1 /* 2 * Copyright 2020 Google LLC 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * https://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 // Generated by the protocol buffer compiler. DO NOT EDIT! 17 // source: google/cloud/automl/v1/prediction_service.proto 18 19 package com.google.cloud.automl.v1; 20 21 /** 22 * 23 * 24 * <pre> 25 * Request message for [PredictionService.BatchPredict][google.cloud.automl.v1.PredictionService.BatchPredict]. 26 * </pre> 27 * 28 * Protobuf type {@code google.cloud.automl.v1.BatchPredictRequest} 29 */ 30 public final class BatchPredictRequest extends com.google.protobuf.GeneratedMessageV3 31 implements 32 // @@protoc_insertion_point(message_implements:google.cloud.automl.v1.BatchPredictRequest) 33 BatchPredictRequestOrBuilder { 34 private static final long serialVersionUID = 0L; 35 // Use BatchPredictRequest.newBuilder() to construct. BatchPredictRequest(com.google.protobuf.GeneratedMessageV3.Builder<?> builder)36 private BatchPredictRequest(com.google.protobuf.GeneratedMessageV3.Builder<?> builder) { 37 super(builder); 38 } 39 BatchPredictRequest()40 private BatchPredictRequest() { 41 name_ = ""; 42 } 43 44 @java.lang.Override 45 @SuppressWarnings({"unused"}) newInstance(UnusedPrivateParameter unused)46 protected java.lang.Object newInstance(UnusedPrivateParameter unused) { 47 return new BatchPredictRequest(); 48 } 49 50 @java.lang.Override getUnknownFields()51 public final com.google.protobuf.UnknownFieldSet getUnknownFields() { 52 return this.unknownFields; 53 } 54 getDescriptor()55 public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { 56 return com.google.cloud.automl.v1.PredictionServiceProto 57 .internal_static_google_cloud_automl_v1_BatchPredictRequest_descriptor; 58 } 59 60 @SuppressWarnings({"rawtypes"}) 61 @java.lang.Override internalGetMapField(int number)62 protected com.google.protobuf.MapField internalGetMapField(int number) { 63 switch (number) { 64 case 5: 65 return internalGetParams(); 66 default: 67 throw new RuntimeException("Invalid map field number: " + number); 68 } 69 } 70 71 @java.lang.Override 72 protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()73 internalGetFieldAccessorTable() { 74 return com.google.cloud.automl.v1.PredictionServiceProto 75 .internal_static_google_cloud_automl_v1_BatchPredictRequest_fieldAccessorTable 76 .ensureFieldAccessorsInitialized( 77 com.google.cloud.automl.v1.BatchPredictRequest.class, 78 com.google.cloud.automl.v1.BatchPredictRequest.Builder.class); 79 } 80 81 public static final int NAME_FIELD_NUMBER = 1; 82 83 @SuppressWarnings("serial") 84 private volatile java.lang.Object name_ = ""; 85 /** 86 * 87 * 88 * <pre> 89 * Required. Name of the model requested to serve the batch prediction. 90 * </pre> 91 * 92 * <code> 93 * string name = 1 [(.google.api.field_behavior) = REQUIRED, (.google.api.resource_reference) = { ... } 94 * </code> 95 * 96 * @return The name. 97 */ 98 @java.lang.Override getName()99 public java.lang.String getName() { 100 java.lang.Object ref = name_; 101 if (ref instanceof java.lang.String) { 102 return (java.lang.String) ref; 103 } else { 104 com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; 105 java.lang.String s = bs.toStringUtf8(); 106 name_ = s; 107 return s; 108 } 109 } 110 /** 111 * 112 * 113 * <pre> 114 * Required. Name of the model requested to serve the batch prediction. 115 * </pre> 116 * 117 * <code> 118 * string name = 1 [(.google.api.field_behavior) = REQUIRED, (.google.api.resource_reference) = { ... } 119 * </code> 120 * 121 * @return The bytes for name. 122 */ 123 @java.lang.Override getNameBytes()124 public com.google.protobuf.ByteString getNameBytes() { 125 java.lang.Object ref = name_; 126 if (ref instanceof java.lang.String) { 127 com.google.protobuf.ByteString b = 128 com.google.protobuf.ByteString.copyFromUtf8((java.lang.String) ref); 129 name_ = b; 130 return b; 131 } else { 132 return (com.google.protobuf.ByteString) ref; 133 } 134 } 135 136 public static final int INPUT_CONFIG_FIELD_NUMBER = 3; 137 private com.google.cloud.automl.v1.BatchPredictInputConfig inputConfig_; 138 /** 139 * 140 * 141 * <pre> 142 * Required. The input configuration for batch prediction. 143 * </pre> 144 * 145 * <code> 146 * .google.cloud.automl.v1.BatchPredictInputConfig input_config = 3 [(.google.api.field_behavior) = REQUIRED]; 147 * </code> 148 * 149 * @return Whether the inputConfig field is set. 150 */ 151 @java.lang.Override hasInputConfig()152 public boolean hasInputConfig() { 153 return inputConfig_ != null; 154 } 155 /** 156 * 157 * 158 * <pre> 159 * Required. The input configuration for batch prediction. 160 * </pre> 161 * 162 * <code> 163 * .google.cloud.automl.v1.BatchPredictInputConfig input_config = 3 [(.google.api.field_behavior) = REQUIRED]; 164 * </code> 165 * 166 * @return The inputConfig. 167 */ 168 @java.lang.Override getInputConfig()169 public com.google.cloud.automl.v1.BatchPredictInputConfig getInputConfig() { 170 return inputConfig_ == null 171 ? com.google.cloud.automl.v1.BatchPredictInputConfig.getDefaultInstance() 172 : inputConfig_; 173 } 174 /** 175 * 176 * 177 * <pre> 178 * Required. The input configuration for batch prediction. 179 * </pre> 180 * 181 * <code> 182 * .google.cloud.automl.v1.BatchPredictInputConfig input_config = 3 [(.google.api.field_behavior) = REQUIRED]; 183 * </code> 184 */ 185 @java.lang.Override getInputConfigOrBuilder()186 public com.google.cloud.automl.v1.BatchPredictInputConfigOrBuilder getInputConfigOrBuilder() { 187 return inputConfig_ == null 188 ? com.google.cloud.automl.v1.BatchPredictInputConfig.getDefaultInstance() 189 : inputConfig_; 190 } 191 192 public static final int OUTPUT_CONFIG_FIELD_NUMBER = 4; 193 private com.google.cloud.automl.v1.BatchPredictOutputConfig outputConfig_; 194 /** 195 * 196 * 197 * <pre> 198 * Required. The Configuration specifying where output predictions should 199 * be written. 200 * </pre> 201 * 202 * <code> 203 * .google.cloud.automl.v1.BatchPredictOutputConfig output_config = 4 [(.google.api.field_behavior) = REQUIRED]; 204 * </code> 205 * 206 * @return Whether the outputConfig field is set. 207 */ 208 @java.lang.Override hasOutputConfig()209 public boolean hasOutputConfig() { 210 return outputConfig_ != null; 211 } 212 /** 213 * 214 * 215 * <pre> 216 * Required. The Configuration specifying where output predictions should 217 * be written. 218 * </pre> 219 * 220 * <code> 221 * .google.cloud.automl.v1.BatchPredictOutputConfig output_config = 4 [(.google.api.field_behavior) = REQUIRED]; 222 * </code> 223 * 224 * @return The outputConfig. 225 */ 226 @java.lang.Override getOutputConfig()227 public com.google.cloud.automl.v1.BatchPredictOutputConfig getOutputConfig() { 228 return outputConfig_ == null 229 ? com.google.cloud.automl.v1.BatchPredictOutputConfig.getDefaultInstance() 230 : outputConfig_; 231 } 232 /** 233 * 234 * 235 * <pre> 236 * Required. The Configuration specifying where output predictions should 237 * be written. 238 * </pre> 239 * 240 * <code> 241 * .google.cloud.automl.v1.BatchPredictOutputConfig output_config = 4 [(.google.api.field_behavior) = REQUIRED]; 242 * </code> 243 */ 244 @java.lang.Override getOutputConfigOrBuilder()245 public com.google.cloud.automl.v1.BatchPredictOutputConfigOrBuilder getOutputConfigOrBuilder() { 246 return outputConfig_ == null 247 ? com.google.cloud.automl.v1.BatchPredictOutputConfig.getDefaultInstance() 248 : outputConfig_; 249 } 250 251 public static final int PARAMS_FIELD_NUMBER = 5; 252 253 private static final class ParamsDefaultEntryHolder { 254 static final com.google.protobuf.MapEntry<java.lang.String, java.lang.String> defaultEntry = 255 com.google.protobuf.MapEntry.<java.lang.String, java.lang.String>newDefaultInstance( 256 com.google.cloud.automl.v1.PredictionServiceProto 257 .internal_static_google_cloud_automl_v1_BatchPredictRequest_ParamsEntry_descriptor, 258 com.google.protobuf.WireFormat.FieldType.STRING, 259 "", 260 com.google.protobuf.WireFormat.FieldType.STRING, 261 ""); 262 } 263 264 @SuppressWarnings("serial") 265 private com.google.protobuf.MapField<java.lang.String, java.lang.String> params_; 266 internalGetParams()267 private com.google.protobuf.MapField<java.lang.String, java.lang.String> internalGetParams() { 268 if (params_ == null) { 269 return com.google.protobuf.MapField.emptyMapField(ParamsDefaultEntryHolder.defaultEntry); 270 } 271 return params_; 272 } 273 getParamsCount()274 public int getParamsCount() { 275 return internalGetParams().getMap().size(); 276 } 277 /** 278 * 279 * 280 * <pre> 281 * Additional domain-specific parameters for the predictions, any string must 282 * be up to 25000 characters long. 283 * AutoML Natural Language Classification 284 * `score_threshold` 285 * : (float) A value from 0.0 to 1.0. When the model 286 * makes predictions for a text snippet, it will only produce results 287 * that have at least this confidence score. The default is 0.5. 288 * AutoML Vision Classification 289 * `score_threshold` 290 * : (float) A value from 0.0 to 1.0. When the model 291 * makes predictions for an image, it will only produce results that 292 * have at least this confidence score. The default is 0.5. 293 * AutoML Vision Object Detection 294 * `score_threshold` 295 * : (float) When Model detects objects on the image, 296 * it will only produce bounding boxes which have at least this 297 * confidence score. Value in 0 to 1 range, default is 0.5. 298 * `max_bounding_box_count` 299 * : (int64) The maximum number of bounding 300 * boxes returned per image. The default is 100, the 301 * number of bounding boxes returned might be limited by the server. 302 * AutoML Video Intelligence Classification 303 * `score_threshold` 304 * : (float) A value from 0.0 to 1.0. When the model 305 * makes predictions for a video, it will only produce results that 306 * have at least this confidence score. The default is 0.5. 307 * `segment_classification` 308 * : (boolean) Set to true to request 309 * segment-level classification. AutoML Video Intelligence returns 310 * labels and their confidence scores for the entire segment of the 311 * video that user specified in the request configuration. 312 * The default is true. 313 * `shot_classification` 314 * : (boolean) Set to true to request shot-level 315 * classification. AutoML Video Intelligence determines the boundaries 316 * for each camera shot in the entire segment of the video that user 317 * specified in the request configuration. AutoML Video Intelligence 318 * then returns labels and their confidence scores for each detected 319 * shot, along with the start and end time of the shot. 320 * The default is false. 321 * WARNING: Model evaluation is not done for this classification type, 322 * the quality of it depends on training data, but there are no metrics 323 * provided to describe that quality. 324 * `1s_interval_classification` 325 * : (boolean) Set to true to request 326 * classification for a video at one-second intervals. AutoML Video 327 * Intelligence returns labels and their confidence scores for each 328 * second of the entire segment of the video that user specified in the 329 * request configuration. The default is false. 330 * WARNING: Model evaluation is not done for this classification 331 * type, the quality of it depends on training data, but there are no 332 * metrics provided to describe that quality. 333 * AutoML Video Intelligence Object Tracking 334 * `score_threshold` 335 * : (float) When Model detects objects on video frames, 336 * it will only produce bounding boxes which have at least this 337 * confidence score. Value in 0 to 1 range, default is 0.5. 338 * `max_bounding_box_count` 339 * : (int64) The maximum number of bounding 340 * boxes returned per image. The default is 100, the 341 * number of bounding boxes returned might be limited by the server. 342 * `min_bounding_box_size` 343 * : (float) Only bounding boxes with shortest edge 344 * at least that long as a relative value of video frame size are 345 * returned. Value in 0 to 1 range. Default is 0. 346 * </pre> 347 * 348 * <code>map<string, string> params = 5;</code> 349 */ 350 @java.lang.Override containsParams(java.lang.String key)351 public boolean containsParams(java.lang.String key) { 352 if (key == null) { 353 throw new NullPointerException("map key"); 354 } 355 return internalGetParams().getMap().containsKey(key); 356 } 357 /** Use {@link #getParamsMap()} instead. */ 358 @java.lang.Override 359 @java.lang.Deprecated getParams()360 public java.util.Map<java.lang.String, java.lang.String> getParams() { 361 return getParamsMap(); 362 } 363 /** 364 * 365 * 366 * <pre> 367 * Additional domain-specific parameters for the predictions, any string must 368 * be up to 25000 characters long. 369 * AutoML Natural Language Classification 370 * `score_threshold` 371 * : (float) A value from 0.0 to 1.0. When the model 372 * makes predictions for a text snippet, it will only produce results 373 * that have at least this confidence score. The default is 0.5. 374 * AutoML Vision Classification 375 * `score_threshold` 376 * : (float) A value from 0.0 to 1.0. When the model 377 * makes predictions for an image, it will only produce results that 378 * have at least this confidence score. The default is 0.5. 379 * AutoML Vision Object Detection 380 * `score_threshold` 381 * : (float) When Model detects objects on the image, 382 * it will only produce bounding boxes which have at least this 383 * confidence score. Value in 0 to 1 range, default is 0.5. 384 * `max_bounding_box_count` 385 * : (int64) The maximum number of bounding 386 * boxes returned per image. The default is 100, the 387 * number of bounding boxes returned might be limited by the server. 388 * AutoML Video Intelligence Classification 389 * `score_threshold` 390 * : (float) A value from 0.0 to 1.0. When the model 391 * makes predictions for a video, it will only produce results that 392 * have at least this confidence score. The default is 0.5. 393 * `segment_classification` 394 * : (boolean) Set to true to request 395 * segment-level classification. AutoML Video Intelligence returns 396 * labels and their confidence scores for the entire segment of the 397 * video that user specified in the request configuration. 398 * The default is true. 399 * `shot_classification` 400 * : (boolean) Set to true to request shot-level 401 * classification. AutoML Video Intelligence determines the boundaries 402 * for each camera shot in the entire segment of the video that user 403 * specified in the request configuration. AutoML Video Intelligence 404 * then returns labels and their confidence scores for each detected 405 * shot, along with the start and end time of the shot. 406 * The default is false. 407 * WARNING: Model evaluation is not done for this classification type, 408 * the quality of it depends on training data, but there are no metrics 409 * provided to describe that quality. 410 * `1s_interval_classification` 411 * : (boolean) Set to true to request 412 * classification for a video at one-second intervals. AutoML Video 413 * Intelligence returns labels and their confidence scores for each 414 * second of the entire segment of the video that user specified in the 415 * request configuration. The default is false. 416 * WARNING: Model evaluation is not done for this classification 417 * type, the quality of it depends on training data, but there are no 418 * metrics provided to describe that quality. 419 * AutoML Video Intelligence Object Tracking 420 * `score_threshold` 421 * : (float) When Model detects objects on video frames, 422 * it will only produce bounding boxes which have at least this 423 * confidence score. Value in 0 to 1 range, default is 0.5. 424 * `max_bounding_box_count` 425 * : (int64) The maximum number of bounding 426 * boxes returned per image. The default is 100, the 427 * number of bounding boxes returned might be limited by the server. 428 * `min_bounding_box_size` 429 * : (float) Only bounding boxes with shortest edge 430 * at least that long as a relative value of video frame size are 431 * returned. Value in 0 to 1 range. Default is 0. 432 * </pre> 433 * 434 * <code>map<string, string> params = 5;</code> 435 */ 436 @java.lang.Override getParamsMap()437 public java.util.Map<java.lang.String, java.lang.String> getParamsMap() { 438 return internalGetParams().getMap(); 439 } 440 /** 441 * 442 * 443 * <pre> 444 * Additional domain-specific parameters for the predictions, any string must 445 * be up to 25000 characters long. 446 * AutoML Natural Language Classification 447 * `score_threshold` 448 * : (float) A value from 0.0 to 1.0. When the model 449 * makes predictions for a text snippet, it will only produce results 450 * that have at least this confidence score. The default is 0.5. 451 * AutoML Vision Classification 452 * `score_threshold` 453 * : (float) A value from 0.0 to 1.0. When the model 454 * makes predictions for an image, it will only produce results that 455 * have at least this confidence score. The default is 0.5. 456 * AutoML Vision Object Detection 457 * `score_threshold` 458 * : (float) When Model detects objects on the image, 459 * it will only produce bounding boxes which have at least this 460 * confidence score. Value in 0 to 1 range, default is 0.5. 461 * `max_bounding_box_count` 462 * : (int64) The maximum number of bounding 463 * boxes returned per image. The default is 100, the 464 * number of bounding boxes returned might be limited by the server. 465 * AutoML Video Intelligence Classification 466 * `score_threshold` 467 * : (float) A value from 0.0 to 1.0. When the model 468 * makes predictions for a video, it will only produce results that 469 * have at least this confidence score. The default is 0.5. 470 * `segment_classification` 471 * : (boolean) Set to true to request 472 * segment-level classification. AutoML Video Intelligence returns 473 * labels and their confidence scores for the entire segment of the 474 * video that user specified in the request configuration. 475 * The default is true. 476 * `shot_classification` 477 * : (boolean) Set to true to request shot-level 478 * classification. AutoML Video Intelligence determines the boundaries 479 * for each camera shot in the entire segment of the video that user 480 * specified in the request configuration. AutoML Video Intelligence 481 * then returns labels and their confidence scores for each detected 482 * shot, along with the start and end time of the shot. 483 * The default is false. 484 * WARNING: Model evaluation is not done for this classification type, 485 * the quality of it depends on training data, but there are no metrics 486 * provided to describe that quality. 487 * `1s_interval_classification` 488 * : (boolean) Set to true to request 489 * classification for a video at one-second intervals. AutoML Video 490 * Intelligence returns labels and their confidence scores for each 491 * second of the entire segment of the video that user specified in the 492 * request configuration. The default is false. 493 * WARNING: Model evaluation is not done for this classification 494 * type, the quality of it depends on training data, but there are no 495 * metrics provided to describe that quality. 496 * AutoML Video Intelligence Object Tracking 497 * `score_threshold` 498 * : (float) When Model detects objects on video frames, 499 * it will only produce bounding boxes which have at least this 500 * confidence score. Value in 0 to 1 range, default is 0.5. 501 * `max_bounding_box_count` 502 * : (int64) The maximum number of bounding 503 * boxes returned per image. The default is 100, the 504 * number of bounding boxes returned might be limited by the server. 505 * `min_bounding_box_size` 506 * : (float) Only bounding boxes with shortest edge 507 * at least that long as a relative value of video frame size are 508 * returned. Value in 0 to 1 range. Default is 0. 509 * </pre> 510 * 511 * <code>map<string, string> params = 5;</code> 512 */ 513 @java.lang.Override getParamsOrDefault( java.lang.String key, java.lang.String defaultValue)514 public /* nullable */ java.lang.String getParamsOrDefault( 515 java.lang.String key, 516 /* nullable */ 517 java.lang.String defaultValue) { 518 if (key == null) { 519 throw new NullPointerException("map key"); 520 } 521 java.util.Map<java.lang.String, java.lang.String> map = internalGetParams().getMap(); 522 return map.containsKey(key) ? map.get(key) : defaultValue; 523 } 524 /** 525 * 526 * 527 * <pre> 528 * Additional domain-specific parameters for the predictions, any string must 529 * be up to 25000 characters long. 530 * AutoML Natural Language Classification 531 * `score_threshold` 532 * : (float) A value from 0.0 to 1.0. When the model 533 * makes predictions for a text snippet, it will only produce results 534 * that have at least this confidence score. The default is 0.5. 535 * AutoML Vision Classification 536 * `score_threshold` 537 * : (float) A value from 0.0 to 1.0. When the model 538 * makes predictions for an image, it will only produce results that 539 * have at least this confidence score. The default is 0.5. 540 * AutoML Vision Object Detection 541 * `score_threshold` 542 * : (float) When Model detects objects on the image, 543 * it will only produce bounding boxes which have at least this 544 * confidence score. Value in 0 to 1 range, default is 0.5. 545 * `max_bounding_box_count` 546 * : (int64) The maximum number of bounding 547 * boxes returned per image. The default is 100, the 548 * number of bounding boxes returned might be limited by the server. 549 * AutoML Video Intelligence Classification 550 * `score_threshold` 551 * : (float) A value from 0.0 to 1.0. When the model 552 * makes predictions for a video, it will only produce results that 553 * have at least this confidence score. The default is 0.5. 554 * `segment_classification` 555 * : (boolean) Set to true to request 556 * segment-level classification. AutoML Video Intelligence returns 557 * labels and their confidence scores for the entire segment of the 558 * video that user specified in the request configuration. 559 * The default is true. 560 * `shot_classification` 561 * : (boolean) Set to true to request shot-level 562 * classification. AutoML Video Intelligence determines the boundaries 563 * for each camera shot in the entire segment of the video that user 564 * specified in the request configuration. AutoML Video Intelligence 565 * then returns labels and their confidence scores for each detected 566 * shot, along with the start and end time of the shot. 567 * The default is false. 568 * WARNING: Model evaluation is not done for this classification type, 569 * the quality of it depends on training data, but there are no metrics 570 * provided to describe that quality. 571 * `1s_interval_classification` 572 * : (boolean) Set to true to request 573 * classification for a video at one-second intervals. AutoML Video 574 * Intelligence returns labels and their confidence scores for each 575 * second of the entire segment of the video that user specified in the 576 * request configuration. The default is false. 577 * WARNING: Model evaluation is not done for this classification 578 * type, the quality of it depends on training data, but there are no 579 * metrics provided to describe that quality. 580 * AutoML Video Intelligence Object Tracking 581 * `score_threshold` 582 * : (float) When Model detects objects on video frames, 583 * it will only produce bounding boxes which have at least this 584 * confidence score. Value in 0 to 1 range, default is 0.5. 585 * `max_bounding_box_count` 586 * : (int64) The maximum number of bounding 587 * boxes returned per image. The default is 100, the 588 * number of bounding boxes returned might be limited by the server. 589 * `min_bounding_box_size` 590 * : (float) Only bounding boxes with shortest edge 591 * at least that long as a relative value of video frame size are 592 * returned. Value in 0 to 1 range. Default is 0. 593 * </pre> 594 * 595 * <code>map<string, string> params = 5;</code> 596 */ 597 @java.lang.Override getParamsOrThrow(java.lang.String key)598 public java.lang.String getParamsOrThrow(java.lang.String key) { 599 if (key == null) { 600 throw new NullPointerException("map key"); 601 } 602 java.util.Map<java.lang.String, java.lang.String> map = internalGetParams().getMap(); 603 if (!map.containsKey(key)) { 604 throw new java.lang.IllegalArgumentException(); 605 } 606 return map.get(key); 607 } 608 609 private byte memoizedIsInitialized = -1; 610 611 @java.lang.Override isInitialized()612 public final boolean isInitialized() { 613 byte isInitialized = memoizedIsInitialized; 614 if (isInitialized == 1) return true; 615 if (isInitialized == 0) return false; 616 617 memoizedIsInitialized = 1; 618 return true; 619 } 620 621 @java.lang.Override writeTo(com.google.protobuf.CodedOutputStream output)622 public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { 623 if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(name_)) { 624 com.google.protobuf.GeneratedMessageV3.writeString(output, 1, name_); 625 } 626 if (inputConfig_ != null) { 627 output.writeMessage(3, getInputConfig()); 628 } 629 if (outputConfig_ != null) { 630 output.writeMessage(4, getOutputConfig()); 631 } 632 com.google.protobuf.GeneratedMessageV3.serializeStringMapTo( 633 output, internalGetParams(), ParamsDefaultEntryHolder.defaultEntry, 5); 634 getUnknownFields().writeTo(output); 635 } 636 637 @java.lang.Override getSerializedSize()638 public int getSerializedSize() { 639 int size = memoizedSize; 640 if (size != -1) return size; 641 642 size = 0; 643 if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(name_)) { 644 size += com.google.protobuf.GeneratedMessageV3.computeStringSize(1, name_); 645 } 646 if (inputConfig_ != null) { 647 size += com.google.protobuf.CodedOutputStream.computeMessageSize(3, getInputConfig()); 648 } 649 if (outputConfig_ != null) { 650 size += com.google.protobuf.CodedOutputStream.computeMessageSize(4, getOutputConfig()); 651 } 652 for (java.util.Map.Entry<java.lang.String, java.lang.String> entry : 653 internalGetParams().getMap().entrySet()) { 654 com.google.protobuf.MapEntry<java.lang.String, java.lang.String> params__ = 655 ParamsDefaultEntryHolder.defaultEntry 656 .newBuilderForType() 657 .setKey(entry.getKey()) 658 .setValue(entry.getValue()) 659 .build(); 660 size += com.google.protobuf.CodedOutputStream.computeMessageSize(5, params__); 661 } 662 size += getUnknownFields().getSerializedSize(); 663 memoizedSize = size; 664 return size; 665 } 666 667 @java.lang.Override equals(final java.lang.Object obj)668 public boolean equals(final java.lang.Object obj) { 669 if (obj == this) { 670 return true; 671 } 672 if (!(obj instanceof com.google.cloud.automl.v1.BatchPredictRequest)) { 673 return super.equals(obj); 674 } 675 com.google.cloud.automl.v1.BatchPredictRequest other = 676 (com.google.cloud.automl.v1.BatchPredictRequest) obj; 677 678 if (!getName().equals(other.getName())) return false; 679 if (hasInputConfig() != other.hasInputConfig()) return false; 680 if (hasInputConfig()) { 681 if (!getInputConfig().equals(other.getInputConfig())) return false; 682 } 683 if (hasOutputConfig() != other.hasOutputConfig()) return false; 684 if (hasOutputConfig()) { 685 if (!getOutputConfig().equals(other.getOutputConfig())) return false; 686 } 687 if (!internalGetParams().equals(other.internalGetParams())) return false; 688 if (!getUnknownFields().equals(other.getUnknownFields())) return false; 689 return true; 690 } 691 692 @java.lang.Override hashCode()693 public int hashCode() { 694 if (memoizedHashCode != 0) { 695 return memoizedHashCode; 696 } 697 int hash = 41; 698 hash = (19 * hash) + getDescriptor().hashCode(); 699 hash = (37 * hash) + NAME_FIELD_NUMBER; 700 hash = (53 * hash) + getName().hashCode(); 701 if (hasInputConfig()) { 702 hash = (37 * hash) + INPUT_CONFIG_FIELD_NUMBER; 703 hash = (53 * hash) + getInputConfig().hashCode(); 704 } 705 if (hasOutputConfig()) { 706 hash = (37 * hash) + OUTPUT_CONFIG_FIELD_NUMBER; 707 hash = (53 * hash) + getOutputConfig().hashCode(); 708 } 709 if (!internalGetParams().getMap().isEmpty()) { 710 hash = (37 * hash) + PARAMS_FIELD_NUMBER; 711 hash = (53 * hash) + internalGetParams().hashCode(); 712 } 713 hash = (29 * hash) + getUnknownFields().hashCode(); 714 memoizedHashCode = hash; 715 return hash; 716 } 717 parseFrom(java.nio.ByteBuffer data)718 public static com.google.cloud.automl.v1.BatchPredictRequest parseFrom(java.nio.ByteBuffer data) 719 throws com.google.protobuf.InvalidProtocolBufferException { 720 return PARSER.parseFrom(data); 721 } 722 parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry)723 public static com.google.cloud.automl.v1.BatchPredictRequest parseFrom( 724 java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) 725 throws com.google.protobuf.InvalidProtocolBufferException { 726 return PARSER.parseFrom(data, extensionRegistry); 727 } 728 parseFrom( com.google.protobuf.ByteString data)729 public static com.google.cloud.automl.v1.BatchPredictRequest parseFrom( 730 com.google.protobuf.ByteString data) 731 throws com.google.protobuf.InvalidProtocolBufferException { 732 return PARSER.parseFrom(data); 733 } 734 parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry)735 public static com.google.cloud.automl.v1.BatchPredictRequest parseFrom( 736 com.google.protobuf.ByteString data, 737 com.google.protobuf.ExtensionRegistryLite extensionRegistry) 738 throws com.google.protobuf.InvalidProtocolBufferException { 739 return PARSER.parseFrom(data, extensionRegistry); 740 } 741 parseFrom(byte[] data)742 public static com.google.cloud.automl.v1.BatchPredictRequest parseFrom(byte[] data) 743 throws com.google.protobuf.InvalidProtocolBufferException { 744 return PARSER.parseFrom(data); 745 } 746 parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry)747 public static com.google.cloud.automl.v1.BatchPredictRequest parseFrom( 748 byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) 749 throws com.google.protobuf.InvalidProtocolBufferException { 750 return PARSER.parseFrom(data, extensionRegistry); 751 } 752 parseFrom(java.io.InputStream input)753 public static com.google.cloud.automl.v1.BatchPredictRequest parseFrom(java.io.InputStream input) 754 throws java.io.IOException { 755 return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input); 756 } 757 parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry)758 public static com.google.cloud.automl.v1.BatchPredictRequest parseFrom( 759 java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) 760 throws java.io.IOException { 761 return com.google.protobuf.GeneratedMessageV3.parseWithIOException( 762 PARSER, input, extensionRegistry); 763 } 764 parseDelimitedFrom( java.io.InputStream input)765 public static com.google.cloud.automl.v1.BatchPredictRequest parseDelimitedFrom( 766 java.io.InputStream input) throws java.io.IOException { 767 return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException(PARSER, input); 768 } 769 parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry)770 public static com.google.cloud.automl.v1.BatchPredictRequest parseDelimitedFrom( 771 java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) 772 throws java.io.IOException { 773 return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException( 774 PARSER, input, extensionRegistry); 775 } 776 parseFrom( com.google.protobuf.CodedInputStream input)777 public static com.google.cloud.automl.v1.BatchPredictRequest parseFrom( 778 com.google.protobuf.CodedInputStream input) throws java.io.IOException { 779 return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input); 780 } 781 parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry)782 public static com.google.cloud.automl.v1.BatchPredictRequest parseFrom( 783 com.google.protobuf.CodedInputStream input, 784 com.google.protobuf.ExtensionRegistryLite extensionRegistry) 785 throws java.io.IOException { 786 return com.google.protobuf.GeneratedMessageV3.parseWithIOException( 787 PARSER, input, extensionRegistry); 788 } 789 790 @java.lang.Override newBuilderForType()791 public Builder newBuilderForType() { 792 return newBuilder(); 793 } 794 newBuilder()795 public static Builder newBuilder() { 796 return DEFAULT_INSTANCE.toBuilder(); 797 } 798 newBuilder(com.google.cloud.automl.v1.BatchPredictRequest prototype)799 public static Builder newBuilder(com.google.cloud.automl.v1.BatchPredictRequest prototype) { 800 return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); 801 } 802 803 @java.lang.Override toBuilder()804 public Builder toBuilder() { 805 return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); 806 } 807 808 @java.lang.Override newBuilderForType(com.google.protobuf.GeneratedMessageV3.BuilderParent parent)809 protected Builder newBuilderForType(com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { 810 Builder builder = new Builder(parent); 811 return builder; 812 } 813 /** 814 * 815 * 816 * <pre> 817 * Request message for [PredictionService.BatchPredict][google.cloud.automl.v1.PredictionService.BatchPredict]. 818 * </pre> 819 * 820 * Protobuf type {@code google.cloud.automl.v1.BatchPredictRequest} 821 */ 822 public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder<Builder> 823 implements 824 // @@protoc_insertion_point(builder_implements:google.cloud.automl.v1.BatchPredictRequest) 825 com.google.cloud.automl.v1.BatchPredictRequestOrBuilder { getDescriptor()826 public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { 827 return com.google.cloud.automl.v1.PredictionServiceProto 828 .internal_static_google_cloud_automl_v1_BatchPredictRequest_descriptor; 829 } 830 831 @SuppressWarnings({"rawtypes"}) internalGetMapField(int number)832 protected com.google.protobuf.MapField internalGetMapField(int number) { 833 switch (number) { 834 case 5: 835 return internalGetParams(); 836 default: 837 throw new RuntimeException("Invalid map field number: " + number); 838 } 839 } 840 841 @SuppressWarnings({"rawtypes"}) internalGetMutableMapField(int number)842 protected com.google.protobuf.MapField internalGetMutableMapField(int number) { 843 switch (number) { 844 case 5: 845 return internalGetMutableParams(); 846 default: 847 throw new RuntimeException("Invalid map field number: " + number); 848 } 849 } 850 851 @java.lang.Override 852 protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()853 internalGetFieldAccessorTable() { 854 return com.google.cloud.automl.v1.PredictionServiceProto 855 .internal_static_google_cloud_automl_v1_BatchPredictRequest_fieldAccessorTable 856 .ensureFieldAccessorsInitialized( 857 com.google.cloud.automl.v1.BatchPredictRequest.class, 858 com.google.cloud.automl.v1.BatchPredictRequest.Builder.class); 859 } 860 861 // Construct using com.google.cloud.automl.v1.BatchPredictRequest.newBuilder() Builder()862 private Builder() {} 863 Builder(com.google.protobuf.GeneratedMessageV3.BuilderParent parent)864 private Builder(com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { 865 super(parent); 866 } 867 868 @java.lang.Override clear()869 public Builder clear() { 870 super.clear(); 871 bitField0_ = 0; 872 name_ = ""; 873 inputConfig_ = null; 874 if (inputConfigBuilder_ != null) { 875 inputConfigBuilder_.dispose(); 876 inputConfigBuilder_ = null; 877 } 878 outputConfig_ = null; 879 if (outputConfigBuilder_ != null) { 880 outputConfigBuilder_.dispose(); 881 outputConfigBuilder_ = null; 882 } 883 internalGetMutableParams().clear(); 884 return this; 885 } 886 887 @java.lang.Override getDescriptorForType()888 public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { 889 return com.google.cloud.automl.v1.PredictionServiceProto 890 .internal_static_google_cloud_automl_v1_BatchPredictRequest_descriptor; 891 } 892 893 @java.lang.Override getDefaultInstanceForType()894 public com.google.cloud.automl.v1.BatchPredictRequest getDefaultInstanceForType() { 895 return com.google.cloud.automl.v1.BatchPredictRequest.getDefaultInstance(); 896 } 897 898 @java.lang.Override build()899 public com.google.cloud.automl.v1.BatchPredictRequest build() { 900 com.google.cloud.automl.v1.BatchPredictRequest result = buildPartial(); 901 if (!result.isInitialized()) { 902 throw newUninitializedMessageException(result); 903 } 904 return result; 905 } 906 907 @java.lang.Override buildPartial()908 public com.google.cloud.automl.v1.BatchPredictRequest buildPartial() { 909 com.google.cloud.automl.v1.BatchPredictRequest result = 910 new com.google.cloud.automl.v1.BatchPredictRequest(this); 911 if (bitField0_ != 0) { 912 buildPartial0(result); 913 } 914 onBuilt(); 915 return result; 916 } 917 buildPartial0(com.google.cloud.automl.v1.BatchPredictRequest result)918 private void buildPartial0(com.google.cloud.automl.v1.BatchPredictRequest result) { 919 int from_bitField0_ = bitField0_; 920 if (((from_bitField0_ & 0x00000001) != 0)) { 921 result.name_ = name_; 922 } 923 if (((from_bitField0_ & 0x00000002) != 0)) { 924 result.inputConfig_ = 925 inputConfigBuilder_ == null ? inputConfig_ : inputConfigBuilder_.build(); 926 } 927 if (((from_bitField0_ & 0x00000004) != 0)) { 928 result.outputConfig_ = 929 outputConfigBuilder_ == null ? outputConfig_ : outputConfigBuilder_.build(); 930 } 931 if (((from_bitField0_ & 0x00000008) != 0)) { 932 result.params_ = internalGetParams(); 933 result.params_.makeImmutable(); 934 } 935 } 936 937 @java.lang.Override clone()938 public Builder clone() { 939 return super.clone(); 940 } 941 942 @java.lang.Override setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value)943 public Builder setField( 944 com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { 945 return super.setField(field, value); 946 } 947 948 @java.lang.Override clearField(com.google.protobuf.Descriptors.FieldDescriptor field)949 public Builder clearField(com.google.protobuf.Descriptors.FieldDescriptor field) { 950 return super.clearField(field); 951 } 952 953 @java.lang.Override clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof)954 public Builder clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof) { 955 return super.clearOneof(oneof); 956 } 957 958 @java.lang.Override setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value)959 public Builder setRepeatedField( 960 com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { 961 return super.setRepeatedField(field, index, value); 962 } 963 964 @java.lang.Override addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value)965 public Builder addRepeatedField( 966 com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { 967 return super.addRepeatedField(field, value); 968 } 969 970 @java.lang.Override mergeFrom(com.google.protobuf.Message other)971 public Builder mergeFrom(com.google.protobuf.Message other) { 972 if (other instanceof com.google.cloud.automl.v1.BatchPredictRequest) { 973 return mergeFrom((com.google.cloud.automl.v1.BatchPredictRequest) other); 974 } else { 975 super.mergeFrom(other); 976 return this; 977 } 978 } 979 mergeFrom(com.google.cloud.automl.v1.BatchPredictRequest other)980 public Builder mergeFrom(com.google.cloud.automl.v1.BatchPredictRequest other) { 981 if (other == com.google.cloud.automl.v1.BatchPredictRequest.getDefaultInstance()) return this; 982 if (!other.getName().isEmpty()) { 983 name_ = other.name_; 984 bitField0_ |= 0x00000001; 985 onChanged(); 986 } 987 if (other.hasInputConfig()) { 988 mergeInputConfig(other.getInputConfig()); 989 } 990 if (other.hasOutputConfig()) { 991 mergeOutputConfig(other.getOutputConfig()); 992 } 993 internalGetMutableParams().mergeFrom(other.internalGetParams()); 994 bitField0_ |= 0x00000008; 995 this.mergeUnknownFields(other.getUnknownFields()); 996 onChanged(); 997 return this; 998 } 999 1000 @java.lang.Override isInitialized()1001 public final boolean isInitialized() { 1002 return true; 1003 } 1004 1005 @java.lang.Override mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry)1006 public Builder mergeFrom( 1007 com.google.protobuf.CodedInputStream input, 1008 com.google.protobuf.ExtensionRegistryLite extensionRegistry) 1009 throws java.io.IOException { 1010 if (extensionRegistry == null) { 1011 throw new java.lang.NullPointerException(); 1012 } 1013 try { 1014 boolean done = false; 1015 while (!done) { 1016 int tag = input.readTag(); 1017 switch (tag) { 1018 case 0: 1019 done = true; 1020 break; 1021 case 10: 1022 { 1023 name_ = input.readStringRequireUtf8(); 1024 bitField0_ |= 0x00000001; 1025 break; 1026 } // case 10 1027 case 26: 1028 { 1029 input.readMessage(getInputConfigFieldBuilder().getBuilder(), extensionRegistry); 1030 bitField0_ |= 0x00000002; 1031 break; 1032 } // case 26 1033 case 34: 1034 { 1035 input.readMessage(getOutputConfigFieldBuilder().getBuilder(), extensionRegistry); 1036 bitField0_ |= 0x00000004; 1037 break; 1038 } // case 34 1039 case 42: 1040 { 1041 com.google.protobuf.MapEntry<java.lang.String, java.lang.String> params__ = 1042 input.readMessage( 1043 ParamsDefaultEntryHolder.defaultEntry.getParserForType(), 1044 extensionRegistry); 1045 internalGetMutableParams() 1046 .getMutableMap() 1047 .put(params__.getKey(), params__.getValue()); 1048 bitField0_ |= 0x00000008; 1049 break; 1050 } // case 42 1051 default: 1052 { 1053 if (!super.parseUnknownField(input, extensionRegistry, tag)) { 1054 done = true; // was an endgroup tag 1055 } 1056 break; 1057 } // default: 1058 } // switch (tag) 1059 } // while (!done) 1060 } catch (com.google.protobuf.InvalidProtocolBufferException e) { 1061 throw e.unwrapIOException(); 1062 } finally { 1063 onChanged(); 1064 } // finally 1065 return this; 1066 } 1067 1068 private int bitField0_; 1069 1070 private java.lang.Object name_ = ""; 1071 /** 1072 * 1073 * 1074 * <pre> 1075 * Required. Name of the model requested to serve the batch prediction. 1076 * </pre> 1077 * 1078 * <code> 1079 * string name = 1 [(.google.api.field_behavior) = REQUIRED, (.google.api.resource_reference) = { ... } 1080 * </code> 1081 * 1082 * @return The name. 1083 */ getName()1084 public java.lang.String getName() { 1085 java.lang.Object ref = name_; 1086 if (!(ref instanceof java.lang.String)) { 1087 com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; 1088 java.lang.String s = bs.toStringUtf8(); 1089 name_ = s; 1090 return s; 1091 } else { 1092 return (java.lang.String) ref; 1093 } 1094 } 1095 /** 1096 * 1097 * 1098 * <pre> 1099 * Required. Name of the model requested to serve the batch prediction. 1100 * </pre> 1101 * 1102 * <code> 1103 * string name = 1 [(.google.api.field_behavior) = REQUIRED, (.google.api.resource_reference) = { ... } 1104 * </code> 1105 * 1106 * @return The bytes for name. 1107 */ getNameBytes()1108 public com.google.protobuf.ByteString getNameBytes() { 1109 java.lang.Object ref = name_; 1110 if (ref instanceof String) { 1111 com.google.protobuf.ByteString b = 1112 com.google.protobuf.ByteString.copyFromUtf8((java.lang.String) ref); 1113 name_ = b; 1114 return b; 1115 } else { 1116 return (com.google.protobuf.ByteString) ref; 1117 } 1118 } 1119 /** 1120 * 1121 * 1122 * <pre> 1123 * Required. Name of the model requested to serve the batch prediction. 1124 * </pre> 1125 * 1126 * <code> 1127 * string name = 1 [(.google.api.field_behavior) = REQUIRED, (.google.api.resource_reference) = { ... } 1128 * </code> 1129 * 1130 * @param value The name to set. 1131 * @return This builder for chaining. 1132 */ setName(java.lang.String value)1133 public Builder setName(java.lang.String value) { 1134 if (value == null) { 1135 throw new NullPointerException(); 1136 } 1137 name_ = value; 1138 bitField0_ |= 0x00000001; 1139 onChanged(); 1140 return this; 1141 } 1142 /** 1143 * 1144 * 1145 * <pre> 1146 * Required. Name of the model requested to serve the batch prediction. 1147 * </pre> 1148 * 1149 * <code> 1150 * string name = 1 [(.google.api.field_behavior) = REQUIRED, (.google.api.resource_reference) = { ... } 1151 * </code> 1152 * 1153 * @return This builder for chaining. 1154 */ clearName()1155 public Builder clearName() { 1156 name_ = getDefaultInstance().getName(); 1157 bitField0_ = (bitField0_ & ~0x00000001); 1158 onChanged(); 1159 return this; 1160 } 1161 /** 1162 * 1163 * 1164 * <pre> 1165 * Required. Name of the model requested to serve the batch prediction. 1166 * </pre> 1167 * 1168 * <code> 1169 * string name = 1 [(.google.api.field_behavior) = REQUIRED, (.google.api.resource_reference) = { ... } 1170 * </code> 1171 * 1172 * @param value The bytes for name to set. 1173 * @return This builder for chaining. 1174 */ setNameBytes(com.google.protobuf.ByteString value)1175 public Builder setNameBytes(com.google.protobuf.ByteString value) { 1176 if (value == null) { 1177 throw new NullPointerException(); 1178 } 1179 checkByteStringIsUtf8(value); 1180 name_ = value; 1181 bitField0_ |= 0x00000001; 1182 onChanged(); 1183 return this; 1184 } 1185 1186 private com.google.cloud.automl.v1.BatchPredictInputConfig inputConfig_; 1187 private com.google.protobuf.SingleFieldBuilderV3< 1188 com.google.cloud.automl.v1.BatchPredictInputConfig, 1189 com.google.cloud.automl.v1.BatchPredictInputConfig.Builder, 1190 com.google.cloud.automl.v1.BatchPredictInputConfigOrBuilder> 1191 inputConfigBuilder_; 1192 /** 1193 * 1194 * 1195 * <pre> 1196 * Required. The input configuration for batch prediction. 1197 * </pre> 1198 * 1199 * <code> 1200 * .google.cloud.automl.v1.BatchPredictInputConfig input_config = 3 [(.google.api.field_behavior) = REQUIRED]; 1201 * </code> 1202 * 1203 * @return Whether the inputConfig field is set. 1204 */ hasInputConfig()1205 public boolean hasInputConfig() { 1206 return ((bitField0_ & 0x00000002) != 0); 1207 } 1208 /** 1209 * 1210 * 1211 * <pre> 1212 * Required. The input configuration for batch prediction. 1213 * </pre> 1214 * 1215 * <code> 1216 * .google.cloud.automl.v1.BatchPredictInputConfig input_config = 3 [(.google.api.field_behavior) = REQUIRED]; 1217 * </code> 1218 * 1219 * @return The inputConfig. 1220 */ getInputConfig()1221 public com.google.cloud.automl.v1.BatchPredictInputConfig getInputConfig() { 1222 if (inputConfigBuilder_ == null) { 1223 return inputConfig_ == null 1224 ? com.google.cloud.automl.v1.BatchPredictInputConfig.getDefaultInstance() 1225 : inputConfig_; 1226 } else { 1227 return inputConfigBuilder_.getMessage(); 1228 } 1229 } 1230 /** 1231 * 1232 * 1233 * <pre> 1234 * Required. The input configuration for batch prediction. 1235 * </pre> 1236 * 1237 * <code> 1238 * .google.cloud.automl.v1.BatchPredictInputConfig input_config = 3 [(.google.api.field_behavior) = REQUIRED]; 1239 * </code> 1240 */ setInputConfig(com.google.cloud.automl.v1.BatchPredictInputConfig value)1241 public Builder setInputConfig(com.google.cloud.automl.v1.BatchPredictInputConfig value) { 1242 if (inputConfigBuilder_ == null) { 1243 if (value == null) { 1244 throw new NullPointerException(); 1245 } 1246 inputConfig_ = value; 1247 } else { 1248 inputConfigBuilder_.setMessage(value); 1249 } 1250 bitField0_ |= 0x00000002; 1251 onChanged(); 1252 return this; 1253 } 1254 /** 1255 * 1256 * 1257 * <pre> 1258 * Required. The input configuration for batch prediction. 1259 * </pre> 1260 * 1261 * <code> 1262 * .google.cloud.automl.v1.BatchPredictInputConfig input_config = 3 [(.google.api.field_behavior) = REQUIRED]; 1263 * </code> 1264 */ setInputConfig( com.google.cloud.automl.v1.BatchPredictInputConfig.Builder builderForValue)1265 public Builder setInputConfig( 1266 com.google.cloud.automl.v1.BatchPredictInputConfig.Builder builderForValue) { 1267 if (inputConfigBuilder_ == null) { 1268 inputConfig_ = builderForValue.build(); 1269 } else { 1270 inputConfigBuilder_.setMessage(builderForValue.build()); 1271 } 1272 bitField0_ |= 0x00000002; 1273 onChanged(); 1274 return this; 1275 } 1276 /** 1277 * 1278 * 1279 * <pre> 1280 * Required. The input configuration for batch prediction. 1281 * </pre> 1282 * 1283 * <code> 1284 * .google.cloud.automl.v1.BatchPredictInputConfig input_config = 3 [(.google.api.field_behavior) = REQUIRED]; 1285 * </code> 1286 */ mergeInputConfig(com.google.cloud.automl.v1.BatchPredictInputConfig value)1287 public Builder mergeInputConfig(com.google.cloud.automl.v1.BatchPredictInputConfig value) { 1288 if (inputConfigBuilder_ == null) { 1289 if (((bitField0_ & 0x00000002) != 0) 1290 && inputConfig_ != null 1291 && inputConfig_ 1292 != com.google.cloud.automl.v1.BatchPredictInputConfig.getDefaultInstance()) { 1293 getInputConfigBuilder().mergeFrom(value); 1294 } else { 1295 inputConfig_ = value; 1296 } 1297 } else { 1298 inputConfigBuilder_.mergeFrom(value); 1299 } 1300 bitField0_ |= 0x00000002; 1301 onChanged(); 1302 return this; 1303 } 1304 /** 1305 * 1306 * 1307 * <pre> 1308 * Required. The input configuration for batch prediction. 1309 * </pre> 1310 * 1311 * <code> 1312 * .google.cloud.automl.v1.BatchPredictInputConfig input_config = 3 [(.google.api.field_behavior) = REQUIRED]; 1313 * </code> 1314 */ clearInputConfig()1315 public Builder clearInputConfig() { 1316 bitField0_ = (bitField0_ & ~0x00000002); 1317 inputConfig_ = null; 1318 if (inputConfigBuilder_ != null) { 1319 inputConfigBuilder_.dispose(); 1320 inputConfigBuilder_ = null; 1321 } 1322 onChanged(); 1323 return this; 1324 } 1325 /** 1326 * 1327 * 1328 * <pre> 1329 * Required. The input configuration for batch prediction. 1330 * </pre> 1331 * 1332 * <code> 1333 * .google.cloud.automl.v1.BatchPredictInputConfig input_config = 3 [(.google.api.field_behavior) = REQUIRED]; 1334 * </code> 1335 */ getInputConfigBuilder()1336 public com.google.cloud.automl.v1.BatchPredictInputConfig.Builder getInputConfigBuilder() { 1337 bitField0_ |= 0x00000002; 1338 onChanged(); 1339 return getInputConfigFieldBuilder().getBuilder(); 1340 } 1341 /** 1342 * 1343 * 1344 * <pre> 1345 * Required. The input configuration for batch prediction. 1346 * </pre> 1347 * 1348 * <code> 1349 * .google.cloud.automl.v1.BatchPredictInputConfig input_config = 3 [(.google.api.field_behavior) = REQUIRED]; 1350 * </code> 1351 */ getInputConfigOrBuilder()1352 public com.google.cloud.automl.v1.BatchPredictInputConfigOrBuilder getInputConfigOrBuilder() { 1353 if (inputConfigBuilder_ != null) { 1354 return inputConfigBuilder_.getMessageOrBuilder(); 1355 } else { 1356 return inputConfig_ == null 1357 ? com.google.cloud.automl.v1.BatchPredictInputConfig.getDefaultInstance() 1358 : inputConfig_; 1359 } 1360 } 1361 /** 1362 * 1363 * 1364 * <pre> 1365 * Required. The input configuration for batch prediction. 1366 * </pre> 1367 * 1368 * <code> 1369 * .google.cloud.automl.v1.BatchPredictInputConfig input_config = 3 [(.google.api.field_behavior) = REQUIRED]; 1370 * </code> 1371 */ 1372 private com.google.protobuf.SingleFieldBuilderV3< 1373 com.google.cloud.automl.v1.BatchPredictInputConfig, 1374 com.google.cloud.automl.v1.BatchPredictInputConfig.Builder, 1375 com.google.cloud.automl.v1.BatchPredictInputConfigOrBuilder> getInputConfigFieldBuilder()1376 getInputConfigFieldBuilder() { 1377 if (inputConfigBuilder_ == null) { 1378 inputConfigBuilder_ = 1379 new com.google.protobuf.SingleFieldBuilderV3< 1380 com.google.cloud.automl.v1.BatchPredictInputConfig, 1381 com.google.cloud.automl.v1.BatchPredictInputConfig.Builder, 1382 com.google.cloud.automl.v1.BatchPredictInputConfigOrBuilder>( 1383 getInputConfig(), getParentForChildren(), isClean()); 1384 inputConfig_ = null; 1385 } 1386 return inputConfigBuilder_; 1387 } 1388 1389 private com.google.cloud.automl.v1.BatchPredictOutputConfig outputConfig_; 1390 private com.google.protobuf.SingleFieldBuilderV3< 1391 com.google.cloud.automl.v1.BatchPredictOutputConfig, 1392 com.google.cloud.automl.v1.BatchPredictOutputConfig.Builder, 1393 com.google.cloud.automl.v1.BatchPredictOutputConfigOrBuilder> 1394 outputConfigBuilder_; 1395 /** 1396 * 1397 * 1398 * <pre> 1399 * Required. The Configuration specifying where output predictions should 1400 * be written. 1401 * </pre> 1402 * 1403 * <code> 1404 * .google.cloud.automl.v1.BatchPredictOutputConfig output_config = 4 [(.google.api.field_behavior) = REQUIRED]; 1405 * </code> 1406 * 1407 * @return Whether the outputConfig field is set. 1408 */ hasOutputConfig()1409 public boolean hasOutputConfig() { 1410 return ((bitField0_ & 0x00000004) != 0); 1411 } 1412 /** 1413 * 1414 * 1415 * <pre> 1416 * Required. The Configuration specifying where output predictions should 1417 * be written. 1418 * </pre> 1419 * 1420 * <code> 1421 * .google.cloud.automl.v1.BatchPredictOutputConfig output_config = 4 [(.google.api.field_behavior) = REQUIRED]; 1422 * </code> 1423 * 1424 * @return The outputConfig. 1425 */ getOutputConfig()1426 public com.google.cloud.automl.v1.BatchPredictOutputConfig getOutputConfig() { 1427 if (outputConfigBuilder_ == null) { 1428 return outputConfig_ == null 1429 ? com.google.cloud.automl.v1.BatchPredictOutputConfig.getDefaultInstance() 1430 : outputConfig_; 1431 } else { 1432 return outputConfigBuilder_.getMessage(); 1433 } 1434 } 1435 /** 1436 * 1437 * 1438 * <pre> 1439 * Required. The Configuration specifying where output predictions should 1440 * be written. 1441 * </pre> 1442 * 1443 * <code> 1444 * .google.cloud.automl.v1.BatchPredictOutputConfig output_config = 4 [(.google.api.field_behavior) = REQUIRED]; 1445 * </code> 1446 */ setOutputConfig(com.google.cloud.automl.v1.BatchPredictOutputConfig value)1447 public Builder setOutputConfig(com.google.cloud.automl.v1.BatchPredictOutputConfig value) { 1448 if (outputConfigBuilder_ == null) { 1449 if (value == null) { 1450 throw new NullPointerException(); 1451 } 1452 outputConfig_ = value; 1453 } else { 1454 outputConfigBuilder_.setMessage(value); 1455 } 1456 bitField0_ |= 0x00000004; 1457 onChanged(); 1458 return this; 1459 } 1460 /** 1461 * 1462 * 1463 * <pre> 1464 * Required. The Configuration specifying where output predictions should 1465 * be written. 1466 * </pre> 1467 * 1468 * <code> 1469 * .google.cloud.automl.v1.BatchPredictOutputConfig output_config = 4 [(.google.api.field_behavior) = REQUIRED]; 1470 * </code> 1471 */ setOutputConfig( com.google.cloud.automl.v1.BatchPredictOutputConfig.Builder builderForValue)1472 public Builder setOutputConfig( 1473 com.google.cloud.automl.v1.BatchPredictOutputConfig.Builder builderForValue) { 1474 if (outputConfigBuilder_ == null) { 1475 outputConfig_ = builderForValue.build(); 1476 } else { 1477 outputConfigBuilder_.setMessage(builderForValue.build()); 1478 } 1479 bitField0_ |= 0x00000004; 1480 onChanged(); 1481 return this; 1482 } 1483 /** 1484 * 1485 * 1486 * <pre> 1487 * Required. The Configuration specifying where output predictions should 1488 * be written. 1489 * </pre> 1490 * 1491 * <code> 1492 * .google.cloud.automl.v1.BatchPredictOutputConfig output_config = 4 [(.google.api.field_behavior) = REQUIRED]; 1493 * </code> 1494 */ mergeOutputConfig(com.google.cloud.automl.v1.BatchPredictOutputConfig value)1495 public Builder mergeOutputConfig(com.google.cloud.automl.v1.BatchPredictOutputConfig value) { 1496 if (outputConfigBuilder_ == null) { 1497 if (((bitField0_ & 0x00000004) != 0) 1498 && outputConfig_ != null 1499 && outputConfig_ 1500 != com.google.cloud.automl.v1.BatchPredictOutputConfig.getDefaultInstance()) { 1501 getOutputConfigBuilder().mergeFrom(value); 1502 } else { 1503 outputConfig_ = value; 1504 } 1505 } else { 1506 outputConfigBuilder_.mergeFrom(value); 1507 } 1508 bitField0_ |= 0x00000004; 1509 onChanged(); 1510 return this; 1511 } 1512 /** 1513 * 1514 * 1515 * <pre> 1516 * Required. The Configuration specifying where output predictions should 1517 * be written. 1518 * </pre> 1519 * 1520 * <code> 1521 * .google.cloud.automl.v1.BatchPredictOutputConfig output_config = 4 [(.google.api.field_behavior) = REQUIRED]; 1522 * </code> 1523 */ clearOutputConfig()1524 public Builder clearOutputConfig() { 1525 bitField0_ = (bitField0_ & ~0x00000004); 1526 outputConfig_ = null; 1527 if (outputConfigBuilder_ != null) { 1528 outputConfigBuilder_.dispose(); 1529 outputConfigBuilder_ = null; 1530 } 1531 onChanged(); 1532 return this; 1533 } 1534 /** 1535 * 1536 * 1537 * <pre> 1538 * Required. The Configuration specifying where output predictions should 1539 * be written. 1540 * </pre> 1541 * 1542 * <code> 1543 * .google.cloud.automl.v1.BatchPredictOutputConfig output_config = 4 [(.google.api.field_behavior) = REQUIRED]; 1544 * </code> 1545 */ getOutputConfigBuilder()1546 public com.google.cloud.automl.v1.BatchPredictOutputConfig.Builder getOutputConfigBuilder() { 1547 bitField0_ |= 0x00000004; 1548 onChanged(); 1549 return getOutputConfigFieldBuilder().getBuilder(); 1550 } 1551 /** 1552 * 1553 * 1554 * <pre> 1555 * Required. The Configuration specifying where output predictions should 1556 * be written. 1557 * </pre> 1558 * 1559 * <code> 1560 * .google.cloud.automl.v1.BatchPredictOutputConfig output_config = 4 [(.google.api.field_behavior) = REQUIRED]; 1561 * </code> 1562 */ getOutputConfigOrBuilder()1563 public com.google.cloud.automl.v1.BatchPredictOutputConfigOrBuilder getOutputConfigOrBuilder() { 1564 if (outputConfigBuilder_ != null) { 1565 return outputConfigBuilder_.getMessageOrBuilder(); 1566 } else { 1567 return outputConfig_ == null 1568 ? com.google.cloud.automl.v1.BatchPredictOutputConfig.getDefaultInstance() 1569 : outputConfig_; 1570 } 1571 } 1572 /** 1573 * 1574 * 1575 * <pre> 1576 * Required. The Configuration specifying where output predictions should 1577 * be written. 1578 * </pre> 1579 * 1580 * <code> 1581 * .google.cloud.automl.v1.BatchPredictOutputConfig output_config = 4 [(.google.api.field_behavior) = REQUIRED]; 1582 * </code> 1583 */ 1584 private com.google.protobuf.SingleFieldBuilderV3< 1585 com.google.cloud.automl.v1.BatchPredictOutputConfig, 1586 com.google.cloud.automl.v1.BatchPredictOutputConfig.Builder, 1587 com.google.cloud.automl.v1.BatchPredictOutputConfigOrBuilder> getOutputConfigFieldBuilder()1588 getOutputConfigFieldBuilder() { 1589 if (outputConfigBuilder_ == null) { 1590 outputConfigBuilder_ = 1591 new com.google.protobuf.SingleFieldBuilderV3< 1592 com.google.cloud.automl.v1.BatchPredictOutputConfig, 1593 com.google.cloud.automl.v1.BatchPredictOutputConfig.Builder, 1594 com.google.cloud.automl.v1.BatchPredictOutputConfigOrBuilder>( 1595 getOutputConfig(), getParentForChildren(), isClean()); 1596 outputConfig_ = null; 1597 } 1598 return outputConfigBuilder_; 1599 } 1600 1601 private com.google.protobuf.MapField<java.lang.String, java.lang.String> params_; 1602 internalGetParams()1603 private com.google.protobuf.MapField<java.lang.String, java.lang.String> internalGetParams() { 1604 if (params_ == null) { 1605 return com.google.protobuf.MapField.emptyMapField(ParamsDefaultEntryHolder.defaultEntry); 1606 } 1607 return params_; 1608 } 1609 1610 private com.google.protobuf.MapField<java.lang.String, java.lang.String> internalGetMutableParams()1611 internalGetMutableParams() { 1612 if (params_ == null) { 1613 params_ = com.google.protobuf.MapField.newMapField(ParamsDefaultEntryHolder.defaultEntry); 1614 } 1615 if (!params_.isMutable()) { 1616 params_ = params_.copy(); 1617 } 1618 bitField0_ |= 0x00000008; 1619 onChanged(); 1620 return params_; 1621 } 1622 getParamsCount()1623 public int getParamsCount() { 1624 return internalGetParams().getMap().size(); 1625 } 1626 /** 1627 * 1628 * 1629 * <pre> 1630 * Additional domain-specific parameters for the predictions, any string must 1631 * be up to 25000 characters long. 1632 * AutoML Natural Language Classification 1633 * `score_threshold` 1634 * : (float) A value from 0.0 to 1.0. When the model 1635 * makes predictions for a text snippet, it will only produce results 1636 * that have at least this confidence score. The default is 0.5. 1637 * AutoML Vision Classification 1638 * `score_threshold` 1639 * : (float) A value from 0.0 to 1.0. When the model 1640 * makes predictions for an image, it will only produce results that 1641 * have at least this confidence score. The default is 0.5. 1642 * AutoML Vision Object Detection 1643 * `score_threshold` 1644 * : (float) When Model detects objects on the image, 1645 * it will only produce bounding boxes which have at least this 1646 * confidence score. Value in 0 to 1 range, default is 0.5. 1647 * `max_bounding_box_count` 1648 * : (int64) The maximum number of bounding 1649 * boxes returned per image. The default is 100, the 1650 * number of bounding boxes returned might be limited by the server. 1651 * AutoML Video Intelligence Classification 1652 * `score_threshold` 1653 * : (float) A value from 0.0 to 1.0. When the model 1654 * makes predictions for a video, it will only produce results that 1655 * have at least this confidence score. The default is 0.5. 1656 * `segment_classification` 1657 * : (boolean) Set to true to request 1658 * segment-level classification. AutoML Video Intelligence returns 1659 * labels and their confidence scores for the entire segment of the 1660 * video that user specified in the request configuration. 1661 * The default is true. 1662 * `shot_classification` 1663 * : (boolean) Set to true to request shot-level 1664 * classification. AutoML Video Intelligence determines the boundaries 1665 * for each camera shot in the entire segment of the video that user 1666 * specified in the request configuration. AutoML Video Intelligence 1667 * then returns labels and their confidence scores for each detected 1668 * shot, along with the start and end time of the shot. 1669 * The default is false. 1670 * WARNING: Model evaluation is not done for this classification type, 1671 * the quality of it depends on training data, but there are no metrics 1672 * provided to describe that quality. 1673 * `1s_interval_classification` 1674 * : (boolean) Set to true to request 1675 * classification for a video at one-second intervals. AutoML Video 1676 * Intelligence returns labels and their confidence scores for each 1677 * second of the entire segment of the video that user specified in the 1678 * request configuration. The default is false. 1679 * WARNING: Model evaluation is not done for this classification 1680 * type, the quality of it depends on training data, but there are no 1681 * metrics provided to describe that quality. 1682 * AutoML Video Intelligence Object Tracking 1683 * `score_threshold` 1684 * : (float) When Model detects objects on video frames, 1685 * it will only produce bounding boxes which have at least this 1686 * confidence score. Value in 0 to 1 range, default is 0.5. 1687 * `max_bounding_box_count` 1688 * : (int64) The maximum number of bounding 1689 * boxes returned per image. The default is 100, the 1690 * number of bounding boxes returned might be limited by the server. 1691 * `min_bounding_box_size` 1692 * : (float) Only bounding boxes with shortest edge 1693 * at least that long as a relative value of video frame size are 1694 * returned. Value in 0 to 1 range. Default is 0. 1695 * </pre> 1696 * 1697 * <code>map<string, string> params = 5;</code> 1698 */ 1699 @java.lang.Override containsParams(java.lang.String key)1700 public boolean containsParams(java.lang.String key) { 1701 if (key == null) { 1702 throw new NullPointerException("map key"); 1703 } 1704 return internalGetParams().getMap().containsKey(key); 1705 } 1706 /** Use {@link #getParamsMap()} instead. */ 1707 @java.lang.Override 1708 @java.lang.Deprecated getParams()1709 public java.util.Map<java.lang.String, java.lang.String> getParams() { 1710 return getParamsMap(); 1711 } 1712 /** 1713 * 1714 * 1715 * <pre> 1716 * Additional domain-specific parameters for the predictions, any string must 1717 * be up to 25000 characters long. 1718 * AutoML Natural Language Classification 1719 * `score_threshold` 1720 * : (float) A value from 0.0 to 1.0. When the model 1721 * makes predictions for a text snippet, it will only produce results 1722 * that have at least this confidence score. The default is 0.5. 1723 * AutoML Vision Classification 1724 * `score_threshold` 1725 * : (float) A value from 0.0 to 1.0. When the model 1726 * makes predictions for an image, it will only produce results that 1727 * have at least this confidence score. The default is 0.5. 1728 * AutoML Vision Object Detection 1729 * `score_threshold` 1730 * : (float) When Model detects objects on the image, 1731 * it will only produce bounding boxes which have at least this 1732 * confidence score. Value in 0 to 1 range, default is 0.5. 1733 * `max_bounding_box_count` 1734 * : (int64) The maximum number of bounding 1735 * boxes returned per image. The default is 100, the 1736 * number of bounding boxes returned might be limited by the server. 1737 * AutoML Video Intelligence Classification 1738 * `score_threshold` 1739 * : (float) A value from 0.0 to 1.0. When the model 1740 * makes predictions for a video, it will only produce results that 1741 * have at least this confidence score. The default is 0.5. 1742 * `segment_classification` 1743 * : (boolean) Set to true to request 1744 * segment-level classification. AutoML Video Intelligence returns 1745 * labels and their confidence scores for the entire segment of the 1746 * video that user specified in the request configuration. 1747 * The default is true. 1748 * `shot_classification` 1749 * : (boolean) Set to true to request shot-level 1750 * classification. AutoML Video Intelligence determines the boundaries 1751 * for each camera shot in the entire segment of the video that user 1752 * specified in the request configuration. AutoML Video Intelligence 1753 * then returns labels and their confidence scores for each detected 1754 * shot, along with the start and end time of the shot. 1755 * The default is false. 1756 * WARNING: Model evaluation is not done for this classification type, 1757 * the quality of it depends on training data, but there are no metrics 1758 * provided to describe that quality. 1759 * `1s_interval_classification` 1760 * : (boolean) Set to true to request 1761 * classification for a video at one-second intervals. AutoML Video 1762 * Intelligence returns labels and their confidence scores for each 1763 * second of the entire segment of the video that user specified in the 1764 * request configuration. The default is false. 1765 * WARNING: Model evaluation is not done for this classification 1766 * type, the quality of it depends on training data, but there are no 1767 * metrics provided to describe that quality. 1768 * AutoML Video Intelligence Object Tracking 1769 * `score_threshold` 1770 * : (float) When Model detects objects on video frames, 1771 * it will only produce bounding boxes which have at least this 1772 * confidence score. Value in 0 to 1 range, default is 0.5. 1773 * `max_bounding_box_count` 1774 * : (int64) The maximum number of bounding 1775 * boxes returned per image. The default is 100, the 1776 * number of bounding boxes returned might be limited by the server. 1777 * `min_bounding_box_size` 1778 * : (float) Only bounding boxes with shortest edge 1779 * at least that long as a relative value of video frame size are 1780 * returned. Value in 0 to 1 range. Default is 0. 1781 * </pre> 1782 * 1783 * <code>map<string, string> params = 5;</code> 1784 */ 1785 @java.lang.Override getParamsMap()1786 public java.util.Map<java.lang.String, java.lang.String> getParamsMap() { 1787 return internalGetParams().getMap(); 1788 } 1789 /** 1790 * 1791 * 1792 * <pre> 1793 * Additional domain-specific parameters for the predictions, any string must 1794 * be up to 25000 characters long. 1795 * AutoML Natural Language Classification 1796 * `score_threshold` 1797 * : (float) A value from 0.0 to 1.0. When the model 1798 * makes predictions for a text snippet, it will only produce results 1799 * that have at least this confidence score. The default is 0.5. 1800 * AutoML Vision Classification 1801 * `score_threshold` 1802 * : (float) A value from 0.0 to 1.0. When the model 1803 * makes predictions for an image, it will only produce results that 1804 * have at least this confidence score. The default is 0.5. 1805 * AutoML Vision Object Detection 1806 * `score_threshold` 1807 * : (float) When Model detects objects on the image, 1808 * it will only produce bounding boxes which have at least this 1809 * confidence score. Value in 0 to 1 range, default is 0.5. 1810 * `max_bounding_box_count` 1811 * : (int64) The maximum number of bounding 1812 * boxes returned per image. The default is 100, the 1813 * number of bounding boxes returned might be limited by the server. 1814 * AutoML Video Intelligence Classification 1815 * `score_threshold` 1816 * : (float) A value from 0.0 to 1.0. When the model 1817 * makes predictions for a video, it will only produce results that 1818 * have at least this confidence score. The default is 0.5. 1819 * `segment_classification` 1820 * : (boolean) Set to true to request 1821 * segment-level classification. AutoML Video Intelligence returns 1822 * labels and their confidence scores for the entire segment of the 1823 * video that user specified in the request configuration. 1824 * The default is true. 1825 * `shot_classification` 1826 * : (boolean) Set to true to request shot-level 1827 * classification. AutoML Video Intelligence determines the boundaries 1828 * for each camera shot in the entire segment of the video that user 1829 * specified in the request configuration. AutoML Video Intelligence 1830 * then returns labels and their confidence scores for each detected 1831 * shot, along with the start and end time of the shot. 1832 * The default is false. 1833 * WARNING: Model evaluation is not done for this classification type, 1834 * the quality of it depends on training data, but there are no metrics 1835 * provided to describe that quality. 1836 * `1s_interval_classification` 1837 * : (boolean) Set to true to request 1838 * classification for a video at one-second intervals. AutoML Video 1839 * Intelligence returns labels and their confidence scores for each 1840 * second of the entire segment of the video that user specified in the 1841 * request configuration. The default is false. 1842 * WARNING: Model evaluation is not done for this classification 1843 * type, the quality of it depends on training data, but there are no 1844 * metrics provided to describe that quality. 1845 * AutoML Video Intelligence Object Tracking 1846 * `score_threshold` 1847 * : (float) When Model detects objects on video frames, 1848 * it will only produce bounding boxes which have at least this 1849 * confidence score. Value in 0 to 1 range, default is 0.5. 1850 * `max_bounding_box_count` 1851 * : (int64) The maximum number of bounding 1852 * boxes returned per image. The default is 100, the 1853 * number of bounding boxes returned might be limited by the server. 1854 * `min_bounding_box_size` 1855 * : (float) Only bounding boxes with shortest edge 1856 * at least that long as a relative value of video frame size are 1857 * returned. Value in 0 to 1 range. Default is 0. 1858 * </pre> 1859 * 1860 * <code>map<string, string> params = 5;</code> 1861 */ 1862 @java.lang.Override getParamsOrDefault( java.lang.String key, java.lang.String defaultValue)1863 public /* nullable */ java.lang.String getParamsOrDefault( 1864 java.lang.String key, 1865 /* nullable */ 1866 java.lang.String defaultValue) { 1867 if (key == null) { 1868 throw new NullPointerException("map key"); 1869 } 1870 java.util.Map<java.lang.String, java.lang.String> map = internalGetParams().getMap(); 1871 return map.containsKey(key) ? map.get(key) : defaultValue; 1872 } 1873 /** 1874 * 1875 * 1876 * <pre> 1877 * Additional domain-specific parameters for the predictions, any string must 1878 * be up to 25000 characters long. 1879 * AutoML Natural Language Classification 1880 * `score_threshold` 1881 * : (float) A value from 0.0 to 1.0. When the model 1882 * makes predictions for a text snippet, it will only produce results 1883 * that have at least this confidence score. The default is 0.5. 1884 * AutoML Vision Classification 1885 * `score_threshold` 1886 * : (float) A value from 0.0 to 1.0. When the model 1887 * makes predictions for an image, it will only produce results that 1888 * have at least this confidence score. The default is 0.5. 1889 * AutoML Vision Object Detection 1890 * `score_threshold` 1891 * : (float) When Model detects objects on the image, 1892 * it will only produce bounding boxes which have at least this 1893 * confidence score. Value in 0 to 1 range, default is 0.5. 1894 * `max_bounding_box_count` 1895 * : (int64) The maximum number of bounding 1896 * boxes returned per image. The default is 100, the 1897 * number of bounding boxes returned might be limited by the server. 1898 * AutoML Video Intelligence Classification 1899 * `score_threshold` 1900 * : (float) A value from 0.0 to 1.0. When the model 1901 * makes predictions for a video, it will only produce results that 1902 * have at least this confidence score. The default is 0.5. 1903 * `segment_classification` 1904 * : (boolean) Set to true to request 1905 * segment-level classification. AutoML Video Intelligence returns 1906 * labels and their confidence scores for the entire segment of the 1907 * video that user specified in the request configuration. 1908 * The default is true. 1909 * `shot_classification` 1910 * : (boolean) Set to true to request shot-level 1911 * classification. AutoML Video Intelligence determines the boundaries 1912 * for each camera shot in the entire segment of the video that user 1913 * specified in the request configuration. AutoML Video Intelligence 1914 * then returns labels and their confidence scores for each detected 1915 * shot, along with the start and end time of the shot. 1916 * The default is false. 1917 * WARNING: Model evaluation is not done for this classification type, 1918 * the quality of it depends on training data, but there are no metrics 1919 * provided to describe that quality. 1920 * `1s_interval_classification` 1921 * : (boolean) Set to true to request 1922 * classification for a video at one-second intervals. AutoML Video 1923 * Intelligence returns labels and their confidence scores for each 1924 * second of the entire segment of the video that user specified in the 1925 * request configuration. The default is false. 1926 * WARNING: Model evaluation is not done for this classification 1927 * type, the quality of it depends on training data, but there are no 1928 * metrics provided to describe that quality. 1929 * AutoML Video Intelligence Object Tracking 1930 * `score_threshold` 1931 * : (float) When Model detects objects on video frames, 1932 * it will only produce bounding boxes which have at least this 1933 * confidence score. Value in 0 to 1 range, default is 0.5. 1934 * `max_bounding_box_count` 1935 * : (int64) The maximum number of bounding 1936 * boxes returned per image. The default is 100, the 1937 * number of bounding boxes returned might be limited by the server. 1938 * `min_bounding_box_size` 1939 * : (float) Only bounding boxes with shortest edge 1940 * at least that long as a relative value of video frame size are 1941 * returned. Value in 0 to 1 range. Default is 0. 1942 * </pre> 1943 * 1944 * <code>map<string, string> params = 5;</code> 1945 */ 1946 @java.lang.Override getParamsOrThrow(java.lang.String key)1947 public java.lang.String getParamsOrThrow(java.lang.String key) { 1948 if (key == null) { 1949 throw new NullPointerException("map key"); 1950 } 1951 java.util.Map<java.lang.String, java.lang.String> map = internalGetParams().getMap(); 1952 if (!map.containsKey(key)) { 1953 throw new java.lang.IllegalArgumentException(); 1954 } 1955 return map.get(key); 1956 } 1957 clearParams()1958 public Builder clearParams() { 1959 bitField0_ = (bitField0_ & ~0x00000008); 1960 internalGetMutableParams().getMutableMap().clear(); 1961 return this; 1962 } 1963 /** 1964 * 1965 * 1966 * <pre> 1967 * Additional domain-specific parameters for the predictions, any string must 1968 * be up to 25000 characters long. 1969 * AutoML Natural Language Classification 1970 * `score_threshold` 1971 * : (float) A value from 0.0 to 1.0. When the model 1972 * makes predictions for a text snippet, it will only produce results 1973 * that have at least this confidence score. The default is 0.5. 1974 * AutoML Vision Classification 1975 * `score_threshold` 1976 * : (float) A value from 0.0 to 1.0. When the model 1977 * makes predictions for an image, it will only produce results that 1978 * have at least this confidence score. The default is 0.5. 1979 * AutoML Vision Object Detection 1980 * `score_threshold` 1981 * : (float) When Model detects objects on the image, 1982 * it will only produce bounding boxes which have at least this 1983 * confidence score. Value in 0 to 1 range, default is 0.5. 1984 * `max_bounding_box_count` 1985 * : (int64) The maximum number of bounding 1986 * boxes returned per image. The default is 100, the 1987 * number of bounding boxes returned might be limited by the server. 1988 * AutoML Video Intelligence Classification 1989 * `score_threshold` 1990 * : (float) A value from 0.0 to 1.0. When the model 1991 * makes predictions for a video, it will only produce results that 1992 * have at least this confidence score. The default is 0.5. 1993 * `segment_classification` 1994 * : (boolean) Set to true to request 1995 * segment-level classification. AutoML Video Intelligence returns 1996 * labels and their confidence scores for the entire segment of the 1997 * video that user specified in the request configuration. 1998 * The default is true. 1999 * `shot_classification` 2000 * : (boolean) Set to true to request shot-level 2001 * classification. AutoML Video Intelligence determines the boundaries 2002 * for each camera shot in the entire segment of the video that user 2003 * specified in the request configuration. AutoML Video Intelligence 2004 * then returns labels and their confidence scores for each detected 2005 * shot, along with the start and end time of the shot. 2006 * The default is false. 2007 * WARNING: Model evaluation is not done for this classification type, 2008 * the quality of it depends on training data, but there are no metrics 2009 * provided to describe that quality. 2010 * `1s_interval_classification` 2011 * : (boolean) Set to true to request 2012 * classification for a video at one-second intervals. AutoML Video 2013 * Intelligence returns labels and their confidence scores for each 2014 * second of the entire segment of the video that user specified in the 2015 * request configuration. The default is false. 2016 * WARNING: Model evaluation is not done for this classification 2017 * type, the quality of it depends on training data, but there are no 2018 * metrics provided to describe that quality. 2019 * AutoML Video Intelligence Object Tracking 2020 * `score_threshold` 2021 * : (float) When Model detects objects on video frames, 2022 * it will only produce bounding boxes which have at least this 2023 * confidence score. Value in 0 to 1 range, default is 0.5. 2024 * `max_bounding_box_count` 2025 * : (int64) The maximum number of bounding 2026 * boxes returned per image. The default is 100, the 2027 * number of bounding boxes returned might be limited by the server. 2028 * `min_bounding_box_size` 2029 * : (float) Only bounding boxes with shortest edge 2030 * at least that long as a relative value of video frame size are 2031 * returned. Value in 0 to 1 range. Default is 0. 2032 * </pre> 2033 * 2034 * <code>map<string, string> params = 5;</code> 2035 */ removeParams(java.lang.String key)2036 public Builder removeParams(java.lang.String key) { 2037 if (key == null) { 2038 throw new NullPointerException("map key"); 2039 } 2040 internalGetMutableParams().getMutableMap().remove(key); 2041 return this; 2042 } 2043 /** Use alternate mutation accessors instead. */ 2044 @java.lang.Deprecated getMutableParams()2045 public java.util.Map<java.lang.String, java.lang.String> getMutableParams() { 2046 bitField0_ |= 0x00000008; 2047 return internalGetMutableParams().getMutableMap(); 2048 } 2049 /** 2050 * 2051 * 2052 * <pre> 2053 * Additional domain-specific parameters for the predictions, any string must 2054 * be up to 25000 characters long. 2055 * AutoML Natural Language Classification 2056 * `score_threshold` 2057 * : (float) A value from 0.0 to 1.0. When the model 2058 * makes predictions for a text snippet, it will only produce results 2059 * that have at least this confidence score. The default is 0.5. 2060 * AutoML Vision Classification 2061 * `score_threshold` 2062 * : (float) A value from 0.0 to 1.0. When the model 2063 * makes predictions for an image, it will only produce results that 2064 * have at least this confidence score. The default is 0.5. 2065 * AutoML Vision Object Detection 2066 * `score_threshold` 2067 * : (float) When Model detects objects on the image, 2068 * it will only produce bounding boxes which have at least this 2069 * confidence score. Value in 0 to 1 range, default is 0.5. 2070 * `max_bounding_box_count` 2071 * : (int64) The maximum number of bounding 2072 * boxes returned per image. The default is 100, the 2073 * number of bounding boxes returned might be limited by the server. 2074 * AutoML Video Intelligence Classification 2075 * `score_threshold` 2076 * : (float) A value from 0.0 to 1.0. When the model 2077 * makes predictions for a video, it will only produce results that 2078 * have at least this confidence score. The default is 0.5. 2079 * `segment_classification` 2080 * : (boolean) Set to true to request 2081 * segment-level classification. AutoML Video Intelligence returns 2082 * labels and their confidence scores for the entire segment of the 2083 * video that user specified in the request configuration. 2084 * The default is true. 2085 * `shot_classification` 2086 * : (boolean) Set to true to request shot-level 2087 * classification. AutoML Video Intelligence determines the boundaries 2088 * for each camera shot in the entire segment of the video that user 2089 * specified in the request configuration. AutoML Video Intelligence 2090 * then returns labels and their confidence scores for each detected 2091 * shot, along with the start and end time of the shot. 2092 * The default is false. 2093 * WARNING: Model evaluation is not done for this classification type, 2094 * the quality of it depends on training data, but there are no metrics 2095 * provided to describe that quality. 2096 * `1s_interval_classification` 2097 * : (boolean) Set to true to request 2098 * classification for a video at one-second intervals. AutoML Video 2099 * Intelligence returns labels and their confidence scores for each 2100 * second of the entire segment of the video that user specified in the 2101 * request configuration. The default is false. 2102 * WARNING: Model evaluation is not done for this classification 2103 * type, the quality of it depends on training data, but there are no 2104 * metrics provided to describe that quality. 2105 * AutoML Video Intelligence Object Tracking 2106 * `score_threshold` 2107 * : (float) When Model detects objects on video frames, 2108 * it will only produce bounding boxes which have at least this 2109 * confidence score. Value in 0 to 1 range, default is 0.5. 2110 * `max_bounding_box_count` 2111 * : (int64) The maximum number of bounding 2112 * boxes returned per image. The default is 100, the 2113 * number of bounding boxes returned might be limited by the server. 2114 * `min_bounding_box_size` 2115 * : (float) Only bounding boxes with shortest edge 2116 * at least that long as a relative value of video frame size are 2117 * returned. Value in 0 to 1 range. Default is 0. 2118 * </pre> 2119 * 2120 * <code>map<string, string> params = 5;</code> 2121 */ putParams(java.lang.String key, java.lang.String value)2122 public Builder putParams(java.lang.String key, java.lang.String value) { 2123 if (key == null) { 2124 throw new NullPointerException("map key"); 2125 } 2126 if (value == null) { 2127 throw new NullPointerException("map value"); 2128 } 2129 internalGetMutableParams().getMutableMap().put(key, value); 2130 bitField0_ |= 0x00000008; 2131 return this; 2132 } 2133 /** 2134 * 2135 * 2136 * <pre> 2137 * Additional domain-specific parameters for the predictions, any string must 2138 * be up to 25000 characters long. 2139 * AutoML Natural Language Classification 2140 * `score_threshold` 2141 * : (float) A value from 0.0 to 1.0. When the model 2142 * makes predictions for a text snippet, it will only produce results 2143 * that have at least this confidence score. The default is 0.5. 2144 * AutoML Vision Classification 2145 * `score_threshold` 2146 * : (float) A value from 0.0 to 1.0. When the model 2147 * makes predictions for an image, it will only produce results that 2148 * have at least this confidence score. The default is 0.5. 2149 * AutoML Vision Object Detection 2150 * `score_threshold` 2151 * : (float) When Model detects objects on the image, 2152 * it will only produce bounding boxes which have at least this 2153 * confidence score. Value in 0 to 1 range, default is 0.5. 2154 * `max_bounding_box_count` 2155 * : (int64) The maximum number of bounding 2156 * boxes returned per image. The default is 100, the 2157 * number of bounding boxes returned might be limited by the server. 2158 * AutoML Video Intelligence Classification 2159 * `score_threshold` 2160 * : (float) A value from 0.0 to 1.0. When the model 2161 * makes predictions for a video, it will only produce results that 2162 * have at least this confidence score. The default is 0.5. 2163 * `segment_classification` 2164 * : (boolean) Set to true to request 2165 * segment-level classification. AutoML Video Intelligence returns 2166 * labels and their confidence scores for the entire segment of the 2167 * video that user specified in the request configuration. 2168 * The default is true. 2169 * `shot_classification` 2170 * : (boolean) Set to true to request shot-level 2171 * classification. AutoML Video Intelligence determines the boundaries 2172 * for each camera shot in the entire segment of the video that user 2173 * specified in the request configuration. AutoML Video Intelligence 2174 * then returns labels and their confidence scores for each detected 2175 * shot, along with the start and end time of the shot. 2176 * The default is false. 2177 * WARNING: Model evaluation is not done for this classification type, 2178 * the quality of it depends on training data, but there are no metrics 2179 * provided to describe that quality. 2180 * `1s_interval_classification` 2181 * : (boolean) Set to true to request 2182 * classification for a video at one-second intervals. AutoML Video 2183 * Intelligence returns labels and their confidence scores for each 2184 * second of the entire segment of the video that user specified in the 2185 * request configuration. The default is false. 2186 * WARNING: Model evaluation is not done for this classification 2187 * type, the quality of it depends on training data, but there are no 2188 * metrics provided to describe that quality. 2189 * AutoML Video Intelligence Object Tracking 2190 * `score_threshold` 2191 * : (float) When Model detects objects on video frames, 2192 * it will only produce bounding boxes which have at least this 2193 * confidence score. Value in 0 to 1 range, default is 0.5. 2194 * `max_bounding_box_count` 2195 * : (int64) The maximum number of bounding 2196 * boxes returned per image. The default is 100, the 2197 * number of bounding boxes returned might be limited by the server. 2198 * `min_bounding_box_size` 2199 * : (float) Only bounding boxes with shortest edge 2200 * at least that long as a relative value of video frame size are 2201 * returned. Value in 0 to 1 range. Default is 0. 2202 * </pre> 2203 * 2204 * <code>map<string, string> params = 5;</code> 2205 */ putAllParams(java.util.Map<java.lang.String, java.lang.String> values)2206 public Builder putAllParams(java.util.Map<java.lang.String, java.lang.String> values) { 2207 internalGetMutableParams().getMutableMap().putAll(values); 2208 bitField0_ |= 0x00000008; 2209 return this; 2210 } 2211 2212 @java.lang.Override setUnknownFields(final com.google.protobuf.UnknownFieldSet unknownFields)2213 public final Builder setUnknownFields(final com.google.protobuf.UnknownFieldSet unknownFields) { 2214 return super.setUnknownFields(unknownFields); 2215 } 2216 2217 @java.lang.Override mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields)2218 public final Builder mergeUnknownFields( 2219 final com.google.protobuf.UnknownFieldSet unknownFields) { 2220 return super.mergeUnknownFields(unknownFields); 2221 } 2222 2223 // @@protoc_insertion_point(builder_scope:google.cloud.automl.v1.BatchPredictRequest) 2224 } 2225 2226 // @@protoc_insertion_point(class_scope:google.cloud.automl.v1.BatchPredictRequest) 2227 private static final com.google.cloud.automl.v1.BatchPredictRequest DEFAULT_INSTANCE; 2228 2229 static { 2230 DEFAULT_INSTANCE = new com.google.cloud.automl.v1.BatchPredictRequest(); 2231 } 2232 getDefaultInstance()2233 public static com.google.cloud.automl.v1.BatchPredictRequest getDefaultInstance() { 2234 return DEFAULT_INSTANCE; 2235 } 2236 2237 private static final com.google.protobuf.Parser<BatchPredictRequest> PARSER = 2238 new com.google.protobuf.AbstractParser<BatchPredictRequest>() { 2239 @java.lang.Override 2240 public BatchPredictRequest parsePartialFrom( 2241 com.google.protobuf.CodedInputStream input, 2242 com.google.protobuf.ExtensionRegistryLite extensionRegistry) 2243 throws com.google.protobuf.InvalidProtocolBufferException { 2244 Builder builder = newBuilder(); 2245 try { 2246 builder.mergeFrom(input, extensionRegistry); 2247 } catch (com.google.protobuf.InvalidProtocolBufferException e) { 2248 throw e.setUnfinishedMessage(builder.buildPartial()); 2249 } catch (com.google.protobuf.UninitializedMessageException e) { 2250 throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); 2251 } catch (java.io.IOException e) { 2252 throw new com.google.protobuf.InvalidProtocolBufferException(e) 2253 .setUnfinishedMessage(builder.buildPartial()); 2254 } 2255 return builder.buildPartial(); 2256 } 2257 }; 2258 parser()2259 public static com.google.protobuf.Parser<BatchPredictRequest> parser() { 2260 return PARSER; 2261 } 2262 2263 @java.lang.Override getParserForType()2264 public com.google.protobuf.Parser<BatchPredictRequest> getParserForType() { 2265 return PARSER; 2266 } 2267 2268 @java.lang.Override getDefaultInstanceForType()2269 public com.google.cloud.automl.v1.BatchPredictRequest getDefaultInstanceForType() { 2270 return DEFAULT_INSTANCE; 2271 } 2272 } 2273