1 /* Copyright 2017 The TensorFlow Authors. All Rights Reserved. 2 3 Licensed under the Apache License, Version 2.0 (the "License"); 4 you may not use this file except in compliance with the License. 5 You may obtain a copy of the License at 6 7 http://www.apache.org/licenses/LICENSE-2.0 8 9 Unless required by applicable law or agreed to in writing, software 10 distributed under the License is distributed on an "AS IS" BASIS, 11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 See the License for the specific language governing permissions and 13 limitations under the License. 14 ==============================================================================*/ 15 16 package org.tensorflow.lite; 17 18 import java.io.File; 19 import java.nio.ByteBuffer; 20 import java.util.Arrays; 21 import java.util.Map; 22 import org.checkerframework.checker.nullness.qual.NonNull; 23 24 /** 25 * Driver class to drive model inference with TensorFlow Lite. 26 * 27 * <p>Note: If you don't need access to any of the "experimental" API features below, prefer to use 28 * InterpreterApi and InterpreterFactory rather than using Interpreter directly. 29 * 30 * <p>A {@code Interpreter} encapsulates a pre-trained TensorFlow Lite model, in which operations 31 * are executed for model inference. 32 * 33 * <p>For example, if a model takes only one input and returns only one output: 34 * 35 * <pre>{@code 36 * try (Interpreter interpreter = new Interpreter(file_of_a_tensorflowlite_model)) { 37 * interpreter.run(input, output); 38 * } 39 * }</pre> 40 * 41 * <p>If a model takes multiple inputs or outputs: 42 * 43 * <pre>{@code 44 * Object[] inputs = {input0, input1, ...}; 45 * Map<Integer, Object> map_of_indices_to_outputs = new HashMap<>(); 46 * FloatBuffer ith_output = FloatBuffer.allocateDirect(3 * 2 * 4); // Float tensor, shape 3x2x4. 47 * ith_output.order(ByteOrder.nativeOrder()); 48 * map_of_indices_to_outputs.put(i, ith_output); 49 * try (Interpreter interpreter = new Interpreter(file_of_a_tensorflowlite_model)) { 50 * interpreter.runForMultipleInputsOutputs(inputs, map_of_indices_to_outputs); 51 * } 52 * }</pre> 53 * 54 * <p>If a model takes or produces string tensors: 55 * 56 * <pre>{@code 57 * String[] input = {"foo", "bar"}; // Input tensor shape is [2]. 58 * String[] output = new String[3][2]; // Output tensor shape is [3, 2]. 59 * try (Interpreter interpreter = new Interpreter(file_of_a_tensorflowlite_model)) { 60 * interpreter.runForMultipleInputsOutputs(input, output); 61 * } 62 * }</pre> 63 * 64 * <p>Orders of inputs and outputs are determined when converting TensorFlow model to TensorFlowLite 65 * model with Toco, as are the default shapes of the inputs. 66 * 67 * <p>When inputs are provided as (multi-dimensional) arrays, the corresponding input tensor(s) will 68 * be implicitly resized according to that array's shape. When inputs are provided as {@code Buffer} 69 * types, no implicit resizing is done; the caller must ensure that the {@code Buffer} byte size 70 * either matches that of the corresponding tensor, or that they first resize the tensor via {@link 71 * #resizeInput(int, int[])}. Tensor shape and type information can be obtained via the {@link 72 * Tensor} class, available via {@link #getInputTensor(int)} and {@link #getOutputTensor(int)}. 73 * 74 * <p><b>WARNING:</b>{@code Interpreter} instances are <b>not</b> thread-safe. A {@code Interpreter} 75 * owns resources that <b>must</b> be explicitly freed by invoking {@link #close()} 76 * 77 * <p>The TFLite library is built against NDK API 19. It may work for Android API levels below 19, 78 * but is not guaranteed. 79 */ 80 public final class Interpreter extends InterpreterImpl implements InterpreterApi { 81 82 /** An options class for controlling runtime interpreter behavior. */ 83 public static class Options extends InterpreterImpl.Options { Options()84 public Options() {} 85 Options(InterpreterApi.Options options)86 public Options(InterpreterApi.Options options) { 87 super(options); 88 } 89 Options(InterpreterImpl.Options options)90 Options(InterpreterImpl.Options options) { 91 super(options); 92 } 93 94 @Override setNumThreads(int numThreads)95 public Options setNumThreads(int numThreads) { 96 super.setNumThreads(numThreads); 97 return this; 98 } 99 100 @Override setUseNNAPI(boolean useNNAPI)101 public Options setUseNNAPI(boolean useNNAPI) { 102 super.setUseNNAPI(useNNAPI); 103 return this; 104 } 105 106 /** 107 * Sets whether to allow float16 precision for FP32 calculation when possible. Defaults to false 108 * (disallow). 109 * 110 * @deprecated Prefer using <a 111 * href="https://github.com/tensorflow/tensorflow/blob/5dc7f6981fdaf74c8c5be41f393df705841fb7c5/tensorflow/lite/delegates/nnapi/java/src/main/java/org/tensorflow/lite/nnapi/NnApiDelegate.java#L127">NnApiDelegate.Options#setAllowFp16(boolean 112 * enable)</a>. 113 */ 114 @Deprecated setAllowFp16PrecisionForFp32(boolean allow)115 public Options setAllowFp16PrecisionForFp32(boolean allow) { 116 this.allowFp16PrecisionForFp32 = allow; 117 return this; 118 } 119 120 @Override addDelegate(Delegate delegate)121 public Options addDelegate(Delegate delegate) { 122 super.addDelegate(delegate); 123 return this; 124 } 125 126 @Override addDelegateFactory(DelegateFactory delegateFactory)127 public Options addDelegateFactory(DelegateFactory delegateFactory) { 128 super.addDelegateFactory(delegateFactory); 129 return this; 130 } 131 132 /** 133 * Advanced: Set if buffer handle output is allowed. 134 * 135 * <p>When a {@link Delegate} supports hardware acceleration, the interpreter will make the data 136 * of output tensors available in the CPU-allocated tensor buffers by default. If the client can 137 * consume the buffer handle directly (e.g. reading output from OpenGL texture), it can set this 138 * flag to false, avoiding the copy of data to the CPU buffer. The delegate documentation should 139 * indicate whether this is supported and how it can be used. 140 * 141 * <p>WARNING: This is an experimental interface that is subject to change. 142 */ setAllowBufferHandleOutput(boolean allow)143 public Options setAllowBufferHandleOutput(boolean allow) { 144 this.allowBufferHandleOutput = allow; 145 return this; 146 } 147 148 @Override setCancellable(boolean allow)149 public Options setCancellable(boolean allow) { 150 super.setCancellable(allow); 151 return this; 152 } 153 154 /** 155 * Experimental: Disable an optimized set of CPU kernels (provided by XNNPACK). 156 * 157 * <p>Disabling this flag will disable use of a highly optimized set of CPU kernels provided via 158 * the XNNPACK delegate. Currently, this is restricted to a subset of floating point operations. 159 * See 160 * https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/delegates/xnnpack/README.md 161 * for more details. 162 * 163 * <p>WARNING: This is an experimental interface that is subject to change. 164 */ setUseXNNPACK(boolean useXNNPACK)165 public Options setUseXNNPACK(boolean useXNNPACK) { 166 this.useXNNPACK = useXNNPACK; 167 return this; 168 } 169 170 @Override setRuntime(InterpreterApi.Options.TfLiteRuntime runtime)171 public Options setRuntime(InterpreterApi.Options.TfLiteRuntime runtime) { 172 super.setRuntime(runtime); 173 return this; 174 } 175 } 176 177 /** 178 * Initializes an {@code Interpreter}. 179 * 180 * @param modelFile a File of a pre-trained TF Lite model. 181 * @throws IllegalArgumentException if {@code modelFile} does not encode a valid TensorFlow Lite 182 * model. 183 */ Interpreter(@onNull File modelFile)184 public Interpreter(@NonNull File modelFile) { 185 this(modelFile, /*options = */ null); 186 } 187 188 /** 189 * Initializes an {@code Interpreter} and specifies options for customizing interpreter behavior. 190 * 191 * @param modelFile a file of a pre-trained TF Lite model 192 * @param options a set of options for customizing interpreter behavior 193 * @throws IllegalArgumentException if {@code modelFile} does not encode a valid TensorFlow Lite 194 * model. 195 */ Interpreter(@onNull File modelFile, Options options)196 public Interpreter(@NonNull File modelFile, Options options) { 197 this(new NativeInterpreterWrapperExperimental(modelFile.getAbsolutePath(), options)); 198 } 199 200 /** 201 * Initializes an {@code Interpreter} with a {@code ByteBuffer} of a model file. 202 * 203 * <p>The ByteBuffer should not be modified after the construction of a {@code Interpreter}. The 204 * {@code ByteBuffer} can be either a {@code MappedByteBuffer} that memory-maps a model file, or a 205 * direct {@code ByteBuffer} of nativeOrder() that contains the bytes content of a model. 206 * 207 * @throws IllegalArgumentException if {@code byteBuffer} is not a {@code MappedByteBuffer} nor a 208 * direct {@code ByteBuffer} of nativeOrder. 209 */ Interpreter(@onNull ByteBuffer byteBuffer)210 public Interpreter(@NonNull ByteBuffer byteBuffer) { 211 this(byteBuffer, /* options= */ null); 212 } 213 214 /** 215 * Initializes an {@code Interpreter} with a {@code ByteBuffer} of a model file and a set of 216 * custom {@link Interpreter.Options}. 217 * 218 * <p>The {@code ByteBuffer} should not be modified after the construction of an {@code 219 * Interpreter}. The {@code ByteBuffer} can be either a {@code MappedByteBuffer} that memory-maps 220 * a model file, or a direct {@code ByteBuffer} of nativeOrder() that contains the bytes content 221 * of a model. 222 * 223 * @throws IllegalArgumentException if {@code byteBuffer} is not a {@code MappedByteBuffer} nor a 224 * direct {@code ByteBuffer} of nativeOrder. 225 */ Interpreter(@onNull ByteBuffer byteBuffer, Options options)226 public Interpreter(@NonNull ByteBuffer byteBuffer, Options options) { 227 this(new NativeInterpreterWrapperExperimental(byteBuffer, options)); 228 } 229 Interpreter(NativeInterpreterWrapperExperimental wrapper)230 private Interpreter(NativeInterpreterWrapperExperimental wrapper) { 231 super(wrapper); 232 wrapperExperimental = wrapper; 233 signatureKeyList = getSignatureKeys(); 234 } 235 236 /** 237 * Runs model inference based on SignatureDef provided through {@code signatureKey}. 238 * 239 * <p>See {@link Interpreter#run(Object, Object)} for more details on the allowed input and output 240 * data types. 241 * 242 * <p>WARNING: This is an experimental API and subject to change. 243 * 244 * @param inputs A map from input name in the SignatureDef to an input object. 245 * @param outputs A map from output name in SignatureDef to output data. This may be empty if the 246 * caller wishes to query the {@link Tensor} data directly after inference (e.g., if the 247 * output shape is dynamic, or output buffer handles are used). 248 * @param signatureKey Signature key identifying the SignatureDef. 249 * @throws IllegalArgumentException if {@code inputs} is null or empty, if {@code outputs} or 250 * {@code signatureKey} is null, or if an error occurs when running inference. 251 */ runSignature( @onNull Map<String, Object> inputs, @NonNull Map<String, Object> outputs, String signatureKey)252 public void runSignature( 253 @NonNull Map<String, Object> inputs, 254 @NonNull Map<String, Object> outputs, 255 String signatureKey) { 256 checkNotClosed(); 257 if (signatureKey == null && signatureKeyList.length == 1) { 258 signatureKey = signatureKeyList[0]; 259 } 260 if (signatureKey == null) { 261 throw new IllegalArgumentException( 262 "Input error: SignatureDef signatureKey should not be null. null is only allowed if the" 263 + " model has a single Signature. Available Signatures: " 264 + Arrays.toString(signatureKeyList)); 265 } 266 wrapper.runSignature(inputs, outputs, signatureKey); 267 } 268 269 /** 270 * Same as {@link #runSignature(Map, Map, String)} but doesn't require passing a signatureKey, 271 * assuming the model has one SignatureDef. If the model has more than one SignatureDef it will 272 * throw an exception. 273 * 274 * <p>WARNING: This is an experimental API and subject to change. 275 */ runSignature( @onNull Map<String, Object> inputs, @NonNull Map<String, Object> outputs)276 public void runSignature( 277 @NonNull Map<String, Object> inputs, @NonNull Map<String, Object> outputs) { 278 checkNotClosed(); 279 runSignature(inputs, outputs, null); 280 } 281 282 /** 283 * Gets the Tensor associated with the provided input name and signature method name. 284 * 285 * <p>WARNING: This is an experimental API and subject to change. 286 * 287 * @param inputName Input name in the signature. 288 * @param signatureKey Signature key identifying the SignatureDef, can be null if the model has 289 * one signature. 290 * @throws IllegalArgumentException if {@code inputName} or {@code signatureKey} is null or empty, 291 * or invalid name provided. 292 */ getInputTensorFromSignature(String inputName, String signatureKey)293 public Tensor getInputTensorFromSignature(String inputName, String signatureKey) { 294 checkNotClosed(); 295 if (signatureKey == null && signatureKeyList.length == 1) { 296 signatureKey = signatureKeyList[0]; 297 } 298 if (signatureKey == null) { 299 throw new IllegalArgumentException( 300 "Input error: SignatureDef signatureKey should not be null. null is only allowed if the" 301 + " model has a single Signature. Available Signatures: " 302 + Arrays.toString(signatureKeyList)); 303 } 304 return wrapper.getInputTensor(inputName, signatureKey); 305 } 306 307 /** 308 * Gets the list of SignatureDef exported method names available in the model. 309 * 310 * <p>WARNING: This is an experimental API and subject to change. 311 */ getSignatureKeys()312 public String[] getSignatureKeys() { 313 checkNotClosed(); 314 return wrapper.getSignatureKeys(); 315 } 316 317 /** 318 * Gets the list of SignatureDefs inputs for method {@code signatureKey}. 319 * 320 * <p>WARNING: This is an experimental API and subject to change. 321 */ getSignatureInputs(String signatureKey)322 public String[] getSignatureInputs(String signatureKey) { 323 checkNotClosed(); 324 return wrapper.getSignatureInputs(signatureKey); 325 } 326 327 /** 328 * Gets the list of SignatureDefs outputs for method {@code signatureKey}. 329 * 330 * <p>WARNING: This is an experimental API and subject to change. 331 */ getSignatureOutputs(String signatureKey)332 public String[] getSignatureOutputs(String signatureKey) { 333 checkNotClosed(); 334 return wrapper.getSignatureOutputs(signatureKey); 335 } 336 337 /** 338 * Gets the Tensor associated with the provided output name in specific signature method. 339 * 340 * <p>Note: Output tensor details (e.g., shape) may not be fully populated until after inference 341 * is executed. If you need updated details *before* running inference (e.g., after resizing an 342 * input tensor, which may invalidate output tensor shapes), use {@link #allocateTensors()} to 343 * explicitly trigger allocation and shape propagation. Note that, for graphs with output shapes 344 * that are dependent on input *values*, the output shape may not be fully determined until 345 * running inference. 346 * 347 * <p>WARNING: This is an experimental API and subject to change. 348 * 349 * @param outputName Output name in the signature. 350 * @param signatureKey Signature key identifying the SignatureDef, can be null if the model has 351 * one signature. 352 * @throws IllegalArgumentException if {@code outputName} or {@code signatureKey} is null or 353 * empty, or invalid name provided. 354 */ getOutputTensorFromSignature(String outputName, String signatureKey)355 public Tensor getOutputTensorFromSignature(String outputName, String signatureKey) { 356 checkNotClosed(); 357 if (signatureKey == null && signatureKeyList.length == 1) { 358 signatureKey = signatureKeyList[0]; 359 } 360 if (signatureKey == null) { 361 throw new IllegalArgumentException( 362 "Input error: SignatureDef signatureKey should not be null. null is only allowed if the" 363 + " model has a single Signature. Available Signatures: " 364 + Arrays.toString(signatureKeyList)); 365 } 366 return wrapper.getOutputTensor(outputName, signatureKey); 367 } 368 369 /** 370 * Advanced: Resets all variable tensors to the default value. 371 * 372 * <p>If a variable tensor doesn't have an associated buffer, it will be reset to zero. 373 * 374 * <p>WARNING: This is an experimental API and subject to change. 375 */ resetVariableTensors()376 public void resetVariableTensors() { 377 checkNotClosed(); 378 wrapperExperimental.resetVariableTensors(); 379 } 380 381 /** 382 * Advanced: Interrupts inference in the middle of a call to {@link Interpreter#run}. 383 * 384 * <p>A cancellation flag will be set to true when this function gets called. The interpreter will 385 * check the flag between Op invocations, and if it's {@code true}, the interpreter will stop 386 * execution. The interpreter will remain a cancelled state until explicitly "uncancelled" by 387 * {@code setCancelled(false)}. 388 * 389 * <p>WARNING: This is an experimental API and subject to change. 390 * 391 * @param cancelled {@code true} to cancel inference in a best-effort way; {@code false} to 392 * resume. 393 * @throws IllegalStateException if the interpreter is not initialized with the cancellable 394 * option, which is by default off. 395 * @see Interpreter.Options#setCancellable(boolean). 396 */ setCancelled(boolean cancelled)397 public void setCancelled(boolean cancelled) { 398 wrapper.setCancelled(cancelled); 399 } 400 401 private final NativeInterpreterWrapperExperimental wrapperExperimental; 402 private final String[] signatureKeyList; 403 } 404