIPE_CONTROL_TILE_CACHE_FLUSH |
441 PIPE_CONTROL_CS_STALL);
442 entry->data = v_aux_usage;
443 }
444 }
445
446 static void
flush_ubos(struct iris_batch * batch,struct iris_shader_state * shs)447 flush_ubos(struct iris_batch *batch,
448 struct iris_shader_state *shs)
449 {
450 uint32_t cbufs = shs->dirty_cbufs & shs->bound_cbufs;
451
452 while (cbufs) {
453 const int i = u_bit_scan(&cbufs);
454 struct pipe_shader_buffer *cbuf = &shs->constbuf[i];
455 struct iris_resource *res = (void *)cbuf->buffer;
456 iris_emit_buffer_barrier_for(batch, res->bo, IRIS_DOMAIN_PULL_CONSTANT_READ);
457 }
458
459 shs->dirty_cbufs = 0;
460 }
461
462 static void
flush_ssbos(struct iris_batch * batch,struct iris_shader_state * shs)463 flush_ssbos(struct iris_batch *batch,
464 struct iris_shader_state *shs)
465 {
466 uint32_t ssbos = shs->bound_ssbos;
467
468 while (ssbos) {
469 const int i = u_bit_scan(&ssbos);
470 struct pipe_shader_buffer *ssbo = &shs->ssbo[i];
471 struct iris_resource *res = (void *)ssbo->buffer;
472 iris_emit_buffer_barrier_for(batch, res->bo, IRIS_DOMAIN_DATA_WRITE);
473 }
474 }
475
476 void
iris_predraw_flush_buffers(struct iris_context * ice,struct iris_batch * batch,gl_shader_stage stage)477 iris_predraw_flush_buffers(struct iris_context *ice,
478 struct iris_batch *batch,
479 gl_shader_stage stage)
480 {
481 struct iris_shader_state *shs = &ice->state.shaders[stage];
482
483 if (ice->state.stage_dirty & (IRIS_STAGE_DIRTY_CONSTANTS_VS << stage))
484 flush_ubos(batch, shs);
485
486 if (ice->state.stage_dirty & (IRIS_STAGE_DIRTY_BINDINGS_VS << stage))
487 flush_ssbos(batch, shs);
488
489 if (ice->state.streamout_active &&
490 (ice->state.dirty & IRIS_DIRTY_SO_BUFFERS)) {
491 for (int i = 0; i < 4; i++) {
492 struct iris_stream_output_target *tgt = (void *)ice->state.so_target[i];
493 if (tgt) {
494 struct iris_bo *bo = iris_resource_bo(tgt->base.buffer);
495 iris_emit_buffer_barrier_for(batch, bo, IRIS_DOMAIN_OTHER_WRITE);
496 }
497 }
498 }
499 }
500
501 static void
iris_resolve_color(struct iris_context * ice,struct iris_batch * batch,struct iris_resource * res,unsigned level,unsigned layer,enum isl_aux_op resolve_op)502 iris_resolve_color(struct iris_context *ice,
503 struct iris_batch *batch,
504 struct iris_resource *res,
505 unsigned level, unsigned layer,
506 enum isl_aux_op resolve_op)
507 {
508 //DBG("%s to mt %p level %u layer %u\n", __func__, mt, level, layer);
509
510 struct blorp_surf surf;
511 iris_blorp_surf_for_resource(&batch->screen->isl_dev, &surf,
512 &res->base.b, res->aux.usage, level, true);
513
514 iris_batch_maybe_flush(batch, 1500);
515
516 /* Ivybridge PRM Vol 2, Part 1, "11.7 MCS Buffer for Render Target(s)":
517 *
518 * "Any transition from any value in {Clear, Render, Resolve} to a
519 * different value in {Clear, Render, Resolve} requires end of pipe
520 * synchronization."
521 *
522 * In other words, fast clear ops are not properly synchronized with
523 * other drawing. We need to use a PIPE_CONTROL to ensure that the
524 * contents of the previous draw hit the render target before we resolve
525 * and again afterwards to ensure that the resolve is complete before we
526 * do any more regular drawing.
527 */
528 iris_emit_end_of_pipe_sync(batch, "color resolve: pre-flush",
529 PIPE_CONTROL_RENDER_TARGET_FLUSH);
530
531 if (intel_needs_workaround(batch->screen->devinfo, 1508744258)) {
532 /* The suggested workaround is:
533 *
534 * Disable RHWO by setting 0x7010[14] by default except during resolve
535 * pass.
536 *
537 * We implement global disabling of the RHWO optimization during
538 * iris_init_render_context. We toggle it around the blorp resolve call.
539 */
540 assert(resolve_op == ISL_AUX_OP_FULL_RESOLVE ||
541 resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
542 batch->screen->vtbl.disable_rhwo_optimization(batch, false);
543 }
544
545 iris_batch_sync_region_start(batch);
546 struct blorp_batch blorp_batch;
547 blorp_batch_init(&ice->blorp, &blorp_batch, batch, 0);
548 blorp_ccs_resolve(&blorp_batch, &surf, level, layer, 1, res->surf.format,
549 resolve_op);
550 blorp_batch_finish(&blorp_batch);
551
552 /* See comment above */
553 iris_emit_end_of_pipe_sync(batch, "color resolve: post-flush",
554 PIPE_CONTROL_RENDER_TARGET_FLUSH);
555
556 if (intel_needs_workaround(batch->screen->devinfo, 1508744258)) {
557 batch->screen->vtbl.disable_rhwo_optimization(batch, true);
558 }
559
560 iris_batch_sync_region_end(batch);
561 }
562
563 static void
iris_mcs_exec(struct iris_context * ice,struct iris_batch * batch,struct iris_resource * res,uint32_t start_layer,uint32_t num_layers,enum isl_aux_op op)564 iris_mcs_exec(struct iris_context *ice,
565 struct iris_batch *batch,
566 struct iris_resource *res,
567 uint32_t start_layer,
568 uint32_t num_layers,
569 enum isl_aux_op op)
570 {
571 //DBG("%s to mt %p layers %u-%u\n", __func__, mt,
572 //start_layer, start_layer + num_layers - 1);
573
574 assert(isl_aux_usage_has_mcs(res->aux.usage));
575
576 iris_batch_maybe_flush(batch, 1500);
577
578 struct blorp_surf surf;
579 iris_blorp_surf_for_resource(&batch->screen->isl_dev, &surf,
580 &res->base.b, res->aux.usage, 0, true);
581
582 /* MCS partial resolve will read from the MCS surface. */
583 assert(res->aux.bo == res->bo);
584 iris_emit_buffer_barrier_for(batch, res->bo, IRIS_DOMAIN_SAMPLER_READ);
585 iris_emit_buffer_barrier_for(batch, res->bo, IRIS_DOMAIN_RENDER_WRITE);
586
587 struct blorp_batch blorp_batch;
588 iris_batch_sync_region_start(batch);
589 blorp_batch_init(&ice->blorp, &blorp_batch, batch, 0);
590
591 if (op == ISL_AUX_OP_PARTIAL_RESOLVE) {
592 blorp_mcs_partial_resolve(&blorp_batch, &surf, res->surf.format,
593 start_layer, num_layers);
594 } else if (op == ISL_AUX_OP_FULL_RESOLVE) {
595 /* Simply copy compressed surface to uncompressed surface in order to do
596 * the full resolve.
597 */
598 struct blorp_surf src_surf, dst_surf;
599 iris_blorp_surf_for_resource(&batch->screen->isl_dev, &src_surf,
600 &res->base.b, res->aux.usage, 0, false);
601 iris_blorp_surf_for_resource(&batch->screen->isl_dev, &dst_surf,
602 &res->base.b, ISL_AUX_USAGE_NONE, 0, true);
603
604 blorp_copy(&blorp_batch, &src_surf, 0, 0, &dst_surf, 0, 0,
605 0, 0, 0, 0, surf.surf->logical_level0_px.width,
606 surf.surf->logical_level0_px.height);
607 } else {
608 assert(op == ISL_AUX_OP_AMBIGUATE);
609 blorp_mcs_ambiguate(&blorp_batch, &surf, start_layer, num_layers);
610 }
611
612 blorp_batch_finish(&blorp_batch);
613 iris_batch_sync_region_end(batch);
614 }
615
616 bool
iris_sample_with_depth_aux(const struct intel_device_info * devinfo,const struct iris_resource * res)617 iris_sample_with_depth_aux(const struct intel_device_info *devinfo,
618 const struct iris_resource *res)
619 {
620 switch (res->aux.usage) {
621 case ISL_AUX_USAGE_HIZ_CCS_WT:
622 /* Always support sampling with HIZ_CCS_WT. Although the sampler
623 * doesn't comprehend HiZ, write-through means that the correct data
624 * will be in the CCS, and the sampler can simply rely on that.
625 */
626 return true;
627 case ISL_AUX_USAGE_HIZ_CCS:
628 /* Without write-through, the CCS data may be out of sync with HiZ
629 * and the sampler won't see the correct data. Skip both.
630 */
631 return false;
632 case ISL_AUX_USAGE_HIZ:
633 /* From the Broadwell PRM (Volume 2d: Command Reference: Structures
634 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
635 *
636 * "If this field is set to AUX_HIZ, Number of Multisamples must be
637 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
638 *
639 * There is no such blurb for 1D textures, but there is sufficient
640 * evidence that this is broken on SKL+.
641 */
642 if (!devinfo->has_sample_with_hiz ||
643 res->surf.samples != 1 ||
644 res->surf.dim != ISL_SURF_DIM_2D)
645 return false;
646
647 /* Make sure that HiZ exists for all necessary miplevels. */
648 for (unsigned level = 0; level < res->surf.levels; ++level) {
649 if (!iris_resource_level_has_hiz(devinfo, res, level))
650 return false;
651 }
652
653 /* We can sample directly from HiZ in this case. */
654 return true;
655 default:
656 return false;
657 }
658 }
659
660 /**
661 * Perform a HiZ or depth resolve operation.
662 *
663 * For an overview of HiZ ops, see the following sections of the Sandy Bridge
664 * PRM, Volume 1, Part 2:
665 * - 7.5.3.1 Depth Buffer Clear
666 * - 7.5.3.2 Depth Buffer Resolve
667 * - 7.5.3.3 Hierarchical Depth Buffer Resolve
668 */
669 void
iris_hiz_exec(struct iris_context * ice,struct iris_batch * batch,struct iris_resource * res,unsigned int level,unsigned int start_layer,unsigned int num_layers,enum isl_aux_op op,bool update_clear_depth)670 iris_hiz_exec(struct iris_context *ice,
671 struct iris_batch *batch,
672 struct iris_resource *res,
673 unsigned int level, unsigned int start_layer,
674 unsigned int num_layers, enum isl_aux_op op,
675 bool update_clear_depth)
676 {
677 ASSERTED const struct intel_device_info *devinfo = batch->screen->devinfo;
678
679 assert(iris_resource_level_has_hiz(devinfo, res, level));
680 assert(op != ISL_AUX_OP_NONE);
681 UNUSED const char *name = NULL;
682
683 iris_batch_maybe_flush(batch, 1500);
684
685 switch (op) {
686 case ISL_AUX_OP_FULL_RESOLVE:
687 name = "depth resolve";
688 break;
689 case ISL_AUX_OP_AMBIGUATE:
690 name = "hiz ambiguate";
691 break;
692 case ISL_AUX_OP_FAST_CLEAR:
693 name = "depth clear";
694 break;
695 case ISL_AUX_OP_PARTIAL_RESOLVE:
696 case ISL_AUX_OP_NONE:
697 unreachable("Invalid HiZ op");
698 }
699
700 //DBG("%s %s to mt %p level %d layers %d-%d\n",
701 //__func__, name, mt, level, start_layer, start_layer + num_layers - 1);
702
703 /* A data cache flush is not suggested by HW docs, but we found it to fix
704 * a number of failures.
705 */
706 unsigned wa_flush = devinfo->verx10 >= 125 &&
707 res->aux.usage == ISL_AUX_USAGE_HIZ_CCS ?
708 PIPE_CONTROL_DATA_CACHE_FLUSH : 0;
709
710 /* The following stalls and flushes are only documented to be required
711 * for HiZ clear operations. However, they also seem to be required for
712 * resolve operations.
713 *
714 * From the Ivybridge PRM, volume 2, "Depth Buffer Clear":
715 *
716 * "If other rendering operations have preceded this clear, a
717 * PIPE_CONTROL with depth cache flush enabled, Depth Stall bit
718 * enabled must be issued before the rectangle primitive used for
719 * the depth buffer clear operation."
720 *
721 * Same applies for Gfx8 and Gfx9.
722 */
723 iris_emit_pipe_control_flush(batch,
724 "hiz op: pre-flush",
725 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
726 wa_flush |
727 PIPE_CONTROL_DEPTH_STALL |
728 PIPE_CONTROL_CS_STALL);
729
730 iris_batch_sync_region_start(batch);
731
732 struct blorp_surf surf;
733 iris_blorp_surf_for_resource(&batch->screen->isl_dev, &surf,
734 &res->base.b, res->aux.usage, level, true);
735
736 struct blorp_batch blorp_batch;
737 enum blorp_batch_flags flags = 0;
738 flags |= update_clear_depth ? 0 : BLORP_BATCH_NO_UPDATE_CLEAR_COLOR;
739 blorp_batch_init(&ice->blorp, &blorp_batch, batch, flags);
740 blorp_hiz_op(&blorp_batch, &surf, level, start_layer, num_layers, op);
741 blorp_batch_finish(&blorp_batch);
742
743 /* For gfx8-11, the following stalls and flushes are only documented to be
744 * required for HiZ clear operations. However, they also seem to be
745 * required for resolve operations.
746 *
747 * From the Broadwell PRM, volume 7, "Depth Buffer Clear":
748 *
749 * "Depth buffer clear pass using any of the methods (WM_STATE,
750 * 3DSTATE_WM or 3DSTATE_WM_HZ_OP) must be followed by a
751 * PIPE_CONTROL command with DEPTH_STALL bit and Depth FLUSH bits
752 * "set" before starting to render. DepthStall and DepthFlush are
753 * not needed between consecutive depth clear passes nor is it
754 * required if the depth clear pass was done with
755 * 'full_surf_clear' bit set in the 3DSTATE_WM_HZ_OP."
756 *
757 * TODO: Such as the spec says, this could be conditional.
758 *
759 * From Bspec 46959, a programming note applicable to Gfx12+:
760 *
761 * " Since HZ_OP has to be sent twice (first time set the clear/resolve
762 * state and 2nd time to clear the state), and HW internally flushes the
763 * depth cache on HZ_OP, there is no need to explicitly send a Depth
764 * Cache flush after Clear or Resolve."
765 */
766 if (devinfo->verx10 < 120) {
767 iris_emit_pipe_control_flush(batch,
768 "hiz op: post flush",
769 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
770 PIPE_CONTROL_DEPTH_STALL);
771 }
772
773 iris_batch_sync_region_end(batch);
774 }
775
776 /**
777 * Does the resource's slice have hiz enabled?
778 */
779 bool
iris_resource_level_has_hiz(const struct intel_device_info * devinfo,const struct iris_resource * res,uint32_t level)780 iris_resource_level_has_hiz(const struct intel_device_info *devinfo,
781 const struct iris_resource *res, uint32_t level)
782 {
783 iris_resource_check_level_layer(res, level, 0);
784
785 if (!isl_aux_usage_has_hiz(res->aux.usage))
786 return false;
787
788 /* Disable HiZ for LOD > 0 unless the width/height are 8x4 aligned.
789 * For LOD == 0, we can grow the dimensions to make it work.
790 *
791 * This doesn't appear to be necessary on Gfx11+. See details here:
792 * https://gitlab.freedesktop.org/mesa/mesa/-/issues/3788
793 */
794 if (devinfo->ver < 11 && level > 0) {
795 if (u_minify(res->base.b.width0, level) & 7)
796 return false;
797
798 if (u_minify(res->base.b.height0, level) & 3)
799 return false;
800 }
801
802 return true;
803 }
804
805 /** \brief Assert that the level and layer are valid for the resource. */
806 void
iris_resource_check_level_layer(UNUSED const struct iris_resource * res,UNUSED uint32_t level,UNUSED uint32_t layer)807 iris_resource_check_level_layer(UNUSED const struct iris_resource *res,
808 UNUSED uint32_t level, UNUSED uint32_t layer)
809 {
810 assert(level < res->surf.levels);
811 assert(layer < util_num_layers(&res->base.b, level));
812 }
813
814 static inline uint32_t
miptree_level_range_length(const struct iris_resource * res,uint32_t start_level,uint32_t num_levels)815 miptree_level_range_length(const struct iris_resource *res,
816 uint32_t start_level, uint32_t num_levels)
817 {
818 assert(start_level < res->surf.levels);
819
820 if (num_levels == INTEL_REMAINING_LEVELS)
821 num_levels = res->surf.levels - start_level;
822
823 /* Check for overflow */
824 assert(start_level + num_levels >= start_level);
825 assert(start_level + num_levels <= res->surf.levels);
826
827 return num_levels;
828 }
829
830 static inline uint32_t
miptree_layer_range_length(const struct iris_resource * res,uint32_t level,uint32_t start_layer,uint32_t num_layers)831 miptree_layer_range_length(const struct iris_resource *res, uint32_t level,
832 uint32_t start_layer, uint32_t num_layers)
833 {
834 assert(level <= res->base.b.last_level);
835
836 const uint32_t total_num_layers = iris_get_num_logical_layers(res, level);
837 assert(start_layer < total_num_layers);
838 if (num_layers == INTEL_REMAINING_LAYERS)
839 num_layers = total_num_layers - start_layer;
840 /* Check for overflow */
841 assert(start_layer + num_layers >= start_layer);
842 assert(start_layer + num_layers <= total_num_layers);
843
844 return num_layers;
845 }
846
847 bool
iris_has_invalid_primary(const struct iris_resource * res,unsigned start_level,unsigned num_levels,unsigned start_layer,unsigned num_layers)848 iris_has_invalid_primary(const struct iris_resource *res,
849 unsigned start_level, unsigned num_levels,
850 unsigned start_layer, unsigned num_layers)
851 {
852 if (res->aux.usage == ISL_AUX_USAGE_NONE)
853 return false;
854
855 /* Clamp the level range to fit the resource */
856 num_levels = miptree_level_range_length(res, start_level, num_levels);
857
858 for (uint32_t l = 0; l < num_levels; l++) {
859 const uint32_t level = start_level + l;
860 const uint32_t level_layers =
861 miptree_layer_range_length(res, level, start_layer, num_layers);
862 for (unsigned a = 0; a < level_layers; a++) {
863 enum isl_aux_state aux_state =
864 iris_resource_get_aux_state(res, level, start_layer + a);
865 if (!isl_aux_state_has_valid_primary(aux_state))
866 return true;
867 }
868 }
869
870 return false;
871 }
872
873 void
iris_resource_prepare_access(struct iris_context * ice,struct iris_resource * res,uint32_t start_level,uint32_t num_levels,uint32_t start_layer,uint32_t num_layers,enum isl_aux_usage aux_usage,bool fast_clear_supported)874 iris_resource_prepare_access(struct iris_context *ice,
875 struct iris_resource *res,
876 uint32_t start_level, uint32_t num_levels,
877 uint32_t start_layer, uint32_t num_layers,
878 enum isl_aux_usage aux_usage,
879 bool fast_clear_supported)
880 {
881 if (res->aux.usage == ISL_AUX_USAGE_NONE)
882 return;
883
884 /* We can't do resolves on the compute engine, so awkwardly, we have to
885 * do them on the render batch...
886 */
887 struct iris_batch *batch = &ice->batches[IRIS_BATCH_RENDER];
888
889 const uint32_t clamped_levels =
890 miptree_level_range_length(res, start_level, num_levels);
891 for (uint32_t l = 0; l < clamped_levels; l++) {
892 const uint32_t level = start_level + l;
893 const uint32_t level_layers =
894 miptree_layer_range_length(res, level, start_layer, num_layers);
895 for (uint32_t a = 0; a < level_layers; a++) {
896 const uint32_t layer = start_layer + a;
897 const enum isl_aux_state aux_state =
898 iris_resource_get_aux_state(res, level, layer);
899 const enum isl_aux_op aux_op =
900 isl_aux_prepare_access(aux_state, aux_usage, fast_clear_supported);
901
902 /* Prepare the aux buffer for a conditional or unconditional access.
903 * A conditional access is handled by assuming that the access will
904 * not evaluate to a no-op. If the access does in fact occur, the aux
905 * will be in the required state. If it does not, no data is lost
906 * because the aux_op performed is lossless.
907 */
908 if (aux_op == ISL_AUX_OP_NONE) {
909 /* Nothing to do here. */
910 } else if (isl_aux_usage_has_mcs(res->aux.usage)) {
911 iris_mcs_exec(ice, batch, res, layer, 1, aux_op);
912 } else if (isl_aux_usage_has_hiz(res->aux.usage)) {
913 iris_hiz_exec(ice, batch, res, level, layer, 1, aux_op, false);
914 } else if (res->aux.usage == ISL_AUX_USAGE_STC_CCS) {
915 unreachable("iris doesn't resolve STC_CCS resources");
916 } else {
917 assert(isl_aux_usage_has_ccs(res->aux.usage));
918 iris_resolve_color(ice, batch, res, level, layer, aux_op);
919 }
920
921 const enum isl_aux_state new_state =
922 isl_aux_state_transition_aux_op(aux_state, res->aux.usage, aux_op);
923 iris_resource_set_aux_state(ice, res, level, layer, 1, new_state);
924 }
925 }
926
927 flush_previous_aux_mode(batch, res->bo, aux_usage);
928 }
929
930 void
iris_resource_finish_write(struct iris_context * ice,struct iris_resource * res,uint32_t level,uint32_t start_layer,uint32_t num_layers,enum isl_aux_usage aux_usage)931 iris_resource_finish_write(struct iris_context *ice,
932 struct iris_resource *res, uint32_t level,
933 uint32_t start_layer, uint32_t num_layers,
934 enum isl_aux_usage aux_usage)
935 {
936 if (res->aux.usage == ISL_AUX_USAGE_NONE)
937 return;
938
939 const uint32_t level_layers =
940 miptree_layer_range_length(res, level, start_layer, num_layers);
941
942 for (uint32_t a = 0; a < level_layers; a++) {
943 const uint32_t layer = start_layer + a;
944 const enum isl_aux_state aux_state =
945 iris_resource_get_aux_state(res, level, layer);
946
947 /* Transition the aux state for a conditional or unconditional write. A
948 * conditional write is handled by assuming that the write applies to
949 * only part of the render target. This prevents the new state from
950 * losing the types of compression that might exist in the current state
951 * (e.g. CLEAR). If the write evaluates to a no-op, the state will still
952 * be able to communicate when resolves are necessary (but it may
953 * falsely communicate this as well).
954 */
955 const enum isl_aux_state new_aux_state =
956 isl_aux_state_transition_write(aux_state, aux_usage, false);
957
958 iris_resource_set_aux_state(ice, res, level, layer, 1, new_aux_state);
959 }
960 }
961
962 enum isl_aux_state
iris_resource_get_aux_state(const struct iris_resource * res,uint32_t level,uint32_t layer)963 iris_resource_get_aux_state(const struct iris_resource *res,
964 uint32_t level, uint32_t layer)
965 {
966 iris_resource_check_level_layer(res, level, layer);
967
968 if (res->surf.usage & ISL_SURF_USAGE_DEPTH_BIT) {
969 assert(isl_aux_usage_has_hiz(res->aux.usage));
970 } else {
971 assert(res->surf.samples == 1 ||
972 res->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
973 }
974
975 return res->aux.state[level][layer];
976 }
977
978 void
iris_resource_set_aux_state(struct iris_context * ice,struct iris_resource * res,uint32_t level,uint32_t start_layer,uint32_t num_layers,enum isl_aux_state aux_state)979 iris_resource_set_aux_state(struct iris_context *ice,
980 struct iris_resource *res, uint32_t level,
981 uint32_t start_layer, uint32_t num_layers,
982 enum isl_aux_state aux_state)
983 {
984 struct iris_screen *screen = (void *) ice->ctx.screen;
985 ASSERTED const struct intel_device_info *devinfo = screen->devinfo;
986
987 num_layers = miptree_layer_range_length(res, level, start_layer, num_layers);
988
989 if (res->surf.usage & ISL_SURF_USAGE_DEPTH_BIT) {
990 assert(iris_resource_level_has_hiz(devinfo, res, level) ||
991 !isl_aux_state_has_valid_aux(aux_state));
992 } else {
993 assert(res->surf.samples == 1 ||
994 res->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
995 }
996
997 for (unsigned a = 0; a < num_layers; a++) {
998 if (res->aux.state[level][start_layer + a] != aux_state) {
999 res->aux.state[level][start_layer + a] = aux_state;
1000 /* XXX: Need to track which bindings to make dirty */
1001 ice->state.dirty |= IRIS_DIRTY_RENDER_BUFFER |
1002 IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES |
1003 IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES;
1004 ice->state.stage_dirty |= IRIS_ALL_STAGE_DIRTY_BINDINGS;
1005 }
1006 }
1007
1008 if (res->mod_info && !res->mod_info->supports_clear_color) {
1009 assert(isl_drm_modifier_has_aux(res->mod_info->modifier));
1010 if (aux_state == ISL_AUX_STATE_CLEAR ||
1011 aux_state == ISL_AUX_STATE_COMPRESSED_CLEAR ||
1012 aux_state == ISL_AUX_STATE_PARTIAL_CLEAR) {
1013 iris_mark_dirty_dmabuf(ice, &res->base.b);
1014 }
1015 }
1016 }
1017
1018 enum isl_aux_usage
iris_resource_texture_aux_usage(struct iris_context * ice,const struct iris_resource * res,enum isl_format view_format,unsigned start_level,unsigned num_levels)1019 iris_resource_texture_aux_usage(struct iris_context *ice,
1020 const struct iris_resource *res,
1021 enum isl_format view_format,
1022 unsigned start_level,
1023 unsigned num_levels)
1024 {
1025 struct iris_screen *screen = (void *) ice->ctx.screen;
1026 const struct intel_device_info *devinfo = screen->devinfo;
1027
1028 switch (res->aux.usage) {
1029 case ISL_AUX_USAGE_HIZ:
1030 case ISL_AUX_USAGE_HIZ_CCS:
1031 case ISL_AUX_USAGE_HIZ_CCS_WT:
1032 assert(res->surf.format == view_format);
1033 return iris_sample_with_depth_aux(devinfo, res) ?
1034 res->aux.usage : ISL_AUX_USAGE_NONE;
1035
1036 case ISL_AUX_USAGE_MCS:
1037 case ISL_AUX_USAGE_MCS_CCS:
1038 case ISL_AUX_USAGE_STC_CCS:
1039 case ISL_AUX_USAGE_MC:
1040 return res->aux.usage;
1041
1042 case ISL_AUX_USAGE_CCS_E:
1043 case ISL_AUX_USAGE_FCV_CCS_E:
1044 /* If we don't have any unresolved color, report an aux usage of
1045 * ISL_AUX_USAGE_NONE. This way, texturing won't even look at the
1046 * aux surface and we can save some bandwidth.
1047 */
1048 if (!iris_has_invalid_primary(res, start_level, num_levels,
1049 0, INTEL_REMAINING_LAYERS))
1050 return ISL_AUX_USAGE_NONE;
1051
1052 /* On Gfx9 color buffers may be compressed by the hardware (lossless
1053 * compression). There are, however, format restrictions and care needs
1054 * to be taken that the sampler engine is capable for re-interpreting a
1055 * buffer with format different the buffer was originally written with.
1056 *
1057 * For example, SRGB formats are not compressible and the sampler engine
1058 * isn't capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case
1059 * the underlying color buffer needs to be resolved so that the sampling
1060 * surface can be sampled as non-compressed (i.e., without the auxiliary
1061 * MCS buffer being set).
1062 */
1063 if (isl_formats_are_ccs_e_compatible(devinfo, res->surf.format,
1064 view_format))
1065 return res->aux.usage;
1066 break;
1067
1068 default:
1069 break;
1070 }
1071
1072 return ISL_AUX_USAGE_NONE;
1073 }
1074
1075 enum isl_aux_usage
iris_image_view_aux_usage(struct iris_context * ice,const struct pipe_image_view * pview,const struct shader_info * info)1076 iris_image_view_aux_usage(struct iris_context *ice,
1077 const struct pipe_image_view *pview,
1078 const struct shader_info *info)
1079 {
1080 if (!info)
1081 return ISL_AUX_USAGE_NONE;
1082
1083 const struct iris_screen *screen = (void *) ice->ctx.screen;
1084 const struct intel_device_info *devinfo = screen->devinfo;
1085 struct iris_resource *res = (void *) pview->resource;
1086
1087 const unsigned level = res->base.b.target != PIPE_BUFFER ?
1088 pview->u.tex.level : 0;
1089
1090 bool uses_atomic_load_store =
1091 ice->shaders.uncompiled[info->stage]->uses_atomic_load_store;
1092
1093 /* Prior to GFX12, render compression is not supported for images. */
1094 if (devinfo->ver < 12)
1095 return ISL_AUX_USAGE_NONE;
1096
1097 /* On GFX12, compressed surfaces supports non-atomic operations. GFX12HP and
1098 * further, add support for all the operations.
1099 */
1100 if (devinfo->verx10 < 125 && uses_atomic_load_store)
1101 return ISL_AUX_USAGE_NONE;
1102
1103 /* If the image is read-only, and doesn't have any unresolved color,
1104 * report ISL_AUX_USAGE_NONE. Bypassing useless aux can save bandwidth.
1105 */
1106 if (!(pview->access & PIPE_IMAGE_ACCESS_WRITE) &&
1107 !iris_has_invalid_primary(res, level, 1, 0, INTEL_REMAINING_LAYERS))
1108 return ISL_AUX_USAGE_NONE;
1109
1110 /* The FCV feature is documented to occur on regular render writes. Images
1111 * are written to with the DC data port however.
1112 */
1113 if (res->aux.usage == ISL_AUX_USAGE_FCV_CCS_E)
1114 return ISL_AUX_USAGE_CCS_E;
1115
1116 return res->aux.usage;
1117 }
1118
1119 static bool
formats_are_fast_clear_compatible(enum isl_format a,enum isl_format b)1120 formats_are_fast_clear_compatible(enum isl_format a, enum isl_format b)
1121 {
1122 /* On gfx8 and earlier, the hardware was only capable of handling 0/1 clear
1123 * values so sRGB curve application was a no-op for all fast-clearable
1124 * formats.
1125 *
1126 * On gfx9+, the hardware supports arbitrary clear values. For sRGB clear
1127 * values, the hardware interprets the floats, not as what would be
1128 * returned from the sampler (or written by the shader), but as being
1129 * between format conversion and sRGB curve application. This means that
1130 * we can switch between sRGB and UNORM without having to whack the clear
1131 * color.
1132 */
1133 return isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b);
1134 }
1135
1136 void
iris_resource_prepare_texture(struct iris_context * ice,struct iris_resource * res,enum isl_format view_format,uint32_t start_level,uint32_t num_levels,uint32_t start_layer,uint32_t num_layers)1137 iris_resource_prepare_texture(struct iris_context *ice,
1138 struct iris_resource *res,
1139 enum isl_format view_format,
1140 uint32_t start_level, uint32_t num_levels,
1141 uint32_t start_layer, uint32_t num_layers)
1142 {
1143 const struct iris_screen *screen = (void *) ice->ctx.screen;
1144 const struct intel_device_info *devinfo = screen->devinfo;
1145
1146 enum isl_aux_usage aux_usage =
1147 iris_resource_texture_aux_usage(ice, res, view_format,
1148 start_level, num_levels);
1149
1150 bool clear_supported = isl_aux_usage_has_fast_clears(aux_usage);
1151
1152 /* On gfx8-9, the clear color is specified as ints or floats and the
1153 * conversion is done by the sampler. If we have a texture view, we would
1154 * have to perform the clear color conversion manually. Just disable clear
1155 * color.
1156 */
1157 if (devinfo->ver <= 9 &&
1158 !formats_are_fast_clear_compatible(res->surf.format, view_format)) {
1159 clear_supported = false;
1160 }
1161
1162 /* On gfx11+, the sampler reads clear values stored in pixel form. The
1163 * location the sampler reads from is dependent on the bits-per-channel of
1164 * the format. Specifically, a pixel is read from the Raw Clear Color
1165 * fields if the format is 32bpc. Otherwise, it's read from the Converted
1166 * Clear Color fields. To avoid modifying the clear color, disable it if
1167 * the new format points the sampler to an incompatible location.
1168 *
1169 * Note: although hardware looks at the bits-per-channel of the format, we
1170 * only need to check the red channel's size here. In the scope of formats
1171 * supporting fast-clears, all 32bpc formats have 32-bit red channels and
1172 * vice-versa.
1173 */
1174 if (devinfo->ver >= 11 &&
1175 isl_format_get_layout(res->surf.format)->channels.r.bits != 32 &&
1176 isl_format_get_layout(view_format)->channels.r.bits == 32) {
1177 clear_supported = false;
1178 }
1179
1180 /* On gfx12.0, the sampler has an issue with some 8 and 16bpp MSAA fast
1181 * clears. See HSD 1707282275, wa_14013111325. A simplified workaround is
1182 * implemented, but we could implement something more specific.
1183 */
1184 if (isl_aux_usage_has_mcs(aux_usage) &&
1185 intel_needs_workaround(devinfo, 14013111325) &&
1186 isl_format_get_layout(res->surf.format)->bpb <= 16) {
1187 clear_supported = false;
1188 }
1189
1190 iris_resource_prepare_access(ice, res, start_level, num_levels,
1191 start_layer, num_layers,
1192 aux_usage, clear_supported);
1193 }
1194
1195 /* Whether or not rendering a color value with either format results in the
1196 * same pixel. This can return false negatives.
1197 */
1198 bool
iris_render_formats_color_compatible(enum isl_format a,enum isl_format b,union isl_color_value color,bool clear_color_unknown)1199 iris_render_formats_color_compatible(enum isl_format a, enum isl_format b,
1200 union isl_color_value color,
1201 bool clear_color_unknown)
1202 {
1203 if (a == b)
1204 return true;
1205
1206 /* A difference in color space doesn't matter for 0/1 values. */
1207 if (!clear_color_unknown &&
1208 isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b) &&
1209 isl_color_value_is_zero_one(color, a)) {
1210 return true;
1211 }
1212
1213 /* Both formats may interpret the clear color as zero. */
1214 if (!clear_color_unknown &&
1215 isl_color_value_is_zero(color, a) &&
1216 isl_color_value_is_zero(color, b)) {
1217 return true;
1218 }
1219
1220 return false;
1221 }
1222
1223 enum isl_aux_usage
iris_resource_render_aux_usage(struct iris_context * ice,struct iris_resource * res,enum isl_format render_format,uint32_t level,bool draw_aux_disabled)1224 iris_resource_render_aux_usage(struct iris_context *ice,
1225 struct iris_resource *res,
1226 enum isl_format render_format, uint32_t level,
1227 bool draw_aux_disabled)
1228 {
1229 struct iris_screen *screen = (void *) ice->ctx.screen;
1230 const struct intel_device_info *devinfo = screen->devinfo;
1231
1232 if (draw_aux_disabled)
1233 return ISL_AUX_USAGE_NONE;
1234
1235 switch (res->aux.usage) {
1236 case ISL_AUX_USAGE_HIZ:
1237 case ISL_AUX_USAGE_HIZ_CCS:
1238 case ISL_AUX_USAGE_HIZ_CCS_WT:
1239 assert(render_format == res->surf.format);
1240 return iris_resource_level_has_hiz(devinfo, res, level) ?
1241 res->aux.usage : ISL_AUX_USAGE_NONE;
1242
1243 case ISL_AUX_USAGE_STC_CCS:
1244 assert(render_format == res->surf.format);
1245 return res->aux.usage;
1246
1247 case ISL_AUX_USAGE_MCS:
1248 case ISL_AUX_USAGE_MCS_CCS:
1249 case ISL_AUX_USAGE_CCS_D:
1250 return res->aux.usage;
1251
1252 case ISL_AUX_USAGE_CCS_E:
1253 case ISL_AUX_USAGE_FCV_CCS_E:
1254 if (isl_formats_are_ccs_e_compatible(devinfo, res->surf.format,
1255 render_format)) {
1256 return res->aux.usage;
1257 }
1258 FALLTHROUGH;
1259
1260 default:
1261 return ISL_AUX_USAGE_NONE;
1262 }
1263 }
1264
1265 void
iris_resource_prepare_render(struct iris_context * ice,struct iris_resource * res,enum isl_format render_format,uint32_t level,uint32_t start_layer,uint32_t layer_count,enum isl_aux_usage aux_usage)1266 iris_resource_prepare_render(struct iris_context *ice,
1267 struct iris_resource *res,
1268 enum isl_format render_format, uint32_t level,
1269 uint32_t start_layer, uint32_t layer_count,
1270 enum isl_aux_usage aux_usage)
1271 {
1272 /* Replace the resource's clear color with zero if:
1273 *
1274 * - The resource's clear color is incompatible with render_format. This
1275 * avoids corrupting current fast clear blocks and ensures any fast clear
1276 * blocks generated as a result of the render will be recoverable.
1277 *
1278 * - The clear color struct is uninitialized and potentially inconsistent
1279 * with itself. For non-32-bpc formats, the struct consists of different
1280 * fields for rendering and sampling. If rendering can generate
1281 * fast-cleared blocks, we want these to agree so that we can avoid
1282 * partially resolving prior to sampling. Images with modifiers can be
1283 * ignored. Either we will have already initialized their structs to
1284 * zero, or they will have already been consistent at the time of import
1285 * (as defined by drm_fourcc.h)
1286 *
1287 * The only aux usage which requires this process is FCV_CCS_E. Other aux
1288 * usages share a subset of these restrictions and benefit from only some
1289 * of the steps involved with changing the clear color. For now, just keep
1290 * things simple and assume we have the worst case usage of FCV_CCS_E.
1291 */
1292 if (!iris_render_formats_color_compatible(render_format,
1293 res->surf.format,
1294 res->aux.clear_color,
1295 res->aux.clear_color_unknown) ||
1296 (res->aux.clear_color_unknown && !res->mod_info &&
1297 isl_format_get_layout(render_format)->channels.r.bits != 32)) {
1298
1299 /* Remove references to the clear color with resolves. */
1300 iris_resource_prepare_access(ice, res, 0, INTEL_REMAINING_LEVELS, 0,
1301 INTEL_REMAINING_LAYERS, res->aux.usage,
1302 false);
1303
1304 /* The clear color is no longer in use; replace it now. */
1305 const union isl_color_value zero = { .u32 = { 0, } };
1306 iris_resource_set_clear_color(ice, res, zero);
1307
1308 if (res->aux.clear_color_bo) {
1309 /* Update dwords used for rendering and sampling. */
1310 iris_emit_pipe_control_write(&ice->batches[IRIS_BATCH_RENDER],
1311 "zero fast clear color (RG____)",
1312 PIPE_CONTROL_WRITE_IMMEDIATE,
1313 res->aux.clear_color_bo,
1314 res->aux.clear_color_offset, 0);
1315
1316 iris_emit_pipe_control_write(&ice->batches[IRIS_BATCH_RENDER],
1317 "zero fast clear color (__BA__)",
1318 PIPE_CONTROL_WRITE_IMMEDIATE,
1319 res->aux.clear_color_bo,
1320 res->aux.clear_color_offset + 8, 0);
1321
1322 iris_emit_pipe_control_write(&ice->batches[IRIS_BATCH_RENDER],
1323 "zero fast clear color (____PX)",
1324 PIPE_CONTROL_WRITE_IMMEDIATE,
1325 res->aux.clear_color_bo,
1326 res->aux.clear_color_offset + 16, 0);
1327
1328 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
1329 "new clear color affects state cache",
1330 PIPE_CONTROL_FLUSH_ENABLE |
1331 PIPE_CONTROL_STATE_CACHE_INVALIDATE);
1332 } else {
1333 /* Flag surface states with inline clear colors as dirty. */
1334 ice->state.stage_dirty |= IRIS_ALL_STAGE_DIRTY_BINDINGS;
1335 }
1336 }
1337
1338 /* Now, do the preparation requested by the caller. Doing this after the
1339 * partial resolves above helps maintain the accuracy of the aux-usage
1340 * tracking that happens within the preparation function.
1341 */
1342 iris_resource_prepare_access(ice, res, level, 1, start_layer,
1343 layer_count, aux_usage,
1344 isl_aux_usage_has_fast_clears(aux_usage));
1345 }
1346
1347 void
iris_resource_finish_render(struct iris_context * ice,struct iris_resource * res,uint32_t level,uint32_t start_layer,uint32_t layer_count,enum isl_aux_usage aux_usage)1348 iris_resource_finish_render(struct iris_context *ice,
1349 struct iris_resource *res, uint32_t level,
1350 uint32_t start_layer, uint32_t layer_count,
1351 enum isl_aux_usage aux_usage)
1352 {
1353 iris_resource_finish_write(ice, res, level, start_layer, layer_count,
1354 aux_usage);
1355 }
1356