• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * \file ecp_internal.h
3  *
4  * \brief Function declarations for alternative implementation of elliptic curve
5  * point arithmetic.
6  */
7 /*
8  *  Copyright The Mbed TLS Contributors
9  *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
10  */
11 
12 /*
13  * References:
14  *
15  * [1] BERNSTEIN, Daniel J. Curve25519: new Diffie-Hellman speed records.
16  *     <http://cr.yp.to/ecdh/curve25519-20060209.pdf>
17  *
18  * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
19  *     for elliptic curve cryptosystems. In : Cryptographic Hardware and
20  *     Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
21  *     <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
22  *
23  * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
24  *     render ECC resistant against Side Channel Attacks. IACR Cryptology
25  *     ePrint Archive, 2004, vol. 2004, p. 342.
26  *     <http://eprint.iacr.org/2004/342.pdf>
27  *
28  * [4] Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters.
29  *     <http://www.secg.org/sec2-v2.pdf>
30  *
31  * [5] HANKERSON, Darrel, MENEZES, Alfred J., VANSTONE, Scott. Guide to Elliptic
32  *     Curve Cryptography.
33  *
34  * [6] Digital Signature Standard (DSS), FIPS 186-4.
35  *     <http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf>
36  *
37  * [7] Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer
38  *     Security (TLS), RFC 4492.
39  *     <https://tools.ietf.org/search/rfc4492>
40  *
41  * [8] <http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html>
42  *
43  * [9] COHEN, Henri. A Course in Computational Algebraic Number Theory.
44  *     Springer Science & Business Media, 1 Aug 2000
45  */
46 
47 #ifndef MBEDTLS_ECP_INTERNAL_H
48 #define MBEDTLS_ECP_INTERNAL_H
49 
50 #if !defined(MBEDTLS_CONFIG_FILE)
51 #include "mbedtls/config.h"
52 #else
53 #include MBEDTLS_CONFIG_FILE
54 #endif
55 
56 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
57 
58 /**
59  * \brief           Indicate if the Elliptic Curve Point module extension can
60  *                  handle the group.
61  *
62  * \param grp       The pointer to the elliptic curve group that will be the
63  *                  basis of the cryptographic computations.
64  *
65  * \return          Non-zero if successful.
66  */
67 unsigned char mbedtls_internal_ecp_grp_capable(const mbedtls_ecp_group *grp);
68 
69 /**
70  * \brief           Initialise the Elliptic Curve Point module extension.
71  *
72  *                  If mbedtls_internal_ecp_grp_capable returns true for a
73  *                  group, this function has to be able to initialise the
74  *                  module for it.
75  *
76  *                  This module can be a driver to a crypto hardware
77  *                  accelerator, for which this could be an initialise function.
78  *
79  * \param grp       The pointer to the group the module needs to be
80  *                  initialised for.
81  *
82  * \return          0 if successful.
83  */
84 int mbedtls_internal_ecp_init(const mbedtls_ecp_group *grp);
85 
86 /**
87  * \brief           Frees and deallocates the Elliptic Curve Point module
88  *                  extension.
89  *
90  * \param grp       The pointer to the group the module was initialised for.
91  */
92 void mbedtls_internal_ecp_free(const mbedtls_ecp_group *grp);
93 
94 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
95 
96 #if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
97 /**
98  * \brief           Randomize jacobian coordinates:
99  *                  (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l.
100  *
101  * \param grp       Pointer to the group representing the curve.
102  *
103  * \param pt        The point on the curve to be randomised, given with Jacobian
104  *                  coordinates.
105  *
106  * \param f_rng     A function pointer to the random number generator.
107  *
108  * \param p_rng     A pointer to the random number generator state.
109  *
110  * \return          0 if successful.
111  */
112 int mbedtls_internal_ecp_randomize_jac(const mbedtls_ecp_group *grp,
113                                        mbedtls_ecp_point *pt, int (*f_rng)(void *,
114                                                                            unsigned char *,
115                                                                            size_t),
116                                        void *p_rng);
117 #endif
118 
119 #if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
120 /**
121  * \brief           Addition: R = P + Q, mixed affine-Jacobian coordinates.
122  *
123  *                  The coordinates of Q must be normalized (= affine),
124  *                  but those of P don't need to. R is not normalized.
125  *
126  *                  This function is used only as a subrutine of
127  *                  ecp_mul_comb().
128  *
129  *                  Special cases: (1) P or Q is zero, (2) R is zero,
130  *                      (3) P == Q.
131  *                  None of these cases can happen as intermediate step in
132  *                  ecp_mul_comb():
133  *                      - at each step, P, Q and R are multiples of the base
134  *                      point, the factor being less than its order, so none of
135  *                      them is zero;
136  *                      - Q is an odd multiple of the base point, P an even
137  *                      multiple, due to the choice of precomputed points in the
138  *                      modified comb method.
139  *                  So branches for these cases do not leak secret information.
140  *
141  *                  We accept Q->Z being unset (saving memory in tables) as
142  *                  meaning 1.
143  *
144  *                  Cost in field operations if done by [5] 3.22:
145  *                      1A := 8M + 3S
146  *
147  * \param grp       Pointer to the group representing the curve.
148  *
149  * \param R         Pointer to a point structure to hold the result.
150  *
151  * \param P         Pointer to the first summand, given with Jacobian
152  *                  coordinates
153  *
154  * \param Q         Pointer to the second summand, given with affine
155  *                  coordinates.
156  *
157  * \return          0 if successful.
158  */
159 int mbedtls_internal_ecp_add_mixed(const mbedtls_ecp_group *grp,
160                                    mbedtls_ecp_point *R, const mbedtls_ecp_point *P,
161                                    const mbedtls_ecp_point *Q);
162 #endif
163 
164 /**
165  * \brief           Point doubling R = 2 P, Jacobian coordinates.
166  *
167  *                  Cost:   1D := 3M + 4S    (A ==  0)
168  *                          4M + 4S          (A == -3)
169  *                          3M + 6S + 1a     otherwise
170  *                  when the implementation is based on the "dbl-1998-cmo-2"
171  *                  doubling formulas in [8] and standard optimizations are
172  *                  applied when curve parameter A is one of { 0, -3 }.
173  *
174  * \param grp       Pointer to the group representing the curve.
175  *
176  * \param R         Pointer to a point structure to hold the result.
177  *
178  * \param P         Pointer to the point that has to be doubled, given with
179  *                  Jacobian coordinates.
180  *
181  * \return          0 if successful.
182  */
183 #if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
184 int mbedtls_internal_ecp_double_jac(const mbedtls_ecp_group *grp,
185                                     mbedtls_ecp_point *R, const mbedtls_ecp_point *P);
186 #endif
187 
188 /**
189  * \brief           Normalize jacobian coordinates of an array of (pointers to)
190  *                  points.
191  *
192  *                  Using Montgomery's trick to perform only one inversion mod P
193  *                  the cost is:
194  *                      1N(t) := 1I + (6t - 3)M + 1S
195  *                  (See for example Algorithm 10.3.4. in [9])
196  *
197  *                  This function is used only as a subrutine of
198  *                  ecp_mul_comb().
199  *
200  *                  Warning: fails (returning an error) if one of the points is
201  *                  zero!
202  *                  This should never happen, see choice of w in ecp_mul_comb().
203  *
204  * \param grp       Pointer to the group representing the curve.
205  *
206  * \param T         Array of pointers to the points to normalise.
207  *
208  * \param t_len     Number of elements in the array.
209  *
210  * \return          0 if successful,
211  *                      an error if one of the points is zero.
212  */
213 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
214 int mbedtls_internal_ecp_normalize_jac_many(const mbedtls_ecp_group *grp,
215                                             mbedtls_ecp_point *T[], size_t t_len);
216 #endif
217 
218 /**
219  * \brief           Normalize jacobian coordinates so that Z == 0 || Z == 1.
220  *
221  *                  Cost in field operations if done by [5] 3.2.1:
222  *                      1N := 1I + 3M + 1S
223  *
224  * \param grp       Pointer to the group representing the curve.
225  *
226  * \param pt        pointer to the point to be normalised. This is an
227  *                  input/output parameter.
228  *
229  * \return          0 if successful.
230  */
231 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
232 int mbedtls_internal_ecp_normalize_jac(const mbedtls_ecp_group *grp,
233                                        mbedtls_ecp_point *pt);
234 #endif
235 
236 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
237 
238 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
239 
240 #if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
241 int mbedtls_internal_ecp_double_add_mxz(const mbedtls_ecp_group *grp,
242                                         mbedtls_ecp_point *R,
243                                         mbedtls_ecp_point *S,
244                                         const mbedtls_ecp_point *P,
245                                         const mbedtls_ecp_point *Q,
246                                         const mbedtls_mpi *d);
247 #endif
248 
249 /**
250  * \brief           Randomize projective x/z coordinates:
251  *                      (X, Z) -> (l X, l Z) for random l
252  *
253  * \param grp       pointer to the group representing the curve
254  *
255  * \param P         the point on the curve to be randomised given with
256  *                  projective coordinates. This is an input/output parameter.
257  *
258  * \param f_rng     a function pointer to the random number generator
259  *
260  * \param p_rng     a pointer to the random number generator state
261  *
262  * \return          0 if successful
263  */
264 #if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
265 int mbedtls_internal_ecp_randomize_mxz(const mbedtls_ecp_group *grp,
266                                        mbedtls_ecp_point *P, int (*f_rng)(void *,
267                                                                           unsigned char *,
268                                                                           size_t),
269                                        void *p_rng);
270 #endif
271 
272 /**
273  * \brief           Normalize Montgomery x/z coordinates: X = X/Z, Z = 1.
274  *
275  * \param grp       pointer to the group representing the curve
276  *
277  * \param P         pointer to the point to be normalised. This is an
278  *                  input/output parameter.
279  *
280  * \return          0 if successful
281  */
282 #if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
283 int mbedtls_internal_ecp_normalize_mxz(const mbedtls_ecp_group *grp,
284                                        mbedtls_ecp_point *P);
285 #endif
286 
287 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
288 
289 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
290 
291 #endif /* ecp_internal.h */
292