• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 1999, 2021, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package java.util;
27 import dalvik.annotation.optimization.ReachabilitySensitive;
28 import java.util.Date;
29 import java.util.concurrent.atomic.AtomicInteger;
30 import java.lang.ref.Cleaner.Cleanable;
31 import jdk.internal.ref.CleanerFactory;
32 
33 /**
34  * A facility for threads to schedule tasks for future execution in a
35  * background thread.  Tasks may be scheduled for one-time execution, or for
36  * repeated execution at regular intervals.
37  *
38  * <p>Corresponding to each {@code Timer} object is a single background
39  * thread that is used to execute all of the timer's tasks, sequentially.
40  * Timer tasks should complete quickly.  If a timer task takes excessive time
41  * to complete, it "hogs" the timer's task execution thread.  This can, in
42  * turn, delay the execution of subsequent tasks, which may "bunch up" and
43  * execute in rapid succession when (and if) the offending task finally
44  * completes.
45  *
46  * <p>After the last live reference to a {@code Timer} object goes away
47  * <i>and</i> all outstanding tasks have completed execution, the timer's task
48  * execution thread terminates gracefully (and becomes subject to garbage
49  * collection).  However, this can take arbitrarily long to occur.  By
50  * default, the task execution thread does not run as a <i>daemon thread</i>,
51  * so it is capable of keeping an application from terminating.  If a caller
52  * wants to terminate a timer's task execution thread rapidly, the caller
53  * should invoke the timer's {@code cancel} method.
54  *
55  * <p>If the timer's task execution thread terminates unexpectedly, for
56  * example, because its {@code stop} method is invoked, any further
57  * attempt to schedule a task on the timer will result in an
58  * {@code IllegalStateException}, as if the timer's {@code cancel}
59  * method had been invoked.
60  *
61  * <p>This class is thread-safe: multiple threads can share a single
62  * {@code Timer} object without the need for external synchronization.
63  *
64  * <p>This class does <i>not</i> offer real-time guarantees: it schedules
65  * tasks using the {@code Object.wait(long)} method.
66  *
67  * <p>Java 5.0 introduced the {@code java.util.concurrent} package and
68  * one of the concurrency utilities therein is the {@link
69  * java.util.concurrent.ScheduledThreadPoolExecutor
70  * ScheduledThreadPoolExecutor} which is a thread pool for repeatedly
71  * executing tasks at a given rate or delay.  It is effectively a more
72  * versatile replacement for the {@code Timer}/{@code TimerTask}
73  * combination, as it allows multiple service threads, accepts various
74  * time units, and doesn't require subclassing {@code TimerTask} (just
75  * implement {@code Runnable}).  Configuring {@code
76  * ScheduledThreadPoolExecutor} with one thread makes it equivalent to
77  * {@code Timer}.
78  *
79  * <p>Implementation note: This class scales to large numbers of concurrently
80  * scheduled tasks (thousands should present no problem).  Internally,
81  * it uses a binary heap to represent its task queue, so the cost to schedule
82  * a task is O(log n), where n is the number of concurrently scheduled tasks.
83  *
84  * <p>Implementation note: All constructors start a timer thread.
85  *
86  * @author  Josh Bloch
87  * @see     TimerTask
88  * @see     Object#wait(long)
89  * @since   1.3
90  */
91 
92 public class Timer {
93     /**
94      * The timer task queue.  This data structure is shared with the timer
95      * thread.  The timer produces tasks, via its various schedule calls,
96      * and the timer thread consumes, executing timer tasks as appropriate,
97      * and removing them from the queue when they're obsolete.
98      */
99     // Android-added: @ReachabilitySensitive
100     // Otherwise the finalizer may cancel the Timer in the middle of a
101     // sched() call.
102     @ReachabilitySensitive
103     private final TaskQueue queue = new TaskQueue();
104 
105     /**
106      * The timer thread.
107      */
108     // Android-added: @ReachabilitySensitive
109     @ReachabilitySensitive
110     private final TimerThread thread = new TimerThread(queue);
111 
112     /**
113      * An object of this class is registered with a Cleaner as the cleanup
114      * handler for this Timer object.  This causes the execution thread to
115      * exit gracefully when there are no live references to the Timer object
116      * and no tasks in the timer queue.
117      */
118     private static class ThreadReaper implements Runnable {
119         private final TaskQueue queue;
120         private final TimerThread thread;
121 
ThreadReaper(TaskQueue queue, TimerThread thread)122         ThreadReaper(TaskQueue queue, TimerThread thread) {
123             this.queue = queue;
124             this.thread = thread;
125         }
126 
run()127         public void run() {
128             synchronized(queue) {
129                 thread.newTasksMayBeScheduled = false;
130                 queue.notify(); // In case queue is empty.
131             }
132         }
133     }
134 
135     private final Cleanable cleanup;
136 
137     /**
138      * This ID is used to generate thread names.
139      */
140     private static final AtomicInteger nextSerialNumber = new AtomicInteger();
serialNumber()141     private static int serialNumber() {
142         return nextSerialNumber.getAndIncrement();
143     }
144 
145     /**
146      * Creates a new timer.  The associated thread does <i>not</i>
147      * {@linkplain Thread#setDaemon run as a daemon}.
148      */
Timer()149     public Timer() {
150         this("Timer-" + serialNumber());
151     }
152 
153     /**
154      * Creates a new timer whose associated thread may be specified to
155      * {@linkplain Thread#setDaemon run as a daemon}.
156      * A daemon thread is called for if the timer will be used to
157      * schedule repeating "maintenance activities", which must be
158      * performed as long as the application is running, but should not
159      * prolong the lifetime of the application.
160      *
161      * @param isDaemon true if the associated thread should run as a daemon.
162      */
Timer(boolean isDaemon)163     public Timer(boolean isDaemon) {
164         this("Timer-" + serialNumber(), isDaemon);
165     }
166 
167     /**
168      * Creates a new timer whose associated thread has the specified name.
169      * The associated thread does <i>not</i>
170      * {@linkplain Thread#setDaemon run as a daemon}.
171      *
172      * @param name the name of the associated thread
173      * @throws NullPointerException if {@code name} is null
174      * @since 1.5
175      */
Timer(String name)176     public Timer(String name) {
177         this(name, false);
178     }
179 
180     /**
181      * Creates a new timer whose associated thread has the specified name,
182      * and may be specified to
183      * {@linkplain Thread#setDaemon run as a daemon}.
184      *
185      * @param name the name of the associated thread
186      * @param isDaemon true if the associated thread should run as a daemon
187      * @throws NullPointerException if {@code name} is null
188      * @since 1.5
189      */
Timer(String name, boolean isDaemon)190     public Timer(String name, boolean isDaemon) {
191         var threadReaper = new ThreadReaper(queue, thread);
192         this.cleanup = CleanerFactory.cleaner().register(this, threadReaper);
193         thread.setName(name);
194         thread.setDaemon(isDaemon);
195         thread.start();
196     }
197 
198     /**
199      * Schedules the specified task for execution after the specified delay.
200      *
201      * @param task  task to be scheduled.
202      * @param delay delay in milliseconds before task is to be executed.
203      * @throws IllegalArgumentException if {@code delay} is negative, or
204      *         {@code delay + System.currentTimeMillis()} is negative.
205      * @throws IllegalStateException if task was already scheduled or
206      *         cancelled, timer was cancelled, or timer thread terminated.
207      * @throws NullPointerException if {@code task} is null
208      */
schedule(TimerTask task, long delay)209     public void schedule(TimerTask task, long delay) {
210         if (delay < 0)
211             throw new IllegalArgumentException("Negative delay.");
212         sched(task, System.currentTimeMillis()+delay, 0);
213     }
214 
215     /**
216      * Schedules the specified task for execution at the specified time.  If
217      * the time is in the past, the task is scheduled for immediate execution.
218      *
219      * @param task task to be scheduled.
220      * @param time time at which task is to be executed.
221      * @throws IllegalArgumentException if {@code time.getTime()} is negative.
222      * @throws IllegalStateException if task was already scheduled or
223      *         cancelled, timer was cancelled, or timer thread terminated.
224      * @throws NullPointerException if {@code task} or {@code time} is null
225      */
schedule(TimerTask task, Date time)226     public void schedule(TimerTask task, Date time) {
227         sched(task, time.getTime(), 0);
228     }
229 
230     /**
231      * Schedules the specified task for repeated <i>fixed-delay execution</i>,
232      * beginning after the specified delay.  Subsequent executions take place
233      * at approximately regular intervals separated by the specified period.
234      *
235      * <p>In fixed-delay execution, each execution is scheduled relative to
236      * the actual execution time of the previous execution.  If an execution
237      * is delayed for any reason (such as garbage collection or other
238      * background activity), subsequent executions will be delayed as well.
239      * In the long run, the frequency of execution will generally be slightly
240      * lower than the reciprocal of the specified period (assuming the system
241      * clock underlying {@code Object.wait(long)} is accurate).
242      *
243      * <p>Fixed-delay execution is appropriate for recurring activities
244      * that require "smoothness."  In other words, it is appropriate for
245      * activities where it is more important to keep the frequency accurate
246      * in the short run than in the long run.  This includes most animation
247      * tasks, such as blinking a cursor at regular intervals.  It also includes
248      * tasks wherein regular activity is performed in response to human
249      * input, such as automatically repeating a character as long as a key
250      * is held down.
251      *
252      * @param task   task to be scheduled.
253      * @param delay  delay in milliseconds before task is to be executed.
254      * @param period time in milliseconds between successive task executions.
255      * @throws IllegalArgumentException if {@code delay < 0}, or
256      *         {@code delay + System.currentTimeMillis() < 0}, or
257      *         {@code period <= 0}
258      * @throws IllegalStateException if task was already scheduled or
259      *         cancelled, timer was cancelled, or timer thread terminated.
260      * @throws NullPointerException if {@code task} is null
261      */
schedule(TimerTask task, long delay, long period)262     public void schedule(TimerTask task, long delay, long period) {
263         if (delay < 0)
264             throw new IllegalArgumentException("Negative delay.");
265         if (period <= 0)
266             throw new IllegalArgumentException("Non-positive period.");
267         sched(task, System.currentTimeMillis()+delay, -period);
268     }
269 
270     /**
271      * Schedules the specified task for repeated <i>fixed-delay execution</i>,
272      * beginning at the specified time. Subsequent executions take place at
273      * approximately regular intervals, separated by the specified period.
274      *
275      * <p>In fixed-delay execution, each execution is scheduled relative to
276      * the actual execution time of the previous execution.  If an execution
277      * is delayed for any reason (such as garbage collection or other
278      * background activity), subsequent executions will be delayed as well.
279      * In the long run, the frequency of execution will generally be slightly
280      * lower than the reciprocal of the specified period (assuming the system
281      * clock underlying {@code Object.wait(long)} is accurate).  As a
282      * consequence of the above, if the scheduled first time is in the past,
283      * it is scheduled for immediate execution.
284      *
285      * <p>Fixed-delay execution is appropriate for recurring activities
286      * that require "smoothness."  In other words, it is appropriate for
287      * activities where it is more important to keep the frequency accurate
288      * in the short run than in the long run.  This includes most animation
289      * tasks, such as blinking a cursor at regular intervals.  It also includes
290      * tasks wherein regular activity is performed in response to human
291      * input, such as automatically repeating a character as long as a key
292      * is held down.
293      *
294      * @param task   task to be scheduled.
295      * @param firstTime First time at which task is to be executed.
296      * @param period time in milliseconds between successive task executions.
297      * @throws IllegalArgumentException if {@code firstTime.getTime() < 0}, or
298      *         {@code period <= 0}
299      * @throws IllegalStateException if task was already scheduled or
300      *         cancelled, timer was cancelled, or timer thread terminated.
301      * @throws NullPointerException if {@code task} or {@code firstTime} is null
302      */
schedule(TimerTask task, Date firstTime, long period)303     public void schedule(TimerTask task, Date firstTime, long period) {
304         if (period <= 0)
305             throw new IllegalArgumentException("Non-positive period.");
306         sched(task, firstTime.getTime(), -period);
307     }
308 
309     /**
310      * Schedules the specified task for repeated <i>fixed-rate execution</i>,
311      * beginning after the specified delay.  Subsequent executions take place
312      * at approximately regular intervals, separated by the specified period.
313      *
314      * <p>In fixed-rate execution, each execution is scheduled relative to the
315      * scheduled execution time of the initial execution.  If an execution is
316      * delayed for any reason (such as garbage collection or other background
317      * activity), two or more executions will occur in rapid succession to
318      * "catch up."  In the long run, the frequency of execution will be
319      * exactly the reciprocal of the specified period (assuming the system
320      * clock underlying {@code Object.wait(long)} is accurate).
321      *
322      * <p>Fixed-rate execution is appropriate for recurring activities that
323      * are sensitive to <i>absolute</i> time, such as ringing a chime every
324      * hour on the hour, or running scheduled maintenance every day at a
325      * particular time.  It is also appropriate for recurring activities
326      * where the total time to perform a fixed number of executions is
327      * important, such as a countdown timer that ticks once every second for
328      * ten seconds.  Finally, fixed-rate execution is appropriate for
329      * scheduling multiple repeating timer tasks that must remain synchronized
330      * with respect to one another.
331      *
332      * @param task   task to be scheduled.
333      * @param delay  delay in milliseconds before task is to be executed.
334      * @param period time in milliseconds between successive task executions.
335      * @throws IllegalArgumentException if {@code delay < 0}, or
336      *         {@code delay + System.currentTimeMillis() < 0}, or
337      *         {@code period <= 0}
338      * @throws IllegalStateException if task was already scheduled or
339      *         cancelled, timer was cancelled, or timer thread terminated.
340      * @throws NullPointerException if {@code task} is null
341      */
scheduleAtFixedRate(TimerTask task, long delay, long period)342     public void scheduleAtFixedRate(TimerTask task, long delay, long period) {
343         if (delay < 0)
344             throw new IllegalArgumentException("Negative delay.");
345         if (period <= 0)
346             throw new IllegalArgumentException("Non-positive period.");
347         sched(task, System.currentTimeMillis()+delay, period);
348     }
349 
350     /**
351      * Schedules the specified task for repeated <i>fixed-rate execution</i>,
352      * beginning at the specified time. Subsequent executions take place at
353      * approximately regular intervals, separated by the specified period.
354      *
355      * <p>In fixed-rate execution, each execution is scheduled relative to the
356      * scheduled execution time of the initial execution.  If an execution is
357      * delayed for any reason (such as garbage collection or other background
358      * activity), two or more executions will occur in rapid succession to
359      * "catch up."  In the long run, the frequency of execution will be
360      * exactly the reciprocal of the specified period (assuming the system
361      * clock underlying {@code Object.wait(long)} is accurate).  As a
362      * consequence of the above, if the scheduled first time is in the past,
363      * then any "missed" executions will be scheduled for immediate "catch up"
364      * execution.
365      *
366      * <p>Fixed-rate execution is appropriate for recurring activities that
367      * are sensitive to <i>absolute</i> time, such as ringing a chime every
368      * hour on the hour, or running scheduled maintenance every day at a
369      * particular time.  It is also appropriate for recurring activities
370      * where the total time to perform a fixed number of executions is
371      * important, such as a countdown timer that ticks once every second for
372      * ten seconds.  Finally, fixed-rate execution is appropriate for
373      * scheduling multiple repeating timer tasks that must remain synchronized
374      * with respect to one another.
375      *
376      * @param task   task to be scheduled.
377      * @param firstTime First time at which task is to be executed.
378      * @param period time in milliseconds between successive task executions.
379      * @throws IllegalArgumentException if {@code firstTime.getTime() < 0} or
380      *         {@code period <= 0}
381      * @throws IllegalStateException if task was already scheduled or
382      *         cancelled, timer was cancelled, or timer thread terminated.
383      * @throws NullPointerException if {@code task} or {@code firstTime} is null
384      */
scheduleAtFixedRate(TimerTask task, Date firstTime, long period)385     public void scheduleAtFixedRate(TimerTask task, Date firstTime,
386                                     long period) {
387         if (period <= 0)
388             throw new IllegalArgumentException("Non-positive period.");
389         sched(task, firstTime.getTime(), period);
390     }
391 
392     /**
393      * Schedule the specified timer task for execution at the specified
394      * time with the specified period, in milliseconds.  If period is
395      * positive, the task is scheduled for repeated execution; if period is
396      * zero, the task is scheduled for one-time execution. Time is specified
397      * in Date.getTime() format.  This method checks timer state, task state,
398      * and initial execution time, but not period.
399      *
400      * @throws IllegalArgumentException if {@code time} is negative.
401      * @throws IllegalStateException if task was already scheduled or
402      *         cancelled, timer was cancelled, or timer thread terminated.
403      * @throws NullPointerException if {@code task} is null
404      */
sched(TimerTask task, long time, long period)405     private void sched(TimerTask task, long time, long period) {
406         if (time < 0)
407             throw new IllegalArgumentException("Illegal execution time.");
408 
409         // Constrain value of period sufficiently to prevent numeric
410         // overflow while still being effectively infinitely large.
411         if (Math.abs(period) > (Long.MAX_VALUE >> 1))
412             period >>= 1;
413 
414         synchronized(queue) {
415             if (!thread.newTasksMayBeScheduled)
416                 throw new IllegalStateException("Timer already cancelled.");
417 
418             synchronized(task.lock) {
419                 if (task.state != TimerTask.VIRGIN)
420                     throw new IllegalStateException(
421                         "Task already scheduled or cancelled");
422                 task.nextExecutionTime = time;
423                 task.period = period;
424                 task.state = TimerTask.SCHEDULED;
425             }
426 
427             queue.add(task);
428             if (queue.getMin() == task)
429                 queue.notify();
430         }
431     }
432 
433     /**
434      * Terminates this timer, discarding any currently scheduled tasks.
435      * Does not interfere with a currently executing task (if it exists).
436      * Once a timer has been terminated, its execution thread terminates
437      * gracefully, and no more tasks may be scheduled on it.
438      *
439      * <p>Note that calling this method from within the run method of a
440      * timer task that was invoked by this timer absolutely guarantees that
441      * the ongoing task execution is the last task execution that will ever
442      * be performed by this timer.
443      *
444      * <p>This method may be called repeatedly; the second and subsequent
445      * calls have no effect.
446      */
cancel()447     public void cancel() {
448         synchronized(queue) {
449             queue.clear();
450             cleanup.clean();
451         }
452     }
453 
454     /**
455      * Removes all cancelled tasks from this timer's task queue.  <i>Calling
456      * this method has no effect on the behavior of the timer</i>, but
457      * eliminates the references to the cancelled tasks from the queue.
458      * If there are no external references to these tasks, they become
459      * eligible for garbage collection.
460      *
461      * <p>Most programs will have no need to call this method.
462      * It is designed for use by the rare application that cancels a large
463      * number of tasks.  Calling this method trades time for space: the
464      * runtime of the method may be proportional to n + c log n, where n
465      * is the number of tasks in the queue and c is the number of cancelled
466      * tasks.
467      *
468      * <p>Note that it is permissible to call this method from within
469      * a task scheduled on this timer.
470      *
471      * @return the number of tasks removed from the queue.
472      * @since 1.5
473      */
purge()474      public int purge() {
475          int result = 0;
476 
477          synchronized(queue) {
478              for (int i = queue.size(); i > 0; i--) {
479                  if (queue.get(i).state == TimerTask.CANCELLED) {
480                      queue.quickRemove(i);
481                      result++;
482                  }
483              }
484 
485              if (result != 0)
486                  queue.heapify();
487          }
488 
489          return result;
490      }
491 }
492 
493 /**
494  * This "helper class" implements the timer's task execution thread, which
495  * waits for tasks on the timer queue, executions them when they fire,
496  * reschedules repeating tasks, and removes cancelled tasks and spent
497  * non-repeating tasks from the queue.
498  */
499 class TimerThread extends Thread {
500     /**
501      * This flag is set to false by the reaper to inform us that there
502      * are no more live references to our Timer object.  Once this flag
503      * is true and there are no more tasks in our queue, there is no
504      * work left for us to do, so we terminate gracefully.  Note that
505      * this field is protected by queue's monitor!
506      */
507     boolean newTasksMayBeScheduled = true;
508 
509     /**
510      * Our Timer's queue.  We store this reference in preference to
511      * a reference to the Timer so the reference graph remains acyclic.
512      * Otherwise, the Timer would never be garbage-collected and this
513      * thread would never go away.
514      */
515     private TaskQueue queue;
516 
TimerThread(TaskQueue queue)517     TimerThread(TaskQueue queue) {
518         this.queue = queue;
519     }
520 
run()521     public void run() {
522         try {
523             mainLoop();
524         } finally {
525             // Someone killed this Thread, behave as if Timer cancelled
526             synchronized(queue) {
527                 newTasksMayBeScheduled = false;
528                 queue.clear();  // Eliminate obsolete references
529             }
530         }
531     }
532 
533     /**
534      * The main timer loop.  (See class comment.)
535      */
mainLoop()536     private void mainLoop() {
537         while (true) {
538             try {
539                 TimerTask task;
540                 boolean taskFired;
541                 synchronized(queue) {
542                     // Wait for queue to become non-empty
543                     while (queue.isEmpty() && newTasksMayBeScheduled)
544                         queue.wait();
545                     if (queue.isEmpty())
546                         break; // Queue is empty and will forever remain; die
547 
548                     // Queue nonempty; look at first evt and do the right thing
549                     long currentTime, executionTime;
550                     task = queue.getMin();
551                     synchronized(task.lock) {
552                         if (task.state == TimerTask.CANCELLED) {
553                             queue.removeMin();
554                             continue;  // No action required, poll queue again
555                         }
556                         currentTime = System.currentTimeMillis();
557                         executionTime = task.nextExecutionTime;
558                         if (taskFired = (executionTime<=currentTime)) {
559                             if (task.period == 0) { // Non-repeating, remove
560                                 queue.removeMin();
561                                 task.state = TimerTask.EXECUTED;
562                             } else { // Repeating task, reschedule
563                                 queue.rescheduleMin(
564                                   task.period<0 ? currentTime   - task.period
565                                                 : executionTime + task.period);
566                             }
567                         }
568                     }
569                     if (!taskFired) // Task hasn't yet fired; wait
570                         queue.wait(executionTime - currentTime);
571                 }
572                 if (taskFired)  // Task fired; run it, holding no locks
573                     task.run();
574             } catch(InterruptedException e) {
575             }
576         }
577     }
578 }
579 
580 /**
581  * This class represents a timer task queue: a priority queue of TimerTasks,
582  * ordered on nextExecutionTime.  Each Timer object has one of these, which it
583  * shares with its TimerThread.  Internally this class uses a heap, which
584  * offers log(n) performance for the add, removeMin and rescheduleMin
585  * operations, and constant time performance for the getMin operation.
586  */
587 class TaskQueue {
588     /**
589      * Priority queue represented as a balanced binary heap: the two children
590      * of queue[n] are queue[2*n] and queue[2*n+1].  The priority queue is
591      * ordered on the nextExecutionTime field: The TimerTask with the lowest
592      * nextExecutionTime is in queue[1] (assuming the queue is nonempty).  For
593      * each node n in the heap, and each descendant of n, d,
594      * n.nextExecutionTime <= d.nextExecutionTime.
595      */
596     private TimerTask[] queue = new TimerTask[128];
597 
598     /**
599      * The number of tasks in the priority queue.  (The tasks are stored in
600      * queue[1] up to queue[size]).
601      */
602     private int size = 0;
603 
604     /**
605      * Returns the number of tasks currently on the queue.
606      */
607     int size() {
608         return size;
609     }
610 
611     /**
612      * Adds a new task to the priority queue.
613      */
614     void add(TimerTask task) {
615         // Grow backing store if necessary
616         if (size + 1 == queue.length)
617             queue = Arrays.copyOf(queue, 2*queue.length);
618 
619         queue[++size] = task;
620         fixUp(size);
621     }
622 
623     /**
624      * Return the "head task" of the priority queue.  (The head task is an
625      * task with the lowest nextExecutionTime.)
626      */
627     TimerTask getMin() {
628         return queue[1];
629     }
630 
631     /**
632      * Return the ith task in the priority queue, where i ranges from 1 (the
633      * head task, which is returned by getMin) to the number of tasks on the
634      * queue, inclusive.
635      */
636     TimerTask get(int i) {
637         return queue[i];
638     }
639 
640     /**
641      * Remove the head task from the priority queue.
642      */
643     void removeMin() {
644         queue[1] = queue[size];
645         queue[size--] = null;  // Drop extra reference to prevent memory leak
646         fixDown(1);
647     }
648 
649     /**
650      * Removes the ith element from queue without regard for maintaining
651      * the heap invariant.  Recall that queue is one-based, so
652      * 1 <= i <= size.
653      */
654     void quickRemove(int i) {
655         assert i <= size;
656 
657         queue[i] = queue[size];
658         queue[size--] = null;  // Drop extra ref to prevent memory leak
659     }
660 
661     /**
662      * Sets the nextExecutionTime associated with the head task to the
663      * specified value, and adjusts priority queue accordingly.
664      */
665     void rescheduleMin(long newTime) {
666         queue[1].nextExecutionTime = newTime;
667         fixDown(1);
668     }
669 
670     /**
671      * Returns true if the priority queue contains no elements.
672      */
673     boolean isEmpty() {
674         return size==0;
675     }
676 
677     /**
678      * Removes all elements from the priority queue.
679      */
680     void clear() {
681         // Null out task references to prevent memory leak
682         for (int i=1; i<=size; i++)
683             queue[i] = null;
684 
685         size = 0;
686     }
687 
688     /**
689      * Establishes the heap invariant (described above) assuming the heap
690      * satisfies the invariant except possibly for the leaf-node indexed by k
691      * (which may have a nextExecutionTime less than its parent's).
692      *
693      * This method functions by "promoting" queue[k] up the hierarchy
694      * (by swapping it with its parent) repeatedly until queue[k]'s
695      * nextExecutionTime is greater than or equal to that of its parent.
696      */
697     private void fixUp(int k) {
698         while (k > 1) {
699             int j = k >> 1;
700             if (queue[j].nextExecutionTime <= queue[k].nextExecutionTime)
701                 break;
702             TimerTask tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
703             k = j;
704         }
705     }
706 
707     /**
708      * Establishes the heap invariant (described above) in the subtree
709      * rooted at k, which is assumed to satisfy the heap invariant except
710      * possibly for node k itself (which may have a nextExecutionTime greater
711      * than its children's).
712      *
713      * This method functions by "demoting" queue[k] down the hierarchy
714      * (by swapping it with its smaller child) repeatedly until queue[k]'s
715      * nextExecutionTime is less than or equal to those of its children.
716      */
717     private void fixDown(int k) {
718         int j;
719         while ((j = k << 1) <= size && j > 0) {
720             if (j < size &&
721                 queue[j].nextExecutionTime > queue[j+1].nextExecutionTime)
722                 j++; // j indexes smallest kid
723             if (queue[k].nextExecutionTime <= queue[j].nextExecutionTime)
724                 break;
725             TimerTask tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
726             k = j;
727         }
728     }
729 
730     /**
731      * Establishes the heap invariant (described above) in the entire tree,
732      * assuming nothing about the order of the elements prior to the call.
733      */
734     void heapify() {
735         for (int i = size/2; i >= 1; i--)
736             fixDown(i);
737     }
738 }
739