• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- Utils to test conformance of mem functions ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LIBC_TEST_SRC_STRING_MEMORY_UTILS_MEMORY_CHECK_UTILS_H
10 #define LIBC_TEST_SRC_STRING_MEMORY_UTILS_MEMORY_CHECK_UTILS_H
11 
12 #include "src/__support/CPP/span.h"
13 #include "src/__support/libc_assert.h" // LIBC_ASSERT
14 #include "src/__support/macros/sanitizer.h"
15 #include "src/string/memory_utils/utils.h"
16 #include <stddef.h> // size_t
17 #include <stdint.h> // uintxx_t
18 #include <stdlib.h> // malloc/free
19 
20 namespace LIBC_NAMESPACE {
21 
22 // Simple structure to allocate a buffer of a particular size.
23 // When ASAN is present it also poisons the whole memory.
24 // This is a utility class to be used by Buffer below, do not use directly.
25 struct PoisonedBuffer {
PoisonedBufferPoisonedBuffer26   PoisonedBuffer(size_t size) : ptr((char *)malloc(size)) {
27     ASAN_POISON_MEMORY_REGION(ptr, size);
28   }
~PoisonedBufferPoisonedBuffer29   ~PoisonedBuffer() { free(ptr); }
30 
31 protected:
32   char *ptr = nullptr;
33 };
34 
35 // Simple structure to allocate a buffer (aligned or not) of a particular size.
36 // It is backed by a wider buffer that is marked poisoned when ASAN is present.
37 // The requested region is unpoisoned, this allows catching out of bounds
38 // accesses.
39 enum class Aligned : bool { NO = false, YES = true };
40 struct Buffer : private PoisonedBuffer {
41   static constexpr size_t kAlign = 64;
42   static constexpr size_t kLeeway = 2 * kAlign;
43   Buffer(size_t size, Aligned aligned = Aligned::YES)
44       : PoisonedBuffer(size + kLeeway), size(size) {
45     offset_ptr = ptr;
46     offset_ptr += distance_to_next_aligned<kAlign>(ptr);
47     if (aligned == Aligned::NO)
48       ++offset_ptr;
49     ASAN_UNPOISON_MEMORY_REGION(offset_ptr, size);
50   }
spanBuffer51   cpp::span<char> span() { return cpp::span<char>(offset_ptr, size); }
52 
53 private:
54   size_t size = 0;
55   char *offset_ptr = nullptr;
56 };
57 
GetRandomChar()58 inline char GetRandomChar() {
59   static constexpr const uint64_t a = 1103515245;
60   static constexpr const uint64_t c = 12345;
61   static constexpr const uint64_t m = 1ULL << 31;
62   static uint64_t seed = 123456789;
63   seed = (a * seed + c) % m;
64   return static_cast<char>(seed);
65 }
66 
67 // Randomize the content of the buffer.
Randomize(cpp::span<char> buffer)68 inline void Randomize(cpp::span<char> buffer) {
69   for (auto &current : buffer)
70     current = GetRandomChar();
71 }
72 
73 // Copy one span to another.
ReferenceCopy(cpp::span<char> dst,const cpp::span<char> src)74 inline void ReferenceCopy(cpp::span<char> dst, const cpp::span<char> src) {
75   for (size_t i = 0; i < dst.size(); ++i)
76     dst[i] = src[i];
77 }
78 
IsEqual(const cpp::span<char> a,const cpp::span<char> b)79 inline bool IsEqual(const cpp::span<char> a, const cpp::span<char> b) {
80   LIBC_ASSERT(a.size() == b.size());
81   for (size_t i = 0; i < a.size(); ++i)
82     if (a[i] != b[i])
83       return false;
84   return true;
85 }
86 
87 // Checks that FnImpl implements the memcpy semantic.
88 template <auto FnImpl>
CheckMemcpy(cpp::span<char> dst,cpp::span<char> src,size_t size)89 inline bool CheckMemcpy(cpp::span<char> dst, cpp::span<char> src, size_t size) {
90   Randomize(dst);
91   FnImpl(dst, src, size);
92   return IsEqual(dst, src);
93 }
94 
95 // Checks that FnImpl implements the memset semantic.
96 template <auto FnImpl>
CheckMemset(cpp::span<char> dst,uint8_t value,size_t size)97 inline bool CheckMemset(cpp::span<char> dst, uint8_t value, size_t size) {
98   Randomize(dst);
99   FnImpl(dst, value, size);
100   for (char c : dst)
101     if (c != (char)value)
102       return false;
103   return true;
104 }
105 
106 // Checks that FnImpl implements the bcmp semantic.
107 template <auto FnImpl>
CheckBcmp(cpp::span<char> span1,cpp::span<char> span2,size_t size)108 inline bool CheckBcmp(cpp::span<char> span1, cpp::span<char> span2,
109                       size_t size) {
110   ReferenceCopy(span2, span1);
111   // Compare equal
112   if (int cmp = FnImpl(span1, span2, size); cmp != 0)
113     return false;
114   // Compare not equal if any byte differs
115   for (size_t i = 0; i < size; ++i) {
116     ++span2[i];
117     if (int cmp = FnImpl(span1, span2, size); cmp == 0)
118       return false;
119     if (int cmp = FnImpl(span2, span1, size); cmp == 0)
120       return false;
121     --span2[i];
122   }
123   return true;
124 }
125 
126 // Checks that FnImpl implements the memcmp semantic.
127 template <auto FnImpl>
CheckMemcmp(cpp::span<char> span1,cpp::span<char> span2,size_t size)128 inline bool CheckMemcmp(cpp::span<char> span1, cpp::span<char> span2,
129                         size_t size) {
130   ReferenceCopy(span2, span1);
131   // Compare equal
132   if (int cmp = FnImpl(span1, span2, size); cmp != 0)
133     return false;
134   // Compare not equal if any byte differs
135   for (size_t i = 0; i < size; ++i) {
136     ++span2[i];
137     int ground_truth = __builtin_memcmp(span1.data(), span2.data(), size);
138     if (ground_truth > 0) {
139       if (int cmp = FnImpl(span1, span2, size); cmp <= 0)
140         return false;
141       if (int cmp = FnImpl(span2, span1, size); cmp >= 0)
142         return false;
143     } else {
144       if (int cmp = FnImpl(span1, span2, size); cmp >= 0)
145         return false;
146       if (int cmp = FnImpl(span2, span1, size); cmp <= 0)
147         return false;
148     }
149     --span2[i];
150   }
151   return true;
152 }
153 
Checksum(cpp::span<char> dst)154 inline uint16_t Checksum(cpp::span<char> dst) {
155   // We use Fletcher16 as it is trivial to implement.
156   uint16_t sum1 = 0;
157   uint16_t sum2 = 0;
158   for (char c : dst) {
159     sum1 = (sum1 + c) % 255U;
160     sum2 = (sum2 + sum1) % 255U;
161   }
162   return static_cast<uint16_t>((sum2 << 8) | sum1);
163 }
164 
165 template <auto FnImpl>
CheckMemmove(cpp::span<char> dst,cpp::span<char> src)166 inline bool CheckMemmove(cpp::span<char> dst, cpp::span<char> src) {
167   LIBC_ASSERT(dst.size() == src.size());
168   // Memmove can override the src buffer. Technically we should save it into a
169   // temporary buffer so we can check that 'dst' is equal to what 'src' was
170   // before we called the function. To save on allocation and copy we use a
171   // checksum instead.
172   const auto src_checksum = Checksum(src);
173   FnImpl(dst, src, dst.size());
174   return Checksum(dst) == src_checksum;
175 }
176 
177 // Checks that FnImpl implements the memmove semantic.
178 //  - Buffer size should be greater than 2 * size + 1.
179 //  - Overlap refers to the number of bytes in common between the two buffers:
180 //    - Negative means buffers are disjoint
181 //    - zero mean they overlap exactly
182 //  - Caller is responsible for randomizing the buffer.
183 template <auto FnImpl>
CheckMemmove(cpp::span<char> buffer,size_t size,int overlap)184 inline bool CheckMemmove(cpp::span<char> buffer, size_t size, int overlap) {
185   LIBC_ASSERT(buffer.size() > (2 * size + 1));
186   const size_t half_size = buffer.size() / 2;
187   LIBC_ASSERT((size_t)(overlap >= 0 ? overlap : -overlap) < half_size);
188   cpp::span<char> head = buffer.first(half_size + overlap).last(size);
189   cpp::span<char> tail = buffer.last(half_size).first(size);
190   LIBC_ASSERT(head.size() == size);
191   LIBC_ASSERT(tail.size() == size);
192   // dst before src
193   if (!CheckMemmove<FnImpl>(head, tail))
194     return false;
195   // dst after src
196   if (!CheckMemmove<FnImpl>(tail, head))
197     return false;
198   return true;
199 }
200 
201 } // namespace LIBC_NAMESPACE
202 
203 #endif // LIBC_TEST_SRC_STRING_MEMORY_UTILS_MEMORY_CHECK_UTILS_H
204