1 /*
2 * Copyright 2010 Jerome Glisse <glisse@freedesktop.org>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 */
23 #include "r600_asm.h"
24 #include "r600_sq.h"
25 #include "r600_opcodes.h"
26 #include "r600_formats.h"
27 #include "r600d.h"
28 #include "r600d_common.h"
29
30 #include <errno.h>
31 #include <string.h>
32 #include "compiler/shader_enums.h"
33 #include "util/u_memory.h"
34 #include "util/u_math.h"
35
36 #define NUM_OF_CYCLES 3
37 #define NUM_OF_COMPONENTS 4
38
alu_writes(struct r600_bytecode_alu * alu)39 static inline bool alu_writes(struct r600_bytecode_alu *alu)
40 {
41 return alu->dst.write || alu->is_op3;
42 }
43
r600_bytecode_get_num_operands(const struct r600_bytecode_alu * alu)44 static inline unsigned int r600_bytecode_get_num_operands(const struct r600_bytecode_alu *alu)
45 {
46 return r600_isa_alu(alu->op)->src_count;
47 }
48
r600_bytecode_cf(void)49 static struct r600_bytecode_cf *r600_bytecode_cf(void)
50 {
51 struct r600_bytecode_cf *cf = CALLOC_STRUCT(r600_bytecode_cf);
52
53 if (!cf)
54 return NULL;
55 list_inithead(&cf->list);
56 list_inithead(&cf->alu);
57 list_inithead(&cf->vtx);
58 list_inithead(&cf->tex);
59 list_inithead(&cf->gds);
60 return cf;
61 }
62
r600_bytecode_alu(void)63 static struct r600_bytecode_alu *r600_bytecode_alu(void)
64 {
65 struct r600_bytecode_alu *alu = CALLOC_STRUCT(r600_bytecode_alu);
66
67 if (!alu)
68 return NULL;
69 list_inithead(&alu->list);
70 return alu;
71 }
72
r600_bytecode_vtx(void)73 static struct r600_bytecode_vtx *r600_bytecode_vtx(void)
74 {
75 struct r600_bytecode_vtx *vtx = CALLOC_STRUCT(r600_bytecode_vtx);
76
77 if (!vtx)
78 return NULL;
79 list_inithead(&vtx->list);
80 return vtx;
81 }
82
r600_bytecode_tex(void)83 static struct r600_bytecode_tex *r600_bytecode_tex(void)
84 {
85 struct r600_bytecode_tex *tex = CALLOC_STRUCT(r600_bytecode_tex);
86
87 if (!tex)
88 return NULL;
89 list_inithead(&tex->list);
90 return tex;
91 }
92
r600_bytecode_gds(void)93 static struct r600_bytecode_gds *r600_bytecode_gds(void)
94 {
95 struct r600_bytecode_gds *gds = CALLOC_STRUCT(r600_bytecode_gds);
96
97 if (gds == NULL)
98 return NULL;
99 list_inithead(&gds->list);
100 return gds;
101 }
102
stack_entry_size(enum radeon_family chip)103 static unsigned stack_entry_size(enum radeon_family chip) {
104 /* Wavefront size:
105 * 64: R600/RV670/RV770/Cypress/R740/Barts/Turks/Caicos/
106 * Aruba/Sumo/Sumo2/redwood/juniper
107 * 32: R630/R730/R710/Palm/Cedar
108 * 16: R610/Rs780
109 *
110 * Stack row size:
111 * Wavefront Size 16 32 48 64
112 * Columns per Row (R6xx/R7xx/R8xx only) 8 8 4 4
113 * Columns per Row (R9xx+) 8 4 4 4 */
114
115 switch (chip) {
116 /* FIXME: are some chips missing here? */
117 /* wavefront size 16 */
118 case CHIP_RV610:
119 case CHIP_RS780:
120 case CHIP_RV620:
121 case CHIP_RS880:
122 /* wavefront size 32 */
123 case CHIP_RV630:
124 case CHIP_RV635:
125 case CHIP_RV730:
126 case CHIP_RV710:
127 case CHIP_PALM:
128 case CHIP_CEDAR:
129 return 8;
130
131 /* wavefront size 64 */
132 default:
133 return 4;
134 }
135 }
136
r600_bytecode_init(struct r600_bytecode * bc,enum amd_gfx_level gfx_level,enum radeon_family family,bool has_compressed_msaa_texturing)137 void r600_bytecode_init(struct r600_bytecode *bc,
138 enum amd_gfx_level gfx_level,
139 enum radeon_family family,
140 bool has_compressed_msaa_texturing)
141 {
142 static unsigned next_shader_id = 0;
143
144 bc->debug_id = ++next_shader_id;
145
146 if ((gfx_level == R600) &&
147 (family != CHIP_RV670 && family != CHIP_RS780 && family != CHIP_RS880)) {
148 bc->ar_handling = AR_HANDLE_RV6XX;
149
150 /* Insert a nop after a relative temp write so that a read in
151 * the following instruction group gets the right value. The
152 * r600 and EG ISA specs both say that read-after-rel-write of a
153 * register in the next instr group is illegal, but apparently
154 * that's not true on all chips (see commit
155 * c96b9834032952492efbd2d1f5511fe225704918).
156 */
157 bc->r6xx_nop_after_rel_dst = 1;
158 } else if (family == CHIP_RV770) {
159 bc->ar_handling = AR_HANDLE_NORMAL;
160 bc->r6xx_nop_after_rel_dst = 1;
161 } else {
162 bc->ar_handling = AR_HANDLE_NORMAL;
163 bc->r6xx_nop_after_rel_dst = 0;
164 }
165
166 list_inithead(&bc->cf);
167 bc->gfx_level = gfx_level;
168 bc->family = family;
169 bc->has_compressed_msaa_texturing = has_compressed_msaa_texturing;
170 bc->stack.entry_size = stack_entry_size(family);
171 }
172
r600_bytecode_add_cf(struct r600_bytecode * bc)173 int r600_bytecode_add_cf(struct r600_bytecode *bc)
174 {
175 struct r600_bytecode_cf *cf = r600_bytecode_cf();
176
177 if (!cf)
178 return -ENOMEM;
179 list_addtail(&cf->list, &bc->cf);
180 if (bc->cf_last) {
181 cf->id = bc->cf_last->id + 2;
182 if (bc->cf_last->eg_alu_extended) {
183 /* take into account extended alu size */
184 cf->id += 2;
185 bc->ndw += 2;
186 }
187 }
188 bc->cf_last = cf;
189 bc->ncf++;
190 bc->ndw += 2;
191 bc->force_add_cf = 0;
192 bc->ar_loaded = 0;
193 return 0;
194 }
195
r600_bytecode_add_output(struct r600_bytecode * bc,const struct r600_bytecode_output * output)196 int r600_bytecode_add_output(struct r600_bytecode *bc,
197 const struct r600_bytecode_output *output)
198 {
199 int r;
200
201 if (output->gpr >= bc->ngpr)
202 bc->ngpr = output->gpr + 1;
203
204 if (bc->cf_last && (bc->cf_last->op == output->op ||
205 (bc->cf_last->op == CF_OP_EXPORT &&
206 output->op == CF_OP_EXPORT_DONE)) &&
207 output->type == bc->cf_last->output.type &&
208 output->elem_size == bc->cf_last->output.elem_size &&
209 output->swizzle_x == bc->cf_last->output.swizzle_x &&
210 output->swizzle_y == bc->cf_last->output.swizzle_y &&
211 output->swizzle_z == bc->cf_last->output.swizzle_z &&
212 output->swizzle_w == bc->cf_last->output.swizzle_w &&
213 output->comp_mask == bc->cf_last->output.comp_mask &&
214 (output->burst_count + bc->cf_last->output.burst_count) <= 16) {
215
216 if ((output->gpr + output->burst_count) == bc->cf_last->output.gpr &&
217 (output->array_base + output->burst_count) == bc->cf_last->output.array_base) {
218
219 bc->cf_last->op = bc->cf_last->output.op = output->op;
220 bc->cf_last->output.gpr = output->gpr;
221 bc->cf_last->output.array_base = output->array_base;
222 bc->cf_last->output.burst_count += output->burst_count;
223 return 0;
224
225 } else if (output->gpr == (bc->cf_last->output.gpr + bc->cf_last->output.burst_count) &&
226 output->array_base == (bc->cf_last->output.array_base + bc->cf_last->output.burst_count)) {
227
228 bc->cf_last->op = bc->cf_last->output.op = output->op;
229 bc->cf_last->output.burst_count += output->burst_count;
230 return 0;
231 }
232 }
233
234 r = r600_bytecode_add_cf(bc);
235 if (r)
236 return r;
237 bc->cf_last->op = output->op;
238 memcpy(&bc->cf_last->output, output, sizeof(struct r600_bytecode_output));
239 bc->cf_last->barrier = 1;
240 return 0;
241 }
242
r600_bytecode_add_pending_output(struct r600_bytecode * bc,const struct r600_bytecode_output * output)243 int r600_bytecode_add_pending_output(struct r600_bytecode *bc,
244 const struct r600_bytecode_output *output)
245 {
246 assert(bc->n_pending_outputs + 1 < ARRAY_SIZE(bc->pending_outputs));
247 bc->pending_outputs[bc->n_pending_outputs++] = *output;
248
249 return 0;
250 }
251
252 void
r600_bytecode_add_ack(struct r600_bytecode * bc)253 r600_bytecode_add_ack(struct r600_bytecode *bc)
254 {
255 bc->need_wait_ack = true;
256 }
257
258 int
r600_bytecode_wait_acks(struct r600_bytecode * bc)259 r600_bytecode_wait_acks(struct r600_bytecode *bc)
260 {
261 /* Store acks are an R700+ feature. */
262 if (bc->gfx_level < R700)
263 return 0;
264
265 if (!bc->need_wait_ack)
266 return 0;
267
268 int ret = r600_bytecode_add_cfinst(bc, CF_OP_WAIT_ACK);
269 if (ret != 0)
270 return ret;
271
272 struct r600_bytecode_cf *cf = bc->cf_last;
273 cf->barrier = 1;
274 /* Request a wait if the number of outstanding acks is > 0 */
275 cf->cf_addr = 0;
276
277 return 0;
278 }
279
280 uint32_t
r600_bytecode_write_export_ack_type(struct r600_bytecode * bc,bool indirect)281 r600_bytecode_write_export_ack_type(struct r600_bytecode *bc, bool indirect)
282 {
283 if (bc->gfx_level >= R700) {
284 if (indirect)
285 return V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_WRITE_IND_ACK_EG;
286 else
287 return V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_WRITE_ACK_EG;
288 } else {
289 if (indirect)
290 return V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_WRITE_IND;
291 else
292 return V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_WRITE;
293 }
294 }
295
296 /* alu instructions that can only exits once per group */
is_alu_once_inst(struct r600_bytecode_alu * alu)297 static int is_alu_once_inst(struct r600_bytecode_alu *alu)
298 {
299 return r600_isa_alu(alu->op)->flags & (AF_KILL | AF_PRED) || alu->is_lds_idx_op || alu->op == ALU_OP0_GROUP_BARRIER;
300 }
301
is_alu_reduction_inst(struct r600_bytecode * bc,struct r600_bytecode_alu * alu)302 static int is_alu_reduction_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
303 {
304 return (r600_isa_alu(alu->op)->flags & AF_REPL) &&
305 (r600_isa_alu_slots(bc->isa->hw_class, alu->op) == AF_4V);
306 }
307
is_alu_mova_inst(struct r600_bytecode_alu * alu)308 static int is_alu_mova_inst(struct r600_bytecode_alu *alu)
309 {
310 return r600_isa_alu(alu->op)->flags & AF_MOVA;
311 }
312
alu_uses_rel(struct r600_bytecode_alu * alu)313 static int alu_uses_rel(struct r600_bytecode_alu *alu)
314 {
315 unsigned num_src = r600_bytecode_get_num_operands(alu);
316 unsigned src;
317
318 if (alu->dst.rel) {
319 return 1;
320 }
321
322 for (src = 0; src < num_src; ++src) {
323 if (alu->src[src].rel) {
324 return 1;
325 }
326 }
327 return 0;
328 }
329
is_lds_read(int sel)330 static int is_lds_read(int sel)
331 {
332 return sel == EG_V_SQ_ALU_SRC_LDS_OQ_A_POP || sel == EG_V_SQ_ALU_SRC_LDS_OQ_B_POP;
333 }
334
alu_uses_lds(struct r600_bytecode_alu * alu)335 static int alu_uses_lds(struct r600_bytecode_alu *alu)
336 {
337 unsigned num_src = r600_bytecode_get_num_operands(alu);
338 unsigned src;
339
340 for (src = 0; src < num_src; ++src) {
341 if (is_lds_read(alu->src[src].sel)) {
342 return 1;
343 }
344 }
345 return 0;
346 }
347
is_alu_64bit_inst(struct r600_bytecode_alu * alu)348 static int is_alu_64bit_inst(struct r600_bytecode_alu *alu)
349 {
350 const struct alu_op_info *op = r600_isa_alu(alu->op);
351 return (op->flags & AF_64);
352 }
353
is_alu_vec_unit_inst(struct r600_bytecode * bc,struct r600_bytecode_alu * alu)354 static int is_alu_vec_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
355 {
356 unsigned slots = r600_isa_alu_slots(bc->isa->hw_class, alu->op);
357 return !(slots & AF_S);
358 }
359
is_alu_trans_unit_inst(struct r600_bytecode * bc,struct r600_bytecode_alu * alu)360 static int is_alu_trans_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
361 {
362 unsigned slots = r600_isa_alu_slots(bc->isa->hw_class, alu->op);
363 return !(slots & AF_V);
364 }
365
366 /* alu instructions that can execute on any unit */
is_alu_any_unit_inst(struct r600_bytecode * bc,struct r600_bytecode_alu * alu)367 static int is_alu_any_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
368 {
369 unsigned slots = r600_isa_alu_slots(bc->isa->hw_class, alu->op);
370 return slots == AF_VS;
371 }
372
is_nop_inst(struct r600_bytecode_alu * alu)373 static int is_nop_inst(struct r600_bytecode_alu *alu)
374 {
375 return alu->op == ALU_OP0_NOP;
376 }
377
assign_alu_units(struct r600_bytecode * bc,struct r600_bytecode_alu * alu_first,struct r600_bytecode_alu * assignment[5])378 static int assign_alu_units(struct r600_bytecode *bc, struct r600_bytecode_alu *alu_first,
379 struct r600_bytecode_alu *assignment[5])
380 {
381 struct r600_bytecode_alu *alu;
382 unsigned i, chan, trans;
383 int max_slots = bc->gfx_level == CAYMAN ? 4 : 5;
384
385 for (i = 0; i < max_slots; i++)
386 assignment[i] = NULL;
387
388 for (alu = alu_first; alu; alu = list_entry(alu->list.next, struct r600_bytecode_alu, list)) {
389 chan = alu->dst.chan;
390 if (max_slots == 4)
391 trans = 0;
392 else if (is_alu_trans_unit_inst(bc, alu))
393 trans = 1;
394 else if (is_alu_vec_unit_inst(bc, alu))
395 trans = 0;
396 else if (assignment[chan])
397 trans = 1; /* Assume ALU_INST_PREFER_VECTOR. */
398 else
399 trans = 0;
400
401 if (trans) {
402 if (assignment[4]) {
403 assert(0); /* ALU.Trans has already been allocated. */
404 return -1;
405 }
406 assignment[4] = alu;
407 } else {
408 if (assignment[chan]) {
409 assert(0); /* ALU.chan has already been allocated. */
410 return -1;
411 }
412 assignment[chan] = alu;
413 }
414
415 if (alu->last)
416 break;
417 }
418 return 0;
419 }
420
421 struct alu_bank_swizzle {
422 int hw_gpr[NUM_OF_CYCLES][NUM_OF_COMPONENTS];
423 int hw_cfile_addr[4];
424 int hw_cfile_elem[4];
425 };
426
427 static const unsigned cycle_for_bank_swizzle_vec[][3] = {
428 [SQ_ALU_VEC_012] = { 0, 1, 2 },
429 [SQ_ALU_VEC_021] = { 0, 2, 1 },
430 [SQ_ALU_VEC_120] = { 1, 2, 0 },
431 [SQ_ALU_VEC_102] = { 1, 0, 2 },
432 [SQ_ALU_VEC_201] = { 2, 0, 1 },
433 [SQ_ALU_VEC_210] = { 2, 1, 0 }
434 };
435
436 static const unsigned cycle_for_bank_swizzle_scl[][3] = {
437 [SQ_ALU_SCL_210] = { 2, 1, 0 },
438 [SQ_ALU_SCL_122] = { 1, 2, 2 },
439 [SQ_ALU_SCL_212] = { 2, 1, 2 },
440 [SQ_ALU_SCL_221] = { 2, 2, 1 }
441 };
442
init_bank_swizzle(struct alu_bank_swizzle * bs)443 static void init_bank_swizzle(struct alu_bank_swizzle *bs)
444 {
445 int i, cycle, component;
446 /* set up gpr use */
447 for (cycle = 0; cycle < NUM_OF_CYCLES; cycle++)
448 for (component = 0; component < NUM_OF_COMPONENTS; component++)
449 bs->hw_gpr[cycle][component] = -1;
450 for (i = 0; i < 4; i++)
451 bs->hw_cfile_addr[i] = -1;
452 for (i = 0; i < 4; i++)
453 bs->hw_cfile_elem[i] = -1;
454 }
455
reserve_gpr(struct alu_bank_swizzle * bs,unsigned sel,unsigned chan,unsigned cycle)456 static int reserve_gpr(struct alu_bank_swizzle *bs, unsigned sel, unsigned chan, unsigned cycle)
457 {
458 if (bs->hw_gpr[cycle][chan] == -1)
459 bs->hw_gpr[cycle][chan] = sel;
460 else if (bs->hw_gpr[cycle][chan] != (int)sel) {
461 /* Another scalar operation has already used the GPR read port for the channel. */
462 return -1;
463 }
464 return 0;
465 }
466
reserve_cfile(const struct r600_bytecode * bc,struct alu_bank_swizzle * bs,unsigned sel,unsigned chan)467 static int reserve_cfile(const struct r600_bytecode *bc,
468 struct alu_bank_swizzle *bs, unsigned sel, unsigned chan)
469 {
470 int res, num_res = 4;
471 if (bc->gfx_level >= R700) {
472 num_res = 2;
473 chan /= 2;
474 }
475 for (res = 0; res < num_res; ++res) {
476 if (bs->hw_cfile_addr[res] == -1) {
477 bs->hw_cfile_addr[res] = sel;
478 bs->hw_cfile_elem[res] = chan;
479 return 0;
480 } else if (bs->hw_cfile_addr[res] == sel &&
481 bs->hw_cfile_elem[res] == chan)
482 return 0; /* Read for this scalar element already reserved, nothing to do here. */
483 }
484 /* All cfile read ports are used, cannot reference vector element. */
485 return -1;
486 }
487
is_gpr(unsigned sel)488 static int is_gpr(unsigned sel)
489 {
490 return (sel <= 127);
491 }
492
493 /* CB constants start at 512, and get translated to a kcache index when ALU
494 * clauses are constructed. Note that we handle kcache constants the same way
495 * as (the now gone) cfile constants, is that really required? */
is_kcache(unsigned sel)496 static int is_kcache(unsigned sel)
497 {
498 return (sel > 511 && sel < 4607) || /* Kcache before translation. */
499 (sel > 127 && sel < 192) || /* Kcache 0 & 1 after translation. */
500 (sel > 256 && sel < 320); /* Kcache 2 & 3 after translation (EG). */
501 }
502
is_const(int sel)503 static int is_const(int sel)
504 {
505 return is_kcache(sel) ||
506 (sel >= V_SQ_ALU_SRC_0 &&
507 sel <= V_SQ_ALU_SRC_LITERAL);
508 }
509
check_vector(const struct r600_bytecode * bc,const struct r600_bytecode_alu * alu,struct alu_bank_swizzle * bs,int bank_swizzle)510 static int check_vector(const struct r600_bytecode *bc, const struct r600_bytecode_alu *alu,
511 struct alu_bank_swizzle *bs, int bank_swizzle)
512 {
513 int r, src, num_src, sel, elem, cycle;
514
515 num_src = r600_bytecode_get_num_operands(alu);
516 for (src = 0; src < num_src; src++) {
517 sel = alu->src[src].sel;
518 elem = alu->src[src].chan;
519 if (is_gpr(sel)) {
520 cycle = cycle_for_bank_swizzle_vec[bank_swizzle][src];
521 if (src == 1 && sel == alu->src[0].sel && elem == alu->src[0].chan)
522 /* Nothing to do; special-case optimization,
523 * second source uses first source’s reservation. */
524 continue;
525 else {
526 r = reserve_gpr(bs, sel, elem, cycle);
527 if (r)
528 return r;
529 }
530 } else if (is_kcache(sel)) {
531 r = reserve_cfile(bc, bs, (alu->src[src].kc_bank<<16) + sel, elem);
532 if (r)
533 return r;
534 }
535 /* No restrictions on PV, PS, literal or special constants. */
536 }
537 return 0;
538 }
539
check_scalar(const struct r600_bytecode * bc,const struct r600_bytecode_alu * alu,struct alu_bank_swizzle * bs,int bank_swizzle)540 static int check_scalar(const struct r600_bytecode *bc, const struct r600_bytecode_alu *alu,
541 struct alu_bank_swizzle *bs, int bank_swizzle)
542 {
543 int r, src, num_src, const_count, sel, elem, cycle;
544
545 num_src = r600_bytecode_get_num_operands(alu);
546 for (const_count = 0, src = 0; src < num_src; ++src) {
547 sel = alu->src[src].sel;
548 elem = alu->src[src].chan;
549 if (is_const(sel)) { /* Any constant, including literal and inline constants. */
550 if (const_count >= 2)
551 /* More than two references to a constant in
552 * transcendental operation. */
553 return -1;
554 else
555 const_count++;
556 }
557 if (is_kcache(sel)) {
558 r = reserve_cfile(bc, bs, (alu->src[src].kc_bank<<16) + sel, elem);
559 if (r)
560 return r;
561 }
562 }
563 for (src = 0; src < num_src; ++src) {
564 sel = alu->src[src].sel;
565 elem = alu->src[src].chan;
566 if (is_gpr(sel)) {
567 cycle = cycle_for_bank_swizzle_scl[bank_swizzle][src];
568 if (cycle < const_count)
569 /* Cycle for GPR load conflicts with
570 * constant load in transcendental operation. */
571 return -1;
572 r = reserve_gpr(bs, sel, elem, cycle);
573 if (r)
574 return r;
575 }
576 /* PV PS restrictions */
577 if (const_count && (sel == 254 || sel == 255)) {
578 cycle = cycle_for_bank_swizzle_scl[bank_swizzle][src];
579 if (cycle < const_count)
580 return -1;
581 }
582 }
583 return 0;
584 }
585
check_and_set_bank_swizzle(const struct r600_bytecode * bc,struct r600_bytecode_alu * slots[5])586 static int check_and_set_bank_swizzle(const struct r600_bytecode *bc,
587 struct r600_bytecode_alu *slots[5])
588 {
589 struct alu_bank_swizzle bs;
590 int bank_swizzle[5];
591 int i, r = 0, forced = 1;
592 bool scalar_only = bc->gfx_level == CAYMAN ? false : true;
593 int max_slots = bc->gfx_level == CAYMAN ? 4 : 5;
594 int max_checks = max_slots * 1000;
595
596 for (i = 0; i < max_slots; i++) {
597 if (slots[i]) {
598 if (slots[i]->bank_swizzle_force) {
599 slots[i]->bank_swizzle = slots[i]->bank_swizzle_force;
600 } else {
601 forced = 0;
602 }
603 }
604
605 if (i < 4 && slots[i])
606 scalar_only = false;
607 }
608 if (forced)
609 return 0;
610
611 /* Just check every possible combination of bank swizzle.
612 * Not very efficient, but works on the first try in most of the cases. */
613 for (i = 0; i < 4; i++)
614 if (!slots[i] || !slots[i]->bank_swizzle_force || slots[i]->is_lds_idx_op)
615 bank_swizzle[i] = SQ_ALU_VEC_012;
616 else
617 bank_swizzle[i] = slots[i]->bank_swizzle;
618
619 bank_swizzle[4] = SQ_ALU_SCL_210;
620
621 while(bank_swizzle[4] <= SQ_ALU_SCL_221 && max_checks--) {
622 init_bank_swizzle(&bs);
623 if (scalar_only == false) {
624 for (i = 0; i < 4; i++) {
625 if (slots[i]) {
626 r = check_vector(bc, slots[i], &bs, bank_swizzle[i]);
627 if (r)
628 break;
629 }
630 }
631 } else
632 r = 0;
633
634 if (!r && max_slots == 5 && slots[4]) {
635 r = check_scalar(bc, slots[4], &bs, bank_swizzle[4]);
636 }
637 if (!r) {
638 for (i = 0; i < max_slots; i++) {
639 if (slots[i])
640 slots[i]->bank_swizzle = bank_swizzle[i];
641 }
642 return 0;
643 }
644
645 if (scalar_only) {
646 bank_swizzle[4]++;
647 } else {
648 for (i = 0; i < max_slots; i++) {
649 if (!slots[i] || (!slots[i]->bank_swizzle_force && !slots[i]->is_lds_idx_op)) {
650 bank_swizzle[i]++;
651 if (bank_swizzle[i] <= SQ_ALU_VEC_210)
652 break;
653 else if (i < max_slots - 1)
654 bank_swizzle[i] = SQ_ALU_VEC_012;
655 else
656 return -1;
657 }
658 }
659 }
660 }
661
662 /* Couldn't find a working swizzle. */
663 return -1;
664 }
665
replace_gpr_with_pv_ps(struct r600_bytecode * bc,struct r600_bytecode_alu * slots[5],struct r600_bytecode_alu * alu_prev)666 static int replace_gpr_with_pv_ps(struct r600_bytecode *bc,
667 struct r600_bytecode_alu *slots[5], struct r600_bytecode_alu *alu_prev)
668 {
669 struct r600_bytecode_alu *prev[5];
670 int gpr[5], chan[5];
671 int i, j, r, src, num_src;
672 int max_slots = bc->gfx_level == CAYMAN ? 4 : 5;
673
674 r = assign_alu_units(bc, alu_prev, prev);
675 if (r)
676 return r;
677
678 for (i = 0; i < max_slots; ++i) {
679 if (prev[i] && alu_writes(prev[i]) && !prev[i]->dst.rel) {
680
681 if (is_alu_64bit_inst(prev[i])) {
682 gpr[i] = -1;
683 continue;
684 }
685
686 gpr[i] = prev[i]->dst.sel;
687 /* cube writes more than PV.X */
688 if (is_alu_reduction_inst(bc, prev[i]))
689 chan[i] = 0;
690 else
691 chan[i] = prev[i]->dst.chan;
692 } else
693 gpr[i] = -1;
694 }
695
696 for (i = 0; i < max_slots; ++i) {
697 struct r600_bytecode_alu *alu = slots[i];
698 if (!alu)
699 continue;
700
701 if (is_alu_64bit_inst(alu))
702 continue;
703 num_src = r600_bytecode_get_num_operands(alu);
704 for (src = 0; src < num_src; ++src) {
705 if (!is_gpr(alu->src[src].sel) || alu->src[src].rel)
706 continue;
707
708 if (bc->gfx_level < CAYMAN) {
709 if (alu->src[src].sel == gpr[4] &&
710 alu->src[src].chan == chan[4] &&
711 alu_prev->pred_sel == alu->pred_sel) {
712 alu->src[src].sel = V_SQ_ALU_SRC_PS;
713 alu->src[src].chan = 0;
714 continue;
715 }
716 }
717
718 for (j = 0; j < 4; ++j) {
719 if (alu->src[src].sel == gpr[j] &&
720 alu->src[src].chan == j &&
721 alu_prev->pred_sel == alu->pred_sel) {
722 alu->src[src].sel = V_SQ_ALU_SRC_PV;
723 alu->src[src].chan = chan[j];
724 break;
725 }
726 }
727 }
728 }
729
730 return 0;
731 }
732
r600_bytecode_special_constants(uint32_t value,unsigned * sel)733 void r600_bytecode_special_constants(uint32_t value, unsigned *sel)
734 {
735 switch(value) {
736 case 0:
737 *sel = V_SQ_ALU_SRC_0;
738 break;
739 case 1:
740 *sel = V_SQ_ALU_SRC_1_INT;
741 break;
742 case -1:
743 *sel = V_SQ_ALU_SRC_M_1_INT;
744 break;
745 case 0x3F800000: /* 1.0f */
746 *sel = V_SQ_ALU_SRC_1;
747 break;
748 case 0x3F000000: /* 0.5f */
749 *sel = V_SQ_ALU_SRC_0_5;
750 break;
751 default:
752 *sel = V_SQ_ALU_SRC_LITERAL;
753 break;
754 }
755 }
756
757 /* compute how many literal are needed */
r600_bytecode_alu_nliterals(struct r600_bytecode_alu * alu,uint32_t literal[4],unsigned * nliteral)758 static int r600_bytecode_alu_nliterals(struct r600_bytecode_alu *alu,
759 uint32_t literal[4], unsigned *nliteral)
760 {
761 unsigned num_src = r600_bytecode_get_num_operands(alu);
762 unsigned i, j;
763
764 for (i = 0; i < num_src; ++i) {
765 if (alu->src[i].sel == V_SQ_ALU_SRC_LITERAL) {
766 uint32_t value = alu->src[i].value;
767 unsigned found = 0;
768 for (j = 0; j < *nliteral; ++j) {
769 if (literal[j] == value) {
770 found = 1;
771 break;
772 }
773 }
774 if (!found) {
775 if (*nliteral >= 4)
776 return -EINVAL;
777 literal[(*nliteral)++] = value;
778 }
779 }
780 }
781 return 0;
782 }
783
r600_bytecode_alu_adjust_literals(struct r600_bytecode_alu * alu,uint32_t literal[4],unsigned nliteral)784 static void r600_bytecode_alu_adjust_literals(struct r600_bytecode_alu *alu,
785 uint32_t literal[4], unsigned nliteral)
786 {
787 unsigned num_src = r600_bytecode_get_num_operands(alu);
788 unsigned i, j;
789
790 for (i = 0; i < num_src; ++i) {
791 if (alu->src[i].sel == V_SQ_ALU_SRC_LITERAL) {
792 uint32_t value = alu->src[i].value;
793 for (j = 0; j < nliteral; ++j) {
794 if (literal[j] == value) {
795 alu->src[i].chan = j;
796 break;
797 }
798 }
799 }
800 }
801 }
802
merge_inst_groups(struct r600_bytecode * bc,struct r600_bytecode_alu * slots[5],struct r600_bytecode_alu * alu_prev)803 static int merge_inst_groups(struct r600_bytecode *bc, struct r600_bytecode_alu *slots[5],
804 struct r600_bytecode_alu *alu_prev)
805 {
806 struct r600_bytecode_alu *prev[5];
807 struct r600_bytecode_alu *result[5] = { NULL };
808
809 uint8_t interp_xz = 0;
810
811 uint32_t literal[4], prev_literal[4];
812 unsigned nliteral = 0, prev_nliteral = 0;
813
814 int i, j, r, src, num_src;
815 int num_once_inst = 0;
816 int have_mova = 0, have_rel = 0;
817 int max_slots = bc->gfx_level == CAYMAN ? 4 : 5;
818
819 bool has_dot = false;
820
821 r = assign_alu_units(bc, alu_prev, prev);
822 if (r)
823 return r;
824
825 for (i = 0; i < max_slots; ++i) {
826 if (prev[i]) {
827 if (prev[i]->pred_sel)
828 return 0;
829 if (is_alu_once_inst(prev[i]))
830 return 0;
831 has_dot |= prev[i]->op == ALU_OP2_DOT || prev[i]->op == ALU_OP2_DOT_IEEE;
832
833
834 if (prev[i]->op == ALU_OP1_INTERP_LOAD_P0)
835 interp_xz |= 3;
836 if (prev[i]->op == ALU_OP2_INTERP_X)
837 interp_xz |= 1;
838 if (prev[i]->op == ALU_OP2_INTERP_Z)
839 interp_xz |= 2;
840 }
841 if (slots[i]) {
842 if (slots[i]->pred_sel)
843 return 0;
844 if (is_alu_once_inst(slots[i]))
845 return 0;
846 has_dot |= slots[i]->op == ALU_OP2_DOT || slots[i]->op == ALU_OP2_DOT_IEEE;
847 return 0;
848 if (slots[i]->op == ALU_OP1_INTERP_LOAD_P0)
849 interp_xz |= 3;
850 if (slots[i]->op == ALU_OP2_INTERP_X)
851 interp_xz |= 1;
852 if (slots[i]->op == ALU_OP2_INTERP_Z)
853 interp_xz |= 2;
854 }
855 if (interp_xz == 3)
856 return 0;
857 }
858
859 for (i = 0; i < max_slots; ++i) {
860 struct r600_bytecode_alu *alu;
861
862 if (num_once_inst > 0)
863 return 0;
864
865 /* check number of literals */
866 if (prev[i]) {
867 if (r600_bytecode_alu_nliterals(prev[i], literal, &nliteral))
868 return 0;
869 if (r600_bytecode_alu_nliterals(prev[i], prev_literal, &prev_nliteral))
870 return 0;
871 if (is_alu_mova_inst(prev[i])) {
872 if (have_rel)
873 return 0;
874 have_mova = 1;
875 }
876
877 if (alu_uses_rel(prev[i])) {
878 if (have_mova) {
879 return 0;
880 }
881 have_rel = 1;
882 }
883 if (alu_uses_lds(prev[i]))
884 return 0;
885
886 num_once_inst += is_alu_once_inst(prev[i]);
887 }
888 if (slots[i] && r600_bytecode_alu_nliterals(slots[i], literal, &nliteral))
889 return 0;
890
891 /* Let's check used slots. */
892 if (prev[i] && !slots[i]) {
893 result[i] = prev[i];
894 continue;
895 } else if (prev[i] && slots[i]) {
896 if (max_slots == 5 && !has_dot && result[4] == NULL && prev[4] == NULL && slots[4] == NULL) {
897 /* Trans unit is still free try to use it. */
898 if (is_alu_any_unit_inst(bc, slots[i]) && !alu_uses_lds(slots[i])) {
899 result[i] = prev[i];
900 result[4] = slots[i];
901 } else if (is_alu_any_unit_inst(bc, prev[i])) {
902 if (slots[i]->dst.sel == prev[i]->dst.sel &&
903 alu_writes(slots[i]) &&
904 alu_writes(prev[i]))
905 return 0;
906
907 result[i] = slots[i];
908 result[4] = prev[i];
909 } else
910 return 0;
911 } else
912 return 0;
913 } else if(!slots[i]) {
914 continue;
915 } else {
916 if (max_slots == 5 && slots[i] && prev[4] &&
917 slots[i]->dst.sel == prev[4]->dst.sel &&
918 slots[i]->dst.chan == prev[4]->dst.chan &&
919 alu_writes(slots[i]) &&
920 alu_writes(prev[4]))
921 return 0;
922
923 result[i] = slots[i];
924 }
925
926 alu = slots[i];
927 num_once_inst += is_alu_once_inst(alu);
928
929 /* don't reschedule NOPs */
930 if (is_nop_inst(alu))
931 return 0;
932
933 if (is_alu_mova_inst(alu)) {
934 if (have_rel) {
935 return 0;
936 }
937 have_mova = 1;
938 }
939
940 if (alu_uses_rel(alu)) {
941 if (have_mova) {
942 return 0;
943 }
944 have_rel = 1;
945 }
946
947 if (alu->op == ALU_OP0_SET_CF_IDX0 ||
948 alu->op == ALU_OP0_SET_CF_IDX1)
949 return 0; /* data hazard with MOVA */
950
951 /* Let's check source gprs */
952 num_src = r600_bytecode_get_num_operands(alu);
953 for (src = 0; src < num_src; ++src) {
954
955 /* Constants don't matter. */
956 if (!is_gpr(alu->src[src].sel))
957 continue;
958
959 for (j = 0; j < max_slots; ++j) {
960 if (!prev[j] || !alu_writes(prev[j]))
961 continue;
962
963 /* If it's relative then we can't determine which gpr is really used. */
964 if (prev[j]->dst.chan == alu->src[src].chan &&
965 (prev[j]->dst.sel == alu->src[src].sel ||
966 prev[j]->dst.rel || alu->src[src].rel))
967 return 0;
968 }
969 }
970 }
971
972 /* more than one PRED_ or KILL_ ? */
973 if (num_once_inst > 1)
974 return 0;
975
976 /* check if the result can still be swizzlet */
977 r = check_and_set_bank_swizzle(bc, result);
978 if (r)
979 return 0;
980
981 /* looks like everything worked out right, apply the changes */
982
983 /* undo adding previous literals */
984 bc->cf_last->ndw -= align(prev_nliteral, 2);
985
986 /* sort instructions */
987 for (i = 0; i < max_slots; ++i) {
988 slots[i] = result[i];
989 if (result[i]) {
990 list_del(&result[i]->list);
991 result[i]->last = 0;
992 list_addtail(&result[i]->list, &bc->cf_last->alu);
993 }
994 }
995
996 /* determine new last instruction */
997 list_entry(bc->cf_last->alu.prev, struct r600_bytecode_alu, list)->last = 1;
998
999 /* determine new first instruction */
1000 for (i = 0; i < max_slots; ++i) {
1001 if (result[i]) {
1002 bc->cf_last->curr_bs_head = result[i];
1003 break;
1004 }
1005 }
1006
1007 bc->cf_last->prev_bs_head = bc->cf_last->prev2_bs_head;
1008 bc->cf_last->prev2_bs_head = NULL;
1009
1010 return 0;
1011 }
1012
1013 /* we'll keep kcache sets sorted by bank & addr */
r600_bytecode_alloc_kcache_line(struct r600_bytecode * bc,struct r600_bytecode_kcache * kcache,unsigned bank,unsigned line,unsigned index_mode)1014 static int r600_bytecode_alloc_kcache_line(struct r600_bytecode *bc,
1015 struct r600_bytecode_kcache *kcache,
1016 unsigned bank, unsigned line, unsigned index_mode)
1017 {
1018 int i, kcache_banks = bc->gfx_level >= EVERGREEN ? 4 : 2;
1019
1020 for (i = 0; i < kcache_banks; i++) {
1021 if (kcache[i].mode) {
1022 int d;
1023
1024 if (kcache[i].bank < bank)
1025 continue;
1026
1027 if ((kcache[i].bank == bank && kcache[i].addr > line+1) ||
1028 kcache[i].bank > bank) {
1029 /* try to insert new line */
1030 if (kcache[kcache_banks-1].mode) {
1031 /* all sets are in use */
1032 return -ENOMEM;
1033 }
1034
1035 memmove(&kcache[i+1],&kcache[i], (kcache_banks-i-1)*sizeof(struct r600_bytecode_kcache));
1036 kcache[i].mode = V_SQ_CF_KCACHE_LOCK_1;
1037 kcache[i].bank = bank;
1038 kcache[i].addr = line;
1039 kcache[i].index_mode = index_mode;
1040 return 0;
1041 }
1042
1043 d = line - kcache[i].addr;
1044
1045 if (d == -1) {
1046 kcache[i].addr--;
1047 if (kcache[i].mode == V_SQ_CF_KCACHE_LOCK_2) {
1048 /* we are prepending the line to the current set,
1049 * discarding the existing second line,
1050 * so we'll have to insert line+2 after it */
1051 line += 2;
1052 continue;
1053 } else if (kcache[i].mode == V_SQ_CF_KCACHE_LOCK_1) {
1054 kcache[i].mode = V_SQ_CF_KCACHE_LOCK_2;
1055 return 0;
1056 } else {
1057 /* V_SQ_CF_KCACHE_LOCK_LOOP_INDEX is not supported */
1058 return -ENOMEM;
1059 }
1060 } else if (d == 1) {
1061 kcache[i].mode = V_SQ_CF_KCACHE_LOCK_2;
1062 return 0;
1063 } else if (d == 0)
1064 return 0;
1065 } else { /* free kcache set - use it */
1066 kcache[i].mode = V_SQ_CF_KCACHE_LOCK_1;
1067 kcache[i].bank = bank;
1068 kcache[i].addr = line;
1069 kcache[i].index_mode = index_mode;
1070 return 0;
1071 }
1072 }
1073 return -ENOMEM;
1074 }
1075
r600_bytecode_alloc_inst_kcache_lines(struct r600_bytecode * bc,struct r600_bytecode_kcache * kcache,struct r600_bytecode_alu * alu)1076 static int r600_bytecode_alloc_inst_kcache_lines(struct r600_bytecode *bc,
1077 struct r600_bytecode_kcache *kcache,
1078 struct r600_bytecode_alu *alu)
1079 {
1080 int i, r;
1081
1082 for (i = 0; i < 3; i++) {
1083 unsigned bank, line, sel = alu->src[i].sel, index_mode;
1084
1085 if (sel < 512)
1086 continue;
1087
1088 bank = alu->src[i].kc_bank;
1089 assert(bank < R600_MAX_ALU_CONST_BUFFERS);
1090 line = (sel-512)>>4;
1091 index_mode = alu->src[i].kc_rel;
1092
1093 if ((r = r600_bytecode_alloc_kcache_line(bc, kcache, bank, line, index_mode)))
1094 return r;
1095 }
1096 return 0;
1097 }
1098
r600_bytecode_assign_kcache_banks(struct r600_bytecode_alu * alu,struct r600_bytecode_kcache * kcache)1099 static int r600_bytecode_assign_kcache_banks(
1100 struct r600_bytecode_alu *alu,
1101 struct r600_bytecode_kcache * kcache)
1102 {
1103 int i, j;
1104
1105 /* Alter the src operands to refer to the kcache. */
1106 for (i = 0; i < 3; ++i) {
1107 static const unsigned int base[] = {128, 160, 256, 288};
1108 unsigned int line, sel = alu->src[i].sel, found = 0;
1109
1110 if (sel < 512)
1111 continue;
1112
1113 sel -= 512;
1114 line = sel>>4;
1115
1116 for (j = 0; j < 4 && !found; ++j) {
1117 switch (kcache[j].mode) {
1118 case V_SQ_CF_KCACHE_NOP:
1119 case V_SQ_CF_KCACHE_LOCK_LOOP_INDEX:
1120 R600_ASM_ERR("unexpected kcache line mode\n");
1121 return -ENOMEM;
1122 default:
1123 if (kcache[j].bank == alu->src[i].kc_bank &&
1124 kcache[j].addr <= line &&
1125 line < kcache[j].addr + kcache[j].mode) {
1126 alu->src[i].sel = sel - (kcache[j].addr<<4);
1127 alu->src[i].sel += base[j];
1128 found=1;
1129 }
1130 }
1131 }
1132 }
1133 return 0;
1134 }
1135
r600_bytecode_alloc_kcache_lines(struct r600_bytecode * bc,struct r600_bytecode_alu * alu,unsigned type)1136 static int r600_bytecode_alloc_kcache_lines(struct r600_bytecode *bc,
1137 struct r600_bytecode_alu *alu,
1138 unsigned type)
1139 {
1140 struct r600_bytecode_kcache kcache_sets[4];
1141 struct r600_bytecode_kcache *kcache = kcache_sets;
1142 int r;
1143
1144 memcpy(kcache, bc->cf_last->kcache, 4 * sizeof(struct r600_bytecode_kcache));
1145
1146 if ((r = r600_bytecode_alloc_inst_kcache_lines(bc, kcache, alu))) {
1147 /* can't alloc, need to start new clause */
1148
1149 /* Make sure the CF ends with an "last" instruction when
1150 * we split an ALU group because of a new CF */
1151 if (!list_is_empty(&bc->cf_last->alu)) {
1152 struct r600_bytecode_alu *last_submitted =
1153 list_last_entry(&bc->cf_last->alu, struct r600_bytecode_alu, list);
1154 last_submitted->last = 1;
1155 }
1156
1157 if ((r = r600_bytecode_add_cf(bc))) {
1158 return r;
1159 }
1160 bc->cf_last->op = type;
1161
1162 /* retry with the new clause */
1163 kcache = bc->cf_last->kcache;
1164 if ((r = r600_bytecode_alloc_inst_kcache_lines(bc, kcache, alu))) {
1165 /* can't alloc again- should never happen */
1166 return r;
1167 }
1168 } else {
1169 /* update kcache sets */
1170 memcpy(bc->cf_last->kcache, kcache, 4 * sizeof(struct r600_bytecode_kcache));
1171 }
1172
1173 /* if we actually used more than 2 kcache sets, or have relative indexing - use ALU_EXTENDED on eg+ */
1174 if (kcache[2].mode != V_SQ_CF_KCACHE_NOP ||
1175 kcache[0].index_mode || kcache[1].index_mode || kcache[2].index_mode || kcache[3].index_mode) {
1176 if (bc->gfx_level < EVERGREEN)
1177 return -ENOMEM;
1178 bc->cf_last->eg_alu_extended = 1;
1179 }
1180
1181 return 0;
1182 }
1183
insert_nop_r6xx(struct r600_bytecode * bc,int max_slots)1184 static int insert_nop_r6xx(struct r600_bytecode *bc, int max_slots)
1185 {
1186 struct r600_bytecode_alu alu;
1187 int r, i;
1188
1189 for (i = 0; i < max_slots; i++) {
1190 memset(&alu, 0, sizeof(alu));
1191 alu.op = ALU_OP0_NOP;
1192 alu.src[0].chan = i & 3;
1193 alu.dst.chan = i & 3;
1194 alu.last = (i == max_slots - 1);
1195 r = r600_bytecode_add_alu(bc, &alu);
1196 if (r)
1197 return r;
1198 }
1199 return 0;
1200 }
1201
1202 /* load AR register from gpr (bc->ar_reg) with MOVA_INT */
load_ar_r6xx(struct r600_bytecode * bc,bool for_src)1203 static int load_ar_r6xx(struct r600_bytecode *bc, bool for_src)
1204 {
1205 struct r600_bytecode_alu alu;
1206 int r;
1207
1208 if (bc->ar_loaded)
1209 return 0;
1210
1211 /* hack to avoid making MOVA the last instruction in the clause */
1212 if (bc->cf_last == NULL || (bc->cf_last->ndw>>1) >= 110)
1213 bc->force_add_cf = 1;
1214 else if (for_src) {
1215 insert_nop_r6xx(bc, 4);
1216 bc->nalu_groups++;
1217 }
1218
1219 memset(&alu, 0, sizeof(alu));
1220 alu.op = ALU_OP1_MOVA_GPR_INT;
1221 alu.src[0].sel = bc->ar_reg;
1222 alu.src[0].chan = bc->ar_chan;
1223 alu.last = 1;
1224 alu.index_mode = INDEX_MODE_LOOP;
1225 r = r600_bytecode_add_alu(bc, &alu);
1226 if (r)
1227 return r;
1228
1229 /* no requirement to set uses waterfall on MOVA_GPR_INT */
1230 bc->ar_loaded = 1;
1231 return 0;
1232 }
1233
1234 /* load AR register from gpr (bc->ar_reg) with MOVA_INT */
r600_load_ar(struct r600_bytecode * bc,bool for_src)1235 int r600_load_ar(struct r600_bytecode *bc, bool for_src)
1236 {
1237 struct r600_bytecode_alu alu;
1238 int r;
1239
1240 if (bc->ar_handling)
1241 return load_ar_r6xx(bc, for_src);
1242
1243 if (bc->ar_loaded)
1244 return 0;
1245
1246 /* hack to avoid making MOVA the last instruction in the clause */
1247 if (bc->cf_last == NULL || (bc->cf_last->ndw>>1) >= 110)
1248 bc->force_add_cf = 1;
1249
1250 memset(&alu, 0, sizeof(alu));
1251 alu.op = ALU_OP1_MOVA_INT;
1252 alu.src[0].sel = bc->ar_reg;
1253 alu.src[0].chan = bc->ar_chan;
1254 alu.last = 1;
1255 r = r600_bytecode_add_alu(bc, &alu);
1256 if (r)
1257 return r;
1258
1259 bc->cf_last->r6xx_uses_waterfall = 1;
1260 bc->ar_loaded = 1;
1261 return 0;
1262 }
1263
r600_bytecode_add_alu_type(struct r600_bytecode * bc,const struct r600_bytecode_alu * alu,unsigned type)1264 int r600_bytecode_add_alu_type(struct r600_bytecode *bc,
1265 const struct r600_bytecode_alu *alu, unsigned type)
1266 {
1267 struct r600_bytecode_alu *nalu = r600_bytecode_alu();
1268 struct r600_bytecode_alu *lalu;
1269 int i, r;
1270
1271 if (!nalu)
1272 return -ENOMEM;
1273 memcpy(nalu, alu, sizeof(struct r600_bytecode_alu));
1274
1275 if (alu->is_op3) {
1276 /* will fail later since alu does not support it. */
1277 assert(!alu->src[0].abs && !alu->src[1].abs && !alu->src[2].abs);
1278 }
1279
1280 if (bc->cf_last != NULL && bc->cf_last->op != type) {
1281 /* check if we could add it anyway */
1282 if ((bc->cf_last->op == CF_OP_ALU && type == CF_OP_ALU_PUSH_BEFORE) ||
1283 (bc->cf_last->op == CF_OP_ALU_PUSH_BEFORE && type == CF_OP_ALU)) {
1284 LIST_FOR_EACH_ENTRY(lalu, &bc->cf_last->alu, list) {
1285 if (lalu->execute_mask) {
1286 assert(bc->force_add_cf || !"no force cf");
1287 bc->force_add_cf = 1;
1288 break;
1289 }
1290 type = CF_OP_ALU_PUSH_BEFORE;
1291 }
1292 } else {
1293 assert(bc->force_add_cf ||!"no force cf");
1294 bc->force_add_cf = 1;
1295 }
1296 }
1297
1298 /* cf can contains only alu or only vtx or only tex */
1299 if (bc->cf_last == NULL || bc->force_add_cf) {
1300 if (bc->cf_last && bc->cf_last->curr_bs_head)
1301 bc->cf_last->curr_bs_head->last = 1;
1302 r = r600_bytecode_add_cf(bc);
1303 if (r) {
1304 free(nalu);
1305 return r;
1306 }
1307 }
1308 bc->cf_last->op = type;
1309
1310 if (bc->gfx_level >= EVERGREEN) {
1311 for (i = 0; i < 3; i++)
1312 if (nalu->src[i].kc_bank && nalu->src[i].kc_rel)
1313 assert(bc->index_loaded[nalu->src[i].kc_rel - 1]);
1314 }
1315
1316 /* Check AR usage and load it if required */
1317 for (i = 0; i < 3; i++)
1318 if (nalu->src[i].rel && !bc->ar_loaded)
1319 r600_load_ar(bc, true);
1320
1321 if (nalu->dst.rel && !bc->ar_loaded)
1322 r600_load_ar(bc, false);
1323
1324 /* Setup the kcache for this ALU instruction. This will start a new
1325 * ALU clause if needed. */
1326 if ((r = r600_bytecode_alloc_kcache_lines(bc, nalu, type))) {
1327 free(nalu);
1328 return r;
1329 }
1330
1331 if (!bc->cf_last->curr_bs_head) {
1332 bc->cf_last->curr_bs_head = nalu;
1333 }
1334 /* number of gpr == the last gpr used in any alu */
1335 for (i = 0; i < 3; i++) {
1336 if (nalu->src[i].sel >= bc->ngpr && nalu->src[i].sel < 123) {
1337 bc->ngpr = nalu->src[i].sel + 1;
1338 }
1339 if (nalu->src[i].sel == V_SQ_ALU_SRC_LITERAL)
1340 r600_bytecode_special_constants(nalu->src[i].value,
1341 &nalu->src[i].sel);
1342 }
1343 if (nalu->dst.write && nalu->dst.sel >= bc->ngpr && nalu->dst.sel < 123) {
1344 bc->ngpr = nalu->dst.sel + 1;
1345 }
1346 list_addtail(&nalu->list, &bc->cf_last->alu);
1347 /* each alu use 2 dwords */
1348 bc->cf_last->ndw += 2;
1349 bc->ndw += 2;
1350
1351 /* process cur ALU instructions for bank swizzle */
1352 if (nalu->last) {
1353 uint32_t literal[4];
1354 unsigned nliteral;
1355 struct r600_bytecode_alu *slots[5];
1356 int max_slots = bc->gfx_level == CAYMAN ? 4 : 5;
1357 r = assign_alu_units(bc, bc->cf_last->curr_bs_head, slots);
1358 if (r)
1359 return r;
1360
1361 if (bc->cf_last->prev_bs_head) {
1362 struct r600_bytecode_alu *cur_prev_head = bc->cf_last->prev_bs_head;
1363 r = merge_inst_groups(bc, slots, cur_prev_head);
1364 if (r)
1365 return r;
1366 if (cur_prev_head != bc->cf_last->prev_bs_head)
1367 bc->nalu_groups--;
1368 }
1369
1370 if (bc->cf_last->prev_bs_head) {
1371 r = replace_gpr_with_pv_ps(bc, slots, bc->cf_last->prev_bs_head);
1372 if (r)
1373 return r;
1374 }
1375
1376 r = check_and_set_bank_swizzle(bc, slots);
1377 if (r)
1378 return r;
1379
1380 for (i = 0, nliteral = 0; i < max_slots; i++) {
1381 if (slots[i]) {
1382 r = r600_bytecode_alu_nliterals(slots[i], literal, &nliteral);
1383 if (r)
1384 return r;
1385 }
1386 }
1387 bc->cf_last->ndw += align(nliteral, 2);
1388
1389 bc->cf_last->prev2_bs_head = bc->cf_last->prev_bs_head;
1390 bc->cf_last->prev_bs_head = bc->cf_last->curr_bs_head;
1391 bc->cf_last->curr_bs_head = NULL;
1392
1393 bc->nalu_groups++;
1394
1395 if (bc->r6xx_nop_after_rel_dst) {
1396 for (int i = 0; i < max_slots; ++i) {
1397 if (slots[i] && slots[i]->dst.rel) {
1398 insert_nop_r6xx(bc, max_slots);
1399 bc->nalu_groups++;
1400 break;
1401 }
1402 }
1403 }
1404 }
1405
1406 /* Might need to insert spill write ops after current clause */
1407 if (nalu->last && bc->n_pending_outputs) {
1408 while (bc->n_pending_outputs) {
1409 r = r600_bytecode_add_output(bc, &bc->pending_outputs[--bc->n_pending_outputs]);
1410 if (r)
1411 return r;
1412 }
1413 }
1414
1415 return 0;
1416 }
1417
r600_bytecode_add_alu(struct r600_bytecode * bc,const struct r600_bytecode_alu * alu)1418 int r600_bytecode_add_alu(struct r600_bytecode *bc, const struct r600_bytecode_alu *alu)
1419 {
1420 return r600_bytecode_add_alu_type(bc, alu, CF_OP_ALU);
1421 }
1422
r600_bytecode_num_tex_and_vtx_instructions(const struct r600_bytecode * bc)1423 static unsigned r600_bytecode_num_tex_and_vtx_instructions(const struct r600_bytecode *bc)
1424 {
1425 switch (bc->gfx_level) {
1426 case R600:
1427 return 8;
1428
1429 case R700:
1430 case EVERGREEN:
1431 case CAYMAN:
1432 return 16;
1433
1434 default:
1435 R600_ASM_ERR("Unknown gfx level %d.\n", bc->gfx_level);
1436 return 8;
1437 }
1438 }
1439
last_inst_was_not_vtx_fetch(struct r600_bytecode * bc,bool use_tc)1440 static inline bool last_inst_was_not_vtx_fetch(struct r600_bytecode *bc, bool use_tc)
1441 {
1442 return !((r600_isa_cf(bc->cf_last->op)->flags & CF_FETCH) &&
1443 bc->cf_last->op != CF_OP_GDS &&
1444 (bc->gfx_level == CAYMAN || use_tc ||
1445 bc->cf_last->op != CF_OP_TEX));
1446 }
1447
r600_bytecode_add_vtx_internal(struct r600_bytecode * bc,const struct r600_bytecode_vtx * vtx,bool use_tc)1448 static int r600_bytecode_add_vtx_internal(struct r600_bytecode *bc, const struct r600_bytecode_vtx *vtx,
1449 bool use_tc)
1450 {
1451 struct r600_bytecode_vtx *nvtx = r600_bytecode_vtx();
1452 int r;
1453
1454 if (!nvtx)
1455 return -ENOMEM;
1456 memcpy(nvtx, vtx, sizeof(struct r600_bytecode_vtx));
1457
1458 if (bc->gfx_level >= EVERGREEN) {
1459 assert(!vtx->buffer_index_mode ||
1460 bc->index_loaded[vtx->buffer_index_mode - 1]);
1461 }
1462
1463
1464 /* cf can contains only alu or only vtx or only tex */
1465 if (bc->cf_last == NULL ||
1466 last_inst_was_not_vtx_fetch(bc, use_tc) ||
1467 bc->force_add_cf) {
1468 r = r600_bytecode_add_cf(bc);
1469 if (r) {
1470 free(nvtx);
1471 return r;
1472 }
1473 switch (bc->gfx_level) {
1474 case R600:
1475 case R700:
1476 bc->cf_last->op = CF_OP_VTX;
1477 break;
1478 case EVERGREEN:
1479 if (use_tc)
1480 bc->cf_last->op = CF_OP_TEX;
1481 else
1482 bc->cf_last->op = CF_OP_VTX;
1483 break;
1484 case CAYMAN:
1485 bc->cf_last->op = CF_OP_TEX;
1486 break;
1487 default:
1488 R600_ASM_ERR("Unknown gfx level %d.\n", bc->gfx_level);
1489 free(nvtx);
1490 return -EINVAL;
1491 }
1492 }
1493 list_addtail(&nvtx->list, &bc->cf_last->vtx);
1494 /* each fetch use 4 dwords */
1495 bc->cf_last->ndw += 4;
1496 bc->ndw += 4;
1497 if ((bc->cf_last->ndw / 4) >= r600_bytecode_num_tex_and_vtx_instructions(bc))
1498 bc->force_add_cf = 1;
1499
1500 bc->ngpr = MAX2(bc->ngpr, vtx->src_gpr + 1);
1501 bc->ngpr = MAX2(bc->ngpr, vtx->dst_gpr + 1);
1502
1503 return 0;
1504 }
1505
r600_bytecode_add_vtx(struct r600_bytecode * bc,const struct r600_bytecode_vtx * vtx)1506 int r600_bytecode_add_vtx(struct r600_bytecode *bc, const struct r600_bytecode_vtx *vtx)
1507 {
1508 return r600_bytecode_add_vtx_internal(bc, vtx, false);
1509 }
1510
r600_bytecode_add_vtx_tc(struct r600_bytecode * bc,const struct r600_bytecode_vtx * vtx)1511 int r600_bytecode_add_vtx_tc(struct r600_bytecode *bc, const struct r600_bytecode_vtx *vtx)
1512 {
1513 return r600_bytecode_add_vtx_internal(bc, vtx, true);
1514 }
1515
r600_bytecode_add_tex(struct r600_bytecode * bc,const struct r600_bytecode_tex * tex)1516 int r600_bytecode_add_tex(struct r600_bytecode *bc, const struct r600_bytecode_tex *tex)
1517 {
1518 struct r600_bytecode_tex *ntex = r600_bytecode_tex();
1519 int r;
1520
1521 if (!ntex)
1522 return -ENOMEM;
1523 memcpy(ntex, tex, sizeof(struct r600_bytecode_tex));
1524
1525 if (bc->gfx_level >= EVERGREEN) {
1526 assert(!tex->sampler_index_mode ||
1527 bc->index_loaded[tex->sampler_index_mode - 1]);
1528 assert(!tex->resource_index_mode ||
1529 bc->index_loaded[tex->resource_index_mode - 1]);
1530 }
1531
1532 /* we can't fetch data und use it as texture lookup address in the same TEX clause */
1533 if (bc->cf_last != NULL &&
1534 bc->cf_last->op == CF_OP_TEX) {
1535 struct r600_bytecode_tex *ttex;
1536 uint8_t use_mask = ((1 << ntex->src_sel_x) |
1537 (1 << ntex->src_sel_y) |
1538 (1 << ntex->src_sel_z) |
1539 (1 << ntex->src_sel_w)) & 0xf;
1540
1541 LIST_FOR_EACH_ENTRY(ttex, &bc->cf_last->tex, list) {
1542 if (ttex->dst_gpr == ntex->src_gpr) {
1543 uint8_t write_mask = (ttex->dst_sel_x < 6 ? 1 : 0) |
1544 (ttex->dst_sel_y < 6 ? 2 : 0) |
1545 (ttex->dst_sel_z < 6 ? 4 : 0) |
1546 (ttex->dst_sel_w < 6 ? 8 : 0);
1547 if (use_mask & write_mask) {
1548 bc->force_add_cf = 1;
1549 break;
1550 }
1551 }
1552 }
1553 /* vtx instrs get inserted after tex, so make sure we aren't moving the tex
1554 * before (say) the instr fetching the texcoord.
1555 */
1556 if (!list_is_empty(&bc->cf_last->vtx))
1557 bc->force_add_cf = 1;
1558
1559 /* slight hack to make gradients always go into same cf */
1560 if (ntex->op == FETCH_OP_SET_GRADIENTS_H)
1561 bc->force_add_cf = 1;
1562 }
1563
1564 /* cf can contains only alu or only vtx or only tex */
1565 if (bc->cf_last == NULL ||
1566 bc->cf_last->op != CF_OP_TEX ||
1567 bc->force_add_cf) {
1568 r = r600_bytecode_add_cf(bc);
1569 if (r) {
1570 free(ntex);
1571 return r;
1572 }
1573 bc->cf_last->op = CF_OP_TEX;
1574 }
1575 if (ntex->src_gpr >= bc->ngpr) {
1576 bc->ngpr = ntex->src_gpr + 1;
1577 }
1578 if (ntex->dst_gpr >= bc->ngpr) {
1579 bc->ngpr = ntex->dst_gpr + 1;
1580 }
1581 list_addtail(&ntex->list, &bc->cf_last->tex);
1582 /* each texture fetch use 4 dwords */
1583 bc->cf_last->ndw += 4;
1584 bc->ndw += 4;
1585 if ((bc->cf_last->ndw / 4) >= r600_bytecode_num_tex_and_vtx_instructions(bc))
1586 bc->force_add_cf = 1;
1587 return 0;
1588 }
1589
r600_bytecode_add_gds(struct r600_bytecode * bc,const struct r600_bytecode_gds * gds)1590 int r600_bytecode_add_gds(struct r600_bytecode *bc, const struct r600_bytecode_gds *gds)
1591 {
1592 struct r600_bytecode_gds *ngds = r600_bytecode_gds();
1593 int r;
1594
1595 if (ngds == NULL)
1596 return -ENOMEM;
1597 memcpy(ngds, gds, sizeof(struct r600_bytecode_gds));
1598
1599 if (bc->gfx_level >= EVERGREEN) {
1600 assert(!gds->uav_index_mode ||
1601 bc->index_loaded[gds->uav_index_mode - 1]);
1602 }
1603
1604 if (bc->cf_last == NULL ||
1605 bc->cf_last->op != CF_OP_GDS ||
1606 bc->force_add_cf) {
1607 r = r600_bytecode_add_cf(bc);
1608 if (r) {
1609 free(ngds);
1610 return r;
1611 }
1612 bc->cf_last->op = CF_OP_GDS;
1613 }
1614
1615 list_addtail(&ngds->list, &bc->cf_last->gds);
1616 bc->cf_last->ndw += 4; /* each GDS uses 4 dwords */
1617 if ((bc->cf_last->ndw / 4) >= r600_bytecode_num_tex_and_vtx_instructions(bc))
1618 bc->force_add_cf = 1;
1619 return 0;
1620 }
1621
r600_bytecode_add_cfinst(struct r600_bytecode * bc,unsigned op)1622 int r600_bytecode_add_cfinst(struct r600_bytecode *bc, unsigned op)
1623 {
1624 int r;
1625
1626 /* Emit WAIT_ACK before control flow to ensure pending writes are always acked. */
1627 if (op != CF_OP_WAIT_ACK && op != CF_OP_MEM_SCRATCH)
1628 r600_bytecode_wait_acks(bc);
1629
1630 r = r600_bytecode_add_cf(bc);
1631 if (r)
1632 return r;
1633
1634 bc->cf_last->cond = V_SQ_CF_COND_ACTIVE;
1635 bc->cf_last->op = op;
1636 return 0;
1637 }
1638
cm_bytecode_add_cf_end(struct r600_bytecode * bc)1639 int cm_bytecode_add_cf_end(struct r600_bytecode *bc)
1640 {
1641 return r600_bytecode_add_cfinst(bc, CF_OP_CF_END);
1642 }
1643
1644 /* common to all 3 families */
r600_bytecode_vtx_build(struct r600_bytecode * bc,struct r600_bytecode_vtx * vtx,unsigned id)1645 static int r600_bytecode_vtx_build(struct r600_bytecode *bc, struct r600_bytecode_vtx *vtx, unsigned id)
1646 {
1647 if (r600_isa_fetch(vtx->op)->flags & FF_MEM)
1648 return r700_bytecode_fetch_mem_build(bc, vtx, id);
1649 bc->bytecode[id] = S_SQ_VTX_WORD0_VTX_INST(r600_isa_fetch_opcode(bc->isa->hw_class, vtx->op)) |
1650 S_SQ_VTX_WORD0_BUFFER_ID(vtx->buffer_id) |
1651 S_SQ_VTX_WORD0_FETCH_TYPE(vtx->fetch_type) |
1652 S_SQ_VTX_WORD0_SRC_GPR(vtx->src_gpr) |
1653 S_SQ_VTX_WORD0_SRC_SEL_X(vtx->src_sel_x);
1654 if (bc->gfx_level < CAYMAN)
1655 bc->bytecode[id] |= S_SQ_VTX_WORD0_MEGA_FETCH_COUNT(vtx->mega_fetch_count);
1656 id++;
1657 bc->bytecode[id++] = S_SQ_VTX_WORD1_DST_SEL_X(vtx->dst_sel_x) |
1658 S_SQ_VTX_WORD1_DST_SEL_Y(vtx->dst_sel_y) |
1659 S_SQ_VTX_WORD1_DST_SEL_Z(vtx->dst_sel_z) |
1660 S_SQ_VTX_WORD1_DST_SEL_W(vtx->dst_sel_w) |
1661 S_SQ_VTX_WORD1_USE_CONST_FIELDS(vtx->use_const_fields) |
1662 S_SQ_VTX_WORD1_DATA_FORMAT(vtx->data_format) |
1663 S_SQ_VTX_WORD1_NUM_FORMAT_ALL(vtx->num_format_all) |
1664 S_SQ_VTX_WORD1_FORMAT_COMP_ALL(vtx->format_comp_all) |
1665 S_SQ_VTX_WORD1_SRF_MODE_ALL(vtx->srf_mode_all) |
1666 S_SQ_VTX_WORD1_GPR_DST_GPR(vtx->dst_gpr);
1667 bc->bytecode[id] = S_SQ_VTX_WORD2_OFFSET(vtx->offset)|
1668 S_SQ_VTX_WORD2_ENDIAN_SWAP(vtx->endian);
1669 if (bc->gfx_level >= EVERGREEN)
1670 bc->bytecode[id] |= ((vtx->buffer_index_mode & 0x3) << 21); // S_SQ_VTX_WORD2_BIM(vtx->buffer_index_mode);
1671 if (bc->gfx_level < CAYMAN)
1672 bc->bytecode[id] |= S_SQ_VTX_WORD2_MEGA_FETCH(1);
1673 id++;
1674 bc->bytecode[id++] = 0;
1675 return 0;
1676 }
1677
1678 /* common to all 3 families */
r600_bytecode_tex_build(struct r600_bytecode * bc,struct r600_bytecode_tex * tex,unsigned id)1679 static int r600_bytecode_tex_build(struct r600_bytecode *bc, struct r600_bytecode_tex *tex, unsigned id)
1680 {
1681 bc->bytecode[id] = S_SQ_TEX_WORD0_TEX_INST(
1682 r600_isa_fetch_opcode(bc->isa->hw_class, tex->op)) |
1683 EG_S_SQ_TEX_WORD0_INST_MOD(tex->inst_mod) |
1684 S_SQ_TEX_WORD0_RESOURCE_ID(tex->resource_id) |
1685 S_SQ_TEX_WORD0_SRC_GPR(tex->src_gpr) |
1686 S_SQ_TEX_WORD0_SRC_REL(tex->src_rel);
1687 if (bc->gfx_level >= EVERGREEN)
1688 bc->bytecode[id] |= ((tex->sampler_index_mode & 0x3) << 27) | // S_SQ_TEX_WORD0_SIM(tex->sampler_index_mode);
1689 ((tex->resource_index_mode & 0x3) << 25); // S_SQ_TEX_WORD0_RIM(tex->resource_index_mode)
1690 id++;
1691 bc->bytecode[id++] = S_SQ_TEX_WORD1_DST_GPR(tex->dst_gpr) |
1692 S_SQ_TEX_WORD1_DST_REL(tex->dst_rel) |
1693 S_SQ_TEX_WORD1_DST_SEL_X(tex->dst_sel_x) |
1694 S_SQ_TEX_WORD1_DST_SEL_Y(tex->dst_sel_y) |
1695 S_SQ_TEX_WORD1_DST_SEL_Z(tex->dst_sel_z) |
1696 S_SQ_TEX_WORD1_DST_SEL_W(tex->dst_sel_w) |
1697 S_SQ_TEX_WORD1_LOD_BIAS(tex->lod_bias) |
1698 S_SQ_TEX_WORD1_COORD_TYPE_X(tex->coord_type_x) |
1699 S_SQ_TEX_WORD1_COORD_TYPE_Y(tex->coord_type_y) |
1700 S_SQ_TEX_WORD1_COORD_TYPE_Z(tex->coord_type_z) |
1701 S_SQ_TEX_WORD1_COORD_TYPE_W(tex->coord_type_w);
1702 bc->bytecode[id++] = S_SQ_TEX_WORD2_OFFSET_X(tex->offset_x) |
1703 S_SQ_TEX_WORD2_OFFSET_Y(tex->offset_y) |
1704 S_SQ_TEX_WORD2_OFFSET_Z(tex->offset_z) |
1705 S_SQ_TEX_WORD2_SAMPLER_ID(tex->sampler_id) |
1706 S_SQ_TEX_WORD2_SRC_SEL_X(tex->src_sel_x) |
1707 S_SQ_TEX_WORD2_SRC_SEL_Y(tex->src_sel_y) |
1708 S_SQ_TEX_WORD2_SRC_SEL_Z(tex->src_sel_z) |
1709 S_SQ_TEX_WORD2_SRC_SEL_W(tex->src_sel_w);
1710 bc->bytecode[id++] = 0;
1711 return 0;
1712 }
1713
1714 /* r600 only, r700/eg bits in r700_asm.c */
r600_bytecode_alu_build(struct r600_bytecode * bc,struct r600_bytecode_alu * alu,unsigned id)1715 static int r600_bytecode_alu_build(struct r600_bytecode *bc, struct r600_bytecode_alu *alu, unsigned id)
1716 {
1717 unsigned opcode = r600_isa_alu_opcode(bc->isa->hw_class, alu->op);
1718
1719 /* don't replace gpr by pv or ps for destination register */
1720 bc->bytecode[id++] = S_SQ_ALU_WORD0_SRC0_SEL(alu->src[0].sel) |
1721 S_SQ_ALU_WORD0_SRC0_REL(alu->src[0].rel) |
1722 S_SQ_ALU_WORD0_SRC0_CHAN(alu->src[0].chan) |
1723 S_SQ_ALU_WORD0_SRC0_NEG(alu->src[0].neg) |
1724 S_SQ_ALU_WORD0_SRC1_SEL(alu->src[1].sel) |
1725 S_SQ_ALU_WORD0_SRC1_REL(alu->src[1].rel) |
1726 S_SQ_ALU_WORD0_SRC1_CHAN(alu->src[1].chan) |
1727 S_SQ_ALU_WORD0_SRC1_NEG(alu->src[1].neg) |
1728 S_SQ_ALU_WORD0_INDEX_MODE(alu->index_mode) |
1729 S_SQ_ALU_WORD0_PRED_SEL(alu->pred_sel) |
1730 S_SQ_ALU_WORD0_LAST(alu->last);
1731
1732 if (alu->is_op3) {
1733 assert(!alu->src[0].abs && !alu->src[1].abs && !alu->src[2].abs);
1734 bc->bytecode[id++] = S_SQ_ALU_WORD1_DST_GPR(alu->dst.sel) |
1735 S_SQ_ALU_WORD1_DST_CHAN(alu->dst.chan) |
1736 S_SQ_ALU_WORD1_DST_REL(alu->dst.rel) |
1737 S_SQ_ALU_WORD1_CLAMP(alu->dst.clamp) |
1738 S_SQ_ALU_WORD1_OP3_SRC2_SEL(alu->src[2].sel) |
1739 S_SQ_ALU_WORD1_OP3_SRC2_REL(alu->src[2].rel) |
1740 S_SQ_ALU_WORD1_OP3_SRC2_CHAN(alu->src[2].chan) |
1741 S_SQ_ALU_WORD1_OP3_SRC2_NEG(alu->src[2].neg) |
1742 S_SQ_ALU_WORD1_OP3_ALU_INST(opcode) |
1743 S_SQ_ALU_WORD1_BANK_SWIZZLE(alu->bank_swizzle);
1744 } else {
1745 bc->bytecode[id++] = S_SQ_ALU_WORD1_DST_GPR(alu->dst.sel) |
1746 S_SQ_ALU_WORD1_DST_CHAN(alu->dst.chan) |
1747 S_SQ_ALU_WORD1_DST_REL(alu->dst.rel) |
1748 S_SQ_ALU_WORD1_CLAMP(alu->dst.clamp) |
1749 S_SQ_ALU_WORD1_OP2_SRC0_ABS(alu->src[0].abs) |
1750 S_SQ_ALU_WORD1_OP2_SRC1_ABS(alu->src[1].abs) |
1751 S_SQ_ALU_WORD1_OP2_WRITE_MASK(alu->dst.write) |
1752 S_SQ_ALU_WORD1_OP2_OMOD(alu->omod) |
1753 S_SQ_ALU_WORD1_OP2_ALU_INST(opcode) |
1754 S_SQ_ALU_WORD1_BANK_SWIZZLE(alu->bank_swizzle) |
1755 S_SQ_ALU_WORD1_OP2_UPDATE_EXECUTE_MASK(alu->execute_mask) |
1756 S_SQ_ALU_WORD1_OP2_UPDATE_PRED(alu->update_pred);
1757 }
1758 return 0;
1759 }
1760
r600_bytecode_cf_vtx_build(uint32_t * bytecode,const struct r600_bytecode_cf * cf)1761 static void r600_bytecode_cf_vtx_build(uint32_t *bytecode, const struct r600_bytecode_cf *cf)
1762 {
1763 *bytecode++ = S_SQ_CF_WORD0_ADDR(cf->addr >> 1);
1764 *bytecode++ = S_SQ_CF_WORD1_CF_INST(r600_isa_cf_opcode(ISA_CC_R600, cf->op)) |
1765 S_SQ_CF_WORD1_BARRIER(1) |
1766 S_SQ_CF_WORD1_COUNT((cf->ndw / 4) - 1)|
1767 S_SQ_CF_WORD1_END_OF_PROGRAM(cf->end_of_program);
1768 }
1769
1770 /* common for r600/r700 - eg in eg_asm.c */
r600_bytecode_cf_build(struct r600_bytecode * bc,struct r600_bytecode_cf * cf)1771 static int r600_bytecode_cf_build(struct r600_bytecode *bc, struct r600_bytecode_cf *cf)
1772 {
1773 unsigned id = cf->id;
1774 const struct cf_op_info *cfop = r600_isa_cf(cf->op);
1775 unsigned opcode = r600_isa_cf_opcode(bc->isa->hw_class, cf->op);
1776
1777
1778 if (cf->op == CF_NATIVE) {
1779 bc->bytecode[id++] = cf->isa[0];
1780 bc->bytecode[id++] = cf->isa[1];
1781 } else if (cfop->flags & CF_ALU) {
1782 bc->bytecode[id++] = S_SQ_CF_ALU_WORD0_ADDR(cf->addr >> 1) |
1783 S_SQ_CF_ALU_WORD0_KCACHE_MODE0(cf->kcache[0].mode) |
1784 S_SQ_CF_ALU_WORD0_KCACHE_BANK0(cf->kcache[0].bank) |
1785 S_SQ_CF_ALU_WORD0_KCACHE_BANK1(cf->kcache[1].bank);
1786
1787 bc->bytecode[id++] = S_SQ_CF_ALU_WORD1_CF_INST(opcode) |
1788 S_SQ_CF_ALU_WORD1_KCACHE_MODE1(cf->kcache[1].mode) |
1789 S_SQ_CF_ALU_WORD1_KCACHE_ADDR0(cf->kcache[0].addr) |
1790 S_SQ_CF_ALU_WORD1_KCACHE_ADDR1(cf->kcache[1].addr) |
1791 S_SQ_CF_ALU_WORD1_BARRIER(1) |
1792 S_SQ_CF_ALU_WORD1_USES_WATERFALL(bc->gfx_level == R600 ? cf->r6xx_uses_waterfall : 0) |
1793 S_SQ_CF_ALU_WORD1_COUNT((cf->ndw / 2) - 1);
1794 } else if (cfop->flags & CF_FETCH) {
1795 if (bc->gfx_level == R700)
1796 r700_bytecode_cf_vtx_build(&bc->bytecode[id], cf);
1797 else
1798 r600_bytecode_cf_vtx_build(&bc->bytecode[id], cf);
1799 } else if (cfop->flags & CF_EXP) {
1800 bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(cf->output.gpr) |
1801 S_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(cf->output.elem_size) |
1802 S_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(cf->output.array_base) |
1803 S_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(cf->output.type) |
1804 S_SQ_CF_ALLOC_EXPORT_WORD0_INDEX_GPR(cf->output.index_gpr);
1805 bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(cf->output.burst_count - 1) |
1806 S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_X(cf->output.swizzle_x) |
1807 S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Y(cf->output.swizzle_y) |
1808 S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Z(cf->output.swizzle_z) |
1809 S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_W(cf->output.swizzle_w) |
1810 S_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(cf->barrier) |
1811 S_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(opcode) |
1812 S_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(cf->end_of_program);
1813 } else if (cfop->flags & CF_MEM) {
1814 bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(cf->output.gpr) |
1815 S_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(cf->output.elem_size) |
1816 S_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(cf->output.array_base) |
1817 S_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(cf->output.type) |
1818 S_SQ_CF_ALLOC_EXPORT_WORD0_INDEX_GPR(cf->output.index_gpr);
1819 bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(cf->output.burst_count - 1) |
1820 S_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(cf->barrier) |
1821 S_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(opcode) |
1822 S_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(cf->end_of_program) |
1823 S_SQ_CF_ALLOC_EXPORT_WORD1_BUF_ARRAY_SIZE(cf->output.array_size) |
1824 S_SQ_CF_ALLOC_EXPORT_WORD1_BUF_COMP_MASK(cf->output.comp_mask);
1825 } else {
1826 bc->bytecode[id++] = S_SQ_CF_WORD0_ADDR(cf->cf_addr >> 1);
1827 bc->bytecode[id++] = S_SQ_CF_WORD1_CF_INST(opcode) |
1828 S_SQ_CF_WORD1_BARRIER(1) |
1829 S_SQ_CF_WORD1_COND(cf->cond) |
1830 S_SQ_CF_WORD1_POP_COUNT(cf->pop_count) |
1831 S_SQ_CF_WORD1_END_OF_PROGRAM(cf->end_of_program);
1832 }
1833 return 0;
1834 }
1835
r600_bytecode_build(struct r600_bytecode * bc)1836 int r600_bytecode_build(struct r600_bytecode *bc)
1837 {
1838 struct r600_bytecode_cf *cf;
1839 struct r600_bytecode_alu *alu;
1840 struct r600_bytecode_vtx *vtx;
1841 struct r600_bytecode_tex *tex;
1842 struct r600_bytecode_gds *gds;
1843 uint32_t literal[4];
1844 unsigned nliteral;
1845 unsigned addr;
1846 int i, r;
1847
1848 if (!bc->nstack) { // If not 0, Stack_size already provided by llvm
1849 if (bc->stack.max_entries)
1850 bc->nstack = bc->stack.max_entries;
1851 else if (bc->type == PIPE_SHADER_VERTEX ||
1852 bc->type == PIPE_SHADER_TESS_EVAL ||
1853 bc->type == PIPE_SHADER_TESS_CTRL)
1854 bc->nstack = 1;
1855 }
1856
1857 /* first path compute addr of each CF block */
1858 /* addr start after all the CF instructions */
1859 addr = bc->cf_last->id + 2;
1860 LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) {
1861 if (r600_isa_cf(cf->op)->flags & CF_FETCH) {
1862 addr += 3;
1863 addr &= 0xFFFFFFFCUL;
1864 }
1865 cf->addr = addr;
1866 addr += cf->ndw;
1867 bc->ndw = cf->addr + cf->ndw;
1868 }
1869 free(bc->bytecode);
1870 bc->bytecode = calloc(4, bc->ndw);
1871 if (bc->bytecode == NULL)
1872 return -ENOMEM;
1873 LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) {
1874 const struct cf_op_info *cfop = r600_isa_cf(cf->op);
1875 addr = cf->addr;
1876 if (bc->gfx_level >= EVERGREEN)
1877 r = eg_bytecode_cf_build(bc, cf);
1878 else
1879 r = r600_bytecode_cf_build(bc, cf);
1880 if (r)
1881 return r;
1882 if (cfop->flags & CF_ALU) {
1883 nliteral = 0;
1884 memset(literal, 0, sizeof(literal));
1885 LIST_FOR_EACH_ENTRY(alu, &cf->alu, list) {
1886 r = r600_bytecode_alu_nliterals(alu, literal, &nliteral);
1887 if (r)
1888 return r;
1889 r600_bytecode_alu_adjust_literals(alu, literal, nliteral);
1890 r600_bytecode_assign_kcache_banks(alu, cf->kcache);
1891
1892 switch(bc->gfx_level) {
1893 case R600:
1894 r = r600_bytecode_alu_build(bc, alu, addr);
1895 break;
1896 case R700:
1897 r = r700_bytecode_alu_build(bc, alu, addr);
1898 break;
1899 case EVERGREEN:
1900 case CAYMAN:
1901 r = eg_bytecode_alu_build(bc, alu, addr);
1902 break;
1903 default:
1904 R600_ASM_ERR("unknown gfx level %d.\n", bc->gfx_level);
1905 return -EINVAL;
1906 }
1907 if (r)
1908 return r;
1909 addr += 2;
1910 if (alu->last) {
1911 for (i = 0; i < align(nliteral, 2); ++i) {
1912 bc->bytecode[addr++] = literal[i];
1913 }
1914 nliteral = 0;
1915 memset(literal, 0, sizeof(literal));
1916 }
1917 }
1918 } else if (cf->op == CF_OP_VTX) {
1919 LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
1920 r = r600_bytecode_vtx_build(bc, vtx, addr);
1921 if (r)
1922 return r;
1923 addr += 4;
1924 }
1925 } else if (cf->op == CF_OP_GDS) {
1926 assert(bc->gfx_level >= EVERGREEN);
1927 LIST_FOR_EACH_ENTRY(gds, &cf->gds, list) {
1928 r = eg_bytecode_gds_build(bc, gds, addr);
1929 if (r)
1930 return r;
1931 addr += 4;
1932 }
1933 } else if (cf->op == CF_OP_TEX) {
1934 LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
1935 assert(bc->gfx_level >= EVERGREEN);
1936 r = r600_bytecode_vtx_build(bc, vtx, addr);
1937 if (r)
1938 return r;
1939 addr += 4;
1940 }
1941 LIST_FOR_EACH_ENTRY(tex, &cf->tex, list) {
1942 r = r600_bytecode_tex_build(bc, tex, addr);
1943 if (r)
1944 return r;
1945 addr += 4;
1946 }
1947 }
1948 }
1949 return 0;
1950 }
1951
r600_bytecode_clear(struct r600_bytecode * bc)1952 void r600_bytecode_clear(struct r600_bytecode *bc)
1953 {
1954 struct r600_bytecode_cf *cf = NULL, *next_cf;
1955
1956 free(bc->bytecode);
1957 bc->bytecode = NULL;
1958
1959 LIST_FOR_EACH_ENTRY_SAFE(cf, next_cf, &bc->cf, list) {
1960 struct r600_bytecode_alu *alu = NULL, *next_alu;
1961 struct r600_bytecode_tex *tex = NULL, *next_tex;
1962 struct r600_bytecode_tex *vtx = NULL, *next_vtx;
1963 struct r600_bytecode_gds *gds = NULL, *next_gds;
1964
1965 LIST_FOR_EACH_ENTRY_SAFE(alu, next_alu, &cf->alu, list) {
1966 free(alu);
1967 }
1968
1969 list_inithead(&cf->alu);
1970
1971 LIST_FOR_EACH_ENTRY_SAFE(tex, next_tex, &cf->tex, list) {
1972 free(tex);
1973 }
1974
1975 list_inithead(&cf->tex);
1976
1977 LIST_FOR_EACH_ENTRY_SAFE(vtx, next_vtx, &cf->vtx, list) {
1978 free(vtx);
1979 }
1980
1981 list_inithead(&cf->vtx);
1982
1983 LIST_FOR_EACH_ENTRY_SAFE(gds, next_gds, &cf->gds, list) {
1984 free(gds);
1985 }
1986
1987 list_inithead(&cf->gds);
1988
1989 free(cf);
1990 }
1991
1992 list_inithead(&cf->list);
1993 }
1994
print_swizzle(unsigned swz)1995 static int print_swizzle(unsigned swz)
1996 {
1997 const char * swzchars = "xyzw01?_";
1998 assert(swz<8 && swz != 6);
1999 return fprintf(stderr, "%c", swzchars[swz]);
2000 }
2001
print_sel(unsigned sel,unsigned rel,unsigned index_mode,unsigned need_brackets)2002 static int print_sel(unsigned sel, unsigned rel, unsigned index_mode,
2003 unsigned need_brackets)
2004 {
2005 int o = 0;
2006 if (rel && index_mode >= 5 && sel < 128)
2007 o += fprintf(stderr, "G");
2008 if (rel || need_brackets) {
2009 o += fprintf(stderr, "[");
2010 }
2011 o += fprintf(stderr, "%d", sel);
2012 if (rel) {
2013 if (index_mode == 0 || index_mode == 6)
2014 o += fprintf(stderr, "+AR");
2015 else if (index_mode == 4)
2016 o += fprintf(stderr, "+AL");
2017 }
2018 if (rel || need_brackets) {
2019 o += fprintf(stderr, "]");
2020 }
2021 return o;
2022 }
2023
print_dst(struct r600_bytecode_alu * alu)2024 static int print_dst(struct r600_bytecode_alu *alu)
2025 {
2026 int o = 0;
2027 unsigned sel = alu->dst.sel;
2028 char reg_char = 'R';
2029 if (sel >= 128 - 4) { /* clause temporary gpr */
2030 sel -= 128 - 4;
2031 reg_char = 'T';
2032 }
2033
2034 if (alu_writes(alu)) {
2035 o += fprintf(stderr, "%c", reg_char);
2036 o += print_sel(sel, alu->dst.rel, alu->index_mode, 0);
2037 } else {
2038 o += fprintf(stderr, "__");
2039 }
2040 o += fprintf(stderr, ".");
2041 o += print_swizzle(alu->dst.chan);
2042 return o;
2043 }
2044
print_src(struct r600_bytecode_alu * alu,unsigned idx)2045 static int print_src(struct r600_bytecode_alu *alu, unsigned idx)
2046 {
2047 int o = 0;
2048 struct r600_bytecode_alu_src *src = &alu->src[idx];
2049 unsigned sel = src->sel, need_sel = 1, need_chan = 1, need_brackets = 0;
2050
2051 if (src->neg)
2052 o += fprintf(stderr,"-");
2053 if (src->abs)
2054 o += fprintf(stderr,"|");
2055
2056 if (sel < 128 - 4) {
2057 o += fprintf(stderr, "R");
2058 } else if (sel < 128) {
2059 o += fprintf(stderr, "T");
2060 sel -= 128 - 4;
2061 } else if (sel < 160) {
2062 o += fprintf(stderr, "KC0");
2063 need_brackets = 1;
2064 sel -= 128;
2065 } else if (sel < 192) {
2066 o += fprintf(stderr, "KC1");
2067 need_brackets = 1;
2068 sel -= 160;
2069 } else if (sel >= 512) {
2070 o += fprintf(stderr, "C%d", src->kc_bank);
2071 need_brackets = 1;
2072 sel -= 512;
2073 } else if (sel >= 448) {
2074 o += fprintf(stderr, "Param");
2075 sel -= 448;
2076 need_chan = 0;
2077 } else if (sel >= 288) {
2078 o += fprintf(stderr, "KC3");
2079 need_brackets = 1;
2080 sel -= 288;
2081 } else if (sel >= 256) {
2082 o += fprintf(stderr, "KC2");
2083 need_brackets = 1;
2084 sel -= 256;
2085 } else {
2086 need_sel = 0;
2087 need_chan = 0;
2088 switch (sel) {
2089 case EG_V_SQ_ALU_SRC_LDS_DIRECT_A:
2090 o += fprintf(stderr, "LDS_A[0x%08X]", src->value);
2091 break;
2092 case EG_V_SQ_ALU_SRC_LDS_DIRECT_B:
2093 o += fprintf(stderr, "LDS_B[0x%08X]", src->value);
2094 break;
2095 case EG_V_SQ_ALU_SRC_LDS_OQ_A:
2096 o += fprintf(stderr, "LDS_OQ_A");
2097 need_chan = 1;
2098 break;
2099 case EG_V_SQ_ALU_SRC_LDS_OQ_B:
2100 o += fprintf(stderr, "LDS_OQ_B");
2101 need_chan = 1;
2102 break;
2103 case EG_V_SQ_ALU_SRC_LDS_OQ_A_POP:
2104 o += fprintf(stderr, "LDS_OQ_A_POP");
2105 need_chan = 1;
2106 break;
2107 case EG_V_SQ_ALU_SRC_LDS_OQ_B_POP:
2108 o += fprintf(stderr, "LDS_OQ_B_POP");
2109 need_chan = 1;
2110 break;
2111 case EG_V_SQ_ALU_SRC_TIME_LO:
2112 o += fprintf(stderr, "TIME_LO");
2113 break;
2114 case EG_V_SQ_ALU_SRC_TIME_HI:
2115 o += fprintf(stderr, "TIME_HI");
2116 break;
2117 case EG_V_SQ_ALU_SRC_SE_ID:
2118 o += fprintf(stderr, "SE_ID");
2119 break;
2120 case EG_V_SQ_ALU_SRC_SIMD_ID:
2121 o += fprintf(stderr, "SIMD_ID");
2122 break;
2123 case EG_V_SQ_ALU_SRC_HW_WAVE_ID:
2124 o += fprintf(stderr, "HW_WAVE_ID");
2125 break;
2126 case V_SQ_ALU_SRC_PS:
2127 o += fprintf(stderr, "PS");
2128 break;
2129 case V_SQ_ALU_SRC_PV:
2130 o += fprintf(stderr, "PV");
2131 need_chan = 1;
2132 break;
2133 case V_SQ_ALU_SRC_LITERAL:
2134 {
2135 const uint32_t value_uint32 = src->value;
2136 float value_float;
2137 memcpy(&value_float, &value_uint32, sizeof(float));
2138 o += fprintf(stderr, "[0x%08X %f]", value_uint32, value_float);
2139 }
2140 break;
2141 case V_SQ_ALU_SRC_0_5:
2142 o += fprintf(stderr, "0.5");
2143 break;
2144 case V_SQ_ALU_SRC_M_1_INT:
2145 o += fprintf(stderr, "-1");
2146 break;
2147 case V_SQ_ALU_SRC_1_INT:
2148 o += fprintf(stderr, "1");
2149 break;
2150 case V_SQ_ALU_SRC_1:
2151 o += fprintf(stderr, "1.0");
2152 break;
2153 case V_SQ_ALU_SRC_0:
2154 o += fprintf(stderr, "0");
2155 break;
2156 default:
2157 o += fprintf(stderr, "??IMM_%d", sel);
2158 break;
2159 }
2160 }
2161
2162 if (need_sel)
2163 o += print_sel(sel, src->rel, alu->index_mode, need_brackets);
2164
2165 if (need_chan) {
2166 o += fprintf(stderr, ".");
2167 o += print_swizzle(src->chan);
2168 }
2169
2170 if (src->abs)
2171 o += fprintf(stderr,"|");
2172
2173 return o;
2174 }
2175
print_indent(int p,int c)2176 static int print_indent(int p, int c)
2177 {
2178 int o = 0;
2179 while (p++ < c)
2180 o += fprintf(stderr, " ");
2181 return o;
2182 }
2183
2184 const char *rat_instr_name[] = {
2185 "NOP",
2186 "STORE_TYPED",
2187 "STORE_RAW",
2188 "STORE_RAW_FDENORM",
2189 "CMP_XCHG_INT",
2190 "CMP_XCHG_FLT",
2191 "CMP_XCHG_FDENORM",
2192 "ADD",
2193 "SUB",
2194 "RSUB",
2195 "MIN_INT",
2196 "MIN_UINT",
2197 "MAX_INT",
2198 "MAX_UINT",
2199 "AND",
2200 "OR",
2201 "XOR",
2202 "MSKOR",
2203 "INC_UINT",
2204 "DEC_UINT",
2205 "RESERVED20",
2206 "RESERVED21",
2207 "RESERVED22",
2208 "RESERVED23",
2209 "RESERVED24",
2210 "RESERVED25",
2211 "RESERVED26",
2212 "RESERVED27",
2213 "RESERVED28",
2214 "RESERVED29",
2215 "RESERVED30",
2216 "RESERVED31",
2217 "NOP_RTN",
2218 "RESERVED33",
2219 "XCHG_RTN",
2220 "XCHG_FDENORM_RTN",
2221 "CMPXCHG_INT_RTN",
2222 "CMPXCHG_FLT_RTN",
2223 "CMPXCHG_FDENORM_RTN",
2224 "ADD_RTN",
2225 "SUB_RTN",
2226 "RSUB_RTN",
2227 "MIN_INT_RTN",
2228 "MIN_UINT_RTN",
2229 "MAX_INT_RTN",
2230 "MAX_UINT_RTN",
2231 "AND_RTN",
2232 "OR_RTN",
2233 "XOR_RTN",
2234 "MSKOR_RTN",
2235 "INC_UINT_RTN",
2236 "DEC_UINT_RTN",
2237 };
2238
2239
r600_bytecode_disasm(struct r600_bytecode * bc)2240 void r600_bytecode_disasm(struct r600_bytecode *bc)
2241 {
2242 const char *index_mode[] = {"CF_INDEX_NONE", "CF_INDEX_0", "CF_INDEX_1"};
2243 static int index = 0;
2244 struct r600_bytecode_cf *cf = NULL;
2245 struct r600_bytecode_alu *alu = NULL;
2246 struct r600_bytecode_vtx *vtx = NULL;
2247 struct r600_bytecode_tex *tex = NULL;
2248 struct r600_bytecode_gds *gds = NULL;
2249
2250 unsigned id, ngr = 0, last;
2251 uint32_t literal[4];
2252 unsigned nliteral;
2253 char chip = '6';
2254
2255 switch (bc->gfx_level) {
2256 case R700:
2257 chip = '7';
2258 break;
2259 case EVERGREEN:
2260 chip = 'E';
2261 break;
2262 case CAYMAN:
2263 chip = 'C';
2264 break;
2265 case R600:
2266 default:
2267 chip = '6';
2268 break;
2269 }
2270 fprintf(stderr, "bytecode %d dw -- %d gprs -- %d nstack -------------\n",
2271 bc->ndw, bc->ngpr, bc->nstack);
2272 fprintf(stderr, "shader %d -- %c\n", index++, chip);
2273
2274 LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) {
2275 id = cf->id;
2276 if (cf->op == CF_NATIVE) {
2277 fprintf(stderr, "%04d %08X %08X CF_NATIVE\n", id, bc->bytecode[id],
2278 bc->bytecode[id + 1]);
2279 } else {
2280 const struct cf_op_info *cfop = r600_isa_cf(cf->op);
2281 if (cfop->flags & CF_ALU) {
2282 if (cf->eg_alu_extended) {
2283 fprintf(stderr, "%04d %08X %08X %s\n", id, bc->bytecode[id],
2284 bc->bytecode[id + 1], "ALU_EXT");
2285 id += 2;
2286 }
2287 fprintf(stderr, "%04d %08X %08X %s ", id, bc->bytecode[id],
2288 bc->bytecode[id + 1], cfop->name);
2289 fprintf(stderr, "%d @%d ", cf->ndw / 2, cf->addr);
2290 for (int i = 0; i < 4; ++i) {
2291 if (cf->kcache[i].mode) {
2292 int c_start = (cf->kcache[i].addr << 4);
2293 int c_end = c_start + (cf->kcache[i].mode << 4);
2294 fprintf(stderr, "KC%d[CB%d:%d-%d%s%s] ",
2295 i, cf->kcache[i].bank, c_start, c_end,
2296 cf->kcache[i].index_mode ? " " : "",
2297 cf->kcache[i].index_mode ? index_mode[cf->kcache[i].index_mode] : "");
2298 }
2299 }
2300 fprintf(stderr, "\n");
2301 } else if (cfop->flags & CF_FETCH) {
2302 fprintf(stderr, "%04d %08X %08X %s ", id, bc->bytecode[id],
2303 bc->bytecode[id + 1], cfop->name);
2304 fprintf(stderr, "%d @%d ", cf->ndw / 4, cf->addr);
2305 if (cf->vpm)
2306 fprintf(stderr, "VPM ");
2307 if (cf->end_of_program)
2308 fprintf(stderr, "EOP ");
2309 fprintf(stderr, "\n");
2310
2311 } else if (cfop->flags & CF_EXP) {
2312 int o = 0;
2313 const char *exp_type[] = {"PIXEL", "POS ", "PARAM"};
2314 o += fprintf(stderr, "%04d %08X %08X %s ", id, bc->bytecode[id],
2315 bc->bytecode[id + 1], cfop->name);
2316 o += print_indent(o, 43);
2317 o += fprintf(stderr, "%s ", exp_type[cf->output.type]);
2318 if (cf->output.burst_count > 1) {
2319 o += fprintf(stderr, "%d-%d ", cf->output.array_base,
2320 cf->output.array_base + cf->output.burst_count - 1);
2321
2322 o += print_indent(o, 55);
2323 o += fprintf(stderr, "R%d-%d.", cf->output.gpr,
2324 cf->output.gpr + cf->output.burst_count - 1);
2325 } else {
2326 o += fprintf(stderr, "%d ", cf->output.array_base);
2327 o += print_indent(o, 55);
2328 o += fprintf(stderr, "R%d.", cf->output.gpr);
2329 }
2330
2331 o += print_swizzle(cf->output.swizzle_x);
2332 o += print_swizzle(cf->output.swizzle_y);
2333 o += print_swizzle(cf->output.swizzle_z);
2334 o += print_swizzle(cf->output.swizzle_w);
2335
2336 print_indent(o, 67);
2337
2338 fprintf(stderr, " ES:%X ", cf->output.elem_size);
2339 if (cf->mark)
2340 fprintf(stderr, "MARK ");
2341 if (!cf->barrier)
2342 fprintf(stderr, "NO_BARRIER ");
2343 if (cf->end_of_program)
2344 fprintf(stderr, "EOP ");
2345 fprintf(stderr, "\n");
2346 } else if (r600_isa_cf(cf->op)->flags & CF_MEM) {
2347 int o = 0;
2348 const char *exp_type_r600[] = {"WRITE", "WRITE_IND", "READ",
2349 "READ_IND"};
2350 const char *exp_type_r700[] = {"WRITE", "WRITE_IND", "WRITE_ACK",
2351 "WRITE_IND_ACK"};
2352
2353 const char **exp_type = bc->gfx_level >= R700 ?
2354 exp_type_r700 : exp_type_r600;
2355
2356 o += fprintf(stderr, "%04d %08X %08X %s ", id,
2357 bc->bytecode[id], bc->bytecode[id + 1], cfop->name);
2358 o += print_indent(o, 43);
2359 o += fprintf(stderr, "%s ", exp_type[cf->output.type]);
2360
2361 if (r600_isa_cf(cf->op)->flags & CF_RAT) {
2362 o += fprintf(stderr, "RAT%d", cf->rat.id);
2363 if (cf->rat.index_mode) {
2364 o += fprintf(stderr, "[IDX%d]", cf->rat.index_mode - 1);
2365 }
2366 assert(ARRAY_SIZE(rat_instr_name) > cf->rat.inst);
2367 o += fprintf(stderr, " %s ", rat_instr_name[cf->rat.inst]);
2368 }
2369
2370 if (cf->output.burst_count > 1) {
2371 o += fprintf(stderr, "%d-%d ", cf->output.array_base,
2372 cf->output.array_base + cf->output.burst_count - 1);
2373 o += print_indent(o, 55);
2374 o += fprintf(stderr, "R%d-%d.", cf->output.gpr,
2375 cf->output.gpr + cf->output.burst_count - 1);
2376 } else {
2377 o += fprintf(stderr, "%d ", cf->output.array_base);
2378 o += print_indent(o, 55);
2379 o += fprintf(stderr, "R%d.", cf->output.gpr);
2380 }
2381 for (int i = 0; i < 4; ++i) {
2382 if (cf->output.comp_mask & (1 << i))
2383 o += print_swizzle(i);
2384 else
2385 o += print_swizzle(7);
2386 }
2387
2388 if (cf->output.type == V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_WRITE_IND ||
2389 cf->output.type == V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_READ_IND)
2390 o += fprintf(stderr, " R%d.xyz", cf->output.index_gpr);
2391
2392 o += print_indent(o, 67);
2393
2394 fprintf(stderr, " ES:%i ", cf->output.elem_size);
2395 if (cf->output.array_size != 0xFFF)
2396 fprintf(stderr, "AS:%i ", cf->output.array_size);
2397 if (cf->mark)
2398 fprintf(stderr, "MARK ");
2399 if (!cf->barrier)
2400 fprintf(stderr, "NO_BARRIER ");
2401 if (cf->end_of_program)
2402 fprintf(stderr, "EOP ");
2403
2404 if (cf->output.mark)
2405 fprintf(stderr, "MARK ");
2406
2407 fprintf(stderr, "\n");
2408 } else {
2409 fprintf(stderr, "%04d %08X %08X %s ", id, bc->bytecode[id],
2410 bc->bytecode[id + 1], cfop->name);
2411 fprintf(stderr, "@%d ", cf->cf_addr);
2412 if (cf->cond)
2413 fprintf(stderr, "CND:%X ", cf->cond);
2414 if (cf->pop_count)
2415 fprintf(stderr, "POP:%X ", cf->pop_count);
2416 if (cf->count && (cfop->flags & CF_EMIT))
2417 fprintf(stderr, "STREAM%d ", cf->count);
2418 if (cf->vpm)
2419 fprintf(stderr, "VPM ");
2420 if (cf->end_of_program)
2421 fprintf(stderr, "EOP ");
2422 fprintf(stderr, "\n");
2423 }
2424 }
2425
2426 id = cf->addr;
2427 nliteral = 0;
2428 last = 1;
2429 int chan_mask = 0;
2430 LIST_FOR_EACH_ENTRY(alu, &cf->alu, list) {
2431 const char chan[] = "xyzwt";
2432 const char *omod_str[] = {"","*2","*4","/2"};
2433 const struct alu_op_info *aop = r600_isa_alu(alu->op);
2434 int o = 0;
2435
2436 r600_bytecode_alu_nliterals(alu, literal, &nliteral);
2437 o += fprintf(stderr, " %04d %08X %08X ", id, bc->bytecode[id], bc->bytecode[id+1]);
2438 if (last)
2439 o += fprintf(stderr, "%4d ", ++ngr);
2440 else
2441 o += fprintf(stderr, " ");
2442
2443 if ((chan_mask & (1 << alu->dst.chan)) ||
2444 ((aop->slots[bc->isa->hw_class] == AF_S) && !(bc->isa->hw_class == ISA_CC_CAYMAN)))
2445 o += fprintf(stderr, "t:");
2446 else
2447 o += fprintf(stderr, "%c:", chan[alu->dst.chan]);
2448 chan_mask |= 1 << alu->dst.chan;
2449
2450 o += fprintf(stderr, "%c%c %c ", alu->execute_mask ? 'M':' ',
2451 alu->update_pred ? 'P':' ',
2452 alu->pred_sel ? alu->pred_sel==2 ? '0':'1':' ');
2453
2454 o += fprintf(stderr, "%s%s%s ", aop->name,
2455 omod_str[alu->omod], alu->dst.clamp ? "_sat":"");
2456
2457 o += print_indent(o,60);
2458 if (bc->isa->hw_class == ISA_CC_CAYMAN && alu->op == ALU_OP1_MOVA_INT) {
2459 switch (alu->dst.sel) {
2460 case 0: fprintf(stderr, "AR"); break;
2461 case 2: fprintf(stderr, "CF_IDX0"); break;
2462 case 3: fprintf(stderr, "CF_IDX1"); break;
2463 }
2464 } else {
2465 o += print_dst(alu);
2466 }
2467 for (int i = 0; i < aop->src_count; ++i) {
2468 o += fprintf(stderr, i == 0 ? ", ": ", ");
2469 o += print_src(alu, i);
2470 }
2471
2472 if (alu->bank_swizzle) {
2473 o += print_indent(o,75);
2474 o += fprintf(stderr, " BS:%d", alu->bank_swizzle);
2475 }
2476
2477 fprintf(stderr, "\n");
2478 id += 2;
2479
2480 if (alu->last) {
2481 for (unsigned i = 0; i < nliteral; i++, id++) {
2482 float *f = (float*)(bc->bytecode + id);
2483 o = fprintf(stderr, " %04d %08X", id, bc->bytecode[id]);
2484 print_indent(o, 60);
2485 fprintf(stderr, " %f (%d)\n", *f, *(bc->bytecode + id));
2486 }
2487 id += nliteral & 1;
2488 nliteral = 0;
2489 chan_mask = 0;
2490 }
2491 last = alu->last;
2492 }
2493
2494 LIST_FOR_EACH_ENTRY(tex, &cf->tex, list) {
2495 int o = 0;
2496 o += fprintf(stderr, " %04d %08X %08X %08X ", id, bc->bytecode[id],
2497 bc->bytecode[id + 1], bc->bytecode[id + 2]);
2498
2499 o += fprintf(stderr, "%s ", r600_isa_fetch(tex->op)->name);
2500
2501 o += print_indent(o, 50);
2502
2503 o += fprintf(stderr, "R%d.", tex->dst_gpr);
2504 o += print_swizzle(tex->dst_sel_x);
2505 o += print_swizzle(tex->dst_sel_y);
2506 o += print_swizzle(tex->dst_sel_z);
2507 o += print_swizzle(tex->dst_sel_w);
2508
2509 o += fprintf(stderr, ", R%d.", tex->src_gpr);
2510 o += print_swizzle(tex->src_sel_x);
2511 o += print_swizzle(tex->src_sel_y);
2512 o += print_swizzle(tex->src_sel_z);
2513 o += print_swizzle(tex->src_sel_w);
2514
2515 o += fprintf(stderr, ", RID:%d ", tex->resource_id);
2516 if (tex->resource_index_mode)
2517 fprintf(stderr, "RQ_%s", index_mode[tex->resource_index_mode]);
2518
2519 o += fprintf(stderr, ", SID:%d ", tex->sampler_id);
2520
2521 if (tex->sampler_index_mode)
2522 fprintf(stderr, "SQ_%s ", index_mode[tex->sampler_index_mode]);
2523
2524
2525
2526 if (tex->lod_bias)
2527 fprintf(stderr, "LB:%d ", tex->lod_bias);
2528
2529 fprintf(stderr, "CT:%c%c%c%c ",
2530 tex->coord_type_x ? 'N' : 'U',
2531 tex->coord_type_y ? 'N' : 'U',
2532 tex->coord_type_z ? 'N' : 'U',
2533 tex->coord_type_w ? 'N' : 'U');
2534
2535 if (tex->offset_x)
2536 fprintf(stderr, "OX:%d ", tex->offset_x);
2537 if (tex->offset_y)
2538 fprintf(stderr, "OY:%d ", tex->offset_y);
2539 if (tex->offset_z)
2540 fprintf(stderr, "OZ:%d ", tex->offset_z);
2541
2542 id += 4;
2543 fprintf(stderr, "\n");
2544 }
2545
2546 LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
2547 int o = 0;
2548 const char * fetch_type[] = {"VERTEX", "INSTANCE", ""};
2549 o += fprintf(stderr, " %04d %08X %08X %08X ", id, bc->bytecode[id],
2550 bc->bytecode[id + 1], bc->bytecode[id + 2]);
2551
2552 o += fprintf(stderr, "%s ", r600_isa_fetch(vtx->op)->name);
2553
2554 o += print_indent(o, 50);
2555
2556 o += fprintf(stderr, "R%d.", vtx->dst_gpr);
2557 o += print_swizzle(vtx->dst_sel_x);
2558 o += print_swizzle(vtx->dst_sel_y);
2559 o += print_swizzle(vtx->dst_sel_z);
2560 o += print_swizzle(vtx->dst_sel_w);
2561
2562 o += fprintf(stderr, ", R%d.", vtx->src_gpr);
2563 o += print_swizzle(vtx->src_sel_x);
2564 if (r600_isa_fetch(vtx->op)->flags & FF_MEM)
2565 o += print_swizzle(vtx->src_sel_y);
2566
2567 if (vtx->offset)
2568 fprintf(stderr, " +%db", vtx->offset);
2569
2570 o += print_indent(o, 55);
2571
2572 fprintf(stderr, ", RID:%d ", vtx->buffer_id);
2573
2574 fprintf(stderr, "%s ", fetch_type[vtx->fetch_type]);
2575
2576 if (bc->gfx_level < CAYMAN && vtx->mega_fetch_count)
2577 fprintf(stderr, "MFC:%d ", vtx->mega_fetch_count);
2578
2579 if (bc->gfx_level >= EVERGREEN && vtx->buffer_index_mode)
2580 fprintf(stderr, "SQ_%s ", index_mode[vtx->buffer_index_mode]);
2581
2582 if (r600_isa_fetch(vtx->op)->flags & FF_MEM) {
2583 if (vtx->uncached)
2584 fprintf(stderr, "UNCACHED ");
2585 if (vtx->indexed)
2586 fprintf(stderr, "INDEXED:%d ", vtx->indexed);
2587
2588 fprintf(stderr, "ELEM_SIZE:%d ", vtx->elem_size);
2589 if (vtx->burst_count)
2590 fprintf(stderr, "BURST_COUNT:%d ", vtx->burst_count);
2591 fprintf(stderr, "ARRAY_BASE:%d ", vtx->array_base);
2592 fprintf(stderr, "ARRAY_SIZE:%d ", vtx->array_size);
2593 }
2594
2595 fprintf(stderr, "UCF:%d ", vtx->use_const_fields);
2596 fprintf(stderr, "FMT(DTA:%d ", vtx->data_format);
2597 fprintf(stderr, "NUM:%d ", vtx->num_format_all);
2598 fprintf(stderr, "COMP:%d ", vtx->format_comp_all);
2599 fprintf(stderr, "MODE:%d)\n", vtx->srf_mode_all);
2600
2601 id += 4;
2602 }
2603
2604 LIST_FOR_EACH_ENTRY(gds, &cf->gds, list) {
2605 UNUSED int o = 0;
2606 o += fprintf(stderr, " %04d %08X %08X %08X ", id, bc->bytecode[id],
2607 bc->bytecode[id + 1], bc->bytecode[id + 2]);
2608
2609 o += fprintf(stderr, "%s ", r600_isa_fetch(gds->op)->name);
2610
2611 if (gds->op != FETCH_OP_TF_WRITE) {
2612 o += fprintf(stderr, "R%d.", gds->dst_gpr);
2613 o += print_swizzle(gds->dst_sel_x);
2614 o += print_swizzle(gds->dst_sel_y);
2615 o += print_swizzle(gds->dst_sel_z);
2616 o += print_swizzle(gds->dst_sel_w);
2617 }
2618
2619 o += fprintf(stderr, ", R%d.", gds->src_gpr);
2620 o += print_swizzle(gds->src_sel_x);
2621 o += print_swizzle(gds->src_sel_y);
2622 o += print_swizzle(gds->src_sel_z);
2623
2624 if (gds->op != FETCH_OP_TF_WRITE) {
2625 o += fprintf(stderr, ", R%d.", gds->src_gpr2);
2626 }
2627 if (gds->alloc_consume) {
2628 o += fprintf(stderr, " UAV: %d", gds->uav_id);
2629 if (gds->uav_index_mode)
2630 o += fprintf(stderr, "[%s]", index_mode[gds->uav_index_mode]);
2631 }
2632 fprintf(stderr, "\n");
2633 id += 4;
2634 }
2635 }
2636
2637 fprintf(stderr, "--------------------------------------\n");
2638 }
2639
r600_vertex_data_type(enum pipe_format pformat,unsigned * format,unsigned * num_format,unsigned * format_comp,unsigned * endian)2640 void r600_vertex_data_type(enum pipe_format pformat,
2641 unsigned *format,
2642 unsigned *num_format, unsigned *format_comp, unsigned *endian)
2643 {
2644 const struct util_format_description *desc;
2645 unsigned i;
2646
2647 *format = 0;
2648 *num_format = 0;
2649 *format_comp = 0;
2650 *endian = ENDIAN_NONE;
2651
2652 if (pformat == PIPE_FORMAT_R11G11B10_FLOAT) {
2653 *format = FMT_10_11_11_FLOAT;
2654 *endian = r600_endian_swap(32);
2655 return;
2656 }
2657
2658 if (pformat == PIPE_FORMAT_B5G6R5_UNORM) {
2659 *format = FMT_5_6_5;
2660 *endian = r600_endian_swap(16);
2661 return;
2662 }
2663
2664 if (pformat == PIPE_FORMAT_B5G5R5A1_UNORM) {
2665 *format = FMT_1_5_5_5;
2666 *endian = r600_endian_swap(16);
2667 return;
2668 }
2669
2670 if (pformat == PIPE_FORMAT_A1B5G5R5_UNORM) {
2671 *format = FMT_5_5_5_1;
2672 return;
2673 }
2674
2675 desc = util_format_description(pformat);
2676 if (desc->layout != UTIL_FORMAT_LAYOUT_PLAIN) {
2677 goto out_unknown;
2678 }
2679
2680 i = util_format_get_first_non_void_channel(pformat);
2681
2682 *endian = r600_endian_swap(desc->channel[i].size);
2683
2684 switch (desc->channel[i].type) {
2685 /* Half-floats, floats, ints */
2686 case UTIL_FORMAT_TYPE_FLOAT:
2687 switch (desc->channel[i].size) {
2688 case 16:
2689 switch (desc->nr_channels) {
2690 case 1:
2691 *format = FMT_16_FLOAT;
2692 break;
2693 case 2:
2694 *format = FMT_16_16_FLOAT;
2695 break;
2696 case 3:
2697 case 4:
2698 *format = FMT_16_16_16_16_FLOAT;
2699 break;
2700 }
2701 break;
2702 case 32:
2703 switch (desc->nr_channels) {
2704 case 1:
2705 *format = FMT_32_FLOAT;
2706 break;
2707 case 2:
2708 *format = FMT_32_32_FLOAT;
2709 break;
2710 case 3:
2711 *format = FMT_32_32_32_FLOAT;
2712 break;
2713 case 4:
2714 *format = FMT_32_32_32_32_FLOAT;
2715 break;
2716 }
2717 break;
2718 default:
2719 goto out_unknown;
2720 }
2721 break;
2722 /* Unsigned ints */
2723 case UTIL_FORMAT_TYPE_UNSIGNED:
2724 /* Signed ints */
2725 case UTIL_FORMAT_TYPE_SIGNED:
2726 switch (desc->channel[i].size) {
2727 case 4:
2728 switch (desc->nr_channels) {
2729 case 2:
2730 *format = FMT_4_4;
2731 break;
2732 case 4:
2733 *format = FMT_4_4_4_4;
2734 break;
2735 }
2736 break;
2737 case 8:
2738 switch (desc->nr_channels) {
2739 case 1:
2740 *format = FMT_8;
2741 break;
2742 case 2:
2743 *format = FMT_8_8;
2744 break;
2745 case 3:
2746 case 4:
2747 *format = FMT_8_8_8_8;
2748 break;
2749 }
2750 break;
2751 case 10:
2752 if (desc->nr_channels != 4)
2753 goto out_unknown;
2754
2755 *format = FMT_2_10_10_10;
2756 break;
2757 case 16:
2758 switch (desc->nr_channels) {
2759 case 1:
2760 *format = FMT_16;
2761 break;
2762 case 2:
2763 *format = FMT_16_16;
2764 break;
2765 case 3:
2766 case 4:
2767 *format = FMT_16_16_16_16;
2768 break;
2769 }
2770 break;
2771 case 32:
2772 switch (desc->nr_channels) {
2773 case 1:
2774 *format = FMT_32;
2775 break;
2776 case 2:
2777 *format = FMT_32_32;
2778 break;
2779 case 3:
2780 *format = FMT_32_32_32;
2781 break;
2782 case 4:
2783 *format = FMT_32_32_32_32;
2784 break;
2785 }
2786 break;
2787 default:
2788 goto out_unknown;
2789 }
2790 break;
2791 default:
2792 goto out_unknown;
2793 }
2794
2795 if (desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED) {
2796 *format_comp = 1;
2797 }
2798
2799 *num_format = 0;
2800 if (desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED ||
2801 desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED) {
2802 if (!desc->channel[i].normalized) {
2803 if (desc->channel[i].pure_integer)
2804 *num_format = 1;
2805 else
2806 *num_format = 2;
2807 }
2808 }
2809 return;
2810 out_unknown:
2811 R600_ASM_ERR("unsupported vertex format %s\n", util_format_name(pformat));
2812 }
2813
r600_bytecode_alu_read(struct r600_bytecode * bc,struct r600_bytecode_alu * alu,uint32_t word0,uint32_t word1)2814 void r600_bytecode_alu_read(struct r600_bytecode *bc,
2815 struct r600_bytecode_alu *alu, uint32_t word0, uint32_t word1)
2816 {
2817 /* WORD0 */
2818 alu->src[0].sel = G_SQ_ALU_WORD0_SRC0_SEL(word0);
2819 alu->src[0].rel = G_SQ_ALU_WORD0_SRC0_REL(word0);
2820 alu->src[0].chan = G_SQ_ALU_WORD0_SRC0_CHAN(word0);
2821 alu->src[0].neg = G_SQ_ALU_WORD0_SRC0_NEG(word0);
2822 alu->src[1].sel = G_SQ_ALU_WORD0_SRC1_SEL(word0);
2823 alu->src[1].rel = G_SQ_ALU_WORD0_SRC1_REL(word0);
2824 alu->src[1].chan = G_SQ_ALU_WORD0_SRC1_CHAN(word0);
2825 alu->src[1].neg = G_SQ_ALU_WORD0_SRC1_NEG(word0);
2826 alu->index_mode = G_SQ_ALU_WORD0_INDEX_MODE(word0);
2827 alu->pred_sel = G_SQ_ALU_WORD0_PRED_SEL(word0);
2828 alu->last = G_SQ_ALU_WORD0_LAST(word0);
2829
2830 /* WORD1 */
2831 alu->bank_swizzle = G_SQ_ALU_WORD1_BANK_SWIZZLE(word1);
2832 if (alu->bank_swizzle)
2833 alu->bank_swizzle_force = alu->bank_swizzle;
2834 alu->dst.sel = G_SQ_ALU_WORD1_DST_GPR(word1);
2835 alu->dst.rel = G_SQ_ALU_WORD1_DST_REL(word1);
2836 alu->dst.chan = G_SQ_ALU_WORD1_DST_CHAN(word1);
2837 alu->dst.clamp = G_SQ_ALU_WORD1_CLAMP(word1);
2838 if (G_SQ_ALU_WORD1_ENCODING(word1)) /*ALU_DWORD1_OP3*/
2839 {
2840 alu->is_op3 = 1;
2841 alu->src[2].sel = G_SQ_ALU_WORD1_OP3_SRC2_SEL(word1);
2842 alu->src[2].rel = G_SQ_ALU_WORD1_OP3_SRC2_REL(word1);
2843 alu->src[2].chan = G_SQ_ALU_WORD1_OP3_SRC2_CHAN(word1);
2844 alu->src[2].neg = G_SQ_ALU_WORD1_OP3_SRC2_NEG(word1);
2845 alu->op = r600_isa_alu_by_opcode(bc->isa,
2846 G_SQ_ALU_WORD1_OP3_ALU_INST(word1), /* is_op3 = */ 1);
2847
2848 }
2849 else /*ALU_DWORD1_OP2*/
2850 {
2851 alu->src[0].abs = G_SQ_ALU_WORD1_OP2_SRC0_ABS(word1);
2852 alu->src[1].abs = G_SQ_ALU_WORD1_OP2_SRC1_ABS(word1);
2853 alu->op = r600_isa_alu_by_opcode(bc->isa,
2854 G_SQ_ALU_WORD1_OP2_ALU_INST(word1), /* is_op3 = */ 0);
2855 alu->omod = G_SQ_ALU_WORD1_OP2_OMOD(word1);
2856 alu->dst.write = G_SQ_ALU_WORD1_OP2_WRITE_MASK(word1);
2857 alu->update_pred = G_SQ_ALU_WORD1_OP2_UPDATE_PRED(word1);
2858 alu->execute_mask =
2859 G_SQ_ALU_WORD1_OP2_UPDATE_EXECUTE_MASK(word1);
2860 }
2861 }
2862
2863 #if 0
2864 void r600_bytecode_export_read(struct r600_bytecode *bc,
2865 struct r600_bytecode_output *output, uint32_t word0, uint32_t word1)
2866 {
2867 output->array_base = G_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(word0);
2868 output->type = G_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(word0);
2869 output->gpr = G_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(word0);
2870 output->elem_size = G_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(word0);
2871
2872 output->swizzle_x = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_X(word1);
2873 output->swizzle_y = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Y(word1);
2874 output->swizzle_z = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Z(word1);
2875 output->swizzle_w = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_W(word1);
2876 output->burst_count = G_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(word1);
2877 output->end_of_program = G_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(word1);
2878 output->op = r600_isa_cf_by_opcode(bc->isa,
2879 G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(word1), 0);
2880 output->barrier = G_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(word1);
2881 output->array_size = G_SQ_CF_ALLOC_EXPORT_WORD1_BUF_ARRAY_SIZE(word1);
2882 output->comp_mask = G_SQ_CF_ALLOC_EXPORT_WORD1_BUF_COMP_MASK(word1);
2883 }
2884 #endif
2885