• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- Square root of x86 long double numbers ------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLVM_LIBC_SRC___SUPPORT_FPUTIL_GENERIC_SQRT_80_BIT_LONG_DOUBLE_H
10 #define LLVM_LIBC_SRC___SUPPORT_FPUTIL_GENERIC_SQRT_80_BIT_LONG_DOUBLE_H
11 
12 #include "src/__support/CPP/bit.h"
13 #include "src/__support/FPUtil/FEnvImpl.h"
14 #include "src/__support/FPUtil/FPBits.h"
15 #include "src/__support/FPUtil/rounding_mode.h"
16 #include "src/__support/common.h"
17 #include "src/__support/uint128.h"
18 
19 namespace LIBC_NAMESPACE {
20 namespace fputil {
21 namespace x86 {
22 
normalize(int & exponent,UInt128 & mantissa)23 LIBC_INLINE void normalize(int &exponent, UInt128 &mantissa) {
24   const unsigned int shift = static_cast<unsigned int>(
25       cpp::countl_zero(static_cast<uint64_t>(mantissa)) -
26       (8 * sizeof(uint64_t) - 1 - FPBits<long double>::FRACTION_LEN));
27   exponent -= shift;
28   mantissa <<= shift;
29 }
30 
31 // if constexpr statement in sqrt.h still requires x86::sqrt to be declared
32 // even when it's not used.
33 LIBC_INLINE long double sqrt(long double x);
34 
35 // Correctly rounded SQRT for all rounding modes.
36 // Shift-and-add algorithm.
37 #if defined(LIBC_TYPES_LONG_DOUBLE_IS_X86_FLOAT80)
sqrt(long double x)38 LIBC_INLINE long double sqrt(long double x) {
39   using LDBits = FPBits<long double>;
40   using StorageType = typename LDBits::StorageType;
41   constexpr StorageType ONE = StorageType(1) << int(LDBits::FRACTION_LEN);
42   constexpr auto LDNAN = LDBits::quiet_nan().get_val();
43 
44   LDBits bits(x);
45 
46   if (bits == LDBits::inf(Sign::POS) || bits.is_zero() || bits.is_nan()) {
47     // sqrt(+Inf) = +Inf
48     // sqrt(+0) = +0
49     // sqrt(-0) = -0
50     // sqrt(NaN) = NaN
51     // sqrt(-NaN) = -NaN
52     return x;
53   } else if (bits.is_neg()) {
54     // sqrt(-Inf) = NaN
55     // sqrt(-x) = NaN
56     return LDNAN;
57   } else {
58     int x_exp = bits.get_explicit_exponent();
59     StorageType x_mant = bits.get_mantissa();
60 
61     // Step 1a: Normalize denormal input
62     if (bits.get_implicit_bit()) {
63       x_mant |= ONE;
64     } else if (bits.is_subnormal()) {
65       normalize(x_exp, x_mant);
66     }
67 
68     // Step 1b: Make sure the exponent is even.
69     if (x_exp & 1) {
70       --x_exp;
71       x_mant <<= 1;
72     }
73 
74     // After step 1b, x = 2^(x_exp) * x_mant, where x_exp is even, and
75     // 1 <= x_mant < 4.  So sqrt(x) = 2^(x_exp / 2) * y, with 1 <= y < 2.
76     // Notice that the output of sqrt is always in the normal range.
77     // To perform shift-and-add algorithm to find y, let denote:
78     //   y(n) = 1.y_1 y_2 ... y_n, we can define the nth residue to be:
79     //   r(n) = 2^n ( x_mant - y(n)^2 ).
80     // That leads to the following recurrence formula:
81     //   r(n) = 2*r(n-1) - y_n*[ 2*y(n-1) + 2^(-n-1) ]
82     // with the initial conditions: y(0) = 1, and r(0) = x - 1.
83     // So the nth digit y_n of the mantissa of sqrt(x) can be found by:
84     //   y_n = 1 if 2*r(n-1) >= 2*y(n - 1) + 2^(-n-1)
85     //         0 otherwise.
86     StorageType y = ONE;
87     StorageType r = x_mant - ONE;
88 
89     for (StorageType current_bit = ONE >> 1; current_bit; current_bit >>= 1) {
90       r <<= 1;
91       StorageType tmp = (y << 1) + current_bit; // 2*y(n - 1) + 2^(-n-1)
92       if (r >= tmp) {
93         r -= tmp;
94         y += current_bit;
95       }
96     }
97 
98     // We compute one more iteration in order to round correctly.
99     bool lsb = static_cast<bool>(y & 1); // Least significant bit
100     bool rb = false;                     // Round bit
101     r <<= 2;
102     StorageType tmp = (y << 2) + 1;
103     if (r >= tmp) {
104       r -= tmp;
105       rb = true;
106     }
107 
108     // Append the exponent field.
109     x_exp = ((x_exp >> 1) + LDBits::EXP_BIAS);
110     y |= (static_cast<StorageType>(x_exp) << (LDBits::FRACTION_LEN + 1));
111 
112     switch (quick_get_round()) {
113     case FE_TONEAREST:
114       // Round to nearest, ties to even
115       if (rb && (lsb || (r != 0)))
116         ++y;
117       break;
118     case FE_UPWARD:
119       if (rb || (r != 0))
120         ++y;
121       break;
122     }
123 
124     // Extract output
125     FPBits<long double> out(0.0L);
126     out.set_biased_exponent(x_exp);
127     out.set_implicit_bit(1);
128     out.set_mantissa((y & (ONE - 1)));
129 
130     return out.get_val();
131   }
132 }
133 #endif // LIBC_TYPES_LONG_DOUBLE_IS_X86_FLOAT80
134 
135 } // namespace x86
136 } // namespace fputil
137 } // namespace LIBC_NAMESPACE
138 
139 #endif // LLVM_LIBC_SRC___SUPPORT_FPUTIL_GENERIC_SQRT_80_BIT_LONG_DOUBLE_H
140