• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 /**
25  * \file ast_to_hir.c
26  * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27  *
28  * During the conversion to HIR, the majority of the symantic checking is
29  * preformed on the program.  This includes:
30  *
31  *    * Symbol table management
32  *    * Type checking
33  *    * Function binding
34  *
35  * The majority of this work could be done during parsing, and the parser could
36  * probably generate HIR directly.  However, this results in frequent changes
37  * to the parser code.  Since we do not assume that every system this complier
38  * is built on will have Flex and Bison installed, we have to store the code
39  * generated by these tools in our version control system.  In other parts of
40  * the system we've seen problems where a parser was changed but the generated
41  * code was not committed, merge conflicts where created because two developers
42  * had slightly different versions of Bison installed, etc.
43  *
44  * I have also noticed that running Bison generated parsers in GDB is very
45  * irritating.  When you get a segfault on '$$ = $1->foo', you can't very
46  * well 'print $1' in GDB.
47  *
48  * As a result, my preference is to put as little C code as possible in the
49  * parser (and lexer) sources.
50  */
51 
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "util/hash_table.h"
57 #include "main/consts_exts.h"
58 #include "main/macros.h"
59 #include "main/shaderobj.h"
60 #include "ir.h"
61 #include "ir_builder.h"
62 #include "linker_util.h"
63 #include "builtin_functions.h"
64 
65 using namespace ir_builder;
66 
67 static void
68 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
69                                exec_list *instructions);
70 static void
71 verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state);
72 
73 static void
74 remove_per_vertex_blocks(exec_list *instructions,
75                          _mesa_glsl_parse_state *state, ir_variable_mode mode);
76 
77 /**
78  * Visitor class that finds the first instance of any write-only variable that
79  * is ever read, if any
80  */
81 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
82 {
83 public:
read_from_write_only_variable_visitor()84    read_from_write_only_variable_visitor() : found(NULL)
85    {
86    }
87 
visit(ir_dereference_variable * ir)88    virtual ir_visitor_status visit(ir_dereference_variable *ir)
89    {
90       if (this->in_assignee)
91          return visit_continue;
92 
93       ir_variable *var = ir->variable_referenced();
94       /* We can have memory_write_only set on both images and buffer variables,
95        * but in the former there is a distinction between reads from
96        * the variable itself (write_only) and from the memory they point to
97        * (memory_write_only), while in the case of buffer variables there is
98        * no such distinction, that is why this check here is limited to
99        * buffer variables alone.
100        */
101       if (!var || var->data.mode != ir_var_shader_storage)
102          return visit_continue;
103 
104       if (var->data.memory_write_only) {
105          found = var;
106          return visit_stop;
107       }
108 
109       return visit_continue;
110    }
111 
get_variable()112    ir_variable *get_variable() {
113       return found;
114    }
115 
visit_enter(ir_expression * ir)116    virtual ir_visitor_status visit_enter(ir_expression *ir)
117    {
118       /* .length() doesn't actually read anything */
119       if (ir->operation == ir_unop_ssbo_unsized_array_length)
120          return visit_continue_with_parent;
121 
122       return visit_continue;
123    }
124 
125 private:
126    ir_variable *found;
127 };
128 
129 void
_mesa_ast_to_hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)130 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
131 {
132    _mesa_glsl_initialize_variables(instructions, state);
133 
134    state->symbols->separate_function_namespace = state->language_version == 110;
135 
136    state->current_function = NULL;
137 
138    state->toplevel_ir = instructions;
139 
140    state->gs_input_prim_type_specified = false;
141    state->tcs_output_vertices_specified = false;
142    state->cs_input_local_size_specified = false;
143 
144    /* Section 4.2 of the GLSL 1.20 specification states:
145     * "The built-in functions are scoped in a scope outside the global scope
146     *  users declare global variables in.  That is, a shader's global scope,
147     *  available for user-defined functions and global variables, is nested
148     *  inside the scope containing the built-in functions."
149     *
150     * Since built-in functions like ftransform() access built-in variables,
151     * it follows that those must be in the outer scope as well.
152     *
153     * We push scope here to create this nesting effect...but don't pop.
154     * This way, a shader's globals are still in the symbol table for use
155     * by the linker.
156     */
157    state->symbols->push_scope();
158 
159    foreach_list_typed (ast_node, ast, link, & state->translation_unit)
160       ast->hir(instructions, state);
161 
162    verify_subroutine_associated_funcs(state);
163    detect_recursion_unlinked(state, instructions);
164    detect_conflicting_assignments(state, instructions);
165 
166    state->toplevel_ir = NULL;
167 
168    /* Move all of the variable declarations to the front of the IR list, and
169     * reverse the order.  This has the (intended!) side effect that vertex
170     * shader inputs and fragment shader outputs will appear in the IR in the
171     * same order that they appeared in the shader code.  This results in the
172     * locations being assigned in the declared order.  Many (arguably buggy)
173     * applications depend on this behavior, and it matches what nearly all
174     * other drivers do.
175     */
176    foreach_in_list_safe(ir_instruction, node, instructions) {
177       ir_variable *const var = node->as_variable();
178 
179       if (var == NULL)
180          continue;
181 
182       var->remove();
183       instructions->push_head(var);
184    }
185 
186    /* Figure out if gl_FragCoord is actually used in fragment shader */
187    ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
188    if (var != NULL)
189       state->fs_uses_gl_fragcoord = var->data.used;
190 
191    /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
192     *
193     *     If multiple shaders using members of a built-in block belonging to
194     *     the same interface are linked together in the same program, they
195     *     must all redeclare the built-in block in the same way, as described
196     *     in section 4.3.7 "Interface Blocks" for interface block matching, or
197     *     a link error will result.
198     *
199     * The phrase "using members of a built-in block" implies that if two
200     * shaders are linked together and one of them *does not use* any members
201     * of the built-in block, then that shader does not need to have a matching
202     * redeclaration of the built-in block.
203     *
204     * This appears to be a clarification to the behaviour established for
205     * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
206     * version.
207     *
208     * The definition of "interface" in section 4.3.7 that applies here is as
209     * follows:
210     *
211     *     The boundary between adjacent programmable pipeline stages: This
212     *     spans all the outputs in all compilation units of the first stage
213     *     and all the inputs in all compilation units of the second stage.
214     *
215     * Therefore this rule applies to both inter- and intra-stage linking.
216     *
217     * The easiest way to implement this is to check whether the shader uses
218     * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
219     * remove all the relevant variable declaration from the IR, so that the
220     * linker won't see them and complain about mismatches.
221     */
222    remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
223    remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
224 
225    /* Check that we don't have reads from write-only variables */
226    read_from_write_only_variable_visitor v;
227    v.run(instructions);
228    ir_variable *error_var = v.get_variable();
229    if (error_var) {
230       /* It would be nice to have proper location information, but for that
231        * we would need to check this as we process each kind of AST node
232        */
233       YYLTYPE loc;
234       memset(&loc, 0, sizeof(loc));
235       _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
236                        error_var->name);
237    }
238 }
239 
240 
241 static ir_expression_operation
get_implicit_conversion_operation(const glsl_type * to,const glsl_type * from,struct _mesa_glsl_parse_state * state)242 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
243                                   struct _mesa_glsl_parse_state *state)
244 {
245    switch (to->base_type) {
246    case GLSL_TYPE_FLOAT16:
247       switch (from->base_type) {
248       case GLSL_TYPE_INT: return ir_unop_i2f16;
249       case GLSL_TYPE_UINT: return ir_unop_u2f16;
250       default: return (ir_expression_operation)0;
251       }
252 
253    case GLSL_TYPE_FLOAT:
254       switch (from->base_type) {
255       case GLSL_TYPE_INT: return ir_unop_i2f;
256       case GLSL_TYPE_UINT: return ir_unop_u2f;
257       case GLSL_TYPE_FLOAT16: return ir_unop_f162f;
258       default: return (ir_expression_operation)0;
259       }
260 
261    case GLSL_TYPE_UINT:
262       if (!state->has_implicit_int_to_uint_conversion())
263          return (ir_expression_operation)0;
264       switch (from->base_type) {
265          case GLSL_TYPE_INT: return ir_unop_i2u;
266          default: return (ir_expression_operation)0;
267       }
268 
269    case GLSL_TYPE_DOUBLE:
270       if (!state->has_double())
271          return (ir_expression_operation)0;
272       switch (from->base_type) {
273       case GLSL_TYPE_INT: return ir_unop_i2d;
274       case GLSL_TYPE_UINT: return ir_unop_u2d;
275       case GLSL_TYPE_FLOAT16: return ir_unop_f162d;
276       case GLSL_TYPE_FLOAT: return ir_unop_f2d;
277       case GLSL_TYPE_INT64: return ir_unop_i642d;
278       case GLSL_TYPE_UINT64: return ir_unop_u642d;
279       default: return (ir_expression_operation)0;
280       }
281 
282    case GLSL_TYPE_UINT64:
283       if (!state->has_int64())
284          return (ir_expression_operation)0;
285       switch (from->base_type) {
286       case GLSL_TYPE_INT: return ir_unop_i2u64;
287       case GLSL_TYPE_UINT: return ir_unop_u2u64;
288       case GLSL_TYPE_INT64: return ir_unop_i642u64;
289       default: return (ir_expression_operation)0;
290       }
291 
292    case GLSL_TYPE_INT64:
293       if (!state->has_int64())
294          return (ir_expression_operation)0;
295       switch (from->base_type) {
296       case GLSL_TYPE_INT: return ir_unop_i2i64;
297       default: return (ir_expression_operation)0;
298       }
299 
300    default: return (ir_expression_operation)0;
301    }
302 }
303 
304 
305 /**
306  * If a conversion is available, convert one operand to a different type
307  *
308  * The \c from \c ir_rvalue is converted "in place".
309  *
310  * \param to     Type that the operand it to be converted to
311  * \param from   Operand that is being converted
312  * \param state  GLSL compiler state
313  *
314  * \return
315  * If a conversion is possible (or unnecessary), \c true is returned.
316  * Otherwise \c false is returned.
317  */
318 static bool
apply_implicit_conversion(const glsl_type * to,ir_rvalue * & from,struct _mesa_glsl_parse_state * state)319 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
320                           struct _mesa_glsl_parse_state *state)
321 {
322    void *ctx = state;
323    if (to->base_type == from->type->base_type)
324       return true;
325 
326    /* Prior to GLSL 1.20, there are no implicit conversions */
327    if (!state->has_implicit_conversions())
328       return false;
329 
330    /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
331     *
332     *    "There are no implicit array or structure conversions. For
333     *    example, an array of int cannot be implicitly converted to an
334     *    array of float.
335     */
336    if (!glsl_type_is_numeric(to) || !glsl_type_is_numeric(from->type))
337       return false;
338 
339    /* We don't actually want the specific type `to`, we want a type
340     * with the same base type as `to`, but the same vector width as
341     * `from`.
342     */
343    to = glsl_simple_type(to->base_type, from->type->vector_elements,
344                          from->type->matrix_columns);
345 
346    ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
347    if (op) {
348       from = new(ctx) ir_expression(op, to, from, NULL);
349       return true;
350    } else {
351       return false;
352    }
353 }
354 
355 
356 static const struct glsl_type *
arithmetic_result_type(ir_rvalue * & value_a,ir_rvalue * & value_b,bool multiply,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)357 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
358                        bool multiply,
359                        struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
360 {
361    const glsl_type *type_a = value_a->type;
362    const glsl_type *type_b = value_b->type;
363 
364    /* From GLSL 1.50 spec, page 56:
365     *
366     *    "The arithmetic binary operators add (+), subtract (-),
367     *    multiply (*), and divide (/) operate on integer and
368     *    floating-point scalars, vectors, and matrices."
369     */
370    if (!glsl_type_is_numeric(type_a) || !glsl_type_is_numeric(type_b)) {
371       _mesa_glsl_error(loc, state,
372                        "operands to arithmetic operators must be numeric");
373       return &glsl_type_builtin_error;
374    }
375 
376 
377    /*    "If one operand is floating-point based and the other is
378     *    not, then the conversions from Section 4.1.10 "Implicit
379     *    Conversions" are applied to the non-floating-point-based operand."
380     */
381    if (!apply_implicit_conversion(type_a, value_b, state)
382        && !apply_implicit_conversion(type_b, value_a, state)) {
383       _mesa_glsl_error(loc, state,
384                        "could not implicitly convert operands to "
385                        "arithmetic operator");
386       return &glsl_type_builtin_error;
387    }
388    type_a = value_a->type;
389    type_b = value_b->type;
390 
391    /*    "If the operands are integer types, they must both be signed or
392     *    both be unsigned."
393     *
394     * From this rule and the preceeding conversion it can be inferred that
395     * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
396     * The is_numeric check above already filtered out the case where either
397     * type is not one of these, so now the base types need only be tested for
398     * equality.
399     */
400    if (type_a->base_type != type_b->base_type) {
401       _mesa_glsl_error(loc, state,
402                        "base type mismatch for arithmetic operator");
403       return &glsl_type_builtin_error;
404    }
405 
406    /*    "All arithmetic binary operators result in the same fundamental type
407     *    (signed integer, unsigned integer, or floating-point) as the
408     *    operands they operate on, after operand type conversion. After
409     *    conversion, the following cases are valid
410     *
411     *    * The two operands are scalars. In this case the operation is
412     *      applied, resulting in a scalar."
413     */
414    if (glsl_type_is_scalar(type_a) && glsl_type_is_scalar(type_b))
415       return type_a;
416 
417    /*   "* One operand is a scalar, and the other is a vector or matrix.
418     *      In this case, the scalar operation is applied independently to each
419     *      component of the vector or matrix, resulting in the same size
420     *      vector or matrix."
421     */
422    if (glsl_type_is_scalar(type_a)) {
423       if (!glsl_type_is_scalar(type_b))
424          return type_b;
425    } else if (glsl_type_is_scalar(type_b)) {
426       return type_a;
427    }
428 
429    /* All of the combinations of <scalar, scalar>, <vector, scalar>,
430     * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
431     * handled.
432     */
433    assert(!glsl_type_is_scalar(type_a));
434    assert(!glsl_type_is_scalar(type_b));
435 
436    /*   "* The two operands are vectors of the same size. In this case, the
437     *      operation is done component-wise resulting in the same size
438     *      vector."
439     */
440    if (glsl_type_is_vector(type_a) && glsl_type_is_vector(type_b)) {
441       if (type_a == type_b) {
442          return type_a;
443       } else {
444          _mesa_glsl_error(loc, state,
445                           "vector size mismatch for arithmetic operator");
446          return &glsl_type_builtin_error;
447       }
448    }
449 
450    /* All of the combinations of <scalar, scalar>, <vector, scalar>,
451     * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
452     * <vector, vector> have been handled.  At least one of the operands must
453     * be matrix.  Further, since there are no integer matrix types, the base
454     * type of both operands must be float.
455     */
456    assert(glsl_type_is_matrix(type_a) || glsl_type_is_matrix(type_b));
457    assert(glsl_type_is_float(type_a) || glsl_type_is_double(type_a));
458    assert(glsl_type_is_float(type_b) || glsl_type_is_double(type_b));
459 
460    /*   "* The operator is add (+), subtract (-), or divide (/), and the
461     *      operands are matrices with the same number of rows and the same
462     *      number of columns. In this case, the operation is done component-
463     *      wise resulting in the same size matrix."
464     *    * The operator is multiply (*), where both operands are matrices or
465     *      one operand is a vector and the other a matrix. A right vector
466     *      operand is treated as a column vector and a left vector operand as a
467     *      row vector. In all these cases, it is required that the number of
468     *      columns of the left operand is equal to the number of rows of the
469     *      right operand. Then, the multiply (*) operation does a linear
470     *      algebraic multiply, yielding an object that has the same number of
471     *      rows as the left operand and the same number of columns as the right
472     *      operand. Section 5.10 "Vector and Matrix Operations" explains in
473     *      more detail how vectors and matrices are operated on."
474     */
475    if (! multiply) {
476       if (type_a == type_b)
477          return type_a;
478    } else {
479       const glsl_type *type = glsl_get_mul_type(type_a, type_b);
480 
481       if (type == &glsl_type_builtin_error) {
482          _mesa_glsl_error(loc, state,
483                           "size mismatch for matrix multiplication");
484       }
485 
486       return type;
487    }
488 
489 
490    /*    "All other cases are illegal."
491     */
492    _mesa_glsl_error(loc, state, "type mismatch");
493    return &glsl_type_builtin_error;
494 }
495 
496 
497 static const struct glsl_type *
unary_arithmetic_result_type(const struct glsl_type * type,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)498 unary_arithmetic_result_type(const struct glsl_type *type,
499                              struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
500 {
501    /* From GLSL 1.50 spec, page 57:
502     *
503     *    "The arithmetic unary operators negate (-), post- and pre-increment
504     *     and decrement (-- and ++) operate on integer or floating-point
505     *     values (including vectors and matrices). All unary operators work
506     *     component-wise on their operands. These result with the same type
507     *     they operated on."
508     */
509    if (!glsl_type_is_numeric(type)) {
510       _mesa_glsl_error(loc, state,
511                        "operands to arithmetic operators must be numeric");
512       return &glsl_type_builtin_error;
513    }
514 
515    return type;
516 }
517 
518 /**
519  * \brief Return the result type of a bit-logic operation.
520  *
521  * If the given types to the bit-logic operator are invalid, return
522  * &glsl_type_builtin_error.
523  *
524  * \param value_a LHS of bit-logic op
525  * \param value_b RHS of bit-logic op
526  */
527 static const struct glsl_type *
bit_logic_result_type(ir_rvalue * & value_a,ir_rvalue * & value_b,ast_operators op,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)528 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
529                       ast_operators op,
530                       struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
531 {
532    const glsl_type *type_a = value_a->type;
533    const glsl_type *type_b = value_b->type;
534 
535    if (!state->check_bitwise_operations_allowed(loc)) {
536       return &glsl_type_builtin_error;
537    }
538 
539    /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
540     *
541     *     "The bitwise operators and (&), exclusive-or (^), and inclusive-or
542     *     (|). The operands must be of type signed or unsigned integers or
543     *     integer vectors."
544     */
545    if (!glsl_type_is_integer_32_64(type_a)) {
546       _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
547                         ast_expression::operator_string(op));
548       return &glsl_type_builtin_error;
549    }
550    if (!glsl_type_is_integer_32_64(type_b)) {
551       _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
552                        ast_expression::operator_string(op));
553       return &glsl_type_builtin_error;
554    }
555 
556    /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
557     * make sense for bitwise operations, as they don't operate on floats.
558     *
559     * GLSL 4.0 added implicit int -> uint conversions, which are relevant
560     * here.  It wasn't clear whether or not we should apply them to bitwise
561     * operations.  However, Khronos has decided that they should in future
562     * language revisions.  Applications also rely on this behavior.  We opt
563     * to apply them in general, but issue a portability warning.
564     *
565     * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
566     */
567    if (type_a->base_type != type_b->base_type) {
568       if (!apply_implicit_conversion(type_a, value_b, state)
569           && !apply_implicit_conversion(type_b, value_a, state)) {
570          _mesa_glsl_error(loc, state,
571                           "could not implicitly convert operands to "
572                           "`%s` operator",
573                           ast_expression::operator_string(op));
574          return &glsl_type_builtin_error;
575       } else {
576          _mesa_glsl_warning(loc, state,
577                             "some implementations may not support implicit "
578                             "int -> uint conversions for `%s' operators; "
579                             "consider casting explicitly for portability",
580                             ast_expression::operator_string(op));
581       }
582       type_a = value_a->type;
583       type_b = value_b->type;
584    }
585 
586    /*     "The fundamental types of the operands (signed or unsigned) must
587     *     match,"
588     */
589    if (type_a->base_type != type_b->base_type) {
590       _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
591                        "base type", ast_expression::operator_string(op));
592       return &glsl_type_builtin_error;
593    }
594 
595    /*     "The operands cannot be vectors of differing size." */
596    if (glsl_type_is_vector(type_a) &&
597        glsl_type_is_vector(type_b) &&
598        type_a->vector_elements != type_b->vector_elements) {
599       _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
600                        "different sizes", ast_expression::operator_string(op));
601       return &glsl_type_builtin_error;
602    }
603 
604    /*     "If one operand is a scalar and the other a vector, the scalar is
605     *     applied component-wise to the vector, resulting in the same type as
606     *     the vector. The fundamental types of the operands [...] will be the
607     *     resulting fundamental type."
608     */
609    if (glsl_type_is_scalar(type_a))
610        return type_b;
611    else
612        return type_a;
613 }
614 
615 static const struct glsl_type *
modulus_result_type(ir_rvalue * & value_a,ir_rvalue * & value_b,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)616 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
617                     struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
618 {
619    const glsl_type *type_a = value_a->type;
620    const glsl_type *type_b = value_b->type;
621 
622    if (!state->EXT_gpu_shader4_enable &&
623        !state->check_version(130, 300, loc, "operator '%%' is reserved")) {
624       return &glsl_type_builtin_error;
625    }
626 
627    /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
628     *
629     *    "The operator modulus (%) operates on signed or unsigned integers or
630     *    integer vectors."
631     */
632    if (!glsl_type_is_integer_32_64(type_a)) {
633       _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
634       return &glsl_type_builtin_error;
635    }
636    if (!glsl_type_is_integer_32_64(type_b)) {
637       _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
638       return &glsl_type_builtin_error;
639    }
640 
641    /*    "If the fundamental types in the operands do not match, then the
642     *    conversions from section 4.1.10 "Implicit Conversions" are applied
643     *    to create matching types."
644     *
645     * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
646     * int -> uint conversion rules.  Prior to that, there were no implicit
647     * conversions.  So it's harmless to apply them universally - no implicit
648     * conversions will exist.  If the types don't match, we'll receive false,
649     * and raise an error, satisfying the GLSL 1.50 spec, page 56:
650     *
651     *    "The operand types must both be signed or unsigned."
652     */
653    if (!apply_implicit_conversion(type_a, value_b, state) &&
654        !apply_implicit_conversion(type_b, value_a, state)) {
655       _mesa_glsl_error(loc, state,
656                        "could not implicitly convert operands to "
657                        "modulus (%%) operator");
658       return &glsl_type_builtin_error;
659    }
660    type_a = value_a->type;
661    type_b = value_b->type;
662 
663    /*    "The operands cannot be vectors of differing size. If one operand is
664     *    a scalar and the other vector, then the scalar is applied component-
665     *    wise to the vector, resulting in the same type as the vector. If both
666     *    are vectors of the same size, the result is computed component-wise."
667     */
668    if (glsl_type_is_vector(type_a)) {
669       if (!glsl_type_is_vector(type_b)
670           || (type_a->vector_elements == type_b->vector_elements))
671       return type_a;
672    } else
673       return type_b;
674 
675    /*    "The operator modulus (%) is not defined for any other data types
676     *    (non-integer types)."
677     */
678    _mesa_glsl_error(loc, state, "type mismatch");
679    return &glsl_type_builtin_error;
680 }
681 
682 
683 static const struct glsl_type *
relational_result_type(ir_rvalue * & value_a,ir_rvalue * & value_b,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)684 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
685                        struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
686 {
687    const glsl_type *type_a = value_a->type;
688    const glsl_type *type_b = value_b->type;
689 
690    /* From GLSL 1.50 spec, page 56:
691     *    "The relational operators greater than (>), less than (<), greater
692     *    than or equal (>=), and less than or equal (<=) operate only on
693     *    scalar integer and scalar floating-point expressions."
694     */
695    if (!glsl_type_is_numeric(type_a)
696        || !glsl_type_is_numeric(type_b)
697        || !glsl_type_is_scalar(type_a)
698        || !glsl_type_is_scalar(type_b)) {
699       _mesa_glsl_error(loc, state,
700                        "operands to relational operators must be scalar and "
701                        "numeric");
702       return &glsl_type_builtin_error;
703    }
704 
705    /*    "Either the operands' types must match, or the conversions from
706     *    Section 4.1.10 "Implicit Conversions" will be applied to the integer
707     *    operand, after which the types must match."
708     */
709    if (!apply_implicit_conversion(type_a, value_b, state)
710        && !apply_implicit_conversion(type_b, value_a, state)) {
711       _mesa_glsl_error(loc, state,
712                        "could not implicitly convert operands to "
713                        "relational operator");
714       return &glsl_type_builtin_error;
715    }
716    type_a = value_a->type;
717    type_b = value_b->type;
718 
719    if (type_a->base_type != type_b->base_type) {
720       _mesa_glsl_error(loc, state, "base type mismatch");
721       return &glsl_type_builtin_error;
722    }
723 
724    /*    "The result is scalar Boolean."
725     */
726    return &glsl_type_builtin_bool;
727 }
728 
729 /**
730  * \brief Return the result type of a bit-shift operation.
731  *
732  * If the given types to the bit-shift operator are invalid, return
733  * &glsl_type_builtin_error.
734  *
735  * \param type_a Type of LHS of bit-shift op
736  * \param type_b Type of RHS of bit-shift op
737  */
738 static const struct glsl_type *
shift_result_type(const struct glsl_type * type_a,const struct glsl_type * type_b,ast_operators op,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)739 shift_result_type(const struct glsl_type *type_a,
740                   const struct glsl_type *type_b,
741                   ast_operators op,
742                   struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
743 {
744    if (!state->check_bitwise_operations_allowed(loc)) {
745       return &glsl_type_builtin_error;
746    }
747 
748    /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
749     *
750     *     "The shift operators (<<) and (>>). For both operators, the operands
751     *     must be signed or unsigned integers or integer vectors. One operand
752     *     can be signed while the other is unsigned."
753     */
754    if (!glsl_type_is_integer_32_64(type_a)) {
755       _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
756                        "integer vector", ast_expression::operator_string(op));
757      return &glsl_type_builtin_error;
758 
759    }
760    if (!glsl_type_is_integer_32_64(type_b)) {
761       _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
762                        "integer vector", ast_expression::operator_string(op));
763      return &glsl_type_builtin_error;
764    }
765 
766    /*     "If the first operand is a scalar, the second operand has to be
767     *     a scalar as well."
768     */
769    if (glsl_type_is_scalar(type_a) && !glsl_type_is_scalar(type_b)) {
770       _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
771                        "second must be scalar as well",
772                        ast_expression::operator_string(op));
773      return &glsl_type_builtin_error;
774    }
775 
776    /* If both operands are vectors, check that they have same number of
777     * elements.
778     */
779    if (glsl_type_is_vector(type_a) &&
780       glsl_type_is_vector(type_b) &&
781       type_a->vector_elements != type_b->vector_elements) {
782       _mesa_glsl_error(loc, state, "vector operands to operator %s must "
783                        "have same number of elements",
784                        ast_expression::operator_string(op));
785      return &glsl_type_builtin_error;
786    }
787 
788    /*     "In all cases, the resulting type will be the same type as the left
789     *     operand."
790     */
791    return type_a;
792 }
793 
794 /**
795  * Returns the innermost array index expression in an rvalue tree.
796  * This is the largest indexing level -- if an array of blocks, then
797  * it is the block index rather than an indexing expression for an
798  * array-typed member of an array of blocks.
799  */
800 static ir_rvalue *
find_innermost_array_index(ir_rvalue * rv)801 find_innermost_array_index(ir_rvalue *rv)
802 {
803    ir_dereference_array *last = NULL;
804    while (rv) {
805       if (rv->as_dereference_array()) {
806          last = rv->as_dereference_array();
807          rv = last->array;
808       } else if (rv->as_dereference_record())
809          rv = rv->as_dereference_record()->record;
810       else if (rv->as_swizzle())
811          rv = rv->as_swizzle()->val;
812       else
813          rv = NULL;
814    }
815 
816    if (last)
817       return last->array_index;
818 
819    return NULL;
820 }
821 
822 /**
823  * Validates that a value can be assigned to a location with a specified type
824  *
825  * Validates that \c rhs can be assigned to some location.  If the types are
826  * not an exact match but an automatic conversion is possible, \c rhs will be
827  * converted.
828  *
829  * \return
830  * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
831  * Otherwise the actual RHS to be assigned will be returned.  This may be
832  * \c rhs, or it may be \c rhs after some type conversion.
833  *
834  * \note
835  * In addition to being used for assignments, this function is used to
836  * type-check return values.
837  */
838 static ir_rvalue *
validate_assignment(struct _mesa_glsl_parse_state * state,YYLTYPE loc,ir_rvalue * lhs,ir_rvalue * rhs,bool is_initializer)839 validate_assignment(struct _mesa_glsl_parse_state *state,
840                     YYLTYPE loc, ir_rvalue *lhs,
841                     ir_rvalue *rhs, bool is_initializer)
842 {
843    /* If there is already some error in the RHS, just return it.  Anything
844     * else will lead to an avalanche of error message back to the user.
845     */
846    if (glsl_type_is_error(rhs->type))
847       return rhs;
848 
849    /* In the Tessellation Control Shader:
850     * If a per-vertex output variable is used as an l-value, it is an error
851     * if the expression indicating the vertex number is not the identifier
852     * `gl_InvocationID`.
853     */
854    if (state->stage == MESA_SHADER_TESS_CTRL && !glsl_type_is_error(lhs->type)) {
855       ir_variable *var = lhs->variable_referenced();
856       if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
857          ir_rvalue *index = find_innermost_array_index(lhs);
858          ir_variable *index_var = index ? index->variable_referenced() : NULL;
859          if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
860             _mesa_glsl_error(&loc, state,
861                              "Tessellation control shader outputs can only "
862                              "be indexed by gl_InvocationID");
863             return NULL;
864          }
865       }
866    }
867 
868    /* If the types are identical, the assignment can trivially proceed.
869     */
870    if (rhs->type == lhs->type)
871       return rhs;
872 
873    /* If the array element types are the same and the LHS is unsized,
874     * the assignment is okay for initializers embedded in variable
875     * declarations.
876     *
877     * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
878     * is handled by ir_dereference::is_lvalue.
879     */
880    const glsl_type *lhs_t = lhs->type;
881    const glsl_type *rhs_t = rhs->type;
882    bool unsized_array = false;
883    while(glsl_type_is_array(lhs_t)) {
884       if (rhs_t == lhs_t)
885          break; /* the rest of the inner arrays match so break out early */
886       if (!glsl_type_is_array(rhs_t)) {
887          unsized_array = false;
888          break; /* number of dimensions mismatch */
889       }
890       if (lhs_t->length == rhs_t->length) {
891          lhs_t = lhs_t->fields.array;
892          rhs_t = rhs_t->fields.array;
893          continue;
894       } else if (glsl_type_is_unsized_array(lhs_t)) {
895          unsized_array = true;
896       } else {
897          unsized_array = false;
898          break; /* sized array mismatch */
899       }
900       lhs_t = lhs_t->fields.array;
901       rhs_t = rhs_t->fields.array;
902    }
903    if (unsized_array) {
904       if (is_initializer) {
905          if (glsl_get_scalar_type(rhs->type) == glsl_get_scalar_type(lhs->type))
906             return rhs;
907       } else {
908          _mesa_glsl_error(&loc, state,
909                           "implicitly sized arrays cannot be assigned");
910          return NULL;
911       }
912    }
913 
914    /* Check for implicit conversion in GLSL 1.20 */
915    if (apply_implicit_conversion(lhs->type, rhs, state)) {
916       if (rhs->type == lhs->type)
917          return rhs;
918    }
919 
920    _mesa_glsl_error(&loc, state,
921                     "%s of type %s cannot be assigned to "
922                     "variable of type %s",
923                     is_initializer ? "initializer" : "value",
924                     glsl_get_type_name(rhs->type), glsl_get_type_name(lhs->type));
925 
926    return NULL;
927 }
928 
929 static void
mark_whole_array_access(ir_rvalue * access)930 mark_whole_array_access(ir_rvalue *access)
931 {
932    ir_dereference_variable *deref = access->as_dereference_variable();
933 
934    if (deref && deref->var) {
935       deref->var->data.max_array_access = deref->type->length - 1;
936    }
937 }
938 
939 static bool
do_assignment(exec_list * instructions,struct _mesa_glsl_parse_state * state,const char * non_lvalue_description,ir_rvalue * lhs,ir_rvalue * rhs,ir_rvalue ** out_rvalue,bool needs_rvalue,bool is_initializer,YYLTYPE lhs_loc)940 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
941               const char *non_lvalue_description,
942               ir_rvalue *lhs, ir_rvalue *rhs,
943               ir_rvalue **out_rvalue, bool needs_rvalue,
944               bool is_initializer,
945               YYLTYPE lhs_loc)
946 {
947    void *ctx = state;
948    bool error_emitted = (glsl_type_is_error(lhs->type) || glsl_type_is_error(rhs->type));
949 
950    ir_variable *lhs_var = lhs->variable_referenced();
951    if (lhs_var)
952       lhs_var->data.assigned = true;
953 
954    bool omit_assignment = false;
955    if (!error_emitted) {
956       if (non_lvalue_description != NULL) {
957          _mesa_glsl_error(&lhs_loc, state,
958                           "assignment to %s",
959                           non_lvalue_description);
960          error_emitted = true;
961       } else if (lhs_var != NULL && (lhs_var->data.read_only ||
962                  (lhs_var->data.mode == ir_var_shader_storage &&
963                   lhs_var->data.memory_read_only))) {
964          /* We can have memory_read_only set on both images and buffer variables,
965           * but in the former there is a distinction between assignments to
966           * the variable itself (read_only) and to the memory they point to
967           * (memory_read_only), while in the case of buffer variables there is
968           * no such distinction, that is why this check here is limited to
969           * buffer variables alone.
970           */
971 
972          if (state->ignore_write_to_readonly_var)
973             omit_assignment = true;
974          else {
975             _mesa_glsl_error(&lhs_loc, state,
976                              "assignment to read-only variable '%s'",
977                              lhs_var->name);
978             error_emitted = true;
979          }
980       } else if (glsl_type_is_array(lhs->type) &&
981                  !state->check_version(state->allow_glsl_120_subset_in_110 ? 110 : 120,
982                                        300, &lhs_loc,
983                                        "whole array assignment forbidden")) {
984          /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
985           *
986           *    "Other binary or unary expressions, non-dereferenced
987           *     arrays, function names, swizzles with repeated fields,
988           *     and constants cannot be l-values."
989           *
990           * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
991           */
992          error_emitted = true;
993       } else if (!lhs->is_lvalue(state)) {
994          _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
995          error_emitted = true;
996       }
997    }
998 
999    ir_rvalue *new_rhs =
1000       validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
1001    if (new_rhs != NULL) {
1002       rhs = new_rhs;
1003 
1004       /* If the LHS array was not declared with a size, it takes it size from
1005        * the RHS.  If the LHS is an l-value and a whole array, it must be a
1006        * dereference of a variable.  Any other case would require that the LHS
1007        * is either not an l-value or not a whole array.
1008        */
1009       if (glsl_type_is_unsized_array(lhs->type)) {
1010          ir_dereference *const d = lhs->as_dereference();
1011 
1012          assert(d != NULL);
1013 
1014          ir_variable *const var = d->variable_referenced();
1015 
1016          assert(var != NULL);
1017 
1018          if (var->data.max_array_access >= glsl_array_size(rhs->type)) {
1019             /* FINISHME: This should actually log the location of the RHS. */
1020             _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
1021                              "previous access",
1022                              var->data.max_array_access);
1023          }
1024 
1025          var->type = glsl_array_type(lhs->type->fields.array,
1026                                      glsl_array_size(rhs->type), 0);
1027          d->type = var->type;
1028       }
1029       if (glsl_type_is_array(lhs->type)) {
1030          mark_whole_array_access(rhs);
1031          mark_whole_array_access(lhs);
1032       }
1033    } else {
1034      error_emitted = true;
1035    }
1036 
1037    if (omit_assignment) {
1038       *out_rvalue = needs_rvalue ? ir_rvalue::error_value(ctx) : NULL;
1039       return error_emitted;
1040    }
1041 
1042    /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
1043     * but not post_inc) need the converted assigned value as an rvalue
1044     * to handle things like:
1045     *
1046     * i = j += 1;
1047     */
1048    if (needs_rvalue) {
1049       ir_rvalue *rvalue;
1050       if (!error_emitted) {
1051          ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1052                                                  ir_var_temporary);
1053          instructions->push_tail(var);
1054          instructions->push_tail(assign(var, rhs));
1055 
1056          ir_dereference_variable *deref_var =
1057             new(ctx) ir_dereference_variable(var);
1058          instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1059          rvalue = new(ctx) ir_dereference_variable(var);
1060       } else {
1061          rvalue = ir_rvalue::error_value(ctx);
1062       }
1063       *out_rvalue = rvalue;
1064    } else {
1065       if (!error_emitted)
1066          instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1067       *out_rvalue = NULL;
1068    }
1069 
1070    return error_emitted;
1071 }
1072 
1073 static ir_rvalue *
get_lvalue_copy(exec_list * instructions,ir_rvalue * lvalue)1074 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1075 {
1076    void *ctx = ralloc_parent(lvalue);
1077    ir_variable *var;
1078 
1079    var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1080                               ir_var_temporary);
1081    instructions->push_tail(var);
1082 
1083    instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1084                                                   lvalue));
1085 
1086    return new(ctx) ir_dereference_variable(var);
1087 }
1088 
1089 
1090 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)1091 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1092 {
1093    (void) instructions;
1094    (void) state;
1095 
1096    return NULL;
1097 }
1098 
1099 bool
has_sequence_subexpression() const1100 ast_node::has_sequence_subexpression() const
1101 {
1102    return false;
1103 }
1104 
1105 void
set_is_lhs(bool)1106 ast_node::set_is_lhs(bool /* new_value */)
1107 {
1108 }
1109 
1110 void
hir_no_rvalue(exec_list * instructions,struct _mesa_glsl_parse_state * state)1111 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1112                                        struct _mesa_glsl_parse_state *state)
1113 {
1114    (void)hir(instructions, state);
1115 }
1116 
1117 void
hir_no_rvalue(exec_list * instructions,struct _mesa_glsl_parse_state * state)1118 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1119                                          struct _mesa_glsl_parse_state *state)
1120 {
1121    (void)hir(instructions, state);
1122 }
1123 
1124 static ir_rvalue *
do_comparison(void * mem_ctx,int operation,ir_rvalue * op0,ir_rvalue * op1)1125 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1126 {
1127    int join_op;
1128    ir_rvalue *cmp = NULL;
1129 
1130    if (operation == ir_binop_all_equal)
1131       join_op = ir_binop_logic_and;
1132    else
1133       join_op = ir_binop_logic_or;
1134 
1135    switch (op0->type->base_type) {
1136    case GLSL_TYPE_FLOAT:
1137    case GLSL_TYPE_FLOAT16:
1138    case GLSL_TYPE_UINT:
1139    case GLSL_TYPE_INT:
1140    case GLSL_TYPE_BOOL:
1141    case GLSL_TYPE_DOUBLE:
1142    case GLSL_TYPE_UINT64:
1143    case GLSL_TYPE_INT64:
1144    case GLSL_TYPE_UINT16:
1145    case GLSL_TYPE_INT16:
1146    case GLSL_TYPE_UINT8:
1147    case GLSL_TYPE_INT8:
1148       return new(mem_ctx) ir_expression(operation, op0, op1);
1149 
1150    case GLSL_TYPE_ARRAY: {
1151       for (unsigned int i = 0; i < op0->type->length; i++) {
1152          ir_rvalue *e0, *e1, *result;
1153 
1154          e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1155                                                 new(mem_ctx) ir_constant(i));
1156          e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1157                                                 new(mem_ctx) ir_constant(i));
1158          result = do_comparison(mem_ctx, operation, e0, e1);
1159 
1160          if (cmp) {
1161             cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1162          } else {
1163             cmp = result;
1164          }
1165       }
1166 
1167       mark_whole_array_access(op0);
1168       mark_whole_array_access(op1);
1169       break;
1170    }
1171 
1172    case GLSL_TYPE_STRUCT: {
1173       for (unsigned int i = 0; i < op0->type->length; i++) {
1174          ir_rvalue *e0, *e1, *result;
1175          const char *field_name = op0->type->fields.structure[i].name;
1176 
1177          e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1178                                                  field_name);
1179          e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1180                                                  field_name);
1181          result = do_comparison(mem_ctx, operation, e0, e1);
1182 
1183          if (cmp) {
1184             cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1185          } else {
1186             cmp = result;
1187          }
1188       }
1189       break;
1190    }
1191 
1192    case GLSL_TYPE_ERROR:
1193    case GLSL_TYPE_VOID:
1194    case GLSL_TYPE_SAMPLER:
1195    case GLSL_TYPE_TEXTURE:
1196    case GLSL_TYPE_IMAGE:
1197    case GLSL_TYPE_INTERFACE:
1198    case GLSL_TYPE_ATOMIC_UINT:
1199    case GLSL_TYPE_SUBROUTINE:
1200       /* I assume a comparison of a struct containing a sampler just
1201        * ignores the sampler present in the type.
1202        */
1203       break;
1204 
1205    case GLSL_TYPE_COOPERATIVE_MATRIX:
1206       unreachable("unsupported base type cooperative matrix");
1207    }
1208 
1209    if (cmp == NULL)
1210       cmp = new(mem_ctx) ir_constant(true);
1211 
1212    return cmp;
1213 }
1214 
1215 /* For logical operations, we want to ensure that the operands are
1216  * scalar booleans.  If it isn't, emit an error and return a constant
1217  * boolean to avoid triggering cascading error messages.
1218  */
1219 static ir_rvalue *
get_scalar_boolean_operand(exec_list * instructions,struct _mesa_glsl_parse_state * state,ast_expression * parent_expr,int operand,const char * operand_name,bool * error_emitted)1220 get_scalar_boolean_operand(exec_list *instructions,
1221                            struct _mesa_glsl_parse_state *state,
1222                            ast_expression *parent_expr,
1223                            int operand,
1224                            const char *operand_name,
1225                            bool *error_emitted)
1226 {
1227    ast_expression *expr = parent_expr->subexpressions[operand];
1228    void *ctx = state;
1229    ir_rvalue *val = expr->hir(instructions, state);
1230 
1231    if (glsl_type_is_boolean(val->type) && glsl_type_is_scalar(val->type))
1232       return val;
1233 
1234    if (!*error_emitted) {
1235       YYLTYPE loc = expr->get_location();
1236       _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1237                        operand_name,
1238                        parent_expr->operator_string(parent_expr->oper));
1239       *error_emitted = true;
1240    }
1241 
1242    return new(ctx) ir_constant(true);
1243 }
1244 
1245 /**
1246  * If name refers to a builtin array whose maximum allowed size is less than
1247  * size, report an error and return true.  Otherwise return false.
1248  */
1249 void
check_builtin_array_max_size(const char * name,unsigned size,YYLTYPE loc,struct _mesa_glsl_parse_state * state)1250 check_builtin_array_max_size(const char *name, unsigned size,
1251                              YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1252 {
1253    if ((strcmp("gl_TexCoord", name) == 0)
1254        && (size > state->Const.MaxTextureCoords)) {
1255       /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1256        *
1257        *     "The size [of gl_TexCoord] can be at most
1258        *     gl_MaxTextureCoords."
1259        */
1260       _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1261                        "be larger than gl_MaxTextureCoords (%u)",
1262                        state->Const.MaxTextureCoords);
1263    } else if (strcmp("gl_ClipDistance", name) == 0) {
1264       state->clip_dist_size = size;
1265       if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1266          /* From section 7.1 (Vertex Shader Special Variables) of the
1267           * GLSL 1.30 spec:
1268           *
1269           *   "The gl_ClipDistance array is predeclared as unsized and
1270           *   must be sized by the shader either redeclaring it with a
1271           *   size or indexing it only with integral constant
1272           *   expressions. ... The size can be at most
1273           *   gl_MaxClipDistances."
1274           */
1275          _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1276                           "be larger than gl_MaxClipDistances (%u)",
1277                           state->Const.MaxClipPlanes);
1278       }
1279    } else if (strcmp("gl_CullDistance", name) == 0) {
1280       state->cull_dist_size = size;
1281       if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1282          /* From the ARB_cull_distance spec:
1283           *
1284           *   "The gl_CullDistance array is predeclared as unsized and
1285           *    must be sized by the shader either redeclaring it with
1286           *    a size or indexing it only with integral constant
1287           *    expressions. The size determines the number and set of
1288           *    enabled cull distances and can be at most
1289           *    gl_MaxCullDistances."
1290           */
1291          _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1292                           "be larger than gl_MaxCullDistances (%u)",
1293                           state->Const.MaxClipPlanes);
1294       }
1295    }
1296 }
1297 
1298 /**
1299  * Create the constant 1, of a which is appropriate for incrementing and
1300  * decrementing values of the given GLSL type.  For example, if type is vec4,
1301  * this creates a constant value of 1.0 having type float.
1302  *
1303  * If the given type is invalid for increment and decrement operators, return
1304  * a floating point 1--the error will be detected later.
1305  */
1306 static ir_rvalue *
constant_one_for_inc_dec(void * ctx,const glsl_type * type)1307 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1308 {
1309    switch (type->base_type) {
1310    case GLSL_TYPE_UINT:
1311       return new(ctx) ir_constant((unsigned) 1);
1312    case GLSL_TYPE_INT:
1313       return new(ctx) ir_constant(1);
1314    case GLSL_TYPE_UINT64:
1315       return new(ctx) ir_constant((uint64_t) 1);
1316    case GLSL_TYPE_INT64:
1317       return new(ctx) ir_constant((int64_t) 1);
1318    default:
1319    case GLSL_TYPE_FLOAT:
1320       return new(ctx) ir_constant(1.0f);
1321    }
1322 }
1323 
1324 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)1325 ast_expression::hir(exec_list *instructions,
1326                     struct _mesa_glsl_parse_state *state)
1327 {
1328    return do_hir(instructions, state, true);
1329 }
1330 
1331 void
hir_no_rvalue(exec_list * instructions,struct _mesa_glsl_parse_state * state)1332 ast_expression::hir_no_rvalue(exec_list *instructions,
1333                               struct _mesa_glsl_parse_state *state)
1334 {
1335    do_hir(instructions, state, false);
1336 }
1337 
1338 void
set_is_lhs(bool new_value)1339 ast_expression::set_is_lhs(bool new_value)
1340 {
1341    /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1342     * if we lack an identifier we can just skip it.
1343     */
1344    if (this->primary_expression.identifier == NULL)
1345       return;
1346 
1347    this->is_lhs = new_value;
1348 
1349    /* We need to go through the subexpressions tree to cover cases like
1350     * ast_field_selection
1351     */
1352    if (this->subexpressions[0] != NULL)
1353       this->subexpressions[0]->set_is_lhs(new_value);
1354 }
1355 
1356 ir_rvalue *
do_hir(exec_list * instructions,struct _mesa_glsl_parse_state * state,bool needs_rvalue)1357 ast_expression::do_hir(exec_list *instructions,
1358                        struct _mesa_glsl_parse_state *state,
1359                        bool needs_rvalue)
1360 {
1361    void *ctx = state;
1362    static const int operations[AST_NUM_OPERATORS] = {
1363       -1,               /* ast_assign doesn't convert to ir_expression. */
1364       -1,               /* ast_plus doesn't convert to ir_expression. */
1365       ir_unop_neg,
1366       ir_binop_add,
1367       ir_binop_sub,
1368       ir_binop_mul,
1369       ir_binop_div,
1370       ir_binop_mod,
1371       ir_binop_lshift,
1372       ir_binop_rshift,
1373       ir_binop_less,
1374       ir_binop_less,    /* This is correct.  See the ast_greater case below. */
1375       ir_binop_gequal,  /* This is correct.  See the ast_lequal case below. */
1376       ir_binop_gequal,
1377       ir_binop_all_equal,
1378       ir_binop_any_nequal,
1379       ir_binop_bit_and,
1380       ir_binop_bit_xor,
1381       ir_binop_bit_or,
1382       ir_unop_bit_not,
1383       ir_binop_logic_and,
1384       ir_binop_logic_xor,
1385       ir_binop_logic_or,
1386       ir_unop_logic_not,
1387 
1388       /* Note: The following block of expression types actually convert
1389        * to multiple IR instructions.
1390        */
1391       ir_binop_mul,     /* ast_mul_assign */
1392       ir_binop_div,     /* ast_div_assign */
1393       ir_binop_mod,     /* ast_mod_assign */
1394       ir_binop_add,     /* ast_add_assign */
1395       ir_binop_sub,     /* ast_sub_assign */
1396       ir_binop_lshift,  /* ast_ls_assign */
1397       ir_binop_rshift,  /* ast_rs_assign */
1398       ir_binop_bit_and, /* ast_and_assign */
1399       ir_binop_bit_xor, /* ast_xor_assign */
1400       ir_binop_bit_or,  /* ast_or_assign */
1401 
1402       -1,               /* ast_conditional doesn't convert to ir_expression. */
1403       ir_binop_add,     /* ast_pre_inc. */
1404       ir_binop_sub,     /* ast_pre_dec. */
1405       ir_binop_add,     /* ast_post_inc. */
1406       ir_binop_sub,     /* ast_post_dec. */
1407       -1,               /* ast_field_selection doesn't conv to ir_expression. */
1408       -1,               /* ast_array_index doesn't convert to ir_expression. */
1409       -1,               /* ast_function_call doesn't conv to ir_expression. */
1410       -1,               /* ast_identifier doesn't convert to ir_expression. */
1411       -1,               /* ast_int_constant doesn't convert to ir_expression. */
1412       -1,               /* ast_uint_constant doesn't conv to ir_expression. */
1413       -1,               /* ast_float_constant doesn't conv to ir_expression. */
1414       -1,               /* ast_bool_constant doesn't conv to ir_expression. */
1415       -1,               /* ast_sequence doesn't convert to ir_expression. */
1416       -1,               /* ast_aggregate shouldn't ever even get here. */
1417    };
1418    ir_rvalue *result = NULL;
1419    ir_rvalue *op[3];
1420    const struct glsl_type *type, *orig_type;
1421    bool error_emitted = false;
1422    YYLTYPE loc;
1423 
1424    loc = this->get_location();
1425 
1426    switch (this->oper) {
1427    case ast_aggregate:
1428       unreachable("ast_aggregate: Should never get here.");
1429 
1430    case ast_assign: {
1431       this->subexpressions[0]->set_is_lhs(true);
1432       op[0] = this->subexpressions[0]->hir(instructions, state);
1433       op[1] = this->subexpressions[1]->hir(instructions, state);
1434 
1435       error_emitted =
1436          do_assignment(instructions, state,
1437                        this->subexpressions[0]->non_lvalue_description,
1438                        op[0], op[1], &result, needs_rvalue, false,
1439                        this->subexpressions[0]->get_location());
1440       break;
1441    }
1442 
1443    case ast_plus:
1444       op[0] = this->subexpressions[0]->hir(instructions, state);
1445 
1446       type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1447 
1448       error_emitted = glsl_type_is_error(type);
1449 
1450       result = op[0];
1451       break;
1452 
1453    case ast_neg:
1454       op[0] = this->subexpressions[0]->hir(instructions, state);
1455 
1456       type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1457 
1458       error_emitted = glsl_type_is_error(type);
1459 
1460       result = new(ctx) ir_expression(operations[this->oper], type,
1461                                       op[0], NULL);
1462       break;
1463 
1464    case ast_add:
1465    case ast_sub:
1466    case ast_mul:
1467    case ast_div:
1468       op[0] = this->subexpressions[0]->hir(instructions, state);
1469       op[1] = this->subexpressions[1]->hir(instructions, state);
1470 
1471       type = arithmetic_result_type(op[0], op[1],
1472                                     (this->oper == ast_mul),
1473                                     state, & loc);
1474       error_emitted = glsl_type_is_error(type);
1475 
1476       result = new(ctx) ir_expression(operations[this->oper], type,
1477                                       op[0], op[1]);
1478       break;
1479 
1480    case ast_mod:
1481       op[0] = this->subexpressions[0]->hir(instructions, state);
1482       op[1] = this->subexpressions[1]->hir(instructions, state);
1483 
1484       type = modulus_result_type(op[0], op[1], state, &loc);
1485 
1486       assert(operations[this->oper] == ir_binop_mod);
1487 
1488       result = new(ctx) ir_expression(operations[this->oper], type,
1489                                       op[0], op[1]);
1490       error_emitted = glsl_type_is_error(type);
1491       break;
1492 
1493    case ast_lshift:
1494    case ast_rshift:
1495        if (!state->check_bitwise_operations_allowed(&loc)) {
1496           error_emitted = true;
1497        }
1498 
1499        op[0] = this->subexpressions[0]->hir(instructions, state);
1500        op[1] = this->subexpressions[1]->hir(instructions, state);
1501        type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1502                                 &loc);
1503        result = new(ctx) ir_expression(operations[this->oper], type,
1504                                        op[0], op[1]);
1505        error_emitted = glsl_type_is_error(op[0]->type) || glsl_type_is_error(op[1]->type);
1506        break;
1507 
1508    case ast_less:
1509    case ast_greater:
1510    case ast_lequal:
1511    case ast_gequal:
1512       op[0] = this->subexpressions[0]->hir(instructions, state);
1513       op[1] = this->subexpressions[1]->hir(instructions, state);
1514 
1515       type = relational_result_type(op[0], op[1], state, & loc);
1516 
1517       /* The relational operators must either generate an error or result
1518        * in a scalar boolean.  See page 57 of the GLSL 1.50 spec.
1519        */
1520       assert(glsl_type_is_error(type)
1521              || (glsl_type_is_boolean(type) && glsl_type_is_scalar(type)));
1522 
1523       /* Like NIR, GLSL IR does not have opcodes for > or <=.  Instead, swap
1524        * the arguments and use < or >=.
1525        */
1526       if (this->oper == ast_greater || this->oper == ast_lequal) {
1527          ir_rvalue *const tmp = op[0];
1528          op[0] = op[1];
1529          op[1] = tmp;
1530       }
1531 
1532       result = new(ctx) ir_expression(operations[this->oper], type,
1533                                       op[0], op[1]);
1534       error_emitted = glsl_type_is_error(type);
1535       break;
1536 
1537    case ast_nequal:
1538    case ast_equal:
1539       op[0] = this->subexpressions[0]->hir(instructions, state);
1540       op[1] = this->subexpressions[1]->hir(instructions, state);
1541 
1542       /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1543        *
1544        *    "The equality operators equal (==), and not equal (!=)
1545        *    operate on all types. They result in a scalar Boolean. If
1546        *    the operand types do not match, then there must be a
1547        *    conversion from Section 4.1.10 "Implicit Conversions"
1548        *    applied to one operand that can make them match, in which
1549        *    case this conversion is done."
1550        */
1551 
1552       if (op[0]->type == &glsl_type_builtin_void || op[1]->type == &glsl_type_builtin_void) {
1553          _mesa_glsl_error(& loc, state, "wrong operand types: "
1554                          "no operation `%s' exists that takes a left-hand "
1555                          "operand of type 'void' or a right operand of type "
1556                          "'void'", (this->oper == ast_equal) ? "==" : "!=");
1557          error_emitted = true;
1558       } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1559            && !apply_implicit_conversion(op[1]->type, op[0], state))
1560           || (op[0]->type != op[1]->type)) {
1561          _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1562                           "type", (this->oper == ast_equal) ? "==" : "!=");
1563          error_emitted = true;
1564       } else if ((glsl_type_is_array(op[0]->type) || glsl_type_is_array(op[1]->type)) &&
1565                  !state->check_version(120, 300, &loc,
1566                                        "array comparisons forbidden")) {
1567          error_emitted = true;
1568       } else if ((glsl_contains_subroutine(op[0]->type) ||
1569                   glsl_contains_subroutine(op[1]->type))) {
1570          _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
1571          error_emitted = true;
1572       } else if ((glsl_contains_opaque(op[0]->type) ||
1573                   glsl_contains_opaque(op[1]->type))) {
1574          _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1575          error_emitted = true;
1576       }
1577 
1578       if (error_emitted) {
1579          result = new(ctx) ir_constant(false);
1580       } else {
1581          result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1582          assert(result->type == &glsl_type_builtin_bool);
1583       }
1584       break;
1585 
1586    case ast_bit_and:
1587    case ast_bit_xor:
1588    case ast_bit_or:
1589       op[0] = this->subexpressions[0]->hir(instructions, state);
1590       op[1] = this->subexpressions[1]->hir(instructions, state);
1591       type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1592       result = new(ctx) ir_expression(operations[this->oper], type,
1593                                       op[0], op[1]);
1594       error_emitted = glsl_type_is_error(op[0]->type) || glsl_type_is_error(op[1]->type);
1595       break;
1596 
1597    case ast_bit_not:
1598       op[0] = this->subexpressions[0]->hir(instructions, state);
1599 
1600       if (!state->check_bitwise_operations_allowed(&loc)) {
1601          error_emitted = true;
1602       }
1603 
1604       if (!glsl_type_is_integer_32_64(op[0]->type)) {
1605          _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1606          error_emitted = true;
1607       }
1608 
1609       type = error_emitted ? &glsl_type_builtin_error : op[0]->type;
1610       result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1611       break;
1612 
1613    case ast_logic_and: {
1614       exec_list rhs_instructions;
1615       op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1616                                          "LHS", &error_emitted);
1617       op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1618                                          "RHS", &error_emitted);
1619 
1620       if (rhs_instructions.is_empty()) {
1621          result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1622       } else {
1623          ir_variable *const tmp = new(ctx) ir_variable(&glsl_type_builtin_bool,
1624                                                        "and_tmp",
1625                                                        ir_var_temporary);
1626          instructions->push_tail(tmp);
1627 
1628          ir_if *const stmt = new(ctx) ir_if(op[0]);
1629          instructions->push_tail(stmt);
1630 
1631          stmt->then_instructions.append_list(&rhs_instructions);
1632          ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1633          ir_assignment *const then_assign =
1634             new(ctx) ir_assignment(then_deref, op[1]);
1635          stmt->then_instructions.push_tail(then_assign);
1636 
1637          ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1638          ir_assignment *const else_assign =
1639             new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1640          stmt->else_instructions.push_tail(else_assign);
1641 
1642          result = new(ctx) ir_dereference_variable(tmp);
1643       }
1644       break;
1645    }
1646 
1647    case ast_logic_or: {
1648       exec_list rhs_instructions;
1649       op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1650                                          "LHS", &error_emitted);
1651       op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1652                                          "RHS", &error_emitted);
1653 
1654       if (rhs_instructions.is_empty()) {
1655          result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1656       } else {
1657          ir_variable *const tmp = new(ctx) ir_variable(&glsl_type_builtin_bool,
1658                                                        "or_tmp",
1659                                                        ir_var_temporary);
1660          instructions->push_tail(tmp);
1661 
1662          ir_if *const stmt = new(ctx) ir_if(op[0]);
1663          instructions->push_tail(stmt);
1664 
1665          ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1666          ir_assignment *const then_assign =
1667             new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1668          stmt->then_instructions.push_tail(then_assign);
1669 
1670          stmt->else_instructions.append_list(&rhs_instructions);
1671          ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1672          ir_assignment *const else_assign =
1673             new(ctx) ir_assignment(else_deref, op[1]);
1674          stmt->else_instructions.push_tail(else_assign);
1675 
1676          result = new(ctx) ir_dereference_variable(tmp);
1677       }
1678       break;
1679    }
1680 
1681    case ast_logic_xor:
1682       /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1683        *
1684        *    "The logical binary operators and (&&), or ( | | ), and
1685        *     exclusive or (^^). They operate only on two Boolean
1686        *     expressions and result in a Boolean expression."
1687        */
1688       op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1689                                          &error_emitted);
1690       op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1691                                          &error_emitted);
1692 
1693       result = new(ctx) ir_expression(operations[this->oper], &glsl_type_builtin_bool,
1694                                       op[0], op[1]);
1695       break;
1696 
1697    case ast_logic_not:
1698       op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1699                                          "operand", &error_emitted);
1700 
1701       result = new(ctx) ir_expression(operations[this->oper], &glsl_type_builtin_bool,
1702                                       op[0], NULL);
1703       break;
1704 
1705    case ast_mul_assign:
1706    case ast_div_assign:
1707    case ast_add_assign:
1708    case ast_sub_assign: {
1709       this->subexpressions[0]->set_is_lhs(true);
1710       op[0] = this->subexpressions[0]->hir(instructions, state);
1711       op[1] = this->subexpressions[1]->hir(instructions, state);
1712 
1713       orig_type = op[0]->type;
1714 
1715       /* Break out if operand types were not parsed successfully. */
1716       if ((op[0]->type == &glsl_type_builtin_error ||
1717            op[1]->type == &glsl_type_builtin_error)) {
1718          error_emitted = true;
1719          result = ir_rvalue::error_value(ctx);
1720          break;
1721       }
1722 
1723       type = arithmetic_result_type(op[0], op[1],
1724                                     (this->oper == ast_mul_assign),
1725                                     state, & loc);
1726 
1727       if (type != orig_type) {
1728          _mesa_glsl_error(& loc, state,
1729                           "could not implicitly convert "
1730                           "%s to %s", glsl_get_type_name(type), glsl_get_type_name(orig_type));
1731          type = &glsl_type_builtin_error;
1732       }
1733 
1734       ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1735                                                    op[0], op[1]);
1736 
1737       error_emitted =
1738          do_assignment(instructions, state,
1739                        this->subexpressions[0]->non_lvalue_description,
1740                        op[0]->clone(ctx, NULL), temp_rhs,
1741                        &result, needs_rvalue, false,
1742                        this->subexpressions[0]->get_location());
1743 
1744       /* GLSL 1.10 does not allow array assignment.  However, we don't have to
1745        * explicitly test for this because none of the binary expression
1746        * operators allow array operands either.
1747        */
1748 
1749       break;
1750    }
1751 
1752    case ast_mod_assign: {
1753       this->subexpressions[0]->set_is_lhs(true);
1754       op[0] = this->subexpressions[0]->hir(instructions, state);
1755       op[1] = this->subexpressions[1]->hir(instructions, state);
1756 
1757       /* Break out if operand types were not parsed successfully. */
1758       if ((op[0]->type == &glsl_type_builtin_error ||
1759            op[1]->type == &glsl_type_builtin_error)) {
1760          error_emitted = true;
1761          result = ir_rvalue::error_value(ctx);
1762          break;
1763       }
1764 
1765       orig_type = op[0]->type;
1766       type = modulus_result_type(op[0], op[1], state, &loc);
1767 
1768       if (type != orig_type) {
1769          _mesa_glsl_error(& loc, state,
1770                           "could not implicitly convert "
1771                           "%s to %s", glsl_get_type_name(type), glsl_get_type_name(orig_type));
1772          type = &glsl_type_builtin_error;
1773       }
1774 
1775       assert(operations[this->oper] == ir_binop_mod);
1776 
1777       ir_rvalue *temp_rhs;
1778       temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1779                                         op[0], op[1]);
1780 
1781       error_emitted =
1782          do_assignment(instructions, state,
1783                        this->subexpressions[0]->non_lvalue_description,
1784                        op[0]->clone(ctx, NULL), temp_rhs,
1785                        &result, needs_rvalue, false,
1786                        this->subexpressions[0]->get_location());
1787       break;
1788    }
1789 
1790    case ast_ls_assign:
1791    case ast_rs_assign: {
1792       this->subexpressions[0]->set_is_lhs(true);
1793       op[0] = this->subexpressions[0]->hir(instructions, state);
1794       op[1] = this->subexpressions[1]->hir(instructions, state);
1795 
1796       /* Break out if operand types were not parsed successfully. */
1797       if ((op[0]->type == &glsl_type_builtin_error ||
1798            op[1]->type == &glsl_type_builtin_error)) {
1799          error_emitted = true;
1800          result = ir_rvalue::error_value(ctx);
1801          break;
1802       }
1803 
1804       type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1805                                &loc);
1806       ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1807                                                    type, op[0], op[1]);
1808       error_emitted =
1809          do_assignment(instructions, state,
1810                        this->subexpressions[0]->non_lvalue_description,
1811                        op[0]->clone(ctx, NULL), temp_rhs,
1812                        &result, needs_rvalue, false,
1813                        this->subexpressions[0]->get_location());
1814       break;
1815    }
1816 
1817    case ast_and_assign:
1818    case ast_xor_assign:
1819    case ast_or_assign: {
1820       this->subexpressions[0]->set_is_lhs(true);
1821       op[0] = this->subexpressions[0]->hir(instructions, state);
1822       op[1] = this->subexpressions[1]->hir(instructions, state);
1823 
1824       /* Break out if operand types were not parsed successfully. */
1825       if ((op[0]->type == &glsl_type_builtin_error ||
1826            op[1]->type == &glsl_type_builtin_error)) {
1827          error_emitted = true;
1828          result = ir_rvalue::error_value(ctx);
1829          break;
1830       }
1831 
1832       orig_type = op[0]->type;
1833       type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1834 
1835       if (type != orig_type) {
1836          _mesa_glsl_error(& loc, state,
1837                           "could not implicitly convert "
1838                           "%s to %s", glsl_get_type_name(type), glsl_get_type_name(orig_type));
1839          type = &glsl_type_builtin_error;
1840       }
1841 
1842       ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1843                                                    type, op[0], op[1]);
1844       error_emitted =
1845          do_assignment(instructions, state,
1846                        this->subexpressions[0]->non_lvalue_description,
1847                        op[0]->clone(ctx, NULL), temp_rhs,
1848                        &result, needs_rvalue, false,
1849                        this->subexpressions[0]->get_location());
1850       break;
1851    }
1852 
1853    case ast_conditional: {
1854       /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1855        *
1856        *    "The ternary selection operator (?:). It operates on three
1857        *    expressions (exp1 ? exp2 : exp3). This operator evaluates the
1858        *    first expression, which must result in a scalar Boolean."
1859        */
1860       op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1861                                          "condition", &error_emitted);
1862 
1863       /* The :? operator is implemented by generating an anonymous temporary
1864        * followed by an if-statement.  The last instruction in each branch of
1865        * the if-statement assigns a value to the anonymous temporary.  This
1866        * temporary is the r-value of the expression.
1867        */
1868       exec_list then_instructions;
1869       exec_list else_instructions;
1870 
1871       op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1872       op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1873 
1874       /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1875        *
1876        *     "The second and third expressions can be any type, as
1877        *     long their types match, or there is a conversion in
1878        *     Section 4.1.10 "Implicit Conversions" that can be applied
1879        *     to one of the expressions to make their types match. This
1880        *     resulting matching type is the type of the entire
1881        *     expression."
1882        */
1883       if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1884           && !apply_implicit_conversion(op[2]->type, op[1], state))
1885           || (op[1]->type != op[2]->type)) {
1886          YYLTYPE loc = this->subexpressions[1]->get_location();
1887 
1888          _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1889                           "operator must have matching types");
1890          error_emitted = true;
1891          type = &glsl_type_builtin_error;
1892       } else {
1893          type = op[1]->type;
1894       }
1895 
1896       /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1897        *
1898        *    "The second and third expressions must be the same type, but can
1899        *    be of any type other than an array."
1900        */
1901       if (glsl_type_is_array(type) &&
1902           !state->check_version(120, 300, &loc,
1903                                 "second and third operands of ?: operator "
1904                                 "cannot be arrays")) {
1905          error_emitted = true;
1906       }
1907 
1908       /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1909        *
1910        *  "Except for array indexing, structure member selection, and
1911        *   parentheses, opaque variables are not allowed to be operands in
1912        *   expressions; such use results in a compile-time error."
1913        */
1914       if (glsl_contains_opaque(type)) {
1915          if (!(state->has_bindless() && (glsl_type_is_image(type) || glsl_type_is_sampler(type)))) {
1916             _mesa_glsl_error(&loc, state, "variables of type %s cannot be "
1917                              "operands of the ?: operator", glsl_get_type_name(type));
1918             error_emitted = true;
1919          }
1920       }
1921 
1922       ir_constant *cond_val = op[0]->constant_expression_value(ctx);
1923 
1924       if (then_instructions.is_empty()
1925           && else_instructions.is_empty()
1926           && cond_val != NULL) {
1927          result = cond_val->value.b[0] ? op[1] : op[2];
1928       } else {
1929          /* The copy to conditional_tmp reads the whole array. */
1930          if (glsl_type_is_array(type)) {
1931             mark_whole_array_access(op[1]);
1932             mark_whole_array_access(op[2]);
1933          }
1934 
1935          ir_variable *const tmp =
1936             new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1937          instructions->push_tail(tmp);
1938 
1939          ir_if *const stmt = new(ctx) ir_if(op[0]);
1940          instructions->push_tail(stmt);
1941 
1942          then_instructions.move_nodes_to(& stmt->then_instructions);
1943          ir_dereference *const then_deref =
1944             new(ctx) ir_dereference_variable(tmp);
1945          ir_assignment *const then_assign =
1946             new(ctx) ir_assignment(then_deref, op[1]);
1947          stmt->then_instructions.push_tail(then_assign);
1948 
1949          else_instructions.move_nodes_to(& stmt->else_instructions);
1950          ir_dereference *const else_deref =
1951             new(ctx) ir_dereference_variable(tmp);
1952          ir_assignment *const else_assign =
1953             new(ctx) ir_assignment(else_deref, op[2]);
1954          stmt->else_instructions.push_tail(else_assign);
1955 
1956          result = new(ctx) ir_dereference_variable(tmp);
1957       }
1958       break;
1959    }
1960 
1961    case ast_pre_inc:
1962    case ast_pre_dec: {
1963       this->non_lvalue_description = (this->oper == ast_pre_inc)
1964          ? "pre-increment operation" : "pre-decrement operation";
1965 
1966       op[0] = this->subexpressions[0]->hir(instructions, state);
1967       op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1968 
1969       type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1970 
1971       ir_rvalue *temp_rhs;
1972       temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1973                                         op[0], op[1]);
1974 
1975       error_emitted =
1976          do_assignment(instructions, state,
1977                        this->subexpressions[0]->non_lvalue_description,
1978                        op[0]->clone(ctx, NULL), temp_rhs,
1979                        &result, needs_rvalue, false,
1980                        this->subexpressions[0]->get_location());
1981       break;
1982    }
1983 
1984    case ast_post_inc:
1985    case ast_post_dec: {
1986       this->non_lvalue_description = (this->oper == ast_post_inc)
1987          ? "post-increment operation" : "post-decrement operation";
1988       op[0] = this->subexpressions[0]->hir(instructions, state);
1989       op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1990 
1991       error_emitted = glsl_type_is_error(op[0]->type) || glsl_type_is_error(op[1]->type);
1992 
1993       if (error_emitted) {
1994          result = ir_rvalue::error_value(ctx);
1995          break;
1996       }
1997 
1998       type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1999 
2000       ir_rvalue *temp_rhs;
2001       temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
2002                                         op[0], op[1]);
2003 
2004       /* Get a temporary of a copy of the lvalue before it's modified.
2005        * This may get thrown away later.
2006        */
2007       result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
2008 
2009       ir_rvalue *junk_rvalue;
2010       error_emitted =
2011          do_assignment(instructions, state,
2012                        this->subexpressions[0]->non_lvalue_description,
2013                        op[0]->clone(ctx, NULL), temp_rhs,
2014                        &junk_rvalue, false, false,
2015                        this->subexpressions[0]->get_location());
2016 
2017       break;
2018    }
2019 
2020    case ast_field_selection:
2021       result = _mesa_ast_field_selection_to_hir(this, instructions, state);
2022       break;
2023 
2024    case ast_array_index: {
2025       YYLTYPE index_loc = subexpressions[1]->get_location();
2026 
2027       /* Getting if an array is being used uninitialized is beyond what we get
2028        * from ir_value.data.assigned. Setting is_lhs as true would force to
2029        * not raise a uninitialized warning when using an array
2030        */
2031       subexpressions[0]->set_is_lhs(true);
2032       op[0] = subexpressions[0]->hir(instructions, state);
2033       op[1] = subexpressions[1]->hir(instructions, state);
2034 
2035       result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
2036                                             loc, index_loc);
2037 
2038       if (glsl_type_is_error(result->type))
2039          error_emitted = true;
2040 
2041       break;
2042    }
2043 
2044    case ast_unsized_array_dim:
2045       unreachable("ast_unsized_array_dim: Should never get here.");
2046 
2047    case ast_function_call:
2048       /* Should *NEVER* get here.  ast_function_call should always be handled
2049        * by ast_function_expression::hir.
2050        */
2051       unreachable("ast_function_call: handled elsewhere ");
2052 
2053    case ast_identifier: {
2054       /* ast_identifier can appear several places in a full abstract syntax
2055        * tree.  This particular use must be at location specified in the grammar
2056        * as 'variable_identifier'.
2057        */
2058       ir_variable *var =
2059          state->symbols->get_variable(this->primary_expression.identifier);
2060 
2061       if (var == NULL) {
2062          /* the identifier might be a subroutine name */
2063          char *sub_name;
2064          sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
2065          var = state->symbols->get_variable(sub_name);
2066          ralloc_free(sub_name);
2067       }
2068 
2069       if (var != NULL) {
2070          var->data.used = true;
2071          result = new(ctx) ir_dereference_variable(var);
2072 
2073          if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
2074              && !this->is_lhs
2075              && result->variable_referenced()->data.assigned != true
2076              && !is_gl_identifier(var->name)) {
2077             _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
2078                                this->primary_expression.identifier);
2079          }
2080 
2081          if (var->is_fb_fetch_color_output()) {
2082             /* From the EXT_shader_framebuffer_fetch spec:
2083              *
2084              *   "Unless the GL_EXT_shader_framebuffer_fetch extension has been
2085              *    enabled in addition, it's an error to use gl_LastFragData if it
2086              *    hasn't been explicitly redeclared with layout(noncoherent)."
2087              */
2088             if (var->data.memory_coherent && !state->EXT_shader_framebuffer_fetch_enable) {
2089                _mesa_glsl_error(&loc, state,
2090                                 "invalid use of framebuffer fetch output not "
2091                                 "qualified with layout(noncoherent)");
2092             }
2093          } else if (var->data.fb_fetch_output) {
2094             /* From the ARM_shader_framebuffer_fetch_depth_stencil spec:
2095              *
2096              *   "It is not legal for a fragment shader to read from gl_LastFragDepthARM
2097              *    and gl_LastFragStencilARM if the early_fragment_tests layout qualifier
2098              *    is specified. This will result in a compile-time error."
2099              */
2100             if (state->fs_early_fragment_tests) {
2101                _mesa_glsl_error(&loc, state,
2102                                 "invalid use of depth or stencil fetch "
2103                                 "with early fragment tests enabled");
2104             }
2105          }
2106 
2107       } else {
2108          _mesa_glsl_error(& loc, state, "`%s' undeclared",
2109                           this->primary_expression.identifier);
2110 
2111          result = ir_rvalue::error_value(ctx);
2112          error_emitted = true;
2113       }
2114       break;
2115    }
2116 
2117    case ast_int_constant:
2118       result = new(ctx) ir_constant(this->primary_expression.int_constant);
2119       break;
2120 
2121    case ast_uint_constant:
2122       result = new(ctx) ir_constant(this->primary_expression.uint_constant);
2123       break;
2124 
2125    case ast_float16_constant:
2126       result = new(ctx) ir_constant(float16_t(this->primary_expression.float16_constant));
2127       break;
2128 
2129    case ast_float_constant:
2130       result = new(ctx) ir_constant(this->primary_expression.float_constant);
2131       break;
2132 
2133    case ast_bool_constant:
2134       result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
2135       break;
2136 
2137    case ast_double_constant:
2138       result = new(ctx) ir_constant(this->primary_expression.double_constant);
2139       break;
2140 
2141    case ast_uint64_constant:
2142       result = new(ctx) ir_constant(this->primary_expression.uint64_constant);
2143       break;
2144 
2145    case ast_int64_constant:
2146       result = new(ctx) ir_constant(this->primary_expression.int64_constant);
2147       break;
2148 
2149    case ast_sequence: {
2150       /* It should not be possible to generate a sequence in the AST without
2151        * any expressions in it.
2152        */
2153       assert(!this->expressions.is_empty());
2154 
2155       /* The r-value of a sequence is the last expression in the sequence.  If
2156        * the other expressions in the sequence do not have side-effects (and
2157        * therefore add instructions to the instruction list), they get dropped
2158        * on the floor.
2159        */
2160       exec_node *previous_tail = NULL;
2161       YYLTYPE previous_operand_loc = loc;
2162 
2163       foreach_list_typed (ast_node, ast, link, &this->expressions) {
2164          /* If one of the operands of comma operator does not generate any
2165           * code, we want to emit a warning.  At each pass through the loop
2166           * previous_tail will point to the last instruction in the stream
2167           * *before* processing the previous operand.  Naturally,
2168           * instructions->get_tail_raw() will point to the last instruction in
2169           * the stream *after* processing the previous operand.  If the two
2170           * pointers match, then the previous operand had no effect.
2171           *
2172           * The warning behavior here differs slightly from GCC.  GCC will
2173           * only emit a warning if none of the left-hand operands have an
2174           * effect.  However, it will emit a warning for each.  I believe that
2175           * there are some cases in C (especially with GCC extensions) where
2176           * it is useful to have an intermediate step in a sequence have no
2177           * effect, but I don't think these cases exist in GLSL.  Either way,
2178           * it would be a giant hassle to replicate that behavior.
2179           */
2180          if (previous_tail == instructions->get_tail_raw()) {
2181             _mesa_glsl_warning(&previous_operand_loc, state,
2182                                "left-hand operand of comma expression has "
2183                                "no effect");
2184          }
2185 
2186          /* The tail is directly accessed instead of using the get_tail()
2187           * method for performance reasons.  get_tail() has extra code to
2188           * return NULL when the list is empty.  We don't care about that
2189           * here, so using get_tail_raw() is fine.
2190           */
2191          previous_tail = instructions->get_tail_raw();
2192          previous_operand_loc = ast->get_location();
2193 
2194          result = ast->hir(instructions, state);
2195       }
2196 
2197       /* Any errors should have already been emitted in the loop above.
2198        */
2199       error_emitted = true;
2200       break;
2201    }
2202    }
2203    type = NULL; /* use result->type, not type. */
2204    assert(error_emitted || (result != NULL || !needs_rvalue));
2205 
2206    if (result && glsl_type_is_error(result->type) && !error_emitted)
2207       _mesa_glsl_error(& loc, state, "type mismatch");
2208 
2209    return result;
2210 }
2211 
2212 bool
has_sequence_subexpression() const2213 ast_expression::has_sequence_subexpression() const
2214 {
2215    switch (this->oper) {
2216    case ast_plus:
2217    case ast_neg:
2218    case ast_bit_not:
2219    case ast_logic_not:
2220    case ast_pre_inc:
2221    case ast_pre_dec:
2222    case ast_post_inc:
2223    case ast_post_dec:
2224       return this->subexpressions[0]->has_sequence_subexpression();
2225 
2226    case ast_assign:
2227    case ast_add:
2228    case ast_sub:
2229    case ast_mul:
2230    case ast_div:
2231    case ast_mod:
2232    case ast_lshift:
2233    case ast_rshift:
2234    case ast_less:
2235    case ast_greater:
2236    case ast_lequal:
2237    case ast_gequal:
2238    case ast_nequal:
2239    case ast_equal:
2240    case ast_bit_and:
2241    case ast_bit_xor:
2242    case ast_bit_or:
2243    case ast_logic_and:
2244    case ast_logic_or:
2245    case ast_logic_xor:
2246    case ast_array_index:
2247    case ast_mul_assign:
2248    case ast_div_assign:
2249    case ast_add_assign:
2250    case ast_sub_assign:
2251    case ast_mod_assign:
2252    case ast_ls_assign:
2253    case ast_rs_assign:
2254    case ast_and_assign:
2255    case ast_xor_assign:
2256    case ast_or_assign:
2257       return this->subexpressions[0]->has_sequence_subexpression() ||
2258              this->subexpressions[1]->has_sequence_subexpression();
2259 
2260    case ast_conditional:
2261       return this->subexpressions[0]->has_sequence_subexpression() ||
2262              this->subexpressions[1]->has_sequence_subexpression() ||
2263              this->subexpressions[2]->has_sequence_subexpression();
2264 
2265    case ast_sequence:
2266       return true;
2267 
2268    case ast_field_selection:
2269    case ast_identifier:
2270    case ast_int_constant:
2271    case ast_uint_constant:
2272    case ast_float16_constant:
2273    case ast_float_constant:
2274    case ast_bool_constant:
2275    case ast_double_constant:
2276    case ast_int64_constant:
2277    case ast_uint64_constant:
2278       return false;
2279 
2280    case ast_aggregate:
2281       return false;
2282 
2283    case ast_function_call:
2284       unreachable("should be handled by ast_function_expression::hir");
2285 
2286    case ast_unsized_array_dim:
2287       unreachable("ast_unsized_array_dim: Should never get here.");
2288    }
2289 
2290    return false;
2291 }
2292 
2293 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)2294 ast_expression_statement::hir(exec_list *instructions,
2295                               struct _mesa_glsl_parse_state *state)
2296 {
2297    /* It is possible to have expression statements that don't have an
2298     * expression.  This is the solitary semicolon:
2299     *
2300     * for (i = 0; i < 5; i++)
2301     *     ;
2302     *
2303     * In this case the expression will be NULL.  Test for NULL and don't do
2304     * anything in that case.
2305     */
2306    if (expression != NULL)
2307       expression->hir_no_rvalue(instructions, state);
2308 
2309    /* Statements do not have r-values.
2310     */
2311    return NULL;
2312 }
2313 
2314 
2315 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)2316 ast_compound_statement::hir(exec_list *instructions,
2317                             struct _mesa_glsl_parse_state *state)
2318 {
2319    if (new_scope)
2320       state->symbols->push_scope();
2321 
2322    foreach_list_typed (ast_node, ast, link, &this->statements)
2323       ast->hir(instructions, state);
2324 
2325    if (new_scope)
2326       state->symbols->pop_scope();
2327 
2328    /* Compound statements do not have r-values.
2329     */
2330    return NULL;
2331 }
2332 
2333 /**
2334  * Evaluate the given exec_node (which should be an ast_node representing
2335  * a single array dimension) and return its integer value.
2336  */
2337 static unsigned
process_array_size(exec_node * node,struct _mesa_glsl_parse_state * state)2338 process_array_size(exec_node *node,
2339                    struct _mesa_glsl_parse_state *state)
2340 {
2341    void *mem_ctx = state;
2342 
2343    exec_list dummy_instructions;
2344 
2345    ast_node *array_size = exec_node_data(ast_node, node, link);
2346 
2347    /**
2348     * Dimensions other than the outermost dimension can by unsized if they
2349     * are immediately sized by a constructor or initializer.
2350     */
2351    if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2352       return 0;
2353 
2354    ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2355    YYLTYPE loc = array_size->get_location();
2356 
2357    if (ir == NULL) {
2358       _mesa_glsl_error(& loc, state,
2359                        "array size could not be resolved");
2360       return 0;
2361    }
2362 
2363    if (!glsl_type_is_integer_32(ir->type)) {
2364       _mesa_glsl_error(& loc, state,
2365                        "array size must be integer type");
2366       return 0;
2367    }
2368 
2369    if (!glsl_type_is_scalar(ir->type)) {
2370       _mesa_glsl_error(& loc, state,
2371                        "array size must be scalar type");
2372       return 0;
2373    }
2374 
2375    ir_constant *const size = ir->constant_expression_value(mem_ctx);
2376    if (size == NULL ||
2377        (state->is_version(120, 300) &&
2378         array_size->has_sequence_subexpression())) {
2379       _mesa_glsl_error(& loc, state, "array size must be a "
2380                        "constant valued expression");
2381       return 0;
2382    }
2383 
2384    if (size->value.i[0] <= 0) {
2385       _mesa_glsl_error(& loc, state, "array size must be > 0");
2386       return 0;
2387    }
2388 
2389    assert(size->type == ir->type);
2390 
2391    /* If the array size is const (and we've verified that
2392     * it is) then no instructions should have been emitted
2393     * when we converted it to HIR. If they were emitted,
2394     * then either the array size isn't const after all, or
2395     * we are emitting unnecessary instructions.
2396     */
2397    assert(dummy_instructions.is_empty());
2398 
2399    return size->value.u[0];
2400 }
2401 
2402 static const glsl_type *
process_array_type(YYLTYPE * loc,const glsl_type * base,ast_array_specifier * array_specifier,struct _mesa_glsl_parse_state * state)2403 process_array_type(YYLTYPE *loc, const glsl_type *base,
2404                    ast_array_specifier *array_specifier,
2405                    struct _mesa_glsl_parse_state *state)
2406 {
2407    const glsl_type *array_type = base;
2408 
2409    if (array_specifier != NULL) {
2410       if (glsl_type_is_array(base)) {
2411 
2412          /* From page 19 (page 25) of the GLSL 1.20 spec:
2413           *
2414           * "Only one-dimensional arrays may be declared."
2415           */
2416          if (!state->check_arrays_of_arrays_allowed(loc)) {
2417             return &glsl_type_builtin_error;
2418          }
2419       }
2420 
2421       for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
2422            !node->is_head_sentinel(); node = node->prev) {
2423          unsigned array_size = process_array_size(node, state);
2424          array_type = glsl_array_type(array_type, array_size, 0);
2425       }
2426    }
2427 
2428    return array_type;
2429 }
2430 
2431 static bool
precision_qualifier_allowed(const glsl_type * type)2432 precision_qualifier_allowed(const glsl_type *type)
2433 {
2434    /* Precision qualifiers apply to floating point, integer and opaque
2435     * types.
2436     *
2437     * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2438     *    "Any floating point or any integer declaration can have the type
2439     *    preceded by one of these precision qualifiers [...] Literal
2440     *    constants do not have precision qualifiers. Neither do Boolean
2441     *    variables.
2442     *
2443     * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2444     * spec also says:
2445     *
2446     *     "Precision qualifiers are added for code portability with OpenGL
2447     *     ES, not for functionality. They have the same syntax as in OpenGL
2448     *     ES."
2449     *
2450     * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2451     *
2452     *     "uniform lowp sampler2D sampler;
2453     *     highp vec2 coord;
2454     *     ...
2455     *     lowp vec4 col = texture2D (sampler, coord);
2456     *                                            // texture2D returns lowp"
2457     *
2458     * From this, we infer that GLSL 1.30 (and later) should allow precision
2459     * qualifiers on sampler types just like float and integer types.
2460     */
2461    const glsl_type *const t = glsl_without_array(type);
2462 
2463    return (glsl_type_is_float(t) || glsl_type_is_integer_32(t) || glsl_contains_opaque(t)) &&
2464           !glsl_type_is_struct(t);
2465 }
2466 
2467 const glsl_type *
glsl_type(const char ** name,struct _mesa_glsl_parse_state * state) const2468 ast_type_specifier::glsl_type(const char **name,
2469                               struct _mesa_glsl_parse_state *state) const
2470 {
2471    const struct glsl_type *type;
2472 
2473    if (this->type != NULL)
2474       type = this->type;
2475    else if (structure)
2476       type = structure->type;
2477    else
2478       type = state->symbols->get_type(this->type_name);
2479    *name = this->type_name;
2480 
2481    YYLTYPE loc = this->get_location();
2482    type = process_array_type(&loc, type, this->array_specifier, state);
2483 
2484    return type;
2485 }
2486 
2487 /**
2488  * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2489  *
2490  * "The precision statement
2491  *
2492  *    precision precision-qualifier type;
2493  *
2494  *  can be used to establish a default precision qualifier. The type field can
2495  *  be either int or float or any of the sampler types, (...) If type is float,
2496  *  the directive applies to non-precision-qualified floating point type
2497  *  (scalar, vector, and matrix) declarations. If type is int, the directive
2498  *  applies to all non-precision-qualified integer type (scalar, vector, signed,
2499  *  and unsigned) declarations."
2500  *
2501  * We use the symbol table to keep the values of the default precisions for
2502  * each 'type' in each scope and we use the 'type' string from the precision
2503  * statement as key in the symbol table. When we want to retrieve the default
2504  * precision associated with a given glsl_type we need to know the type string
2505  * associated with it. This is what this function returns.
2506  */
2507 static const char *
get_type_name_for_precision_qualifier(const glsl_type * type)2508 get_type_name_for_precision_qualifier(const glsl_type *type)
2509 {
2510    switch (type->base_type) {
2511    case GLSL_TYPE_FLOAT:
2512       return "float";
2513    case GLSL_TYPE_UINT:
2514    case GLSL_TYPE_INT:
2515       return "int";
2516    case GLSL_TYPE_ATOMIC_UINT:
2517       return "atomic_uint";
2518    case GLSL_TYPE_IMAGE:
2519    FALLTHROUGH;
2520    case GLSL_TYPE_SAMPLER: {
2521       const unsigned type_idx =
2522          type->sampler_array + 2 * type->sampler_shadow;
2523       const unsigned offset = glsl_type_is_sampler(type) ? 0 : 4;
2524       assert(type_idx < 4);
2525       switch (type->sampled_type) {
2526       case GLSL_TYPE_FLOAT:
2527          switch (type->sampler_dimensionality) {
2528          case GLSL_SAMPLER_DIM_1D: {
2529             assert(glsl_type_is_sampler(type));
2530             static const char *const names[4] = {
2531               "sampler1D", "sampler1DArray",
2532               "sampler1DShadow", "sampler1DArrayShadow"
2533             };
2534             return names[type_idx];
2535          }
2536          case GLSL_SAMPLER_DIM_2D: {
2537             static const char *const names[8] = {
2538               "sampler2D", "sampler2DArray",
2539               "sampler2DShadow", "sampler2DArrayShadow",
2540               "image2D", "image2DArray", NULL, NULL
2541             };
2542             return names[offset + type_idx];
2543          }
2544          case GLSL_SAMPLER_DIM_3D: {
2545             static const char *const names[8] = {
2546               "sampler3D", NULL, NULL, NULL,
2547               "image3D", NULL, NULL, NULL
2548             };
2549             return names[offset + type_idx];
2550          }
2551          case GLSL_SAMPLER_DIM_CUBE: {
2552             static const char *const names[8] = {
2553               "samplerCube", "samplerCubeArray",
2554               "samplerCubeShadow", "samplerCubeArrayShadow",
2555               "imageCube", NULL, NULL, NULL
2556             };
2557             return names[offset + type_idx];
2558          }
2559          case GLSL_SAMPLER_DIM_MS: {
2560             assert(glsl_type_is_sampler(type));
2561             static const char *const names[4] = {
2562               "sampler2DMS", "sampler2DMSArray", NULL, NULL
2563             };
2564             return names[type_idx];
2565          }
2566          case GLSL_SAMPLER_DIM_RECT: {
2567             assert(glsl_type_is_sampler(type));
2568             static const char *const names[4] = {
2569               "samplerRect", NULL, "samplerRectShadow", NULL
2570             };
2571             return names[type_idx];
2572          }
2573          case GLSL_SAMPLER_DIM_BUF: {
2574             static const char *const names[8] = {
2575               "samplerBuffer", NULL, NULL, NULL,
2576               "imageBuffer", NULL, NULL, NULL
2577             };
2578             return names[offset + type_idx];
2579          }
2580          case GLSL_SAMPLER_DIM_EXTERNAL: {
2581             assert(glsl_type_is_sampler(type));
2582             static const char *const names[4] = {
2583               "samplerExternalOES", NULL, NULL, NULL
2584             };
2585             return names[type_idx];
2586          }
2587          default:
2588             unreachable("Unsupported sampler/image dimensionality");
2589          } /* sampler/image float dimensionality */
2590          break;
2591       case GLSL_TYPE_INT:
2592          switch (type->sampler_dimensionality) {
2593          case GLSL_SAMPLER_DIM_1D: {
2594             assert(glsl_type_is_sampler(type));
2595             static const char *const names[4] = {
2596               "isampler1D", "isampler1DArray", NULL, NULL
2597             };
2598             return names[type_idx];
2599          }
2600          case GLSL_SAMPLER_DIM_2D: {
2601             static const char *const names[8] = {
2602               "isampler2D", "isampler2DArray", NULL, NULL,
2603               "iimage2D", "iimage2DArray", NULL, NULL
2604             };
2605             return names[offset + type_idx];
2606          }
2607          case GLSL_SAMPLER_DIM_3D: {
2608             static const char *const names[8] = {
2609               "isampler3D", NULL, NULL, NULL,
2610               "iimage3D", NULL, NULL, NULL
2611             };
2612             return names[offset + type_idx];
2613          }
2614          case GLSL_SAMPLER_DIM_CUBE: {
2615             static const char *const names[8] = {
2616               "isamplerCube", "isamplerCubeArray", NULL, NULL,
2617               "iimageCube", NULL, NULL, NULL
2618             };
2619             return names[offset + type_idx];
2620          }
2621          case GLSL_SAMPLER_DIM_MS: {
2622             assert(glsl_type_is_sampler(type));
2623             static const char *const names[4] = {
2624               "isampler2DMS", "isampler2DMSArray", NULL, NULL
2625             };
2626             return names[type_idx];
2627          }
2628          case GLSL_SAMPLER_DIM_RECT: {
2629             assert(glsl_type_is_sampler(type));
2630             static const char *const names[4] = {
2631               "isamplerRect", NULL, "isamplerRectShadow", NULL
2632             };
2633             return names[type_idx];
2634          }
2635          case GLSL_SAMPLER_DIM_BUF: {
2636             static const char *const names[8] = {
2637               "isamplerBuffer", NULL, NULL, NULL,
2638               "iimageBuffer", NULL, NULL, NULL
2639             };
2640             return names[offset + type_idx];
2641          }
2642          default:
2643             unreachable("Unsupported isampler/iimage dimensionality");
2644          } /* sampler/image int dimensionality */
2645          break;
2646       case GLSL_TYPE_UINT:
2647          switch (type->sampler_dimensionality) {
2648          case GLSL_SAMPLER_DIM_1D: {
2649             assert(glsl_type_is_sampler(type));
2650             static const char *const names[4] = {
2651               "usampler1D", "usampler1DArray", NULL, NULL
2652             };
2653             return names[type_idx];
2654          }
2655          case GLSL_SAMPLER_DIM_2D: {
2656             static const char *const names[8] = {
2657               "usampler2D", "usampler2DArray", NULL, NULL,
2658               "uimage2D", "uimage2DArray", NULL, NULL
2659             };
2660             return names[offset + type_idx];
2661          }
2662          case GLSL_SAMPLER_DIM_3D: {
2663             static const char *const names[8] = {
2664               "usampler3D", NULL, NULL, NULL,
2665               "uimage3D", NULL, NULL, NULL
2666             };
2667             return names[offset + type_idx];
2668          }
2669          case GLSL_SAMPLER_DIM_CUBE: {
2670             static const char *const names[8] = {
2671               "usamplerCube", "usamplerCubeArray", NULL, NULL,
2672               "uimageCube", NULL, NULL, NULL
2673             };
2674             return names[offset + type_idx];
2675          }
2676          case GLSL_SAMPLER_DIM_MS: {
2677             assert(glsl_type_is_sampler(type));
2678             static const char *const names[4] = {
2679               "usampler2DMS", "usampler2DMSArray", NULL, NULL
2680             };
2681             return names[type_idx];
2682          }
2683          case GLSL_SAMPLER_DIM_RECT: {
2684             assert(glsl_type_is_sampler(type));
2685             static const char *const names[4] = {
2686               "usamplerRect", NULL, "usamplerRectShadow", NULL
2687             };
2688             return names[type_idx];
2689          }
2690          case GLSL_SAMPLER_DIM_BUF: {
2691             static const char *const names[8] = {
2692               "usamplerBuffer", NULL, NULL, NULL,
2693               "uimageBuffer", NULL, NULL, NULL
2694             };
2695             return names[offset + type_idx];
2696          }
2697          default:
2698             unreachable("Unsupported usampler/uimage dimensionality");
2699          } /* sampler/image uint dimensionality */
2700          break;
2701       default:
2702          unreachable("Unsupported sampler/image type");
2703       } /* sampler/image type */
2704       break;
2705    } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2706    break;
2707    default:
2708       unreachable("Unsupported type");
2709    } /* base type */
2710 }
2711 
2712 static unsigned
select_gles_precision(unsigned qual_precision,const glsl_type * type,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)2713 select_gles_precision(unsigned qual_precision,
2714                       const glsl_type *type,
2715                       struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2716 {
2717    /* Precision qualifiers do not have any meaning in Desktop GLSL.
2718     * In GLES we take the precision from the type qualifier if present,
2719     * otherwise, if the type of the variable allows precision qualifiers at
2720     * all, we look for the default precision qualifier for that type in the
2721     * current scope.
2722     */
2723    assert(state->es_shader);
2724 
2725    unsigned precision = GLSL_PRECISION_NONE;
2726    if (qual_precision) {
2727       precision = qual_precision;
2728    } else if (precision_qualifier_allowed(type)) {
2729       const char *type_name =
2730          get_type_name_for_precision_qualifier(glsl_without_array(type));
2731       assert(type_name != NULL);
2732 
2733       precision =
2734          state->symbols->get_default_precision_qualifier(type_name);
2735       if (precision == ast_precision_none) {
2736          _mesa_glsl_error(loc, state,
2737                           "No precision specified in this scope for type `%s'",
2738                           glsl_get_type_name(type));
2739       }
2740    }
2741 
2742 
2743    /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says:
2744     *
2745     *    "The default precision of all atomic types is highp. It is an error to
2746     *    declare an atomic type with a different precision or to specify the
2747     *    default precision for an atomic type to be lowp or mediump."
2748     */
2749    if (glsl_type_is_atomic_uint(type) && precision != ast_precision_high) {
2750       _mesa_glsl_error(loc, state,
2751                        "atomic_uint can only have highp precision qualifier");
2752    }
2753 
2754    return precision;
2755 }
2756 
2757 const glsl_type *
glsl_type(const char ** name,struct _mesa_glsl_parse_state * state) const2758 ast_fully_specified_type::glsl_type(const char **name,
2759                                     struct _mesa_glsl_parse_state *state) const
2760 {
2761    return this->specifier->glsl_type(name, state);
2762 }
2763 
2764 /**
2765  * Determine whether a toplevel variable declaration declares a varying.  This
2766  * function operates by examining the variable's mode and the shader target,
2767  * so it correctly identifies linkage variables regardless of whether they are
2768  * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2769  *
2770  * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2771  * this function will produce undefined results.
2772  */
2773 static bool
is_varying_var(ir_variable * var,gl_shader_stage target)2774 is_varying_var(ir_variable *var, gl_shader_stage target)
2775 {
2776    switch (target) {
2777    case MESA_SHADER_VERTEX:
2778       return var->data.mode == ir_var_shader_out;
2779    case MESA_SHADER_FRAGMENT:
2780       return var->data.mode == ir_var_shader_in ||
2781              (var->data.mode == ir_var_system_value &&
2782               var->data.location == SYSTEM_VALUE_FRAG_COORD);
2783    default:
2784       return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2785    }
2786 }
2787 
2788 static bool
is_allowed_invariant(ir_variable * var,struct _mesa_glsl_parse_state * state)2789 is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state)
2790 {
2791    if (is_varying_var(var, state->stage))
2792       return true;
2793 
2794    /* ES2 says:
2795     *
2796     * "For the built-in special variables, gl_FragCoord can only be declared
2797     *  invariant if and only if gl_Position is declared invariant. Similarly
2798     *  gl_PointCoord can only be declared invariant if and only if gl_PointSize
2799     *  is declared invariant. It is an error to declare gl_FrontFacing as
2800     *  invariant. The invariance of gl_FrontFacing is the same as the invariance
2801     *  of gl_Position."
2802     *
2803     * ES3.1 says about invariance:
2804     *
2805     * "How does this rule apply to the built-in special variables?
2806     *
2807     *  Option 1: It should be the same as for varyings. But gl_Position is used
2808     *  internally by the rasterizer as well as for gl_FragCoord so there may be
2809     *  cases where rasterization is required to be invariant but gl_FragCoord is
2810     *  not.
2811     *
2812     *  RESOLUTION: Option 1."
2813     *
2814     * and the ES3 spec has similar text but the "RESOLUTION" is missing.
2815     *
2816     * Any system values should be from built-in special variables.
2817     */
2818    if (var->data.mode == ir_var_system_value) {
2819       if (state->is_version(0, 300)) {
2820          return true;
2821       } else {
2822          /* Note: We don't actually have a check that the VS's PointSize is
2823           * invariant, even when it's treated as a varying.
2824           */
2825          if (var->data.location == SYSTEM_VALUE_POINT_COORD)
2826             return true;
2827       }
2828    }
2829 
2830    /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec:
2831     * "Only variables output from a vertex shader can be candidates
2832     * for invariance".
2833     */
2834    if (!state->is_version(130, 100))
2835       return false;
2836 
2837    /*
2838     * Later specs remove this language - so allowed invariant
2839     * on fragment shader outputs as well.
2840     */
2841    if (state->stage == MESA_SHADER_FRAGMENT &&
2842        var->data.mode == ir_var_shader_out)
2843       return true;
2844    return false;
2845 }
2846 
2847 static void
validate_component_layout_for_type(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,const glsl_type * type,unsigned qual_component)2848 validate_component_layout_for_type(struct _mesa_glsl_parse_state *state,
2849                                    YYLTYPE *loc, const glsl_type *type,
2850                                    unsigned qual_component)
2851 {
2852    type = glsl_without_array(type);
2853    unsigned components = glsl_get_component_slots(type);
2854 
2855    if (glsl_type_is_matrix(type) || glsl_type_is_struct(type)) {
2856        _mesa_glsl_error(loc, state, "component layout qualifier "
2857                         "cannot be applied to a matrix, a structure, "
2858                         "a block, or an array containing any of these.");
2859    } else if (components > 4 && glsl_type_is_64bit(type)) {
2860       _mesa_glsl_error(loc, state, "component layout qualifier "
2861                        "cannot be applied to dvec%u.",
2862                         components / 2);
2863    } else if (qual_component != 0 && (qual_component + components - 1) > 3) {
2864       _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
2865                        (qual_component + components - 1));
2866    } else if (qual_component == 1 && glsl_type_is_64bit(type)) {
2867       /* We don't bother checking for 3 as it should be caught by the
2868        * overflow check above.
2869        */
2870       _mesa_glsl_error(loc, state, "doubles cannot begin at component 1 or 3");
2871    }
2872 }
2873 
2874 /**
2875  * Matrix layout qualifiers are only allowed on certain types
2876  */
2877 static void
validate_matrix_layout_for_type(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,const glsl_type * type,ir_variable * var)2878 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2879                                 YYLTYPE *loc,
2880                                 const glsl_type *type,
2881                                 ir_variable *var)
2882 {
2883    if (var && !var->is_in_buffer_block()) {
2884       /* Layout qualifiers may only apply to interface blocks and fields in
2885        * them.
2886        */
2887       _mesa_glsl_error(loc, state,
2888                        "uniform block layout qualifiers row_major and "
2889                        "column_major may not be applied to variables "
2890                        "outside of uniform blocks");
2891    } else if (!glsl_type_is_matrix(glsl_without_array(type))) {
2892       /* The OpenGL ES 3.0 conformance tests did not originally allow
2893        * matrix layout qualifiers on non-matrices.  However, the OpenGL
2894        * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2895        * amended to specifically allow these layouts on all types.  Emit
2896        * a warning so that people know their code may not be portable.
2897        */
2898       _mesa_glsl_warning(loc, state,
2899                          "uniform block layout qualifiers row_major and "
2900                          "column_major applied to non-matrix types may "
2901                          "be rejected by older compilers");
2902    }
2903 }
2904 
2905 static bool
validate_xfb_buffer_qualifier(YYLTYPE * loc,struct _mesa_glsl_parse_state * state,unsigned xfb_buffer)2906 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2907                               struct _mesa_glsl_parse_state *state,
2908                               unsigned xfb_buffer) {
2909    if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2910       _mesa_glsl_error(loc, state,
2911                        "invalid xfb_buffer specified %d is larger than "
2912                        "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2913                        xfb_buffer,
2914                        state->Const.MaxTransformFeedbackBuffers - 1);
2915       return false;
2916    }
2917 
2918    return true;
2919 }
2920 
2921 /* From the ARB_enhanced_layouts spec:
2922  *
2923  *    "Variables and block members qualified with *xfb_offset* can be
2924  *    scalars, vectors, matrices, structures, and (sized) arrays of these.
2925  *    The offset must be a multiple of the size of the first component of
2926  *    the first qualified variable or block member, or a compile-time error
2927  *    results.  Further, if applied to an aggregate containing a double,
2928  *    the offset must also be a multiple of 8, and the space taken in the
2929  *    buffer will be a multiple of 8.
2930  */
2931 static bool
validate_xfb_offset_qualifier(YYLTYPE * loc,struct _mesa_glsl_parse_state * state,int xfb_offset,const glsl_type * type,unsigned component_size)2932 validate_xfb_offset_qualifier(YYLTYPE *loc,
2933                               struct _mesa_glsl_parse_state *state,
2934                               int xfb_offset, const glsl_type *type,
2935                               unsigned component_size) {
2936   const glsl_type *t_without_array = glsl_without_array(type);
2937 
2938    if (xfb_offset != -1 && glsl_type_is_unsized_array(type)) {
2939       _mesa_glsl_error(loc, state,
2940                        "xfb_offset can't be used with unsized arrays.");
2941       return false;
2942    }
2943 
2944    /* Make sure nested structs don't contain unsized arrays, and validate
2945     * any xfb_offsets on interface members.
2946     */
2947    if (glsl_type_is_struct(t_without_array) || glsl_type_is_interface(t_without_array))
2948       for (unsigned int i = 0; i < t_without_array->length; i++) {
2949          const glsl_type *member_t = t_without_array->fields.structure[i].type;
2950 
2951          /* When the interface block doesn't have an xfb_offset qualifier then
2952           * we apply the component size rules at the member level.
2953           */
2954          if (xfb_offset == -1)
2955             component_size = glsl_contains_double(member_t) ? 8 : 4;
2956 
2957          int xfb_offset = t_without_array->fields.structure[i].offset;
2958          validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2959                                        component_size);
2960       }
2961 
2962   /* Nested structs or interface block without offset may not have had an
2963    * offset applied yet so return.
2964    */
2965    if (xfb_offset == -1) {
2966      return true;
2967    }
2968 
2969    if (xfb_offset % component_size) {
2970       _mesa_glsl_error(loc, state,
2971                        "invalid qualifier xfb_offset=%d must be a multiple "
2972                        "of the first component size of the first qualified "
2973                        "variable or block member. Or double if an aggregate "
2974                        "that contains a double (%d).",
2975                        xfb_offset, component_size);
2976       return false;
2977    }
2978 
2979    return true;
2980 }
2981 
2982 static bool
validate_stream_qualifier(YYLTYPE * loc,struct _mesa_glsl_parse_state * state,unsigned stream)2983 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2984                           unsigned stream)
2985 {
2986    if (stream >= state->consts->MaxVertexStreams) {
2987       _mesa_glsl_error(loc, state,
2988                        "invalid stream specified %d is larger than "
2989                        "MAX_VERTEX_STREAMS - 1 (%d).",
2990                        stream, state->consts->MaxVertexStreams - 1);
2991       return false;
2992    }
2993 
2994    return true;
2995 }
2996 
2997 static void
apply_explicit_binding(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,ir_variable * var,const glsl_type * type,const ast_type_qualifier * qual)2998 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2999                        YYLTYPE *loc,
3000                        ir_variable *var,
3001                        const glsl_type *type,
3002                        const ast_type_qualifier *qual)
3003 {
3004    if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
3005       _mesa_glsl_error(loc, state,
3006                        "the \"binding\" qualifier only applies to uniforms and "
3007                        "shader storage buffer objects");
3008       return;
3009    }
3010 
3011    unsigned qual_binding;
3012    if (!process_qualifier_constant(state, loc, "binding", qual->binding,
3013                                    &qual_binding)) {
3014       return;
3015    }
3016 
3017    const struct gl_constants *consts = state->consts;
3018    unsigned elements = glsl_type_is_array(type) ? glsl_get_aoa_size(type) : 1;
3019    unsigned max_index = qual_binding + elements - 1;
3020    const glsl_type *base_type = glsl_without_array(type);
3021 
3022    if (glsl_type_is_interface(base_type)) {
3023       /* UBOs.  From page 60 of the GLSL 4.20 specification:
3024        * "If the binding point for any uniform block instance is less than zero,
3025        *  or greater than or equal to the implementation-dependent maximum
3026        *  number of uniform buffer bindings, a compilation error will occur.
3027        *  When the binding identifier is used with a uniform block instanced as
3028        *  an array of size N, all elements of the array from binding through
3029        *  binding + N – 1 must be within this range."
3030        *
3031        * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
3032        */
3033       if (qual->flags.q.uniform &&
3034          max_index >= consts->MaxUniformBufferBindings) {
3035          _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
3036                           "the maximum number of UBO binding points (%d)",
3037                           qual_binding, elements,
3038                           consts->MaxUniformBufferBindings);
3039          return;
3040       }
3041 
3042       /* SSBOs. From page 67 of the GLSL 4.30 specification:
3043        * "If the binding point for any uniform or shader storage block instance
3044        *  is less than zero, or greater than or equal to the
3045        *  implementation-dependent maximum number of uniform buffer bindings, a
3046        *  compile-time error will occur. When the binding identifier is used
3047        *  with a uniform or shader storage block instanced as an array of size
3048        *  N, all elements of the array from binding through binding + N – 1 must
3049        *  be within this range."
3050        */
3051       if (qual->flags.q.buffer &&
3052          max_index >= consts->MaxShaderStorageBufferBindings) {
3053          _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
3054                           "the maximum number of SSBO binding points (%d)",
3055                           qual_binding, elements,
3056                           consts->MaxShaderStorageBufferBindings);
3057          return;
3058       }
3059    } else if (glsl_type_is_sampler(base_type)) {
3060       /* Samplers.  From page 63 of the GLSL 4.20 specification:
3061        * "If the binding is less than zero, or greater than or equal to the
3062        *  implementation-dependent maximum supported number of units, a
3063        *  compilation error will occur. When the binding identifier is used
3064        *  with an array of size N, all elements of the array from binding
3065        *  through binding + N - 1 must be within this range."
3066        */
3067       unsigned limit = consts->MaxCombinedTextureImageUnits;
3068 
3069       if (max_index >= limit) {
3070          _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
3071                           "exceeds the maximum number of texture image units "
3072                           "(%u)", qual_binding, elements, limit);
3073 
3074          return;
3075       }
3076    } else if (glsl_contains_atomic(base_type)) {
3077       assert(consts->MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
3078       if (qual_binding >= consts->MaxAtomicBufferBindings) {
3079          _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
3080                           "maximum number of atomic counter buffer bindings "
3081                           "(%u)", qual_binding,
3082                           consts->MaxAtomicBufferBindings);
3083 
3084          return;
3085       }
3086    } else if ((state->is_version(420, 310) ||
3087                state->ARB_shading_language_420pack_enable) &&
3088               glsl_type_is_image(base_type)) {
3089       assert(consts->MaxImageUnits <= MAX_IMAGE_UNITS);
3090       if (max_index >= consts->MaxImageUnits) {
3091          _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
3092                           "maximum number of image units (%d)", max_index,
3093                           consts->MaxImageUnits);
3094          return;
3095       }
3096 
3097    } else {
3098       _mesa_glsl_error(loc, state,
3099                        "the \"binding\" qualifier only applies to uniform "
3100                        "blocks, storage blocks, opaque variables, or arrays "
3101                        "thereof");
3102       return;
3103    }
3104 
3105    var->data.explicit_binding = true;
3106    var->data.binding = qual_binding;
3107 
3108    return;
3109 }
3110 
3111 static void
validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,const glsl_interp_mode interpolation,const struct glsl_type * var_type,ir_variable_mode mode)3112 validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state *state,
3113                                            YYLTYPE *loc,
3114                                            const glsl_interp_mode interpolation,
3115                                            const struct glsl_type *var_type,
3116                                            ir_variable_mode mode)
3117 {
3118    if (state->stage != MESA_SHADER_FRAGMENT ||
3119        interpolation == INTERP_MODE_FLAT ||
3120        mode != ir_var_shader_in)
3121       return;
3122 
3123    /* Integer fragment inputs must be qualified with 'flat'.  In GLSL ES,
3124     * so must integer vertex outputs.
3125     *
3126     * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
3127     *    "Fragment shader inputs that are signed or unsigned integers or
3128     *    integer vectors must be qualified with the interpolation qualifier
3129     *    flat."
3130     *
3131     * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
3132     *    "Fragment shader inputs that are, or contain, signed or unsigned
3133     *    integers or integer vectors must be qualified with the
3134     *    interpolation qualifier flat."
3135     *
3136     * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
3137     *    "Vertex shader outputs that are, or contain, signed or unsigned
3138     *    integers or integer vectors must be qualified with the
3139     *    interpolation qualifier flat."
3140     *
3141     * Note that prior to GLSL 1.50, this requirement applied to vertex
3142     * outputs rather than fragment inputs.  That creates problems in the
3143     * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
3144     * desktop GL shaders.  For GLSL ES shaders, we follow the spec and
3145     * apply the restriction to both vertex outputs and fragment inputs.
3146     *
3147     * Note also that the desktop GLSL specs are missing the text "or
3148     * contain"; this is presumably an oversight, since there is no
3149     * reasonable way to interpolate a fragment shader input that contains
3150     * an integer. See Khronos bug #15671.
3151     */
3152    if ((state->is_version(130, 300) || state->EXT_gpu_shader4_enable)
3153        && glsl_contains_integer(var_type)) {
3154       _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3155                        "an integer, then it must be qualified with 'flat'");
3156    }
3157 
3158    /* Double fragment inputs must be qualified with 'flat'.
3159     *
3160     * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
3161     *    "This extension does not support interpolation of double-precision
3162     *    values; doubles used as fragment shader inputs must be qualified as
3163     *    "flat"."
3164     *
3165     * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
3166     *    "Fragment shader inputs that are signed or unsigned integers, integer
3167     *    vectors, or any double-precision floating-point type must be
3168     *    qualified with the interpolation qualifier flat."
3169     *
3170     * Note that the GLSL specs are missing the text "or contain"; this is
3171     * presumably an oversight. See Khronos bug #15671.
3172     *
3173     * The 'double' type does not exist in GLSL ES so far.
3174     */
3175    if (state->has_double()
3176        && glsl_contains_double(var_type)) {
3177       _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3178                        "a double, then it must be qualified with 'flat'");
3179    }
3180 
3181    /* Bindless sampler/image fragment inputs must be qualified with 'flat'.
3182     *
3183     * From section 4.3.4 of the ARB_bindless_texture spec:
3184     *
3185     *    "(modify last paragraph, p. 35, allowing samplers and images as
3186     *     fragment shader inputs) ... Fragment inputs can only be signed and
3187     *     unsigned integers and integer vectors, floating point scalars,
3188     *     floating-point vectors, matrices, sampler and image types, or arrays
3189     *     or structures of these.  Fragment shader inputs that are signed or
3190     *     unsigned integers, integer vectors, or any double-precision floating-
3191     *     point type, or any sampler or image type must be qualified with the
3192     *     interpolation qualifier "flat"."
3193     */
3194    if (state->has_bindless()
3195        && (glsl_contains_sampler(var_type) || glsl_type_contains_image(var_type))) {
3196       _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3197                        "a bindless sampler (or image), then it must be "
3198                        "qualified with 'flat'");
3199    }
3200 }
3201 
3202 static void
validate_interpolation_qualifier(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,const glsl_interp_mode interpolation,const struct ast_type_qualifier * qual,const struct glsl_type * var_type,ir_variable_mode mode)3203 validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
3204                                  YYLTYPE *loc,
3205                                  const glsl_interp_mode interpolation,
3206                                  const struct ast_type_qualifier *qual,
3207                                  const struct glsl_type *var_type,
3208                                  ir_variable_mode mode)
3209 {
3210    /* Interpolation qualifiers can only apply to shader inputs or outputs, but
3211     * not to vertex shader inputs nor fragment shader outputs.
3212     *
3213     * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3214     *    "Outputs from a vertex shader (out) and inputs to a fragment
3215     *    shader (in) can be further qualified with one or more of these
3216     *    interpolation qualifiers"
3217     *    ...
3218     *    "These interpolation qualifiers may only precede the qualifiers in,
3219     *    centroid in, out, or centroid out in a declaration. They do not apply
3220     *    to the deprecated storage qualifiers varying or centroid
3221     *    varying. They also do not apply to inputs into a vertex shader or
3222     *    outputs from a fragment shader."
3223     *
3224     * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
3225     *    "Outputs from a shader (out) and inputs to a shader (in) can be
3226     *    further qualified with one of these interpolation qualifiers."
3227     *    ...
3228     *    "These interpolation qualifiers may only precede the qualifiers
3229     *    in, centroid in, out, or centroid out in a declaration. They do
3230     *    not apply to inputs into a vertex shader or outputs from a
3231     *    fragment shader."
3232     */
3233    if ((state->is_version(130, 300) || state->EXT_gpu_shader4_enable)
3234        && interpolation != INTERP_MODE_NONE) {
3235       const char *i = interpolation_string(interpolation);
3236       if (mode != ir_var_shader_in && mode != ir_var_shader_out)
3237          _mesa_glsl_error(loc, state,
3238                           "interpolation qualifier `%s' can only be applied to "
3239                           "shader inputs or outputs.", i);
3240 
3241       switch (state->stage) {
3242       case MESA_SHADER_VERTEX:
3243          if (mode == ir_var_shader_in) {
3244             _mesa_glsl_error(loc, state,
3245                              "interpolation qualifier '%s' cannot be applied to "
3246                              "vertex shader inputs", i);
3247          }
3248          break;
3249       case MESA_SHADER_FRAGMENT:
3250          if (mode == ir_var_shader_out) {
3251             _mesa_glsl_error(loc, state,
3252                              "interpolation qualifier '%s' cannot be applied to "
3253                              "fragment shader outputs", i);
3254          }
3255          break;
3256       default:
3257          break;
3258       }
3259    }
3260 
3261    /* Interpolation qualifiers cannot be applied to 'centroid' and
3262     * 'centroid varying'.
3263     *
3264     * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3265     *    "interpolation qualifiers may only precede the qualifiers in,
3266     *    centroid in, out, or centroid out in a declaration. They do not apply
3267     *    to the deprecated storage qualifiers varying or centroid varying."
3268     *
3269     * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3270     *
3271     * GL_EXT_gpu_shader4 allows this.
3272     */
3273    if (state->is_version(130, 0) && !state->EXT_gpu_shader4_enable
3274        && interpolation != INTERP_MODE_NONE
3275        && qual->flags.q.varying) {
3276 
3277       const char *i = interpolation_string(interpolation);
3278       const char *s;
3279       if (qual->flags.q.centroid)
3280          s = "centroid varying";
3281       else
3282          s = "varying";
3283 
3284       _mesa_glsl_error(loc, state,
3285                        "qualifier '%s' cannot be applied to the "
3286                        "deprecated storage qualifier '%s'", i, s);
3287    }
3288 
3289    validate_fragment_flat_interpolation_input(state, loc, interpolation,
3290                                               var_type, mode);
3291 }
3292 
3293 static glsl_interp_mode
interpret_interpolation_qualifier(const struct ast_type_qualifier * qual,const struct glsl_type * var_type,ir_variable_mode mode,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3294 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
3295                                   const struct glsl_type *var_type,
3296                                   ir_variable_mode mode,
3297                                   struct _mesa_glsl_parse_state *state,
3298                                   YYLTYPE *loc)
3299 {
3300    glsl_interp_mode interpolation;
3301    if (qual->flags.q.flat)
3302       interpolation = INTERP_MODE_FLAT;
3303    else if (qual->flags.q.noperspective)
3304       interpolation = INTERP_MODE_NOPERSPECTIVE;
3305    else if (qual->flags.q.smooth)
3306       interpolation = INTERP_MODE_SMOOTH;
3307    else
3308       interpolation = INTERP_MODE_NONE;
3309 
3310    validate_interpolation_qualifier(state, loc,
3311                                     interpolation,
3312                                     qual, var_type, mode);
3313 
3314    return interpolation;
3315 }
3316 
3317 
3318 static void
apply_explicit_location(const struct ast_type_qualifier * qual,ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3319 apply_explicit_location(const struct ast_type_qualifier *qual,
3320                         ir_variable *var,
3321                         struct _mesa_glsl_parse_state *state,
3322                         YYLTYPE *loc)
3323 {
3324    bool fail = false;
3325 
3326    unsigned qual_location;
3327    if (!process_qualifier_constant(state, loc, "location", qual->location,
3328                                    &qual_location)) {
3329       return;
3330    }
3331 
3332    /* Checks for GL_ARB_explicit_uniform_location. */
3333    if (qual->flags.q.uniform) {
3334       if (!state->check_explicit_uniform_location_allowed(loc, var))
3335          return;
3336 
3337       const struct gl_constants *consts = state->consts;
3338       unsigned max_loc = qual_location + glsl_type_uniform_locations(var->type) - 1;
3339 
3340       if (max_loc >= consts->MaxUserAssignableUniformLocations) {
3341          _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3342                           ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3343                           consts->MaxUserAssignableUniformLocations);
3344          return;
3345       }
3346 
3347       var->data.explicit_location = true;
3348       var->data.location = qual_location;
3349       return;
3350    }
3351 
3352    /* Between GL_ARB_explicit_attrib_location an
3353     * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3354     * stage can be assigned explicit locations.  The checking here associates
3355     * the correct extension with the correct stage's input / output:
3356     *
3357     *                     input            output
3358     *                     -----            ------
3359     * vertex              explicit_loc     sso
3360     * tess control        sso              sso
3361     * tess eval           sso              sso
3362     * geometry            sso              sso
3363     * fragment            sso              explicit_loc
3364     */
3365    switch (state->stage) {
3366    case MESA_SHADER_VERTEX:
3367       if (var->data.mode == ir_var_shader_in) {
3368          if (!state->check_explicit_attrib_location_allowed(loc, var))
3369             return;
3370 
3371          break;
3372       }
3373 
3374       if (var->data.mode == ir_var_shader_out) {
3375          if (!state->check_separate_shader_objects_allowed(loc, var))
3376             return;
3377 
3378          break;
3379       }
3380 
3381       fail = true;
3382       break;
3383 
3384    case MESA_SHADER_TESS_CTRL:
3385    case MESA_SHADER_TESS_EVAL:
3386    case MESA_SHADER_GEOMETRY:
3387       if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3388          if (!state->check_separate_shader_objects_allowed(loc, var))
3389             return;
3390 
3391          break;
3392       }
3393 
3394       fail = true;
3395       break;
3396 
3397    case MESA_SHADER_FRAGMENT:
3398       if (var->data.mode == ir_var_shader_in) {
3399          if (!state->check_separate_shader_objects_allowed(loc, var))
3400             return;
3401 
3402          break;
3403       }
3404 
3405       if (var->data.mode == ir_var_shader_out) {
3406          if (!state->check_explicit_attrib_location_allowed(loc, var))
3407             return;
3408 
3409          break;
3410       }
3411 
3412       fail = true;
3413       break;
3414 
3415    case MESA_SHADER_COMPUTE:
3416       _mesa_glsl_error(loc, state,
3417                        "compute shader variables cannot be given "
3418                        "explicit locations");
3419       return;
3420    default:
3421       fail = true;
3422       break;
3423    };
3424 
3425    if (fail) {
3426       _mesa_glsl_error(loc, state,
3427                        "%s cannot be given an explicit location in %s shader",
3428                        mode_string(var),
3429       _mesa_shader_stage_to_string(state->stage));
3430    } else {
3431       var->data.explicit_location = true;
3432 
3433       switch (state->stage) {
3434       case MESA_SHADER_VERTEX:
3435          var->data.location = (var->data.mode == ir_var_shader_in)
3436             ? (qual_location + VERT_ATTRIB_GENERIC0)
3437             : (qual_location + VARYING_SLOT_VAR0);
3438          break;
3439 
3440       case MESA_SHADER_TESS_CTRL:
3441       case MESA_SHADER_TESS_EVAL:
3442       case MESA_SHADER_GEOMETRY:
3443          if (var->data.patch)
3444             var->data.location = qual_location + VARYING_SLOT_PATCH0;
3445          else
3446             var->data.location = qual_location + VARYING_SLOT_VAR0;
3447          break;
3448 
3449       case MESA_SHADER_FRAGMENT:
3450          var->data.location = (var->data.mode == ir_var_shader_out)
3451             ? (qual_location + FRAG_RESULT_DATA0)
3452             : (qual_location + VARYING_SLOT_VAR0);
3453          break;
3454       default:
3455          assert(!"Unexpected shader type");
3456          break;
3457       }
3458 
3459       /* Check if index was set for the uniform instead of the function */
3460       if (qual->flags.q.explicit_index && qual->is_subroutine_decl()) {
3461          _mesa_glsl_error(loc, state, "an index qualifier can only be "
3462                           "used with subroutine functions");
3463          return;
3464       }
3465 
3466       unsigned qual_index;
3467       if (qual->flags.q.explicit_index &&
3468           process_qualifier_constant(state, loc, "index", qual->index,
3469                                      &qual_index)) {
3470          /* From the GLSL 4.30 specification, section 4.4.2 (Output
3471           * Layout Qualifiers):
3472           *
3473           * "It is also a compile-time error if a fragment shader
3474           *  sets a layout index to less than 0 or greater than 1."
3475           *
3476           * Older specifications don't mandate a behavior; we take
3477           * this as a clarification and always generate the error.
3478           */
3479          if (qual_index > 1) {
3480             _mesa_glsl_error(loc, state,
3481                              "explicit index may only be 0 or 1");
3482          } else {
3483             var->data.explicit_index = true;
3484             var->data.index = qual_index;
3485          }
3486       }
3487    }
3488 }
3489 
3490 static bool
validate_storage_for_sampler_image_types(ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3491 validate_storage_for_sampler_image_types(ir_variable *var,
3492                                          struct _mesa_glsl_parse_state *state,
3493                                          YYLTYPE *loc)
3494 {
3495    /* From section 4.1.7 of the GLSL 4.40 spec:
3496     *
3497     *    "[Opaque types] can only be declared as function
3498     *     parameters or uniform-qualified variables."
3499     *
3500     * From section 4.1.7 of the ARB_bindless_texture spec:
3501     *
3502     *    "Samplers may be declared as shader inputs and outputs, as uniform
3503     *     variables, as temporary variables, and as function parameters."
3504     *
3505     * From section 4.1.X of the ARB_bindless_texture spec:
3506     *
3507     *    "Images may be declared as shader inputs and outputs, as uniform
3508     *     variables, as temporary variables, and as function parameters."
3509     */
3510    if (state->has_bindless()) {
3511       if (var->data.mode != ir_var_auto &&
3512           var->data.mode != ir_var_uniform &&
3513           var->data.mode != ir_var_shader_in &&
3514           var->data.mode != ir_var_shader_out &&
3515           var->data.mode != ir_var_function_in &&
3516           var->data.mode != ir_var_function_out &&
3517           var->data.mode != ir_var_function_inout) {
3518          _mesa_glsl_error(loc, state, "bindless image/sampler variables may "
3519                          "only be declared as shader inputs and outputs, as "
3520                          "uniform variables, as temporary variables and as "
3521                          "function parameters");
3522          return false;
3523       }
3524    } else {
3525       if (var->data.mode != ir_var_uniform &&
3526           var->data.mode != ir_var_function_in) {
3527          _mesa_glsl_error(loc, state, "image/sampler variables may only be "
3528                           "declared as function parameters or "
3529                           "uniform-qualified global variables");
3530          return false;
3531       }
3532    }
3533    return true;
3534 }
3535 
3536 static bool
validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,const struct ast_type_qualifier * qual,const glsl_type * type)3537 validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3538                                    YYLTYPE *loc,
3539                                    const struct ast_type_qualifier *qual,
3540                                    const glsl_type *type)
3541 {
3542    /* From Section 4.10 (Memory Qualifiers) of the GLSL 4.50 spec:
3543     *
3544     * "Memory qualifiers are only supported in the declarations of image
3545     *  variables, buffer variables, and shader storage blocks; it is an error
3546     *  to use such qualifiers in any other declarations.
3547     */
3548    if (!glsl_type_is_image(type) && !qual->flags.q.buffer) {
3549       if (qual->flags.q.read_only ||
3550           qual->flags.q.write_only ||
3551           qual->flags.q.coherent ||
3552           qual->flags.q._volatile ||
3553           qual->flags.q.restrict_flag) {
3554          _mesa_glsl_error(loc, state, "memory qualifiers may only be applied "
3555                           "in the declarations of image variables, buffer "
3556                           "variables, and shader storage blocks");
3557          return false;
3558       }
3559    }
3560    return true;
3561 }
3562 
3563 static bool
validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,const struct ast_type_qualifier * qual,const glsl_type * type)3564 validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3565                                          YYLTYPE *loc,
3566                                          const struct ast_type_qualifier *qual,
3567                                          const glsl_type *type)
3568 {
3569    /* From section 4.4.6.2 (Format Layout Qualifiers) of the GLSL 4.50 spec:
3570     *
3571     * "Format layout qualifiers can be used on image variable declarations
3572     *  (those declared with a basic type  having “image ” in its keyword)."
3573     */
3574    if (!glsl_type_is_image(type) && qual->flags.q.explicit_image_format) {
3575       _mesa_glsl_error(loc, state, "format layout qualifiers may only be "
3576                        "applied to images");
3577       return false;
3578    }
3579    return true;
3580 }
3581 
3582 static void
apply_image_qualifier_to_variable(const struct ast_type_qualifier * qual,ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3583 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3584                                   ir_variable *var,
3585                                   struct _mesa_glsl_parse_state *state,
3586                                   YYLTYPE *loc)
3587 {
3588    const glsl_type *base_type = glsl_without_array(var->type);
3589 
3590    if (!validate_image_format_qualifier_for_type(state, loc, qual, base_type) ||
3591        !validate_memory_qualifier_for_type(state, loc, qual, base_type))
3592       return;
3593 
3594    if (!glsl_type_is_image(base_type))
3595       return;
3596 
3597    if (!validate_storage_for_sampler_image_types(var, state, loc))
3598       return;
3599 
3600    var->data.memory_read_only |= qual->flags.q.read_only;
3601    var->data.memory_write_only |= qual->flags.q.write_only;
3602    var->data.memory_coherent |= qual->flags.q.coherent;
3603    var->data.memory_volatile |= qual->flags.q._volatile;
3604    var->data.memory_restrict |= qual->flags.q.restrict_flag;
3605 
3606    if (qual->flags.q.explicit_image_format) {
3607       if (var->data.mode == ir_var_function_in) {
3608          _mesa_glsl_error(loc, state, "format qualifiers cannot be used on "
3609                           "image function parameters");
3610       }
3611 
3612       if (qual->image_base_type != base_type->sampled_type) {
3613          _mesa_glsl_error(loc, state, "format qualifier doesn't match the base "
3614                           "data type of the image");
3615       }
3616 
3617       var->data.image_format = qual->image_format;
3618    } else if (state->has_image_load_formatted()) {
3619       if (var->data.mode == ir_var_uniform &&
3620           state->EXT_shader_image_load_formatted_warn) {
3621          _mesa_glsl_warning(loc, state, "GL_EXT_image_load_formatted used");
3622       }
3623    } else {
3624       if (var->data.mode == ir_var_uniform) {
3625          if (state->es_shader ||
3626              !(state->is_version(420, 310) || state->ARB_shader_image_load_store_enable)) {
3627             _mesa_glsl_error(loc, state, "all image uniforms must have a "
3628                              "format layout qualifier");
3629          } else if (!qual->flags.q.write_only) {
3630             _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3631                              "`writeonly' must have a format layout qualifier");
3632          }
3633       }
3634       var->data.image_format = PIPE_FORMAT_NONE;
3635    }
3636 
3637    /* From page 70 of the GLSL ES 3.1 specification:
3638     *
3639     * "Except for image variables qualified with the format qualifiers r32f,
3640     *  r32i, and r32ui, image variables must specify either memory qualifier
3641     *  readonly or the memory qualifier writeonly."
3642     */
3643    if (state->es_shader &&
3644        var->data.image_format != PIPE_FORMAT_R32_FLOAT &&
3645        var->data.image_format != PIPE_FORMAT_R32_SINT &&
3646        var->data.image_format != PIPE_FORMAT_R32_UINT &&
3647        !var->data.memory_read_only &&
3648        !var->data.memory_write_only) {
3649       _mesa_glsl_error(loc, state, "image variables of format other than r32f, "
3650                        "r32i or r32ui must be qualified `readonly' or "
3651                        "`writeonly'");
3652    }
3653 }
3654 
3655 static inline const char*
get_layout_qualifier_string(bool origin_upper_left,bool pixel_center_integer)3656 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3657 {
3658    if (origin_upper_left && pixel_center_integer)
3659       return "origin_upper_left, pixel_center_integer";
3660    else if (origin_upper_left)
3661       return "origin_upper_left";
3662    else if (pixel_center_integer)
3663       return "pixel_center_integer";
3664    else
3665       return " ";
3666 }
3667 
3668 static inline bool
is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state * state,const struct ast_type_qualifier * qual)3669 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3670                                        const struct ast_type_qualifier *qual)
3671 {
3672    /* If gl_FragCoord was previously declared, and the qualifiers were
3673     * different in any way, return true.
3674     */
3675    if (state->fs_redeclares_gl_fragcoord) {
3676       return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3677          || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3678    }
3679 
3680    return false;
3681 }
3682 
3683 static inline bool
is_conflicting_layer_redeclaration(struct _mesa_glsl_parse_state * state,const struct ast_type_qualifier * qual)3684 is_conflicting_layer_redeclaration(struct _mesa_glsl_parse_state *state,
3685                                    const struct ast_type_qualifier *qual)
3686 {
3687    if (state->redeclares_gl_layer) {
3688       return state->layer_viewport_relative != qual->flags.q.viewport_relative;
3689    }
3690    return false;
3691 }
3692 
3693 static inline void
validate_array_dimensions(const glsl_type * t,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3694 validate_array_dimensions(const glsl_type *t,
3695                           struct _mesa_glsl_parse_state *state,
3696                           YYLTYPE *loc) {
3697    const glsl_type *top = t;
3698    if (glsl_type_is_array(t)) {
3699       t = t->fields.array;
3700       while (glsl_type_is_array(t)) {
3701          if (glsl_type_is_unsized_array(t)) {
3702             _mesa_glsl_error(loc, state,
3703                              "only the outermost array dimension can "
3704                              "be unsized, but got %s",
3705                              glsl_get_type_name(top));
3706             break;
3707          }
3708          t = t->fields.array;
3709       }
3710    }
3711 }
3712 
3713 static void
apply_bindless_qualifier_to_variable(const struct ast_type_qualifier * qual,ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3714 apply_bindless_qualifier_to_variable(const struct ast_type_qualifier *qual,
3715                                      ir_variable *var,
3716                                      struct _mesa_glsl_parse_state *state,
3717                                      YYLTYPE *loc)
3718 {
3719    bool has_local_qualifiers = qual->flags.q.bindless_sampler ||
3720                                qual->flags.q.bindless_image ||
3721                                qual->flags.q.bound_sampler ||
3722                                qual->flags.q.bound_image;
3723 
3724    /* The ARB_bindless_texture spec says:
3725     *
3726     * "Modify Section 4.4.6 Opaque-Uniform Layout Qualifiers of the GLSL 4.30
3727     *  spec"
3728     *
3729     * "If these layout qualifiers are applied to other types of default block
3730     *  uniforms, or variables with non-uniform storage, a compile-time error
3731     *  will be generated."
3732     */
3733    if (has_local_qualifiers && !qual->flags.q.uniform) {
3734       _mesa_glsl_error(loc, state, "ARB_bindless_texture layout qualifiers "
3735                        "can only be applied to default block uniforms or "
3736                        "variables with uniform storage");
3737       return;
3738    }
3739 
3740    /* The ARB_bindless_texture spec doesn't state anything in this situation,
3741     * but it makes sense to only allow bindless_sampler/bound_sampler for
3742     * sampler types, and respectively bindless_image/bound_image for image
3743     * types.
3744     */
3745    if ((qual->flags.q.bindless_sampler || qual->flags.q.bound_sampler) &&
3746        !glsl_contains_sampler(var->type)) {
3747       _mesa_glsl_error(loc, state, "bindless_sampler or bound_sampler can only "
3748                        "be applied to sampler types");
3749       return;
3750    }
3751 
3752    if ((qual->flags.q.bindless_image || qual->flags.q.bound_image) &&
3753        !glsl_type_contains_image(var->type)) {
3754       _mesa_glsl_error(loc, state, "bindless_image or bound_image can only be "
3755                        "applied to image types");
3756       return;
3757    }
3758 
3759    /* The bindless_sampler/bindless_image (and respectively
3760     * bound_sampler/bound_image) layout qualifiers can be set at global and at
3761     * local scope.
3762     */
3763    if (glsl_contains_sampler(var->type) || glsl_type_contains_image(var->type)) {
3764       var->data.bindless = qual->flags.q.bindless_sampler ||
3765                            qual->flags.q.bindless_image ||
3766                            state->bindless_sampler_specified ||
3767                            state->bindless_image_specified;
3768 
3769       var->data.bound = qual->flags.q.bound_sampler ||
3770                         qual->flags.q.bound_image ||
3771                         state->bound_sampler_specified ||
3772                         state->bound_image_specified;
3773    }
3774 
3775    /* ARB_bindless_texture spec says:
3776     *
3777     *    "When used as shader inputs, outputs, uniform block members,
3778     *     or temporaries, the value of the sampler is a 64-bit unsigned
3779     *     integer handle and never refers to a texture image unit."
3780     *
3781     * The spec doesn't reference images defined inside structs but it was
3782     * clarified with the authors that bindless images are allowed in structs.
3783     * So we treat these images as implicitly bindless just like the types
3784     * in the spec quote above.
3785     */
3786    if (!var->data.bindless && glsl_type_is_struct(var->type) &&
3787        glsl_type_contains_image(var->type)) {
3788       var->data.bindless = true;
3789    }
3790 }
3791 
3792 static void
apply_layout_qualifier_to_variable(const struct ast_type_qualifier * qual,ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3793 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3794                                    ir_variable *var,
3795                                    struct _mesa_glsl_parse_state *state,
3796                                    YYLTYPE *loc)
3797 {
3798    if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3799 
3800       /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3801        *
3802        *    "Within any shader, the first redeclarations of gl_FragCoord
3803        *     must appear before any use of gl_FragCoord."
3804        *
3805        * Generate a compiler error if above condition is not met by the
3806        * fragment shader.
3807        */
3808       ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3809       if (earlier != NULL &&
3810           earlier->data.used &&
3811           !state->fs_redeclares_gl_fragcoord) {
3812          _mesa_glsl_error(loc, state,
3813                           "gl_FragCoord used before its first redeclaration "
3814                           "in fragment shader");
3815       }
3816 
3817       /* Make sure all gl_FragCoord redeclarations specify the same layout
3818        * qualifiers.
3819        */
3820       if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3821          const char *const qual_string =
3822             get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3823                                         qual->flags.q.pixel_center_integer);
3824 
3825          const char *const state_string =
3826             get_layout_qualifier_string(state->fs_origin_upper_left,
3827                                         state->fs_pixel_center_integer);
3828 
3829          _mesa_glsl_error(loc, state,
3830                           "gl_FragCoord redeclared with different layout "
3831                           "qualifiers (%s) and (%s) ",
3832                           state_string,
3833                           qual_string);
3834       }
3835       state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3836       state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3837       state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3838          !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3839       state->fs_redeclares_gl_fragcoord =
3840          state->fs_origin_upper_left ||
3841          state->fs_pixel_center_integer ||
3842          state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3843    }
3844 
3845    if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3846        && (strcmp(var->name, "gl_FragCoord") != 0)) {
3847       const char *const qual_string = (qual->flags.q.origin_upper_left)
3848          ? "origin_upper_left" : "pixel_center_integer";
3849 
3850       _mesa_glsl_error(loc, state,
3851                        "layout qualifier `%s' can only be applied to "
3852                        "fragment shader input `gl_FragCoord'",
3853                        qual_string);
3854    }
3855 
3856    if (qual->flags.q.explicit_location) {
3857       apply_explicit_location(qual, var, state, loc);
3858 
3859       if (qual->flags.q.explicit_component) {
3860          unsigned qual_component;
3861          if (process_qualifier_constant(state, loc, "component",
3862                                         qual->component, &qual_component)) {
3863             validate_component_layout_for_type(state, loc, var->type,
3864                                                qual_component);
3865             var->data.explicit_component = true;
3866             var->data.location_frac = qual_component;
3867          }
3868       }
3869    } else if (qual->flags.q.explicit_index) {
3870       if (!qual->subroutine_list)
3871          _mesa_glsl_error(loc, state,
3872                           "explicit index requires explicit location");
3873    } else if (qual->flags.q.explicit_component) {
3874       _mesa_glsl_error(loc, state,
3875                        "explicit component requires explicit location");
3876    }
3877 
3878    if (qual->flags.q.explicit_binding) {
3879       apply_explicit_binding(state, loc, var, var->type, qual);
3880    }
3881 
3882    if (state->stage == MESA_SHADER_GEOMETRY &&
3883        qual->flags.q.out && qual->flags.q.stream) {
3884       unsigned qual_stream;
3885       if (process_qualifier_constant(state, loc, "stream", qual->stream,
3886                                      &qual_stream) &&
3887           validate_stream_qualifier(loc, state, qual_stream)) {
3888          var->data.stream = qual_stream;
3889       }
3890    }
3891 
3892    if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3893       unsigned qual_xfb_buffer;
3894       if (process_qualifier_constant(state, loc, "xfb_buffer",
3895                                      qual->xfb_buffer, &qual_xfb_buffer) &&
3896           validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3897          var->data.xfb_buffer = qual_xfb_buffer;
3898          if (qual->flags.q.explicit_xfb_buffer)
3899             var->data.explicit_xfb_buffer = true;
3900       }
3901    }
3902 
3903    if (qual->flags.q.explicit_xfb_offset) {
3904       unsigned qual_xfb_offset;
3905       unsigned component_size = glsl_contains_double(var->type) ? 8 : 4;
3906 
3907       if (process_qualifier_constant(state, loc, "xfb_offset",
3908                                      qual->offset, &qual_xfb_offset) &&
3909           validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3910                                         var->type, component_size)) {
3911          var->data.offset = qual_xfb_offset;
3912          var->data.explicit_xfb_offset = true;
3913       }
3914    }
3915 
3916    if (qual->flags.q.explicit_xfb_stride) {
3917       unsigned qual_xfb_stride;
3918       if (process_qualifier_constant(state, loc, "xfb_stride",
3919                                      qual->xfb_stride, &qual_xfb_stride)) {
3920          var->data.xfb_stride = qual_xfb_stride;
3921          var->data.explicit_xfb_stride = true;
3922       }
3923    }
3924 
3925    if (glsl_contains_atomic(var->type)) {
3926       if (var->data.mode == ir_var_uniform) {
3927          if (var->data.explicit_binding) {
3928             unsigned *offset =
3929                &state->atomic_counter_offsets[var->data.binding];
3930 
3931             if (*offset % ATOMIC_COUNTER_SIZE)
3932                _mesa_glsl_error(loc, state,
3933                                 "misaligned atomic counter offset");
3934 
3935             if (*offset >= state->Const.MaxAtomicCounterBufferSize)
3936                _mesa_glsl_error(loc, state,
3937                                 "offset > max atomic counter buffer size");
3938 
3939             var->data.offset = *offset;
3940             *offset += glsl_atomic_size(var->type);
3941 
3942          } else {
3943             _mesa_glsl_error(loc, state,
3944                              "atomic counters require explicit binding point");
3945          }
3946       } else if (var->data.mode != ir_var_function_in) {
3947          _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3948                           "function parameters or uniform-qualified "
3949                           "global variables");
3950       }
3951    }
3952 
3953    if (glsl_contains_sampler(var->type) &&
3954        !validate_storage_for_sampler_image_types(var, state, loc))
3955       return;
3956 
3957    /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3958     * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3959     * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3960     * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3961     * These extensions and all following extensions that add the 'layout'
3962     * keyword have been modified to require the use of 'in' or 'out'.
3963     *
3964     * The following extension do not allow the deprecated keywords:
3965     *
3966     *    GL_AMD_conservative_depth
3967     *    GL_ARB_conservative_depth
3968     *    GL_ARB_gpu_shader5
3969     *    GL_ARB_separate_shader_objects
3970     *    GL_ARB_tessellation_shader
3971     *    GL_ARB_transform_feedback3
3972     *    GL_ARB_uniform_buffer_object
3973     *
3974     * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3975     * allow layout with the deprecated keywords.
3976     */
3977    const bool relaxed_layout_qualifier_checking =
3978       state->ARB_fragment_coord_conventions_enable;
3979 
3980    const bool uses_deprecated_qualifier = qual->flags.q.attribute
3981       || qual->flags.q.varying;
3982    if (qual->has_layout() && uses_deprecated_qualifier) {
3983       if (relaxed_layout_qualifier_checking) {
3984          _mesa_glsl_warning(loc, state,
3985                             "`layout' qualifier may not be used with "
3986                             "`attribute' or `varying'");
3987       } else {
3988          _mesa_glsl_error(loc, state,
3989                           "`layout' qualifier may not be used with "
3990                           "`attribute' or `varying'");
3991       }
3992    }
3993 
3994    /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3995     * AMD_conservative_depth.
3996     */
3997    if (qual->flags.q.depth_type
3998        && !state->is_version(420, 0)
3999        && !state->AMD_conservative_depth_enable
4000        && !state->ARB_conservative_depth_enable) {
4001        _mesa_glsl_error(loc, state,
4002                         "extension GL_AMD_conservative_depth or "
4003                         "GL_ARB_conservative_depth must be enabled "
4004                         "to use depth layout qualifiers");
4005    } else if (qual->flags.q.depth_type
4006               && strcmp(var->name, "gl_FragDepth") != 0) {
4007        _mesa_glsl_error(loc, state,
4008                         "depth layout qualifiers can be applied only to "
4009                         "gl_FragDepth");
4010    }
4011 
4012    switch (qual->depth_type) {
4013    case ast_depth_any:
4014       var->data.depth_layout = ir_depth_layout_any;
4015       break;
4016    case ast_depth_greater:
4017       var->data.depth_layout = ir_depth_layout_greater;
4018       break;
4019    case ast_depth_less:
4020       var->data.depth_layout = ir_depth_layout_less;
4021       break;
4022    case ast_depth_unchanged:
4023       var->data.depth_layout = ir_depth_layout_unchanged;
4024       break;
4025    default:
4026       var->data.depth_layout = ir_depth_layout_none;
4027       break;
4028    }
4029 
4030    if (qual->flags.q.std140 ||
4031        qual->flags.q.std430 ||
4032        qual->flags.q.packed ||
4033        qual->flags.q.shared) {
4034       _mesa_glsl_error(loc, state,
4035                        "uniform and shader storage block layout qualifiers "
4036                        "std140, std430, packed, and shared can only be "
4037                        "applied to uniform or shader storage blocks, not "
4038                        "members");
4039    }
4040 
4041    if (qual->flags.q.row_major || qual->flags.q.column_major) {
4042       validate_matrix_layout_for_type(state, loc, var->type, var);
4043    }
4044 
4045    /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
4046     * Inputs):
4047     *
4048     *  "Fragment shaders also allow the following layout qualifier on in only
4049     *   (not with variable declarations)
4050     *     layout-qualifier-id
4051     *        early_fragment_tests
4052     *   [...]"
4053     */
4054    if (qual->flags.q.early_fragment_tests) {
4055       _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
4056                        "valid in fragment shader input layout declaration.");
4057    }
4058 
4059    if (qual->flags.q.inner_coverage) {
4060       _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only "
4061                        "valid in fragment shader input layout declaration.");
4062    }
4063 
4064    if (qual->flags.q.post_depth_coverage) {
4065       _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only "
4066                        "valid in fragment shader input layout declaration.");
4067    }
4068 
4069    if (state->has_bindless())
4070       apply_bindless_qualifier_to_variable(qual, var, state, loc);
4071 
4072    if (qual->flags.q.pixel_interlock_ordered ||
4073        qual->flags.q.pixel_interlock_unordered ||
4074        qual->flags.q.sample_interlock_ordered ||
4075        qual->flags.q.sample_interlock_unordered) {
4076       _mesa_glsl_error(loc, state, "interlock layout qualifiers: "
4077                        "pixel_interlock_ordered, pixel_interlock_unordered, "
4078                        "sample_interlock_ordered and sample_interlock_unordered, "
4079                        "only valid in fragment shader input layout declaration.");
4080    }
4081 
4082    if (var->name != NULL && strcmp(var->name, "gl_Layer") == 0) {
4083       if (is_conflicting_layer_redeclaration(state, qual)) {
4084          _mesa_glsl_error(loc, state, "gl_Layer redeclaration with "
4085                           "different viewport_relative setting than earlier");
4086       }
4087       state->redeclares_gl_layer = true;
4088       if (qual->flags.q.viewport_relative) {
4089          state->layer_viewport_relative = true;
4090       }
4091    } else if (qual->flags.q.viewport_relative) {
4092       _mesa_glsl_error(loc, state,
4093                        "viewport_relative qualifier "
4094                        "can only be applied to gl_Layer.");
4095    }
4096 }
4097 
4098 static void
apply_type_qualifier_to_variable(const struct ast_type_qualifier * qual,ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc,bool is_parameter)4099 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
4100                                  ir_variable *var,
4101                                  struct _mesa_glsl_parse_state *state,
4102                                  YYLTYPE *loc,
4103                                  bool is_parameter)
4104 {
4105    STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
4106 
4107    if (qual->flags.q.invariant) {
4108       if (var->data.used) {
4109          _mesa_glsl_error(loc, state,
4110                           "variable `%s' may not be redeclared "
4111                           "`invariant' after being used",
4112                           var->name);
4113       } else {
4114          var->data.explicit_invariant = true;
4115          var->data.invariant = true;
4116       }
4117    }
4118 
4119    if (qual->flags.q.precise) {
4120       if (var->data.used) {
4121          _mesa_glsl_error(loc, state,
4122                           "variable `%s' may not be redeclared "
4123                           "`precise' after being used",
4124                           var->name);
4125       } else {
4126          var->data.precise = 1;
4127       }
4128    }
4129 
4130    if (qual->is_subroutine_decl() && !qual->flags.q.uniform) {
4131       _mesa_glsl_error(loc, state,
4132                        "`subroutine' may only be applied to uniforms, "
4133                        "subroutine type declarations, or function definitions");
4134    }
4135 
4136    if (qual->flags.q.constant || qual->flags.q.attribute
4137        || qual->flags.q.uniform
4138        || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
4139       var->data.read_only = 1;
4140 
4141    if (qual->flags.q.centroid)
4142       var->data.centroid = 1;
4143 
4144    if (qual->flags.q.sample)
4145       var->data.sample = 1;
4146 
4147    /* Precision qualifiers do not hold any meaning in Desktop GLSL */
4148    if (state->es_shader) {
4149       var->data.precision =
4150          select_gles_precision(qual->precision, var->type, state, loc);
4151    }
4152 
4153    if (qual->flags.q.patch)
4154       var->data.patch = 1;
4155 
4156    if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
4157       var->type = &glsl_type_builtin_error;
4158       _mesa_glsl_error(loc, state,
4159                        "`attribute' variables may not be declared in the "
4160                        "%s shader",
4161                        _mesa_shader_stage_to_string(state->stage));
4162    }
4163 
4164    /* Disallow layout qualifiers which may only appear on layout declarations. */
4165    if (qual->flags.q.prim_type) {
4166       _mesa_glsl_error(loc, state,
4167                        "Primitive type may only be specified on GS input or output "
4168                        "layout declaration, not on variables.");
4169    }
4170 
4171    /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
4172     *
4173     *     "However, the const qualifier cannot be used with out or inout."
4174     *
4175     * The same section of the GLSL 4.40 spec further clarifies this saying:
4176     *
4177     *     "The const qualifier cannot be used with out or inout, or a
4178     *     compile-time error results."
4179     */
4180    if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
4181       _mesa_glsl_error(loc, state,
4182                        "`const' may not be applied to `out' or `inout' "
4183                        "function parameters");
4184    }
4185 
4186    /* If there is no qualifier that changes the mode of the variable, leave
4187     * the setting alone.
4188     */
4189    assert(var->data.mode != ir_var_temporary);
4190    if (qual->flags.q.in && qual->flags.q.out)
4191       var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out;
4192    else if (qual->flags.q.in)
4193       var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
4194    else if (qual->flags.q.attribute
4195             || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
4196       var->data.mode = ir_var_shader_in;
4197    else if (qual->flags.q.out)
4198       var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
4199    else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
4200       var->data.mode = ir_var_shader_out;
4201    else if (qual->flags.q.uniform)
4202       var->data.mode = ir_var_uniform;
4203    else if (qual->flags.q.buffer)
4204       var->data.mode = ir_var_shader_storage;
4205    else if (qual->flags.q.shared_storage)
4206       var->data.mode = ir_var_shader_shared;
4207 
4208    if (!is_parameter && state->stage == MESA_SHADER_FRAGMENT) {
4209       if (state->has_framebuffer_fetch()) {
4210          if (state->is_version(130, 300))
4211             var->data.fb_fetch_output = qual->flags.q.in && qual->flags.q.out;
4212          else
4213             var->data.fb_fetch_output = (strcmp(var->name, "gl_LastFragData") == 0);
4214       }
4215 
4216       if (state->has_framebuffer_fetch_zs() &&
4217           (strcmp(var->name, "gl_LastFragDepthARM") == 0 ||
4218            strcmp(var->name, "gl_LastFragStencilARM") == 0)) {
4219          var->data.fb_fetch_output = 1;
4220       }
4221    }
4222 
4223    if (var->data.fb_fetch_output)
4224       var->data.assigned = true;
4225 
4226    if (var->is_fb_fetch_color_output()) {
4227       var->data.memory_coherent = !qual->flags.q.non_coherent;
4228 
4229       /* From the EXT_shader_framebuffer_fetch spec:
4230        *
4231        *   "It is an error to declare an inout fragment output not qualified
4232        *    with layout(noncoherent) if the GL_EXT_shader_framebuffer_fetch
4233        *    extension hasn't been enabled."
4234        */
4235       if (var->data.memory_coherent &&
4236           !state->EXT_shader_framebuffer_fetch_enable)
4237          _mesa_glsl_error(loc, state,
4238                           "invalid declaration of framebuffer fetch output not "
4239                           "qualified with layout(noncoherent)");
4240 
4241    } else {
4242       /* From the EXT_shader_framebuffer_fetch spec:
4243        *
4244        *   "Fragment outputs declared inout may specify the following layout
4245        *    qualifier: [...] noncoherent"
4246        */
4247       if (qual->flags.q.non_coherent)
4248          _mesa_glsl_error(loc, state,
4249                           "invalid layout(noncoherent) qualifier not part of "
4250                           "framebuffer fetch output declaration");
4251    }
4252 
4253    if (!is_parameter && is_varying_var(var, state->stage)) {
4254       /* User-defined ins/outs are not permitted in compute shaders. */
4255       if (state->stage == MESA_SHADER_COMPUTE) {
4256          _mesa_glsl_error(loc, state,
4257                           "user-defined input and output variables are not "
4258                           "permitted in compute shaders");
4259       }
4260 
4261       /* This variable is being used to link data between shader stages (in
4262        * pre-glsl-1.30 parlance, it's a "varying").  Check that it has a type
4263        * that is allowed for such purposes.
4264        *
4265        * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
4266        *
4267        *     "The varying qualifier can be used only with the data types
4268        *     float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
4269        *     these."
4270        *
4271        * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00.  From
4272        * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
4273        *
4274        *     "Fragment inputs can only be signed and unsigned integers and
4275        *     integer vectors, float, floating-point vectors, matrices, or
4276        *     arrays of these. Structures cannot be input.
4277        *
4278        * Similar text exists in the section on vertex shader outputs.
4279        *
4280        * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
4281        * 3.00 spec allows structs as well.  Varying structs are also allowed
4282        * in GLSL 1.50.
4283        *
4284        * From section 4.3.4 of the ARB_bindless_texture spec:
4285        *
4286        *     "(modify third paragraph of the section to allow sampler and image
4287        *     types) ...  Vertex shader inputs can only be float,
4288        *     single-precision floating-point scalars, single-precision
4289        *     floating-point vectors, matrices, signed and unsigned integers
4290        *     and integer vectors, sampler and image types."
4291        *
4292        * From section 4.3.6 of the ARB_bindless_texture spec:
4293        *
4294        *     "Output variables can only be floating-point scalars,
4295        *     floating-point vectors, matrices, signed or unsigned integers or
4296        *     integer vectors, sampler or image types, or arrays or structures
4297        *     of any these."
4298        */
4299       switch (glsl_without_array(var->type)->base_type) {
4300       case GLSL_TYPE_FLOAT:
4301          /* Ok in all GLSL versions */
4302          break;
4303       case GLSL_TYPE_FLOAT16:
4304          if (state->AMD_gpu_shader_half_float_enable)
4305             break;
4306          _mesa_glsl_error(loc, state, "illegal type for a varying variable");
4307          break;
4308       case GLSL_TYPE_UINT:
4309       case GLSL_TYPE_INT:
4310          if (state->is_version(130, 300) || state->EXT_gpu_shader4_enable)
4311             break;
4312          _mesa_glsl_error(loc, state,
4313                           "varying variables must be of base type float in %s",
4314                           state->get_version_string());
4315          break;
4316       case GLSL_TYPE_STRUCT:
4317          if (state->is_version(150, 300))
4318             break;
4319          _mesa_glsl_error(loc, state,
4320                           "varying variables may not be of type struct");
4321          break;
4322       case GLSL_TYPE_DOUBLE:
4323       case GLSL_TYPE_UINT64:
4324       case GLSL_TYPE_INT64:
4325          break;
4326       case GLSL_TYPE_SAMPLER:
4327       case GLSL_TYPE_TEXTURE:
4328       case GLSL_TYPE_IMAGE:
4329          if (state->has_bindless())
4330             break;
4331          FALLTHROUGH;
4332       default:
4333          _mesa_glsl_error(loc, state, "illegal type for a varying variable");
4334          break;
4335       }
4336    }
4337 
4338    if (state->all_invariant && var->data.mode == ir_var_shader_out) {
4339       var->data.explicit_invariant = true;
4340       var->data.invariant = true;
4341    }
4342 
4343    var->data.interpolation =
4344       interpret_interpolation_qualifier(qual, var->type,
4345                                         (ir_variable_mode) var->data.mode,
4346                                         state, loc);
4347 
4348    /* Does the declaration use the deprecated 'attribute' or 'varying'
4349     * keywords?
4350     */
4351    const bool uses_deprecated_qualifier = qual->flags.q.attribute
4352       || qual->flags.q.varying;
4353 
4354 
4355    /* Validate auxiliary storage qualifiers */
4356 
4357    /* From section 4.3.4 of the GLSL 1.30 spec:
4358     *    "It is an error to use centroid in in a vertex shader."
4359     *
4360     * From section 4.3.4 of the GLSL ES 3.00 spec:
4361     *    "It is an error to use centroid in or interpolation qualifiers in
4362     *    a vertex shader input."
4363     */
4364 
4365    /* Section 4.3.6 of the GLSL 1.30 specification states:
4366     * "It is an error to use centroid out in a fragment shader."
4367     *
4368     * The GL_ARB_shading_language_420pack extension specification states:
4369     * "It is an error to use auxiliary storage qualifiers or interpolation
4370     *  qualifiers on an output in a fragment shader."
4371     */
4372    if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
4373       _mesa_glsl_error(loc, state,
4374                        "sample qualifier may only be used on `in` or `out` "
4375                        "variables between shader stages");
4376    }
4377    if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
4378       _mesa_glsl_error(loc, state,
4379                        "centroid qualifier may only be used with `in', "
4380                        "`out' or `varying' variables between shader stages");
4381    }
4382 
4383    if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
4384       _mesa_glsl_error(loc, state,
4385                        "the shared storage qualifiers can only be used with "
4386                        "compute shaders");
4387    }
4388 
4389    apply_image_qualifier_to_variable(qual, var, state, loc);
4390 }
4391 
4392 /**
4393  * Get the variable that is being redeclared by this declaration or if it
4394  * does not exist, the current declared variable.
4395  *
4396  * Semantic checks to verify the validity of the redeclaration are also
4397  * performed.  If semantic checks fail, compilation error will be emitted via
4398  * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
4399  *
4400  * \returns
4401  * A pointer to an existing variable in the current scope if the declaration
4402  * is a redeclaration, current variable otherwise. \c is_declared boolean
4403  * will return \c true if the declaration is a redeclaration, \c false
4404  * otherwise.
4405  */
4406 static ir_variable *
get_variable_being_redeclared(ir_variable ** var_ptr,YYLTYPE loc,struct _mesa_glsl_parse_state * state,bool allow_all_redeclarations,bool * is_redeclaration)4407 get_variable_being_redeclared(ir_variable **var_ptr, YYLTYPE loc,
4408                               struct _mesa_glsl_parse_state *state,
4409                               bool allow_all_redeclarations,
4410                               bool *is_redeclaration)
4411 {
4412    ir_variable *var = *var_ptr;
4413 
4414    /* Check if this declaration is actually a re-declaration, either to
4415     * resize an array or add qualifiers to an existing variable.
4416     *
4417     * This is allowed for variables in the current scope, or when at
4418     * global scope (for built-ins in the implicit outer scope).
4419     */
4420    ir_variable *earlier = state->symbols->get_variable(var->name);
4421    if (earlier == NULL ||
4422        (state->current_function != NULL &&
4423        !state->symbols->name_declared_this_scope(var->name))) {
4424       *is_redeclaration = false;
4425       return var;
4426    }
4427 
4428    *is_redeclaration = true;
4429 
4430    if (earlier->data.how_declared == ir_var_declared_implicitly) {
4431       /* Verify that the redeclaration of a built-in does not change the
4432        * storage qualifier.  There are a couple special cases.
4433        *
4434        * 1. Some built-in variables that are defined as 'in' in the
4435        *    specification are implemented as system values.  Allow
4436        *    ir_var_system_value -> ir_var_shader_in.
4437        *
4438        * 2. gl_LastFragData is implemented as a ir_var_shader_out, but the
4439        *    specification requires that redeclarations omit any qualifier.
4440        *    Allow ir_var_shader_out -> ir_var_auto for this one variable.
4441        */
4442       if (earlier->data.mode != var->data.mode &&
4443           !(earlier->data.mode == ir_var_system_value &&
4444             var->data.mode == ir_var_shader_in) &&
4445           !(strcmp(var->name, "gl_LastFragData") == 0 &&
4446             var->data.mode == ir_var_auto)) {
4447          _mesa_glsl_error(&loc, state,
4448                           "redeclaration cannot change qualification of `%s'",
4449                           var->name);
4450       }
4451    }
4452 
4453    /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
4454     *
4455     * "It is legal to declare an array without a size and then
4456     *  later re-declare the same name as an array of the same
4457     *  type and specify a size."
4458     */
4459    if (glsl_type_is_unsized_array(earlier->type) && glsl_type_is_array(var->type)
4460        && (var->type->fields.array == earlier->type->fields.array)) {
4461       const int size = glsl_array_size(var->type);
4462       check_builtin_array_max_size(var->name, size, loc, state);
4463       if ((size > 0) && (size <= earlier->data.max_array_access)) {
4464          _mesa_glsl_error(& loc, state, "array size must be > %u due to "
4465                           "previous access",
4466                           earlier->data.max_array_access);
4467       }
4468 
4469       earlier->type = var->type;
4470       delete var;
4471       var = NULL;
4472       *var_ptr = NULL;
4473    } else if (earlier->type != var->type) {
4474       _mesa_glsl_error(&loc, state,
4475                        "redeclaration of `%s' has incorrect type",
4476                        var->name);
4477    } else if ((state->ARB_fragment_coord_conventions_enable ||
4478               state->is_version(150, 0))
4479               && strcmp(var->name, "gl_FragCoord") == 0) {
4480       /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
4481        * qualifiers.
4482        *
4483        * We don't really need to do anything here, just allow the
4484        * redeclaration. Any error on the gl_FragCoord is handled on the ast
4485        * level at apply_layout_qualifier_to_variable using the
4486        * ast_type_qualifier and _mesa_glsl_parse_state, or later at
4487        * linker.cpp.
4488        */
4489       /* According to section 4.3.7 of the GLSL 1.30 spec,
4490        * the following built-in varaibles can be redeclared with an
4491        * interpolation qualifier:
4492        *    * gl_FrontColor
4493        *    * gl_BackColor
4494        *    * gl_FrontSecondaryColor
4495        *    * gl_BackSecondaryColor
4496        *    * gl_Color
4497        *    * gl_SecondaryColor
4498        */
4499    } else if (state->is_version(130, 0)
4500               && (strcmp(var->name, "gl_FrontColor") == 0
4501                   || strcmp(var->name, "gl_BackColor") == 0
4502                   || strcmp(var->name, "gl_FrontSecondaryColor") == 0
4503                   || strcmp(var->name, "gl_BackSecondaryColor") == 0
4504                   || strcmp(var->name, "gl_Color") == 0
4505                   || strcmp(var->name, "gl_SecondaryColor") == 0)) {
4506       earlier->data.interpolation = var->data.interpolation;
4507 
4508       /* Layout qualifiers for gl_FragDepth. */
4509    } else if ((state->is_version(420, 0) ||
4510                state->AMD_conservative_depth_enable ||
4511                state->ARB_conservative_depth_enable)
4512               && strcmp(var->name, "gl_FragDepth") == 0) {
4513 
4514       /** From the AMD_conservative_depth spec:
4515        *     Within any shader, the first redeclarations of gl_FragDepth
4516        *     must appear before any use of gl_FragDepth.
4517        */
4518       if (earlier->data.used) {
4519          _mesa_glsl_error(&loc, state,
4520                           "the first redeclaration of gl_FragDepth "
4521                           "must appear before any use of gl_FragDepth");
4522       }
4523 
4524       /* Prevent inconsistent redeclaration of depth layout qualifier. */
4525       if (earlier->data.depth_layout != ir_depth_layout_none
4526           && earlier->data.depth_layout != var->data.depth_layout) {
4527             _mesa_glsl_error(&loc, state,
4528                              "gl_FragDepth: depth layout is declared here "
4529                              "as '%s, but it was previously declared as "
4530                              "'%s'",
4531                              depth_layout_string((ir_depth_layout)var->data.depth_layout),
4532                              depth_layout_string((ir_depth_layout)earlier->data.depth_layout));
4533       }
4534 
4535       earlier->data.depth_layout = var->data.depth_layout;
4536 
4537    } else if (state->has_framebuffer_fetch() &&
4538               strcmp(var->name, "gl_LastFragData") == 0 &&
4539               var->data.mode == ir_var_auto) {
4540       /* According to the EXT_shader_framebuffer_fetch spec:
4541        *
4542        *   "By default, gl_LastFragData is declared with the mediump precision
4543        *    qualifier. This can be changed by redeclaring the corresponding
4544        *    variables with the desired precision qualifier."
4545        *
4546        *   "Fragment shaders may specify the following layout qualifier only for
4547        *    redeclaring the built-in gl_LastFragData array [...]: noncoherent"
4548        */
4549       earlier->data.precision = var->data.precision;
4550       earlier->data.memory_coherent = var->data.memory_coherent;
4551 
4552    } else if (state->NV_viewport_array2_enable &&
4553               strcmp(var->name, "gl_Layer") == 0 &&
4554               earlier->data.how_declared == ir_var_declared_implicitly) {
4555       /* No need to do anything, just allow it. Qualifier is stored in state */
4556 
4557    } else if (state->is_version(0, 300) &&
4558               state->has_separate_shader_objects() &&
4559               (strcmp(var->name, "gl_Position") == 0 ||
4560               strcmp(var->name, "gl_PointSize") == 0)) {
4561 
4562        /*  EXT_separate_shader_objects spec says:
4563        *
4564        *  "The following vertex shader outputs may be redeclared
4565        *   at global scope to specify a built-in output interface,
4566        *   with or without special qualifiers:
4567        *
4568        *    gl_Position
4569        *    gl_PointSize
4570        *
4571        *    When compiling shaders using either of the above variables,
4572        *    both such variables must be redeclared prior to use."
4573        */
4574       if (earlier->data.used) {
4575          _mesa_glsl_error(&loc, state, "the first redeclaration of "
4576                          "%s must appear before any use", var->name);
4577       }
4578    } else if ((earlier->data.how_declared == ir_var_declared_implicitly &&
4579                state->allow_builtin_variable_redeclaration) ||
4580               allow_all_redeclarations) {
4581       /* Allow verbatim redeclarations of built-in variables. Not explicitly
4582        * valid, but some applications do it.
4583        */
4584    } else {
4585       _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
4586    }
4587 
4588    return earlier;
4589 }
4590 
4591 /**
4592  * Generate the IR for an initializer in a variable declaration
4593  */
4594 static ir_rvalue *
process_initializer(ir_variable * var,ast_declaration * decl,ast_fully_specified_type * type,exec_list * initializer_instructions,struct _mesa_glsl_parse_state * state)4595 process_initializer(ir_variable *var, ast_declaration *decl,
4596                     ast_fully_specified_type *type,
4597                     exec_list *initializer_instructions,
4598                     struct _mesa_glsl_parse_state *state)
4599 {
4600    void *mem_ctx = state;
4601    ir_rvalue *result = NULL;
4602 
4603    YYLTYPE initializer_loc = decl->initializer->get_location();
4604 
4605    /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
4606     *
4607     *    "All uniform variables are read-only and are initialized either
4608     *    directly by an application via API commands, or indirectly by
4609     *    OpenGL."
4610     */
4611    if (var->data.mode == ir_var_uniform) {
4612       state->check_version(120, 0, &initializer_loc,
4613                            "cannot initialize uniform %s",
4614                            var->name);
4615    }
4616 
4617    /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4618     *
4619     *    "Buffer variables cannot have initializers."
4620     */
4621    if (var->data.mode == ir_var_shader_storage) {
4622       _mesa_glsl_error(&initializer_loc, state,
4623                        "cannot initialize buffer variable %s",
4624                        var->name);
4625    }
4626 
4627    /* From section 4.1.7 of the GLSL 4.40 spec:
4628     *
4629     *    "Opaque variables [...] are initialized only through the
4630     *     OpenGL API; they cannot be declared with an initializer in a
4631     *     shader."
4632     *
4633     * From section 4.1.7 of the ARB_bindless_texture spec:
4634     *
4635     *    "Samplers may be declared as shader inputs and outputs, as uniform
4636     *     variables, as temporary variables, and as function parameters."
4637     *
4638     * From section 4.1.X of the ARB_bindless_texture spec:
4639     *
4640     *    "Images may be declared as shader inputs and outputs, as uniform
4641     *     variables, as temporary variables, and as function parameters."
4642     */
4643    if (glsl_contains_atomic(var->type) ||
4644        (!state->has_bindless() && glsl_contains_opaque(var->type))) {
4645       _mesa_glsl_error(&initializer_loc, state,
4646                        "cannot initialize %s variable %s",
4647                        var->name, state->has_bindless() ? "atomic" : "opaque");
4648    }
4649 
4650    if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4651       _mesa_glsl_error(&initializer_loc, state,
4652                        "cannot initialize %s shader input / %s %s",
4653                        _mesa_shader_stage_to_string(state->stage),
4654                        (state->stage == MESA_SHADER_VERTEX)
4655                        ? "attribute" : "varying",
4656                        var->name);
4657    }
4658 
4659    if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4660       _mesa_glsl_error(&initializer_loc, state,
4661                        "cannot initialize %s shader output %s",
4662                        _mesa_shader_stage_to_string(state->stage),
4663                        var->name);
4664    }
4665 
4666    /* If the initializer is an ast_aggregate_initializer, recursively store
4667     * type information from the LHS into it, so that its hir() function can do
4668     * type checking.
4669     */
4670    if (decl->initializer->oper == ast_aggregate)
4671       _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4672 
4673    ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4674    ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4675 
4676    /* Calculate the constant value if this is a const or uniform
4677     * declaration.
4678     *
4679     * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4680     *
4681     *     "Declarations of globals without a storage qualifier, or with
4682     *     just the const qualifier, may include initializers, in which case
4683     *     they will be initialized before the first line of main() is
4684     *     executed.  Such initializers must be a constant expression."
4685     *
4686     * The same section of the GLSL ES 3.00.4 spec has similar language.
4687     */
4688    if (type->qualifier.flags.q.constant
4689        || type->qualifier.flags.q.uniform
4690        || (state->es_shader && state->current_function == NULL)) {
4691       ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4692                                                lhs, rhs, true);
4693       if (new_rhs != NULL) {
4694          rhs = new_rhs;
4695 
4696          /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4697           * says:
4698           *
4699           *     "A constant expression is one of
4700           *
4701           *        ...
4702           *
4703           *        - an expression formed by an operator on operands that are
4704           *          all constant expressions, including getting an element of
4705           *          a constant array, or a field of a constant structure, or
4706           *          components of a constant vector.  However, the sequence
4707           *          operator ( , ) and the assignment operators ( =, +=, ...)
4708           *          are not included in the operators that can create a
4709           *          constant expression."
4710           *
4711           * Section 12.43 (Sequence operator and constant expressions) says:
4712           *
4713           *     "Should the following construct be allowed?
4714           *
4715           *         float a[2,3];
4716           *
4717           *     The expression within the brackets uses the sequence operator
4718           *     (',') and returns the integer 3 so the construct is declaring
4719           *     a single-dimensional array of size 3.  In some languages, the
4720           *     construct declares a two-dimensional array.  It would be
4721           *     preferable to make this construct illegal to avoid confusion.
4722           *
4723           *     One possibility is to change the definition of the sequence
4724           *     operator so that it does not return a constant-expression and
4725           *     hence cannot be used to declare an array size.
4726           *
4727           *     RESOLUTION: The result of a sequence operator is not a
4728           *     constant-expression."
4729           *
4730           * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4731           * contains language almost identical to the section 4.3.3 in the
4732           * GLSL ES 3.00.4 spec.  This is a new limitation for these GLSL
4733           * versions.
4734           */
4735          ir_constant *constant_value =
4736             rhs->constant_expression_value(mem_ctx);
4737 
4738          if (!constant_value ||
4739              (state->is_version(430, 300) &&
4740               decl->initializer->has_sequence_subexpression())) {
4741             const char *const variable_mode =
4742                (type->qualifier.flags.q.constant)
4743                ? "const"
4744                : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4745 
4746             /* If ARB_shading_language_420pack is enabled, initializers of
4747              * const-qualified local variables do not have to be constant
4748              * expressions. Const-qualified global variables must still be
4749              * initialized with constant expressions.
4750              */
4751             if (!state->has_420pack()
4752                 || state->current_function == NULL) {
4753                _mesa_glsl_error(& initializer_loc, state,
4754                                 "initializer of %s variable `%s' must be a "
4755                                 "constant expression",
4756                                 variable_mode,
4757                                 decl->identifier);
4758                if (glsl_type_is_numeric(var->type)) {
4759                   /* Reduce cascading errors. */
4760                   var->constant_value = type->qualifier.flags.q.constant
4761                      ? ir_constant::zero(state, var->type) : NULL;
4762                }
4763             }
4764          } else {
4765             rhs = constant_value;
4766             var->constant_value = type->qualifier.flags.q.constant
4767                ? constant_value : NULL;
4768          }
4769       } else {
4770          if (glsl_type_is_numeric(var->type)) {
4771             /* Reduce cascading errors. */
4772             rhs = var->constant_value = type->qualifier.flags.q.constant
4773                ? ir_constant::zero(state, var->type) : NULL;
4774          }
4775       }
4776    }
4777 
4778    if (rhs && !glsl_type_is_error(rhs->type)) {
4779       bool temp = var->data.read_only;
4780       if (type->qualifier.flags.q.constant)
4781          var->data.read_only = false;
4782 
4783       /* Never emit code to initialize a uniform.
4784        */
4785       const glsl_type *initializer_type;
4786       bool error_emitted = false;
4787       if (!type->qualifier.flags.q.uniform) {
4788          error_emitted =
4789             do_assignment(initializer_instructions, state,
4790                           NULL, lhs, rhs,
4791                           &result, true, true,
4792                           type->get_location());
4793          initializer_type = result->type;
4794       } else
4795          initializer_type = rhs->type;
4796 
4797       if (!error_emitted) {
4798          var->constant_initializer = rhs->constant_expression_value(mem_ctx);
4799          var->data.has_initializer = true;
4800          var->data.is_implicit_initializer = false;
4801 
4802          /* If the declared variable is an unsized array, it must inherrit
4803          * its full type from the initializer.  A declaration such as
4804          *
4805          *     uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4806          *
4807          * becomes
4808          *
4809          *     uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4810          *
4811          * The assignment generated in the if-statement (below) will also
4812          * automatically handle this case for non-uniforms.
4813          *
4814          * If the declared variable is not an array, the types must
4815          * already match exactly.  As a result, the type assignment
4816          * here can be done unconditionally.  For non-uniforms the call
4817          * to do_assignment can change the type of the initializer (via
4818          * the implicit conversion rules).  For uniforms the initializer
4819          * must be a constant expression, and the type of that expression
4820          * was validated above.
4821          */
4822          var->type = initializer_type;
4823       }
4824 
4825       var->data.read_only = temp;
4826    }
4827 
4828    return result;
4829 }
4830 
4831 static void
validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state * state,YYLTYPE loc,ir_variable * var,unsigned num_vertices,unsigned * size,const char * var_category)4832 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4833                                        YYLTYPE loc, ir_variable *var,
4834                                        unsigned num_vertices,
4835                                        unsigned *size,
4836                                        const char *var_category)
4837 {
4838    if (glsl_type_is_unsized_array(var->type)) {
4839       /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4840        *
4841        *   All geometry shader input unsized array declarations will be
4842        *   sized by an earlier input layout qualifier, when present, as per
4843        *   the following table.
4844        *
4845        * Followed by a table mapping each allowed input layout qualifier to
4846        * the corresponding input length.
4847        *
4848        * Similarly for tessellation control shader outputs.
4849        */
4850       if (num_vertices != 0)
4851          var->type = glsl_array_type(var->type->fields.array,
4852                                      num_vertices, 0);
4853    } else {
4854       /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4855        * includes the following examples of compile-time errors:
4856        *
4857        *   // code sequence within one shader...
4858        *   in vec4 Color1[];    // size unknown
4859        *   ...Color1.length()...// illegal, length() unknown
4860        *   in vec4 Color2[2];   // size is 2
4861        *   ...Color1.length()...// illegal, Color1 still has no size
4862        *   in vec4 Color3[3];   // illegal, input sizes are inconsistent
4863        *   layout(lines) in;    // legal, input size is 2, matching
4864        *   in vec4 Color4[3];   // illegal, contradicts layout
4865        *   ...
4866        *
4867        * To detect the case illustrated by Color3, we verify that the size of
4868        * an explicitly-sized array matches the size of any previously declared
4869        * explicitly-sized array.  To detect the case illustrated by Color4, we
4870        * verify that the size of an explicitly-sized array is consistent with
4871        * any previously declared input layout.
4872        */
4873       if (num_vertices != 0 && var->type->length != num_vertices) {
4874          _mesa_glsl_error(&loc, state,
4875                           "%s size contradicts previously declared layout "
4876                           "(size is %u, but layout requires a size of %u)",
4877                           var_category, var->type->length, num_vertices);
4878       } else if (*size != 0 && var->type->length != *size) {
4879          _mesa_glsl_error(&loc, state,
4880                           "%s sizes are inconsistent (size is %u, but a "
4881                           "previous declaration has size %u)",
4882                           var_category, var->type->length, *size);
4883       } else {
4884          *size = var->type->length;
4885       }
4886    }
4887 }
4888 
4889 static void
handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state * state,YYLTYPE loc,ir_variable * var)4890 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4891                                     YYLTYPE loc, ir_variable *var)
4892 {
4893    unsigned num_vertices = 0;
4894 
4895    if (state->tcs_output_vertices_specified) {
4896       if (!state->out_qualifier->vertices->
4897              process_qualifier_constant(state, "vertices",
4898                                         &num_vertices, false)) {
4899          return;
4900       }
4901 
4902       if (num_vertices > state->Const.MaxPatchVertices) {
4903          _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4904                           "GL_MAX_PATCH_VERTICES", num_vertices);
4905          return;
4906       }
4907    }
4908 
4909    if (!glsl_type_is_array(var->type) && !var->data.patch) {
4910       _mesa_glsl_error(&loc, state,
4911                        "tessellation control shader outputs must be arrays");
4912 
4913       /* To avoid cascading failures, short circuit the checks below. */
4914       return;
4915    }
4916 
4917    if (var->data.patch)
4918       return;
4919 
4920    validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4921                                           &state->tcs_output_size,
4922                                           "tessellation control shader output");
4923 }
4924 
4925 /**
4926  * Do additional processing necessary for tessellation control/evaluation shader
4927  * input declarations. This covers both interface block arrays and bare input
4928  * variables.
4929  */
4930 static void
handle_tess_shader_input_decl(struct _mesa_glsl_parse_state * state,YYLTYPE loc,ir_variable * var)4931 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4932                               YYLTYPE loc, ir_variable *var)
4933 {
4934    if (!glsl_type_is_array(var->type) && !var->data.patch) {
4935       _mesa_glsl_error(&loc, state,
4936                        "per-vertex tessellation shader inputs must be arrays");
4937       /* Avoid cascading failures. */
4938       return;
4939    }
4940 
4941    if (var->data.patch)
4942       return;
4943 
4944    /* The ARB_tessellation_shader spec says:
4945     *
4946     *    "Declaring an array size is optional.  If no size is specified, it
4947     *     will be taken from the implementation-dependent maximum patch size
4948     *     (gl_MaxPatchVertices).  If a size is specified, it must match the
4949     *     maximum patch size; otherwise, a compile or link error will occur."
4950     *
4951     * This text appears twice, once for TCS inputs, and again for TES inputs.
4952     */
4953    if (glsl_type_is_unsized_array(var->type)) {
4954       var->type = glsl_array_type(var->type->fields.array,
4955             state->Const.MaxPatchVertices, 0);
4956    } else if (var->type->length != state->Const.MaxPatchVertices) {
4957       _mesa_glsl_error(&loc, state,
4958                        "per-vertex tessellation shader input arrays must be "
4959                        "sized to gl_MaxPatchVertices (%d).",
4960                        state->Const.MaxPatchVertices);
4961    }
4962 }
4963 
4964 
4965 /**
4966  * Do additional processing necessary for geometry shader input declarations
4967  * (this covers both interface blocks arrays and bare input variables).
4968  */
4969 static void
handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state * state,YYLTYPE loc,ir_variable * var)4970 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4971                                   YYLTYPE loc, ir_variable *var)
4972 {
4973    unsigned num_vertices = 0;
4974 
4975    if (state->gs_input_prim_type_specified) {
4976       GLenum in_prim_type = state->in_qualifier->prim_type;
4977       num_vertices = mesa_vertices_per_prim(gl_to_mesa_prim(in_prim_type));
4978    }
4979 
4980    /* Geometry shader input variables must be arrays.  Caller should have
4981     * reported an error for this.
4982     */
4983    if (!glsl_type_is_array(var->type)) {
4984       assert(state->error);
4985 
4986       /* To avoid cascading failures, short circuit the checks below. */
4987       return;
4988    }
4989 
4990    validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4991                                           &state->gs_input_size,
4992                                           "geometry shader input");
4993 }
4994 
4995 static void
validate_identifier(const char * identifier,YYLTYPE loc,struct _mesa_glsl_parse_state * state)4996 validate_identifier(const char *identifier, YYLTYPE loc,
4997                     struct _mesa_glsl_parse_state *state)
4998 {
4999    /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
5000     *
5001     *   "Identifiers starting with "gl_" are reserved for use by
5002     *   OpenGL, and may not be declared in a shader as either a
5003     *   variable or a function."
5004     */
5005    if (is_gl_identifier(identifier)) {
5006       _mesa_glsl_error(&loc, state,
5007                        "identifier `%s' uses reserved `gl_' prefix",
5008                        identifier);
5009    } else if (strstr(identifier, "__")) {
5010       /* From page 14 (page 20 of the PDF) of the GLSL 1.10
5011        * spec:
5012        *
5013        *     "In addition, all identifiers containing two
5014        *      consecutive underscores (__) are reserved as
5015        *      possible future keywords."
5016        *
5017        * The intention is that names containing __ are reserved for internal
5018        * use by the implementation, and names prefixed with GL_ are reserved
5019        * for use by Khronos.  Names simply containing __ are dangerous to use,
5020        * but should be allowed.
5021        *
5022        * A future version of the GLSL specification will clarify this.
5023        */
5024       _mesa_glsl_warning(&loc, state,
5025                          "identifier `%s' uses reserved `__' string",
5026                          identifier);
5027    }
5028 }
5029 
5030 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)5031 ast_declarator_list::hir(exec_list *instructions,
5032                          struct _mesa_glsl_parse_state *state)
5033 {
5034    void *ctx = state;
5035    const struct glsl_type *decl_type;
5036    const char *type_name = NULL;
5037    ir_rvalue *result = NULL;
5038    YYLTYPE loc = this->get_location();
5039 
5040    /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
5041     *
5042     *     "To ensure that a particular output variable is invariant, it is
5043     *     necessary to use the invariant qualifier. It can either be used to
5044     *     qualify a previously declared variable as being invariant
5045     *
5046     *         invariant gl_Position; // make existing gl_Position be invariant"
5047     *
5048     * In these cases the parser will set the 'invariant' flag in the declarator
5049     * list, and the type will be NULL.
5050     */
5051    if (this->invariant) {
5052       assert(this->type == NULL);
5053 
5054       if (state->current_function != NULL) {
5055          _mesa_glsl_error(& loc, state,
5056                           "all uses of `invariant' keyword must be at global "
5057                           "scope");
5058       }
5059 
5060       foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
5061          assert(decl->array_specifier == NULL);
5062          assert(decl->initializer == NULL);
5063 
5064          ir_variable *const earlier =
5065             state->symbols->get_variable(decl->identifier);
5066          if (earlier == NULL) {
5067             _mesa_glsl_error(& loc, state,
5068                              "undeclared variable `%s' cannot be marked "
5069                              "invariant", decl->identifier);
5070          } else if (!is_allowed_invariant(earlier, state)) {
5071             _mesa_glsl_error(&loc, state,
5072                              "`%s' cannot be marked invariant; interfaces between "
5073                              "shader stages only.", decl->identifier);
5074          } else if (earlier->data.used) {
5075             _mesa_glsl_error(& loc, state,
5076                             "variable `%s' may not be redeclared "
5077                             "`invariant' after being used",
5078                             earlier->name);
5079          } else {
5080             earlier->data.explicit_invariant = true;
5081             earlier->data.invariant = true;
5082          }
5083       }
5084 
5085       /* Invariant redeclarations do not have r-values.
5086        */
5087       return NULL;
5088    }
5089 
5090    if (this->precise) {
5091       assert(this->type == NULL);
5092 
5093       foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
5094          assert(decl->array_specifier == NULL);
5095          assert(decl->initializer == NULL);
5096 
5097          ir_variable *const earlier =
5098             state->symbols->get_variable(decl->identifier);
5099          if (earlier == NULL) {
5100             _mesa_glsl_error(& loc, state,
5101                              "undeclared variable `%s' cannot be marked "
5102                              "precise", decl->identifier);
5103          } else if (state->current_function != NULL &&
5104                     !state->symbols->name_declared_this_scope(decl->identifier)) {
5105             /* Note: we have to check if we're in a function, since
5106              * builtins are treated as having come from another scope.
5107              */
5108             _mesa_glsl_error(& loc, state,
5109                              "variable `%s' from an outer scope may not be "
5110                              "redeclared `precise' in this scope",
5111                              earlier->name);
5112          } else if (earlier->data.used) {
5113             _mesa_glsl_error(& loc, state,
5114                              "variable `%s' may not be redeclared "
5115                              "`precise' after being used",
5116                              earlier->name);
5117          } else {
5118             earlier->data.precise = true;
5119          }
5120       }
5121 
5122       /* Precise redeclarations do not have r-values either. */
5123       return NULL;
5124    }
5125 
5126    assert(this->type != NULL);
5127    assert(!this->invariant);
5128    assert(!this->precise);
5129 
5130    /* GL_EXT_shader_image_load_store base type uses GLSL_TYPE_VOID as a special value to
5131     * indicate that it needs to be updated later (see glsl_parser.yy).
5132     * This is done here, based on the layout qualifier and the type of the image var
5133     */
5134    if (this->type->qualifier.flags.q.explicit_image_format &&
5135          glsl_type_is_image(this->type->specifier->type) &&
5136          this->type->qualifier.image_base_type == GLSL_TYPE_VOID) {
5137       /*     "The ARB_shader_image_load_store says:
5138        *     If both extensions are enabled in the shading language, the "size*" layout
5139        *     qualifiers are treated as format qualifiers, and are mapped to equivalent
5140        *     format qualifiers in the table below, according to the type of image
5141        *     variable.
5142        *                     image*    iimage*   uimage*
5143        *                     --------  --------  --------
5144        *       size1x8       n/a       r8i       r8ui
5145        *       size1x16      r16f      r16i      r16ui
5146        *       size1x32      r32f      r32i      r32ui
5147        *       size2x32      rg32f     rg32i     rg32ui
5148        *       size4x32      rgba32f   rgba32i   rgba32ui"
5149        */
5150       if (strncmp(this->type->specifier->type_name, "image", strlen("image")) == 0) {
5151          switch (this->type->qualifier.image_format) {
5152          case PIPE_FORMAT_R8_SINT:
5153             /* The GL_EXT_shader_image_load_store spec says:
5154              *    A layout of "size1x8" is illegal for image variables associated
5155              *    with floating-point data types.
5156              */
5157             _mesa_glsl_error(& loc, state,
5158                              "size1x8 is illegal for image variables "
5159                              "with floating-point data types.");
5160             return NULL;
5161          case PIPE_FORMAT_R16_SINT:
5162             this->type->qualifier.image_format = PIPE_FORMAT_R16_FLOAT;
5163             break;
5164          case PIPE_FORMAT_R32_SINT:
5165             this->type->qualifier.image_format = PIPE_FORMAT_R32_FLOAT;
5166             break;
5167          case PIPE_FORMAT_R32G32_SINT:
5168             this->type->qualifier.image_format = PIPE_FORMAT_R32G32_FLOAT;
5169             break;
5170          case PIPE_FORMAT_R32G32B32A32_SINT:
5171             this->type->qualifier.image_format = PIPE_FORMAT_R32G32B32A32_FLOAT;
5172             break;
5173          default:
5174             unreachable("Unknown image format");
5175          }
5176          this->type->qualifier.image_base_type = GLSL_TYPE_FLOAT;
5177       } else if (strncmp(this->type->specifier->type_name, "uimage", strlen("uimage")) == 0) {
5178          switch (this->type->qualifier.image_format) {
5179          case PIPE_FORMAT_R8_SINT:
5180             this->type->qualifier.image_format = PIPE_FORMAT_R8_UINT;
5181             break;
5182          case PIPE_FORMAT_R16_SINT:
5183             this->type->qualifier.image_format = PIPE_FORMAT_R16_UINT;
5184             break;
5185          case PIPE_FORMAT_R32_SINT:
5186             this->type->qualifier.image_format = PIPE_FORMAT_R32_UINT;
5187             break;
5188          case PIPE_FORMAT_R32G32_SINT:
5189             this->type->qualifier.image_format = PIPE_FORMAT_R32G32_UINT;
5190             break;
5191          case PIPE_FORMAT_R32G32B32A32_SINT:
5192             this->type->qualifier.image_format = PIPE_FORMAT_R32G32B32A32_UINT;
5193             break;
5194          default:
5195             unreachable("Unknown image format");
5196          }
5197          this->type->qualifier.image_base_type = GLSL_TYPE_UINT;
5198       } else if (strncmp(this->type->specifier->type_name, "iimage", strlen("iimage")) == 0) {
5199          this->type->qualifier.image_base_type = GLSL_TYPE_INT;
5200       } else {
5201          assert(false);
5202       }
5203    }
5204 
5205    /* The type specifier may contain a structure definition.  Process that
5206     * before any of the variable declarations.
5207     */
5208    (void) this->type->specifier->hir(instructions, state);
5209 
5210    decl_type = this->type->glsl_type(& type_name, state);
5211 
5212    /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
5213     *    "Buffer variables may only be declared inside interface blocks
5214     *    (section 4.3.9 “Interface Blocks”), which are then referred to as
5215     *    shader storage blocks. It is a compile-time error to declare buffer
5216     *    variables at global scope (outside a block)."
5217     */
5218    if (type->qualifier.flags.q.buffer && !glsl_type_is_interface(decl_type)) {
5219       _mesa_glsl_error(&loc, state,
5220                        "buffer variables cannot be declared outside "
5221                        "interface blocks");
5222    }
5223 
5224    /* An offset-qualified atomic counter declaration sets the default
5225     * offset for the next declaration within the same atomic counter
5226     * buffer.
5227     */
5228    if (decl_type && glsl_contains_atomic(decl_type)) {
5229       if (type->qualifier.flags.q.explicit_binding &&
5230           type->qualifier.flags.q.explicit_offset) {
5231          unsigned qual_binding;
5232          unsigned qual_offset;
5233          if (process_qualifier_constant(state, &loc, "binding",
5234                                         type->qualifier.binding,
5235                                         &qual_binding)
5236              && process_qualifier_constant(state, &loc, "offset",
5237                                         type->qualifier.offset,
5238                                         &qual_offset)) {
5239             if (qual_binding < ARRAY_SIZE(state->atomic_counter_offsets))
5240                state->atomic_counter_offsets[qual_binding] = qual_offset;
5241          }
5242       }
5243 
5244       ast_type_qualifier allowed_atomic_qual_mask;
5245       allowed_atomic_qual_mask.flags.i = 0;
5246       allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
5247       allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
5248       allowed_atomic_qual_mask.flags.q.uniform = 1;
5249 
5250       type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask,
5251                                      "invalid layout qualifier for",
5252                                      "atomic_uint");
5253    }
5254 
5255    if (this->declarations.is_empty()) {
5256       /* If there is no structure involved in the program text, there are two
5257        * possible scenarios:
5258        *
5259        * - The program text contained something like 'vec4;'.  This is an
5260        *   empty declaration.  It is valid but weird.  Emit a warning.
5261        *
5262        * - The program text contained something like 'S;' and 'S' is not the
5263        *   name of a known structure type.  This is both invalid and weird.
5264        *   Emit an error.
5265        *
5266        * - The program text contained something like 'mediump float;'
5267        *   when the programmer probably meant 'precision mediump
5268        *   float;' Emit a warning with a description of what they
5269        *   probably meant to do.
5270        *
5271        * Note that if decl_type is NULL and there is a structure involved,
5272        * there must have been some sort of error with the structure.  In this
5273        * case we assume that an error was already generated on this line of
5274        * code for the structure.  There is no need to generate an additional,
5275        * confusing error.
5276        */
5277       assert(this->type->specifier->structure == NULL || decl_type != NULL
5278              || state->error);
5279 
5280       if (decl_type == NULL) {
5281          _mesa_glsl_error(&loc, state,
5282                           "invalid type `%s' in empty declaration",
5283                           type_name);
5284       } else {
5285          if (glsl_type_is_array(decl_type)) {
5286             /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
5287              * spec:
5288              *
5289              *    "... any declaration that leaves the size undefined is
5290              *    disallowed as this would add complexity and there are no
5291              *    use-cases."
5292              */
5293             if (state->es_shader && glsl_type_is_unsized_array(decl_type)) {
5294                _mesa_glsl_error(&loc, state, "array size must be explicitly "
5295                                 "or implicitly defined");
5296             }
5297 
5298             /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
5299              *
5300              *    "The combinations of types and qualifiers that cause
5301              *    compile-time or link-time errors are the same whether or not
5302              *    the declaration is empty."
5303              */
5304             validate_array_dimensions(decl_type, state, &loc);
5305          }
5306 
5307          if (glsl_type_is_atomic_uint(decl_type)) {
5308             /* Empty atomic counter declarations are allowed and useful
5309              * to set the default offset qualifier.
5310              */
5311             return NULL;
5312          } else if (this->type->qualifier.precision != ast_precision_none) {
5313             if (this->type->specifier->structure != NULL) {
5314                _mesa_glsl_error(&loc, state,
5315                                 "precision qualifiers can't be applied "
5316                                 "to structures");
5317             } else {
5318                static const char *const precision_names[] = {
5319                   "highp",
5320                   "highp",
5321                   "mediump",
5322                   "lowp"
5323                };
5324 
5325                _mesa_glsl_warning(&loc, state,
5326                                   "empty declaration with precision "
5327                                   "qualifier, to set the default precision, "
5328                                   "use `precision %s %s;'",
5329                                   precision_names[this->type->
5330                                      qualifier.precision],
5331                                   type_name);
5332             }
5333          } else if (this->type->specifier->structure == NULL) {
5334             _mesa_glsl_warning(&loc, state, "empty declaration");
5335          }
5336       }
5337    }
5338 
5339    foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
5340       const struct glsl_type *var_type;
5341       ir_variable *var;
5342       const char *identifier = decl->identifier;
5343       /* FINISHME: Emit a warning if a variable declaration shadows a
5344        * FINISHME: declaration at a higher scope.
5345        */
5346 
5347       if ((decl_type == NULL) || glsl_type_is_void(decl_type)) {
5348          if (type_name != NULL) {
5349             _mesa_glsl_error(& loc, state,
5350                              "invalid type `%s' in declaration of `%s'",
5351                              type_name, decl->identifier);
5352          } else {
5353             _mesa_glsl_error(& loc, state,
5354                              "invalid type in declaration of `%s'",
5355                              decl->identifier);
5356          }
5357          continue;
5358       }
5359 
5360       if (this->type->qualifier.is_subroutine_decl()) {
5361          const glsl_type *t;
5362          const char *name;
5363 
5364          t = state->symbols->get_type(this->type->specifier->type_name);
5365          if (!t)
5366             _mesa_glsl_error(& loc, state,
5367                              "invalid type in declaration of `%s'",
5368                              decl->identifier);
5369          name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
5370 
5371          identifier = name;
5372 
5373       }
5374       var_type = process_array_type(&loc, decl_type, decl->array_specifier,
5375                                     state);
5376 
5377       var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
5378 
5379       /* The 'varying in' and 'varying out' qualifiers can only be used with
5380        * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
5381        * yet.
5382        */
5383       if (this->type->qualifier.flags.q.varying) {
5384          if (this->type->qualifier.flags.q.in) {
5385             _mesa_glsl_error(& loc, state,
5386                              "`varying in' qualifier in declaration of "
5387                              "`%s' only valid for geometry shaders using "
5388                              "ARB_geometry_shader4 or EXT_geometry_shader4",
5389                              decl->identifier);
5390          } else if (this->type->qualifier.flags.q.out) {
5391             _mesa_glsl_error(& loc, state,
5392                              "`varying out' qualifier in declaration of "
5393                              "`%s' only valid for geometry shaders using "
5394                              "ARB_geometry_shader4 or EXT_geometry_shader4",
5395                              decl->identifier);
5396          }
5397       }
5398 
5399       /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
5400        *
5401        *     "Global variables can only use the qualifiers const,
5402        *     attribute, uniform, or varying. Only one may be
5403        *     specified.
5404        *
5405        *     Local variables can only use the qualifier const."
5406        *
5407        * This is relaxed in GLSL 1.30 and GLSL ES 3.00.  It is also relaxed by
5408        * any extension that adds the 'layout' keyword.
5409        */
5410       if (!state->is_version(130, 300)
5411           && !state->has_explicit_attrib_location()
5412           && !state->has_separate_shader_objects()
5413           && !state->ARB_fragment_coord_conventions_enable) {
5414          /* GL_EXT_gpu_shader4 only allows "varying out" on fragment shader
5415           * outputs. (the varying flag is not set by the parser)
5416           */
5417          if (this->type->qualifier.flags.q.out &&
5418              (!state->EXT_gpu_shader4_enable ||
5419               state->stage != MESA_SHADER_FRAGMENT)) {
5420             _mesa_glsl_error(& loc, state,
5421                              "`out' qualifier in declaration of `%s' "
5422                              "only valid for function parameters in %s",
5423                              decl->identifier, state->get_version_string());
5424          }
5425          if (this->type->qualifier.flags.q.in) {
5426             _mesa_glsl_error(& loc, state,
5427                              "`in' qualifier in declaration of `%s' "
5428                              "only valid for function parameters in %s",
5429                              decl->identifier, state->get_version_string());
5430          }
5431          /* FINISHME: Test for other invalid qualifiers. */
5432       }
5433 
5434       apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
5435                                        & loc, false);
5436       apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
5437                                          &loc);
5438 
5439       if ((state->zero_init & (1u << var->data.mode)) &&
5440           (glsl_type_is_numeric(var->type) || glsl_type_is_boolean(var->type))) {
5441          const ir_constant_data data = { { 0 } };
5442          var->data.has_initializer = true;
5443          var->data.is_implicit_initializer = true;
5444          var->constant_initializer = new(var) ir_constant(var->type, &data);
5445       }
5446 
5447       if (this->type->qualifier.flags.q.invariant) {
5448          if (!is_allowed_invariant(var, state)) {
5449             _mesa_glsl_error(&loc, state,
5450                              "`%s' cannot be marked invariant; interfaces between "
5451                              "shader stages only", var->name);
5452          }
5453       }
5454 
5455       if (state->current_function != NULL) {
5456          const char *mode = NULL;
5457          const char *extra = "";
5458 
5459          /* There is no need to check for 'inout' here because the parser will
5460           * only allow that in function parameter lists.
5461           */
5462          if (this->type->qualifier.flags.q.attribute) {
5463             mode = "attribute";
5464          } else if (this->type->qualifier.is_subroutine_decl()) {
5465             mode = "subroutine uniform";
5466          } else if (this->type->qualifier.flags.q.uniform) {
5467             mode = "uniform";
5468          } else if (this->type->qualifier.flags.q.varying) {
5469             mode = "varying";
5470          } else if (this->type->qualifier.flags.q.in) {
5471             mode = "in";
5472             extra = " or in function parameter list";
5473          } else if (this->type->qualifier.flags.q.out) {
5474             mode = "out";
5475             extra = " or in function parameter list";
5476          }
5477 
5478          if (mode) {
5479             _mesa_glsl_error(& loc, state,
5480                              "%s variable `%s' must be declared at "
5481                              "global scope%s",
5482                              mode, var->name, extra);
5483          }
5484       } else if (var->data.mode == ir_var_shader_in) {
5485          var->data.read_only = true;
5486 
5487          if (state->stage == MESA_SHADER_VERTEX) {
5488             /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
5489              *
5490              *    "Vertex shader inputs can only be float, floating-point
5491              *    vectors, matrices, signed and unsigned integers and integer
5492              *    vectors. Vertex shader inputs can also form arrays of these
5493              *    types, but not structures."
5494              *
5495              * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
5496              *
5497              *    "Vertex shader inputs can only be float, floating-point
5498              *    vectors, matrices, signed and unsigned integers and integer
5499              *    vectors. They cannot be arrays or structures."
5500              *
5501              * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
5502              *
5503              *    "The attribute qualifier can be used only with float,
5504              *    floating-point vectors, and matrices. Attribute variables
5505              *    cannot be declared as arrays or structures."
5506              *
5507              * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
5508              *
5509              *    "Vertex shader inputs can only be float, floating-point
5510              *    vectors, matrices, signed and unsigned integers and integer
5511              *    vectors. Vertex shader inputs cannot be arrays or
5512              *    structures."
5513              *
5514              * From section 4.3.4 of the ARB_bindless_texture spec:
5515              *
5516              *    "(modify third paragraph of the section to allow sampler and
5517              *    image types) ...  Vertex shader inputs can only be float,
5518              *    single-precision floating-point scalars, single-precision
5519              *    floating-point vectors, matrices, signed and unsigned
5520              *    integers and integer vectors, sampler and image types."
5521              */
5522             const glsl_type *check_type = glsl_without_array(var->type);
5523 
5524             bool error = false;
5525             switch (check_type->base_type) {
5526             case GLSL_TYPE_FLOAT:
5527                break;
5528             case GLSL_TYPE_UINT64:
5529             case GLSL_TYPE_INT64:
5530                break;
5531             case GLSL_TYPE_UINT:
5532             case GLSL_TYPE_INT:
5533                error = !state->is_version(120, 300) && !state->EXT_gpu_shader4_enable;
5534                break;
5535             case GLSL_TYPE_DOUBLE:
5536                error = !state->is_version(410, 0) && !state->ARB_vertex_attrib_64bit_enable;
5537                break;
5538             case GLSL_TYPE_SAMPLER:
5539             case GLSL_TYPE_TEXTURE:
5540             case GLSL_TYPE_IMAGE:
5541                error = !state->has_bindless();
5542                break;
5543             default:
5544                error = true;
5545             }
5546 
5547             if (error) {
5548                _mesa_glsl_error(& loc, state,
5549                                 "vertex shader input / attribute cannot have "
5550                                 "type %s`%s'",
5551                                 glsl_type_is_array(var->type) ? "array of " : "",
5552                                 glsl_get_type_name(check_type));
5553             } else if (glsl_type_is_array(var->type) &&
5554                 !state->check_version(150, 0, &loc,
5555                                       "vertex shader input / attribute "
5556                                       "cannot have array type")) {
5557             }
5558          } else if (state->stage == MESA_SHADER_GEOMETRY) {
5559             /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
5560              *
5561              *     Geometry shader input variables get the per-vertex values
5562              *     written out by vertex shader output variables of the same
5563              *     names. Since a geometry shader operates on a set of
5564              *     vertices, each input varying variable (or input block, see
5565              *     interface blocks below) needs to be declared as an array.
5566              */
5567             if (!glsl_type_is_array(var->type)) {
5568                _mesa_glsl_error(&loc, state,
5569                                 "geometry shader inputs must be arrays");
5570             }
5571 
5572             handle_geometry_shader_input_decl(state, loc, var);
5573          } else if (state->stage == MESA_SHADER_FRAGMENT) {
5574             /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
5575              *
5576              *     It is a compile-time error to declare a fragment shader
5577              *     input with, or that contains, any of the following types:
5578              *
5579              *     * A boolean type
5580              *     * An opaque type
5581              *     * An array of arrays
5582              *     * An array of structures
5583              *     * A structure containing an array
5584              *     * A structure containing a structure
5585              */
5586             if (state->es_shader) {
5587                const glsl_type *check_type = glsl_without_array(var->type);
5588                if (glsl_type_is_boolean(check_type) ||
5589                    glsl_contains_opaque(check_type)) {
5590                   _mesa_glsl_error(&loc, state,
5591                                    "fragment shader input cannot have type %s",
5592                                    glsl_get_type_name(check_type));
5593                }
5594                if (glsl_type_is_array(var->type) &&
5595                    glsl_type_is_array(var->type->fields.array)) {
5596                   _mesa_glsl_error(&loc, state,
5597                                    "%s shader output "
5598                                    "cannot have an array of arrays",
5599                                    _mesa_shader_stage_to_string(state->stage));
5600                }
5601                if (glsl_type_is_array(var->type) &&
5602                    glsl_type_is_struct(var->type->fields.array)) {
5603                   _mesa_glsl_error(&loc, state,
5604                                    "fragment shader input "
5605                                    "cannot have an array of structs");
5606                }
5607                if (glsl_type_is_struct(var->type)) {
5608                   for (unsigned i = 0; i < var->type->length; i++) {
5609                      if (glsl_type_is_array(var->type->fields.structure[i].type) ||
5610                          glsl_type_is_struct(var->type->fields.structure[i].type))
5611                         _mesa_glsl_error(&loc, state,
5612                                          "fragment shader input cannot have "
5613                                          "a struct that contains an "
5614                                          "array or struct");
5615                   }
5616                }
5617             }
5618          } else if (state->stage == MESA_SHADER_TESS_CTRL ||
5619                     state->stage == MESA_SHADER_TESS_EVAL) {
5620             handle_tess_shader_input_decl(state, loc, var);
5621          }
5622       } else if (var->data.mode == ir_var_shader_out) {
5623          const glsl_type *check_type = glsl_without_array(var->type);
5624 
5625          /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
5626           *
5627           *     It is a compile-time error to declare a fragment shader output
5628           *     that contains any of the following:
5629           *
5630           *     * A Boolean type (bool, bvec2 ...)
5631           *     * A double-precision scalar or vector (double, dvec2 ...)
5632           *     * An opaque type
5633           *     * Any matrix type
5634           *     * A structure
5635           */
5636          if (state->stage == MESA_SHADER_FRAGMENT) {
5637             if (glsl_type_is_struct(check_type) || glsl_type_is_matrix(check_type))
5638                _mesa_glsl_error(&loc, state,
5639                                 "fragment shader output "
5640                                 "cannot have struct or matrix type");
5641             switch (check_type->base_type) {
5642             case GLSL_TYPE_UINT:
5643             case GLSL_TYPE_INT:
5644             case GLSL_TYPE_FLOAT:
5645                break;
5646             default:
5647                _mesa_glsl_error(&loc, state,
5648                                 "fragment shader output cannot have "
5649                                 "type %s", glsl_get_type_name(check_type));
5650             }
5651          }
5652 
5653          /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
5654           *
5655           *     It is a compile-time error to declare a vertex shader output
5656           *     with, or that contains, any of the following types:
5657           *
5658           *     * A boolean type
5659           *     * An opaque type
5660           *     * An array of arrays
5661           *     * An array of structures
5662           *     * A structure containing an array
5663           *     * A structure containing a structure
5664           *
5665           *     It is a compile-time error to declare a fragment shader output
5666           *     with, or that contains, any of the following types:
5667           *
5668           *     * A boolean type
5669           *     * An opaque type
5670           *     * A matrix
5671           *     * A structure
5672           *     * An array of array
5673           *
5674           * ES 3.20 updates this to apply to tessellation and geometry shaders
5675           * as well.  Because there are per-vertex arrays in the new stages,
5676           * it strikes the "array of..." rules and replaces them with these:
5677           *
5678           *     * For per-vertex-arrayed variables (applies to tessellation
5679           *       control, tessellation evaluation and geometry shaders):
5680           *
5681           *       * Per-vertex-arrayed arrays of arrays
5682           *       * Per-vertex-arrayed arrays of structures
5683           *
5684           *     * For non-per-vertex-arrayed variables:
5685           *
5686           *       * An array of arrays
5687           *       * An array of structures
5688           *
5689           * which basically says to unwrap the per-vertex aspect and apply
5690           * the old rules.
5691           */
5692          if (state->es_shader) {
5693             if (glsl_type_is_array(var->type) &&
5694                 glsl_type_is_array(var->type->fields.array)) {
5695                _mesa_glsl_error(&loc, state,
5696                                 "%s shader output "
5697                                 "cannot have an array of arrays",
5698                                 _mesa_shader_stage_to_string(state->stage));
5699             }
5700             if (state->stage <= MESA_SHADER_GEOMETRY) {
5701                const glsl_type *type = var->type;
5702 
5703                if (state->stage == MESA_SHADER_TESS_CTRL &&
5704                    !var->data.patch && glsl_type_is_array(var->type)) {
5705                   type = var->type->fields.array;
5706                }
5707 
5708                if (glsl_type_is_array(type) && glsl_type_is_struct(type->fields.array)) {
5709                   _mesa_glsl_error(&loc, state,
5710                                    "%s shader output cannot have "
5711                                    "an array of structs",
5712                                    _mesa_shader_stage_to_string(state->stage));
5713                }
5714                if (glsl_type_is_struct(type)) {
5715                   for (unsigned i = 0; i < type->length; i++) {
5716                      if (glsl_type_is_array(type->fields.structure[i].type) ||
5717                          glsl_type_is_struct(type->fields.structure[i].type))
5718                         _mesa_glsl_error(&loc, state,
5719                                          "%s shader output cannot have a "
5720                                          "struct that contains an "
5721                                          "array or struct",
5722                                          _mesa_shader_stage_to_string(state->stage));
5723                   }
5724                }
5725             }
5726          }
5727 
5728          if (state->stage == MESA_SHADER_TESS_CTRL) {
5729             handle_tess_ctrl_shader_output_decl(state, loc, var);
5730          }
5731       } else if (glsl_contains_subroutine(var->type)) {
5732          /* declare subroutine uniforms as hidden */
5733          var->data.how_declared = ir_var_hidden;
5734       }
5735 
5736       /* From section 4.3.4 of the GLSL 4.00 spec:
5737        *    "Input variables may not be declared using the patch in qualifier
5738        *    in tessellation control or geometry shaders."
5739        *
5740        * From section 4.3.6 of the GLSL 4.00 spec:
5741        *    "It is an error to use patch out in a vertex, tessellation
5742        *    evaluation, or geometry shader."
5743        *
5744        * This doesn't explicitly forbid using them in a fragment shader, but
5745        * that's probably just an oversight.
5746        */
5747       if (state->stage != MESA_SHADER_TESS_EVAL
5748           && this->type->qualifier.flags.q.patch
5749           && this->type->qualifier.flags.q.in) {
5750 
5751          _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
5752                           "tessellation evaluation shader");
5753       }
5754 
5755       if (state->stage != MESA_SHADER_TESS_CTRL
5756           && this->type->qualifier.flags.q.patch
5757           && this->type->qualifier.flags.q.out) {
5758 
5759          _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
5760                           "tessellation control shader");
5761       }
5762 
5763       /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
5764        */
5765       if (this->type->qualifier.precision != ast_precision_none) {
5766          state->check_precision_qualifiers_allowed(&loc);
5767       }
5768 
5769       if (this->type->qualifier.precision != ast_precision_none &&
5770           !precision_qualifier_allowed(var->type)) {
5771          _mesa_glsl_error(&loc, state,
5772                           "precision qualifiers apply only to floating point"
5773                           ", integer and opaque types");
5774       }
5775 
5776       /* From section 4.1.7 of the GLSL 4.40 spec:
5777        *
5778        *    "[Opaque types] can only be declared as function
5779        *     parameters or uniform-qualified variables."
5780        *
5781        * From section 4.1.7 of the ARB_bindless_texture spec:
5782        *
5783        *    "Samplers may be declared as shader inputs and outputs, as uniform
5784        *     variables, as temporary variables, and as function parameters."
5785        *
5786        * From section 4.1.X of the ARB_bindless_texture spec:
5787        *
5788        *    "Images may be declared as shader inputs and outputs, as uniform
5789        *     variables, as temporary variables, and as function parameters."
5790        */
5791       if (!this->type->qualifier.flags.q.uniform &&
5792           (glsl_contains_atomic(var_type) ||
5793            (!state->has_bindless() && glsl_contains_opaque(var_type)))) {
5794          _mesa_glsl_error(&loc, state,
5795                           "%s variables must be declared uniform",
5796                           state->has_bindless() ? "atomic" : "opaque");
5797       }
5798 
5799       /* Process the initializer and add its instructions to a temporary
5800        * list.  This list will be added to the instruction stream (below) after
5801        * the declaration is added.  This is done because in some cases (such as
5802        * redeclarations) the declaration may not actually be added to the
5803        * instruction stream.
5804        */
5805       exec_list initializer_instructions;
5806 
5807       /* Examine var name here since var may get deleted in the next call */
5808       bool var_is_gl_id = is_gl_identifier(var->name);
5809 
5810       bool is_redeclaration;
5811       var = get_variable_being_redeclared(&var, decl->get_location(), state,
5812                                           false /* allow_all_redeclarations */,
5813                                           &is_redeclaration);
5814       if (is_redeclaration) {
5815          if (var_is_gl_id &&
5816              var->data.how_declared == ir_var_declared_in_block) {
5817             _mesa_glsl_error(&loc, state,
5818                              "`%s' has already been redeclared using "
5819                              "gl_PerVertex", var->name);
5820          }
5821          var->data.how_declared = ir_var_declared_normally;
5822       }
5823 
5824       if (decl->initializer != NULL) {
5825          result = process_initializer(var,
5826                                       decl, this->type,
5827                                       &initializer_instructions, state);
5828       } else {
5829          validate_array_dimensions(var_type, state, &loc);
5830       }
5831 
5832       /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5833        *
5834        *     "It is an error to write to a const variable outside of
5835        *      its declaration, so they must be initialized when
5836        *      declared."
5837        */
5838       if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5839          _mesa_glsl_error(& loc, state,
5840                           "const declaration of `%s' must be initialized",
5841                           decl->identifier);
5842       }
5843 
5844       if (state->es_shader) {
5845          const glsl_type *const t = var->type;
5846 
5847          /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs.
5848           *
5849           * The GL_OES_tessellation_shader spec says about inputs:
5850           *
5851           *    "Declaring an array size is optional. If no size is specified,
5852           *     it will be taken from the implementation-dependent maximum
5853           *     patch size (gl_MaxPatchVertices)."
5854           *
5855           * and about TCS outputs:
5856           *
5857           *    "If no size is specified, it will be taken from output patch
5858           *     size declared in the shader."
5859           *
5860           * The GL_OES_geometry_shader spec says:
5861           *
5862           *    "All geometry shader input unsized array declarations will be
5863           *     sized by an earlier input primitive layout qualifier, when
5864           *     present, as per the following table."
5865           */
5866          const bool implicitly_sized =
5867             (var->data.mode == ir_var_shader_in &&
5868              state->stage >= MESA_SHADER_TESS_CTRL &&
5869              state->stage <= MESA_SHADER_GEOMETRY) ||
5870             (var->data.mode == ir_var_shader_out &&
5871              state->stage == MESA_SHADER_TESS_CTRL);
5872 
5873          if (glsl_type_is_unsized_array(t) && !implicitly_sized)
5874             /* Section 10.17 of the GLSL ES 1.00 specification states that
5875              * unsized array declarations have been removed from the language.
5876              * Arrays that are sized using an initializer are still explicitly
5877              * sized.  However, GLSL ES 1.00 does not allow array
5878              * initializers.  That is only allowed in GLSL ES 3.00.
5879              *
5880              * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5881              *
5882              *     "An array type can also be formed without specifying a size
5883              *     if the definition includes an initializer:
5884              *
5885              *         float x[] = float[2] (1.0, 2.0);     // declares an array of size 2
5886              *         float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5887              *
5888              *         float a[5];
5889              *         float b[] = a;"
5890              */
5891             _mesa_glsl_error(& loc, state,
5892                              "unsized array declarations are not allowed in "
5893                              "GLSL ES");
5894       }
5895 
5896       /* Section 4.4.6.1 Atomic Counter Layout Qualifiers of the GLSL 4.60 spec:
5897        *
5898        *    "It is a compile-time error to declare an unsized array of
5899        *     atomic_uint"
5900        */
5901       if (glsl_type_is_unsized_array(var->type) &&
5902           glsl_without_array(var->type)->base_type == GLSL_TYPE_ATOMIC_UINT) {
5903          _mesa_glsl_error(& loc, state,
5904                           "Unsized array of atomic_uint is not allowed");
5905       }
5906 
5907       /* If the declaration is not a redeclaration, there are a few additional
5908        * semantic checks that must be applied.  In addition, variable that was
5909        * created for the declaration should be added to the IR stream.
5910        */
5911       if (!is_redeclaration) {
5912          validate_identifier(decl->identifier, loc, state);
5913 
5914          /* Add the variable to the symbol table.  Note that the initializer's
5915           * IR was already processed earlier (though it hasn't been emitted
5916           * yet), without the variable in scope.
5917           *
5918           * This differs from most C-like languages, but it follows the GLSL
5919           * specification.  From page 28 (page 34 of the PDF) of the GLSL 1.50
5920           * spec:
5921           *
5922           *     "Within a declaration, the scope of a name starts immediately
5923           *     after the initializer if present or immediately after the name
5924           *     being declared if not."
5925           */
5926          if (!state->symbols->add_variable(var)) {
5927             YYLTYPE loc = this->get_location();
5928             _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5929                              "current scope", decl->identifier);
5930             continue;
5931          }
5932 
5933          /* Push the variable declaration to the top.  It means that all the
5934           * variable declarations will appear in a funny last-to-first order,
5935           * but otherwise we run into trouble if a function is prototyped, a
5936           * global var is decled, then the function is defined with usage of
5937           * the global var.  See glslparsertest's CorrectModule.frag.
5938           */
5939          instructions->push_head(var);
5940       }
5941 
5942       instructions->append_list(&initializer_instructions);
5943    }
5944 
5945 
5946    /* Generally, variable declarations do not have r-values.  However,
5947     * one is used for the declaration in
5948     *
5949     * while (bool b = some_condition()) {
5950     *   ...
5951     * }
5952     *
5953     * so we return the rvalue from the last seen declaration here.
5954     */
5955    return result;
5956 }
5957 
5958 
5959 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)5960 ast_parameter_declarator::hir(exec_list *instructions,
5961                               struct _mesa_glsl_parse_state *state)
5962 {
5963    void *ctx = state;
5964    const struct glsl_type *type;
5965    const char *name = NULL;
5966    YYLTYPE loc = this->get_location();
5967 
5968    type = this->type->glsl_type(& name, state);
5969 
5970    if (type == NULL) {
5971       if (name != NULL) {
5972          _mesa_glsl_error(& loc, state,
5973                           "invalid type `%s' in declaration of `%s'",
5974                           name, this->identifier);
5975       } else {
5976          _mesa_glsl_error(& loc, state,
5977                           "invalid type in declaration of `%s'",
5978                           this->identifier);
5979       }
5980 
5981       type = &glsl_type_builtin_error;
5982    }
5983 
5984    /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5985     *
5986     *    "Functions that accept no input arguments need not use void in the
5987     *    argument list because prototypes (or definitions) are required and
5988     *    therefore there is no ambiguity when an empty argument list "( )" is
5989     *    declared. The idiom "(void)" as a parameter list is provided for
5990     *    convenience."
5991     *
5992     * Placing this check here prevents a void parameter being set up
5993     * for a function, which avoids tripping up checks for main taking
5994     * parameters and lookups of an unnamed symbol.
5995     */
5996    if (glsl_type_is_void(type)) {
5997       if (this->identifier != NULL)
5998          _mesa_glsl_error(& loc, state,
5999                           "named parameter cannot have type `void'");
6000 
6001       is_void = true;
6002       return NULL;
6003    }
6004 
6005    if (formal_parameter && (this->identifier == NULL)) {
6006       _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
6007       return NULL;
6008    }
6009 
6010    /* This only handles "vec4 foo[..]".  The earlier specifier->glsl_type(...)
6011     * call already handled the "vec4[..] foo" case.
6012     */
6013    type = process_array_type(&loc, type, this->array_specifier, state);
6014 
6015    if (!glsl_type_is_error(type) && glsl_type_is_unsized_array(type)) {
6016       _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
6017                        "a declared size");
6018       type = &glsl_type_builtin_error;
6019    }
6020 
6021    is_void = false;
6022    ir_variable *var = new(ctx)
6023       ir_variable(type, this->identifier, ir_var_function_in);
6024 
6025    /* Apply any specified qualifiers to the parameter declaration.  Note that
6026     * for function parameters the default mode is 'in'.
6027     */
6028    apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
6029                                     true);
6030 
6031    if (((1u << var->data.mode) & state->zero_init) &&
6032        (glsl_type_is_numeric(var->type) || glsl_type_is_boolean(var->type))) {
6033          const ir_constant_data data = { { 0 } };
6034          var->data.has_initializer = true;
6035          var->data.is_implicit_initializer = true;
6036          var->constant_initializer = new(var) ir_constant(var->type, &data);
6037    }
6038 
6039    /* From section 4.1.7 of the GLSL 4.40 spec:
6040     *
6041     *   "Opaque variables cannot be treated as l-values; hence cannot
6042     *    be used as out or inout function parameters, nor can they be
6043     *    assigned into."
6044     *
6045     * From section 4.1.7 of the ARB_bindless_texture spec:
6046     *
6047     *   "Samplers can be used as l-values, so can be assigned into and used
6048     *    as "out" and "inout" function parameters."
6049     *
6050     * From section 4.1.X of the ARB_bindless_texture spec:
6051     *
6052     *   "Images can be used as l-values, so can be assigned into and used as
6053     *    "out" and "inout" function parameters."
6054     */
6055    if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
6056        && (glsl_contains_atomic(type) ||
6057            (!state->has_bindless() && glsl_contains_opaque(type)))) {
6058       _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
6059                        "contain %s variables",
6060                        state->has_bindless() ? "atomic" : "opaque");
6061       type = &glsl_type_builtin_error;
6062    }
6063 
6064    /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
6065     *
6066     *    "When calling a function, expressions that do not evaluate to
6067     *     l-values cannot be passed to parameters declared as out or inout."
6068     *
6069     * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
6070     *
6071     *    "Other binary or unary expressions, non-dereferenced arrays,
6072     *     function names, swizzles with repeated fields, and constants
6073     *     cannot be l-values."
6074     *
6075     * So for GLSL 1.10, passing an array as an out or inout parameter is not
6076     * allowed.  This restriction is removed in GLSL 1.20, and in GLSL ES.
6077     */
6078    if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
6079        && glsl_type_is_array(type)
6080        && !state->check_version(120, 100, &loc,
6081                                 "arrays cannot be out or inout parameters")) {
6082       type = &glsl_type_builtin_error;
6083    }
6084 
6085    instructions->push_tail(var);
6086 
6087    /* Parameter declarations do not have r-values.
6088     */
6089    return NULL;
6090 }
6091 
6092 
6093 void
parameters_to_hir(exec_list * ast_parameters,bool formal,exec_list * ir_parameters,_mesa_glsl_parse_state * state)6094 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
6095                                             bool formal,
6096                                             exec_list *ir_parameters,
6097                                             _mesa_glsl_parse_state *state)
6098 {
6099    ast_parameter_declarator *void_param = NULL;
6100    unsigned count = 0;
6101 
6102    foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
6103       param->formal_parameter = formal;
6104       param->hir(ir_parameters, state);
6105 
6106       if (param->is_void)
6107          void_param = param;
6108 
6109       count++;
6110    }
6111 
6112    if ((void_param != NULL) && (count > 1)) {
6113       YYLTYPE loc = void_param->get_location();
6114 
6115       _mesa_glsl_error(& loc, state,
6116                        "`void' parameter must be only parameter");
6117    }
6118 }
6119 
6120 
6121 void
emit_function(_mesa_glsl_parse_state * state,ir_function * f)6122 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
6123 {
6124    /* IR invariants disallow function declarations or definitions
6125     * nested within other function definitions.  But there is no
6126     * requirement about the relative order of function declarations
6127     * and definitions with respect to one another.  So simply insert
6128     * the new ir_function block at the end of the toplevel instruction
6129     * list.
6130     */
6131    state->toplevel_ir->push_tail(f);
6132 }
6133 
6134 
6135 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6136 ast_function::hir(exec_list *instructions,
6137                   struct _mesa_glsl_parse_state *state)
6138 {
6139    void *ctx = state;
6140    ir_function *f = NULL;
6141    ir_function_signature *sig = NULL;
6142    exec_list hir_parameters;
6143    YYLTYPE loc = this->get_location();
6144 
6145    const char *const name = identifier;
6146 
6147    /* New functions are always added to the top-level IR instruction stream,
6148     * so this instruction list pointer is ignored.  See also emit_function
6149     * (called below).
6150     */
6151    (void) instructions;
6152 
6153    /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
6154     *
6155     *   "Function declarations (prototypes) cannot occur inside of functions;
6156     *   they must be at global scope, or for the built-in functions, outside
6157     *   the global scope."
6158     *
6159     * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
6160     *
6161     *   "User defined functions may only be defined within the global scope."
6162     *
6163     * Note that this language does not appear in GLSL 1.10.
6164     */
6165    if ((state->current_function != NULL) &&
6166        state->is_version(120, 100)) {
6167       YYLTYPE loc = this->get_location();
6168       _mesa_glsl_error(&loc, state,
6169                        "declaration of function `%s' not allowed within "
6170                        "function body", name);
6171    }
6172 
6173    validate_identifier(name, this->get_location(), state);
6174 
6175    /* Convert the list of function parameters to HIR now so that they can be
6176     * used below to compare this function's signature with previously seen
6177     * signatures for functions with the same name.
6178     */
6179    ast_parameter_declarator::parameters_to_hir(& this->parameters,
6180                                                is_definition,
6181                                                & hir_parameters, state);
6182 
6183    const char *return_type_name;
6184    const glsl_type *return_type =
6185       this->return_type->glsl_type(& return_type_name, state);
6186 
6187    if (!return_type) {
6188       YYLTYPE loc = this->get_location();
6189       _mesa_glsl_error(&loc, state,
6190                        "function `%s' has undeclared return type `%s'",
6191                        name, return_type_name);
6192       return_type = &glsl_type_builtin_error;
6193    }
6194 
6195    /* ARB_shader_subroutine states:
6196     *  "Subroutine declarations cannot be prototyped. It is an error to prepend
6197     *   subroutine(...) to a function declaration."
6198     */
6199    if (this->return_type->qualifier.subroutine_list && !is_definition) {
6200       YYLTYPE loc = this->get_location();
6201       _mesa_glsl_error(&loc, state,
6202                        "function declaration `%s' cannot have subroutine prepended",
6203                        name);
6204    }
6205 
6206    /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
6207     * "No qualifier is allowed on the return type of a function."
6208     */
6209    if (this->return_type->has_qualifiers(state)) {
6210       YYLTYPE loc = this->get_location();
6211       _mesa_glsl_error(& loc, state,
6212                        "function `%s' return type has qualifiers", name);
6213    }
6214 
6215    /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
6216     *
6217     *     "Arrays are allowed as arguments and as the return type. In both
6218     *     cases, the array must be explicitly sized."
6219     */
6220    if (glsl_type_is_unsized_array(return_type)) {
6221       YYLTYPE loc = this->get_location();
6222       _mesa_glsl_error(& loc, state,
6223                        "function `%s' return type array must be explicitly "
6224                        "sized", name);
6225    }
6226 
6227    /* From Section 6.1 (Function Definitions) of the GLSL 1.00 spec:
6228     *
6229     *     "Arrays are allowed as arguments, but not as the return type. [...]
6230     *      The return type can also be a structure if the structure does not
6231     *      contain an array."
6232     */
6233    if (state->language_version == 100 && glsl_contains_array(return_type)) {
6234       YYLTYPE loc = this->get_location();
6235       _mesa_glsl_error(& loc, state,
6236                        "function `%s' return type contains an array", name);
6237    }
6238 
6239    /* From section 4.1.7 of the GLSL 4.40 spec:
6240     *
6241     *    "[Opaque types] can only be declared as function parameters
6242     *     or uniform-qualified variables."
6243     *
6244     * The ARB_bindless_texture spec doesn't clearly state this, but as it says
6245     * "Replace Section 4.1.7 (Samplers), p. 25" and, "Replace Section 4.1.X,
6246     * (Images)", this should be allowed.
6247     */
6248    if (glsl_contains_atomic(return_type) ||
6249        (!state->has_bindless() && glsl_contains_opaque(return_type))) {
6250       YYLTYPE loc = this->get_location();
6251       _mesa_glsl_error(&loc, state,
6252                        "function `%s' return type can't contain an %s type",
6253                        name, state->has_bindless() ? "atomic" : "opaque");
6254    }
6255 
6256    /**/
6257    if (glsl_type_is_subroutine(return_type)) {
6258       YYLTYPE loc = this->get_location();
6259       _mesa_glsl_error(&loc, state,
6260                        "function `%s' return type can't be a subroutine type",
6261                        name);
6262    }
6263 
6264    /* Get the precision for the return type */
6265    unsigned return_precision;
6266 
6267    if (state->es_shader) {
6268       YYLTYPE loc = this->get_location();
6269       return_precision =
6270          select_gles_precision(this->return_type->qualifier.precision,
6271                                return_type,
6272                                state,
6273                                &loc);
6274    } else {
6275       return_precision = GLSL_PRECISION_NONE;
6276    }
6277 
6278    /* Create an ir_function if one doesn't already exist. */
6279    f = state->symbols->get_function(name);
6280    if (f == NULL) {
6281       f = new(ctx) ir_function(name);
6282       if (!this->return_type->qualifier.is_subroutine_decl()) {
6283          if (!state->symbols->add_function(f)) {
6284             /* This function name shadows a non-function use of the same name. */
6285             YYLTYPE loc = this->get_location();
6286             _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
6287                              "non-function", name);
6288             return NULL;
6289          }
6290       }
6291       emit_function(state, f);
6292    }
6293 
6294    /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
6295     *
6296     * "A shader cannot redefine or overload built-in functions."
6297     *
6298     * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
6299     *
6300     * "User code can overload the built-in functions but cannot redefine
6301     * them."
6302     */
6303    if (state->es_shader) {
6304       /* Local shader has no exact candidates; check the built-ins. */
6305       if (state->language_version >= 300 &&
6306           _mesa_glsl_has_builtin_function(state, name)) {
6307          YYLTYPE loc = this->get_location();
6308          _mesa_glsl_error(& loc, state,
6309                           "A shader cannot redefine or overload built-in "
6310                           "function `%s' in GLSL ES 3.00", name);
6311          return NULL;
6312       }
6313 
6314       if (state->language_version == 100) {
6315          ir_function_signature *sig =
6316             _mesa_glsl_find_builtin_function(state, name, &hir_parameters);
6317          if (sig && sig->is_builtin()) {
6318             _mesa_glsl_error(& loc, state,
6319                              "A shader cannot redefine built-in "
6320                              "function `%s' in GLSL ES 1.00", name);
6321          }
6322       }
6323    }
6324 
6325    /* Verify that this function's signature either doesn't match a previously
6326     * seen signature for a function with the same name, or, if a match is found,
6327     * that the previously seen signature does not have an associated definition.
6328     */
6329    if (state->es_shader || f->has_user_signature()) {
6330       sig = f->exact_matching_signature(state, &hir_parameters);
6331       if (sig != NULL) {
6332          const char *badvar = sig->qualifiers_match(&hir_parameters);
6333          if (badvar != NULL) {
6334             YYLTYPE loc = this->get_location();
6335 
6336             _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
6337                              "qualifiers don't match prototype", name, badvar);
6338          }
6339 
6340          if (sig->return_type != return_type) {
6341             YYLTYPE loc = this->get_location();
6342 
6343             _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
6344                              "match prototype", name);
6345          }
6346 
6347          if (sig->return_precision != return_precision) {
6348             YYLTYPE loc = this->get_location();
6349 
6350             _mesa_glsl_error(&loc, state, "function `%s' return type precision "
6351                              "doesn't match prototype", name);
6352          }
6353 
6354          if (sig->is_defined) {
6355             if (is_definition) {
6356                YYLTYPE loc = this->get_location();
6357                _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
6358             } else {
6359                /* We just encountered a prototype that exactly matches a
6360                 * function that's already been defined.  This is redundant,
6361                 * and we should ignore it.
6362                 */
6363                return NULL;
6364             }
6365          } else if (state->language_version == 100 && !is_definition) {
6366             /* From the GLSL 1.00 spec, section 4.2.7:
6367              *
6368              *     "A particular variable, structure or function declaration
6369              *      may occur at most once within a scope with the exception
6370              *      that a single function prototype plus the corresponding
6371              *      function definition are allowed."
6372              */
6373             YYLTYPE loc = this->get_location();
6374             _mesa_glsl_error(&loc, state, "function `%s' redeclared", name);
6375          }
6376       }
6377    }
6378 
6379    /* Verify the return type of main() */
6380    if (strcmp(name, "main") == 0) {
6381       if (! glsl_type_is_void(return_type)) {
6382          YYLTYPE loc = this->get_location();
6383 
6384          _mesa_glsl_error(& loc, state, "main() must return void");
6385       }
6386 
6387       if (!hir_parameters.is_empty()) {
6388          YYLTYPE loc = this->get_location();
6389 
6390          _mesa_glsl_error(& loc, state, "main() must not take any parameters");
6391       }
6392    }
6393 
6394    /* Finish storing the information about this new function in its signature.
6395     */
6396    if (sig == NULL) {
6397       sig = new(ctx) ir_function_signature(return_type);
6398       sig->return_precision = return_precision;
6399       f->add_signature(sig);
6400    }
6401 
6402    sig->replace_parameters(&hir_parameters);
6403    signature = sig;
6404 
6405    if (this->return_type->qualifier.subroutine_list) {
6406       int idx;
6407 
6408       if (this->return_type->qualifier.flags.q.explicit_index) {
6409          unsigned qual_index;
6410          if (process_qualifier_constant(state, &loc, "index",
6411                                         this->return_type->qualifier.index,
6412                                         &qual_index)) {
6413             if (!state->has_explicit_uniform_location()) {
6414                _mesa_glsl_error(&loc, state, "subroutine index requires "
6415                                 "GL_ARB_explicit_uniform_location or "
6416                                 "GLSL 4.30");
6417             } else if (qual_index >= MAX_SUBROUTINES) {
6418                _mesa_glsl_error(&loc, state,
6419                                 "invalid subroutine index (%d) index must "
6420                                 "be a number between 0 and "
6421                                 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
6422                                 MAX_SUBROUTINES - 1);
6423             } else {
6424                f->subroutine_index = qual_index;
6425             }
6426          }
6427       }
6428 
6429       f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
6430       f->subroutine_types = ralloc_array(state, const struct glsl_type *,
6431                                          f->num_subroutine_types);
6432       idx = 0;
6433       foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
6434          const struct glsl_type *type;
6435          /* the subroutine type must be already declared */
6436          type = state->symbols->get_type(decl->identifier);
6437          if (!type) {
6438             _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
6439          }
6440 
6441          for (int i = 0; i < state->num_subroutine_types; i++) {
6442             ir_function *fn = state->subroutine_types[i];
6443             ir_function_signature *tsig = NULL;
6444 
6445             if (strcmp(fn->name, decl->identifier))
6446                continue;
6447 
6448             tsig = fn->matching_signature(state, &sig->parameters,
6449                                           false);
6450             if (!tsig) {
6451                _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
6452             } else {
6453                if (tsig->return_type != sig->return_type) {
6454                   _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
6455                }
6456             }
6457          }
6458          f->subroutine_types[idx++] = type;
6459       }
6460       state->subroutines = (ir_function **)reralloc(state, state->subroutines,
6461                                                     ir_function *,
6462                                                     state->num_subroutines + 1);
6463       state->subroutines[state->num_subroutines] = f;
6464       state->num_subroutines++;
6465 
6466    }
6467 
6468    if (this->return_type->qualifier.is_subroutine_decl()) {
6469       if (!state->symbols->add_type(this->identifier, glsl_subroutine_type(this->identifier))) {
6470          _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
6471          return NULL;
6472       }
6473       state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
6474                                                          ir_function *,
6475                                                          state->num_subroutine_types + 1);
6476       state->subroutine_types[state->num_subroutine_types] = f;
6477       state->num_subroutine_types++;
6478 
6479       f->is_subroutine = true;
6480    }
6481 
6482    /* Function declarations (prototypes) do not have r-values.
6483     */
6484    return NULL;
6485 }
6486 
6487 
6488 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6489 ast_function_definition::hir(exec_list *instructions,
6490                              struct _mesa_glsl_parse_state *state)
6491 {
6492    prototype->is_definition = true;
6493    prototype->hir(instructions, state);
6494 
6495    ir_function_signature *signature = prototype->signature;
6496    if (signature == NULL)
6497       return NULL;
6498 
6499    assert(state->current_function == NULL);
6500    state->current_function = signature;
6501    state->found_return = false;
6502    state->found_begin_interlock = false;
6503    state->found_end_interlock = false;
6504 
6505    /* Duplicate parameters declared in the prototype as concrete variables.
6506     * Add these to the symbol table.
6507     */
6508    state->symbols->push_scope();
6509    foreach_in_list(ir_variable, var, &signature->parameters) {
6510       assert(var->as_variable() != NULL);
6511 
6512       /* The only way a parameter would "exist" is if two parameters have
6513        * the same name.
6514        */
6515       if (state->symbols->name_declared_this_scope(var->name)) {
6516          YYLTYPE loc = this->get_location();
6517 
6518          _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
6519       } else {
6520          state->symbols->add_variable(var);
6521       }
6522    }
6523 
6524    /* Convert the body of the function to HIR. */
6525    this->body->hir(&signature->body, state);
6526    signature->is_defined = true;
6527 
6528    state->symbols->pop_scope();
6529 
6530    assert(state->current_function == signature);
6531    state->current_function = NULL;
6532 
6533    if (!glsl_type_is_void(signature->return_type) && !state->found_return) {
6534       YYLTYPE loc = this->get_location();
6535       _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
6536                        "%s, but no return statement",
6537                        signature->function_name(),
6538                        glsl_get_type_name(signature->return_type));
6539    }
6540 
6541    /* Function definitions do not have r-values.
6542     */
6543    return NULL;
6544 }
6545 
6546 
6547 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6548 ast_jump_statement::hir(exec_list *instructions,
6549                         struct _mesa_glsl_parse_state *state)
6550 {
6551    void *ctx = state;
6552 
6553    switch (mode) {
6554    case ast_return: {
6555       ir_return *inst;
6556       assert(state->current_function);
6557 
6558       if (opt_return_value) {
6559          ir_rvalue *ret = opt_return_value->hir(instructions, state);
6560 
6561          /* The value of the return type can be NULL if the shader says
6562           * 'return foo();' and foo() is a function that returns void.
6563           *
6564           * NOTE: The GLSL spec doesn't say that this is an error.  The type
6565           * of the return value is void.  If the return type of the function is
6566           * also void, then this should compile without error.  Seriously.
6567           */
6568          const glsl_type *const ret_type =
6569             (ret == NULL) ? &glsl_type_builtin_void : ret->type;
6570 
6571          /* Implicit conversions are not allowed for return values prior to
6572           * ARB_shading_language_420pack.
6573           */
6574          if (state->current_function->return_type != ret_type) {
6575             YYLTYPE loc = this->get_location();
6576 
6577             if (state->has_420pack()) {
6578                if (!apply_implicit_conversion(state->current_function->return_type,
6579                                               ret, state)
6580                    || (ret->type != state->current_function->return_type)) {
6581                   _mesa_glsl_error(& loc, state,
6582                                    "could not implicitly convert return value "
6583                                    "to %s, in function `%s'",
6584                                    glsl_get_type_name(state->current_function->return_type),
6585                                    state->current_function->function_name());
6586                }
6587             } else {
6588                _mesa_glsl_error(& loc, state,
6589                                 "`return' with wrong type %s, in function `%s' "
6590                                 "returning %s",
6591                                 glsl_get_type_name(ret_type),
6592                                 state->current_function->function_name(),
6593                                 glsl_get_type_name(state->current_function->return_type));
6594             }
6595          } else if (state->current_function->return_type->base_type ==
6596                     GLSL_TYPE_VOID) {
6597             YYLTYPE loc = this->get_location();
6598 
6599             /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
6600              * specs add a clarification:
6601              *
6602              *    "A void function can only use return without a return argument, even if
6603              *     the return argument has void type. Return statements only accept values:
6604              *
6605              *         void func1() { }
6606              *         void func2() { return func1(); } // illegal return statement"
6607              */
6608             _mesa_glsl_error(& loc, state,
6609                              "void functions can only use `return' without a "
6610                              "return argument");
6611          }
6612 
6613          inst = new(ctx) ir_return(ret);
6614       } else {
6615          if (state->current_function->return_type->base_type !=
6616              GLSL_TYPE_VOID) {
6617             YYLTYPE loc = this->get_location();
6618 
6619             _mesa_glsl_error(& loc, state,
6620                              "`return' with no value, in function %s returning "
6621                              "non-void",
6622             state->current_function->function_name());
6623          }
6624          inst = new(ctx) ir_return;
6625       }
6626 
6627       state->found_return = true;
6628       instructions->push_tail(inst);
6629       break;
6630    }
6631 
6632    case ast_discard:
6633       if (state->stage != MESA_SHADER_FRAGMENT) {
6634          YYLTYPE loc = this->get_location();
6635 
6636          _mesa_glsl_error(& loc, state,
6637                           "`discard' may only appear in a fragment shader");
6638       }
6639       instructions->push_tail(new(ctx) ir_discard);
6640       break;
6641 
6642    case ast_break:
6643    case ast_continue:
6644       if (mode == ast_continue &&
6645           state->loop_nesting_ast == NULL) {
6646          YYLTYPE loc = this->get_location();
6647 
6648          _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
6649       } else if (mode == ast_break &&
6650          state->loop_nesting_ast == NULL &&
6651          state->switch_state.switch_nesting_ast == NULL) {
6652          YYLTYPE loc = this->get_location();
6653 
6654          _mesa_glsl_error(& loc, state,
6655                           "break may only appear in a loop or a switch");
6656       } else {
6657          /* For a loop, inline the for loop expression again, since we don't
6658           * know where near the end of the loop body the normal copy of it is
6659           * going to be placed.  Same goes for the condition for a do-while
6660           * loop.
6661           */
6662          if (state->loop_nesting_ast != NULL &&
6663              mode == ast_continue && !state->switch_state.is_switch_innermost) {
6664             if (state->loop_nesting_ast->rest_expression) {
6665                clone_ir_list(ctx, instructions,
6666                              &state->loop_nesting_ast->rest_instructions);
6667             }
6668             if (state->loop_nesting_ast->mode ==
6669                 ast_iteration_statement::ast_do_while) {
6670                state->loop_nesting_ast->condition_to_hir(instructions, state);
6671             }
6672          }
6673 
6674          if (state->switch_state.is_switch_innermost &&
6675              mode == ast_continue) {
6676             /* Set 'continue_inside' to true. */
6677             ir_rvalue *const true_val = new (ctx) ir_constant(true);
6678             ir_dereference_variable *deref_continue_inside_var =
6679                new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6680             instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6681                                                            true_val));
6682 
6683             /* Break out from the switch, continue for the loop will
6684              * be called right after switch. */
6685             ir_loop_jump *const jump =
6686                new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6687             instructions->push_tail(jump);
6688 
6689          } else if (state->switch_state.is_switch_innermost &&
6690              mode == ast_break) {
6691             /* Force break out of switch by inserting a break. */
6692             ir_loop_jump *const jump =
6693                new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6694             instructions->push_tail(jump);
6695          } else {
6696             ir_loop_jump *const jump =
6697                new(ctx) ir_loop_jump((mode == ast_break)
6698                   ? ir_loop_jump::jump_break
6699                   : ir_loop_jump::jump_continue);
6700             instructions->push_tail(jump);
6701          }
6702       }
6703 
6704       break;
6705    }
6706 
6707    /* Jump instructions do not have r-values.
6708     */
6709    return NULL;
6710 }
6711 
6712 
6713 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6714 ast_demote_statement::hir(exec_list *instructions,
6715                           struct _mesa_glsl_parse_state *state)
6716 {
6717    void *ctx = state;
6718 
6719    if (state->stage != MESA_SHADER_FRAGMENT) {
6720       YYLTYPE loc = this->get_location();
6721 
6722       _mesa_glsl_error(& loc, state,
6723                        "`demote' may only appear in a fragment shader");
6724    }
6725 
6726    instructions->push_tail(new(ctx) ir_demote);
6727 
6728    return NULL;
6729 }
6730 
6731 
6732 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6733 ast_selection_statement::hir(exec_list *instructions,
6734                              struct _mesa_glsl_parse_state *state)
6735 {
6736    void *ctx = state;
6737 
6738    ir_rvalue *const condition = this->condition->hir(instructions, state);
6739 
6740    /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
6741     *
6742     *    "Any expression whose type evaluates to a Boolean can be used as the
6743     *    conditional expression bool-expression. Vector types are not accepted
6744     *    as the expression to if."
6745     *
6746     * The checks are separated so that higher quality diagnostics can be
6747     * generated for cases where both rules are violated.
6748     */
6749    if (!glsl_type_is_boolean(condition->type) || !glsl_type_is_scalar(condition->type)) {
6750       YYLTYPE loc = this->condition->get_location();
6751 
6752       _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
6753                        "boolean");
6754    }
6755 
6756    ir_if *const stmt = new(ctx) ir_if(condition);
6757 
6758    if (then_statement != NULL) {
6759       state->symbols->push_scope();
6760       then_statement->hir(& stmt->then_instructions, state);
6761       state->symbols->pop_scope();
6762    }
6763 
6764    if (else_statement != NULL) {
6765       state->symbols->push_scope();
6766       else_statement->hir(& stmt->else_instructions, state);
6767       state->symbols->pop_scope();
6768    }
6769 
6770    instructions->push_tail(stmt);
6771 
6772    /* if-statements do not have r-values.
6773     */
6774    return NULL;
6775 }
6776 
6777 
6778 struct case_label {
6779    /** Value of the case label. */
6780    unsigned value;
6781 
6782    /** Does this label occur after the default? */
6783    bool after_default;
6784 
6785    /**
6786     * AST for the case label.
6787     *
6788     * This is only used to generate error messages for duplicate labels.
6789     */
6790    ast_expression *ast;
6791 };
6792 
6793 /* Used for detection of duplicate case values, compare
6794  * given contents directly.
6795  */
6796 static bool
compare_case_value(const void * a,const void * b)6797 compare_case_value(const void *a, const void *b)
6798 {
6799    return ((struct case_label *) a)->value == ((struct case_label *) b)->value;
6800 }
6801 
6802 
6803 /* Used for detection of duplicate case values, just
6804  * returns key contents as is.
6805  */
6806 static unsigned
key_contents(const void * key)6807 key_contents(const void *key)
6808 {
6809    return ((struct case_label *) key)->value;
6810 }
6811 
6812 void
eval_test_expression(exec_list * instructions,struct _mesa_glsl_parse_state * state)6813 ast_switch_statement::eval_test_expression(exec_list *instructions,
6814                                            struct _mesa_glsl_parse_state *state)
6815 {
6816    if (test_val == NULL)
6817       test_val = this->test_expression->hir(instructions, state);
6818 }
6819 
6820 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6821 ast_switch_statement::hir(exec_list *instructions,
6822                           struct _mesa_glsl_parse_state *state)
6823 {
6824    void *ctx = state;
6825 
6826    this->eval_test_expression(instructions, state);
6827 
6828    /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
6829     *
6830     *    "The type of init-expression in a switch statement must be a
6831     *     scalar integer."
6832     */
6833    if (!glsl_type_is_scalar(test_val->type) ||
6834        !glsl_type_is_integer_32(test_val->type)) {
6835       YYLTYPE loc = this->test_expression->get_location();
6836 
6837       _mesa_glsl_error(& loc,
6838                        state,
6839                        "switch-statement expression must be scalar "
6840                        "integer");
6841       return NULL;
6842    }
6843 
6844    /* Track the switch-statement nesting in a stack-like manner.
6845     */
6846    struct glsl_switch_state saved = state->switch_state;
6847 
6848    state->switch_state.is_switch_innermost = true;
6849    state->switch_state.switch_nesting_ast = this;
6850    state->switch_state.labels_ht =
6851          _mesa_hash_table_create(NULL, key_contents,
6852                                  compare_case_value);
6853    state->switch_state.previous_default = NULL;
6854 
6855    /* Initalize is_fallthru state to false.
6856     */
6857    ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
6858    state->switch_state.is_fallthru_var =
6859       new(ctx) ir_variable(&glsl_type_builtin_bool,
6860                            "switch_is_fallthru_tmp",
6861                            ir_var_temporary);
6862    instructions->push_tail(state->switch_state.is_fallthru_var);
6863 
6864    ir_dereference_variable *deref_is_fallthru_var =
6865       new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6866    instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
6867                                                   is_fallthru_val));
6868 
6869    /* Initialize continue_inside state to false.
6870     */
6871    state->switch_state.continue_inside =
6872       new(ctx) ir_variable(&glsl_type_builtin_bool,
6873                            "continue_inside_tmp",
6874                            ir_var_temporary);
6875    instructions->push_tail(state->switch_state.continue_inside);
6876 
6877    ir_rvalue *const false_val = new (ctx) ir_constant(false);
6878    ir_dereference_variable *deref_continue_inside_var =
6879       new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6880    instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6881                                                   false_val));
6882 
6883    state->switch_state.run_default =
6884       new(ctx) ir_variable(&glsl_type_builtin_bool,
6885                              "run_default_tmp",
6886                              ir_var_temporary);
6887    instructions->push_tail(state->switch_state.run_default);
6888 
6889    /* Loop around the switch is used for flow control. */
6890    ir_loop * loop = new(ctx) ir_loop();
6891    instructions->push_tail(loop);
6892 
6893    /* Cache test expression.
6894     */
6895    test_to_hir(&loop->body_instructions, state);
6896 
6897    /* Emit code for body of switch stmt.
6898     */
6899    body->hir(&loop->body_instructions, state);
6900 
6901    /* Insert a break at the end to exit loop. */
6902    ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6903    loop->body_instructions.push_tail(jump);
6904 
6905    /* If we are inside loop, check if continue got called inside switch. */
6906    if (state->loop_nesting_ast != NULL) {
6907       ir_dereference_variable *deref_continue_inside =
6908          new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6909       ir_if *irif = new(ctx) ir_if(deref_continue_inside);
6910       ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
6911 
6912       if (state->loop_nesting_ast != NULL) {
6913          if (state->loop_nesting_ast->rest_expression) {
6914             clone_ir_list(ctx, &irif->then_instructions,
6915                           &state->loop_nesting_ast->rest_instructions);
6916          }
6917          if (state->loop_nesting_ast->mode ==
6918              ast_iteration_statement::ast_do_while) {
6919             state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
6920          }
6921       }
6922       irif->then_instructions.push_tail(jump);
6923       instructions->push_tail(irif);
6924    }
6925 
6926    _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL);
6927 
6928    state->switch_state = saved;
6929 
6930    /* Switch statements do not have r-values. */
6931    return NULL;
6932 }
6933 
6934 
6935 void
test_to_hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6936 ast_switch_statement::test_to_hir(exec_list *instructions,
6937                                   struct _mesa_glsl_parse_state *state)
6938 {
6939    void *ctx = state;
6940 
6941    /* set to true to avoid a duplicate "use of uninitialized variable" warning
6942     * on the switch test case. The first one would be already raised when
6943     * getting the test_expression at ast_switch_statement::hir
6944     */
6945    test_expression->set_is_lhs(true);
6946    /* Cache value of test expression. */
6947    this->eval_test_expression(instructions, state);
6948 
6949    state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
6950                                                        "switch_test_tmp",
6951                                                        ir_var_temporary);
6952    ir_dereference_variable *deref_test_var =
6953       new(ctx) ir_dereference_variable(state->switch_state.test_var);
6954 
6955    instructions->push_tail(state->switch_state.test_var);
6956    instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6957 }
6958 
6959 
6960 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6961 ast_switch_body::hir(exec_list *instructions,
6962                      struct _mesa_glsl_parse_state *state)
6963 {
6964    if (stmts != NULL) {
6965       state->symbols->push_scope();
6966       stmts->hir(instructions, state);
6967       state->symbols->pop_scope();
6968    }
6969 
6970    /* Switch bodies do not have r-values. */
6971    return NULL;
6972 }
6973 
6974 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6975 ast_case_statement_list::hir(exec_list *instructions,
6976                              struct _mesa_glsl_parse_state *state)
6977 {
6978    exec_list default_case, after_default, tmp;
6979 
6980    foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6981       case_stmt->hir(&tmp, state);
6982 
6983       /* Default case. */
6984       if (state->switch_state.previous_default && default_case.is_empty()) {
6985          default_case.append_list(&tmp);
6986          continue;
6987       }
6988 
6989       /* If default case found, append 'after_default' list. */
6990       if (!default_case.is_empty())
6991          after_default.append_list(&tmp);
6992       else
6993          instructions->append_list(&tmp);
6994    }
6995 
6996    /* Handle the default case. This is done here because default might not be
6997     * the last case. We need to add checks against following cases first to see
6998     * if default should be chosen or not.
6999     */
7000    if (!default_case.is_empty()) {
7001       ir_factory body(instructions, state);
7002 
7003       ir_expression *cmp = NULL;
7004 
7005       hash_table_foreach(state->switch_state.labels_ht, entry) {
7006          const struct case_label *const l = (struct case_label *) entry->data;
7007 
7008          /* If the switch init-value is the value of one of the labels that
7009           * occurs after the default case, disable execution of the default
7010           * case.
7011           */
7012          if (l->after_default) {
7013             ir_constant *const cnst =
7014                state->switch_state.test_var->type->base_type == GLSL_TYPE_UINT
7015                ? body.constant(unsigned(l->value))
7016                : body.constant(int(l->value));
7017 
7018             cmp = cmp == NULL
7019                ? equal(cnst, state->switch_state.test_var)
7020                : logic_or(cmp, equal(cnst, state->switch_state.test_var));
7021          }
7022       }
7023 
7024       if (cmp != NULL)
7025          body.emit(assign(state->switch_state.run_default, logic_not(cmp)));
7026       else
7027          body.emit(assign(state->switch_state.run_default, body.constant(true)));
7028 
7029       /* Append default case and all cases after it. */
7030       instructions->append_list(&default_case);
7031       instructions->append_list(&after_default);
7032    }
7033 
7034    /* Case statements do not have r-values. */
7035    return NULL;
7036 }
7037 
7038 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7039 ast_case_statement::hir(exec_list *instructions,
7040                         struct _mesa_glsl_parse_state *state)
7041 {
7042    labels->hir(instructions, state);
7043 
7044    /* Guard case statements depending on fallthru state. */
7045    ir_dereference_variable *const deref_fallthru_guard =
7046       new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
7047    ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
7048 
7049    foreach_list_typed (ast_node, stmt, link, & this->stmts)
7050       stmt->hir(& test_fallthru->then_instructions, state);
7051 
7052    instructions->push_tail(test_fallthru);
7053 
7054    /* Case statements do not have r-values. */
7055    return NULL;
7056 }
7057 
7058 
7059 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7060 ast_case_label_list::hir(exec_list *instructions,
7061                          struct _mesa_glsl_parse_state *state)
7062 {
7063    foreach_list_typed (ast_case_label, label, link, & this->labels)
7064       label->hir(instructions, state);
7065 
7066    /* Case labels do not have r-values. */
7067    return NULL;
7068 }
7069 
7070 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7071 ast_case_label::hir(exec_list *instructions,
7072                     struct _mesa_glsl_parse_state *state)
7073 {
7074    ir_factory body(instructions, state);
7075 
7076    ir_variable *const fallthru_var = state->switch_state.is_fallthru_var;
7077 
7078    /* If not default case, ... */
7079    if (this->test_value != NULL) {
7080       /* Conditionally set fallthru state based on
7081        * comparison of cached test expression value to case label.
7082        */
7083       ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
7084       ir_constant *label_const =
7085          label_rval->constant_expression_value(body.mem_ctx);
7086 
7087       if (!label_const) {
7088          YYLTYPE loc = this->test_value->get_location();
7089 
7090          _mesa_glsl_error(& loc, state,
7091                           "switch statement case label must be a "
7092                           "constant expression");
7093 
7094          /* Stuff a dummy value in to allow processing to continue. */
7095          label_const = body.constant(0);
7096       } else {
7097          hash_entry *entry =
7098                _mesa_hash_table_search(state->switch_state.labels_ht,
7099                                        &label_const->value.u[0]);
7100 
7101          if (entry) {
7102             const struct case_label *const l =
7103                (struct case_label *) entry->data;
7104             const ast_expression *const previous_label = l->ast;
7105             YYLTYPE loc = this->test_value->get_location();
7106 
7107             _mesa_glsl_error(& loc, state, "duplicate case value");
7108 
7109             loc = previous_label->get_location();
7110             _mesa_glsl_error(& loc, state, "this is the previous case label");
7111          } else {
7112             struct case_label *l = ralloc(state->switch_state.labels_ht,
7113                                           struct case_label);
7114 
7115             l->value = label_const->value.u[0];
7116             l->after_default = state->switch_state.previous_default != NULL;
7117             l->ast = this->test_value;
7118 
7119             _mesa_hash_table_insert(state->switch_state.labels_ht,
7120                                     &label_const->value.u[0],
7121                                     l);
7122          }
7123       }
7124 
7125       /* Create an r-value version of the ir_constant label here (after we may
7126        * have created a fake one in error cases) that can be passed to
7127        * apply_implicit_conversion below.
7128        */
7129       ir_rvalue *label = label_const;
7130 
7131       ir_rvalue *deref_test_var =
7132          new(body.mem_ctx) ir_dereference_variable(state->switch_state.test_var);
7133 
7134       /*
7135        * From GLSL 4.40 specification section 6.2 ("Selection"):
7136        *
7137        *     "The type of the init-expression value in a switch statement must
7138        *     be a scalar int or uint. The type of the constant-expression value
7139        *     in a case label also must be a scalar int or uint. When any pair
7140        *     of these values is tested for "equal value" and the types do not
7141        *     match, an implicit conversion will be done to convert the int to a
7142        *     uint (see section 4.1.10 “Implicit Conversions”) before the compare
7143        *     is done."
7144        */
7145       if (label->type != state->switch_state.test_var->type) {
7146          YYLTYPE loc = this->test_value->get_location();
7147 
7148          const glsl_type *type_a = label->type;
7149          const glsl_type *type_b = state->switch_state.test_var->type;
7150 
7151          /* Check if int->uint implicit conversion is supported. */
7152          bool integer_conversion_supported =
7153             _mesa_glsl_can_implicitly_convert(&glsl_type_builtin_int, &glsl_type_builtin_uint, state);
7154 
7155          if ((!glsl_type_is_integer_32(type_a) || !glsl_type_is_integer_32(type_b)) ||
7156               !integer_conversion_supported) {
7157             _mesa_glsl_error(&loc, state, "type mismatch with switch "
7158                              "init-expression and case label (%s != %s)",
7159                              glsl_get_type_name(type_a), glsl_get_type_name(type_b));
7160          } else {
7161             /* Conversion of the case label. */
7162             if (type_a->base_type == GLSL_TYPE_INT) {
7163                if (!apply_implicit_conversion(&glsl_type_builtin_uint,
7164                                               label, state))
7165                   _mesa_glsl_error(&loc, state, "implicit type conversion error");
7166             } else {
7167                /* Conversion of the init-expression value. */
7168                if (!apply_implicit_conversion(&glsl_type_builtin_uint,
7169                                               deref_test_var, state))
7170                   _mesa_glsl_error(&loc, state, "implicit type conversion error");
7171             }
7172          }
7173 
7174          /* If the implicit conversion was allowed, the types will already be
7175           * the same.  If the implicit conversion wasn't allowed, smash the
7176           * type of the label anyway.  This will prevent the expression
7177           * constructor (below) from failing an assertion.
7178           */
7179          label->type = deref_test_var->type;
7180       }
7181 
7182       body.emit(assign(fallthru_var,
7183                        logic_or(fallthru_var, equal(label, deref_test_var))));
7184    } else { /* default case */
7185       if (state->switch_state.previous_default) {
7186          YYLTYPE loc = this->get_location();
7187          _mesa_glsl_error(& loc, state,
7188                           "multiple default labels in one switch");
7189 
7190          loc = state->switch_state.previous_default->get_location();
7191          _mesa_glsl_error(& loc, state, "this is the first default label");
7192       }
7193       state->switch_state.previous_default = this;
7194 
7195       /* Set fallthru condition on 'run_default' bool. */
7196       body.emit(assign(fallthru_var,
7197                        logic_or(fallthru_var,
7198                                 state->switch_state.run_default)));
7199    }
7200 
7201    /* Case statements do not have r-values. */
7202    return NULL;
7203 }
7204 
7205 void
condition_to_hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7206 ast_iteration_statement::condition_to_hir(exec_list *instructions,
7207                                           struct _mesa_glsl_parse_state *state)
7208 {
7209    void *ctx = state;
7210 
7211    if (condition != NULL) {
7212       ir_rvalue *const cond =
7213          condition->hir(instructions, state);
7214 
7215       if ((cond == NULL)
7216           || !glsl_type_is_boolean(cond->type) || !glsl_type_is_scalar(cond->type)) {
7217          YYLTYPE loc = condition->get_location();
7218 
7219          _mesa_glsl_error(& loc, state,
7220                           "loop condition must be scalar boolean");
7221       } else {
7222          /* As the first code in the loop body, generate a block that looks
7223           * like 'if (!condition) break;' as the loop termination condition.
7224           */
7225          ir_rvalue *const not_cond =
7226             new(ctx) ir_expression(ir_unop_logic_not, cond);
7227 
7228          ir_if *const if_stmt = new(ctx) ir_if(not_cond);
7229 
7230          ir_jump *const break_stmt =
7231             new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
7232 
7233          if_stmt->then_instructions.push_tail(break_stmt);
7234          instructions->push_tail(if_stmt);
7235       }
7236    }
7237 }
7238 
7239 
7240 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7241 ast_iteration_statement::hir(exec_list *instructions,
7242                              struct _mesa_glsl_parse_state *state)
7243 {
7244    void *ctx = state;
7245 
7246    /* For-loops and while-loops start a new scope, but do-while loops do not.
7247     */
7248    if (mode != ast_do_while)
7249       state->symbols->push_scope();
7250 
7251    if (init_statement != NULL)
7252       init_statement->hir(instructions, state);
7253 
7254    ir_loop *const stmt = new(ctx) ir_loop();
7255    instructions->push_tail(stmt);
7256 
7257    /* Track the current loop nesting. */
7258    ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
7259 
7260    state->loop_nesting_ast = this;
7261 
7262    /* Likewise, indicate that following code is closest to a loop,
7263     * NOT closest to a switch.
7264     */
7265    bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
7266    state->switch_state.is_switch_innermost = false;
7267 
7268    if (mode != ast_do_while)
7269       condition_to_hir(&stmt->body_instructions, state);
7270 
7271    if (rest_expression != NULL)
7272       rest_expression->hir(&rest_instructions, state);
7273 
7274    if (body != NULL) {
7275       if (mode == ast_do_while)
7276          state->symbols->push_scope();
7277 
7278       body->hir(& stmt->body_instructions, state);
7279 
7280       if (mode == ast_do_while)
7281          state->symbols->pop_scope();
7282    }
7283 
7284    if (rest_expression != NULL)
7285       stmt->body_instructions.append_list(&rest_instructions);
7286 
7287    if (mode == ast_do_while)
7288       condition_to_hir(&stmt->body_instructions, state);
7289 
7290    if (mode != ast_do_while)
7291       state->symbols->pop_scope();
7292 
7293    /* Restore previous nesting before returning. */
7294    state->loop_nesting_ast = nesting_ast;
7295    state->switch_state.is_switch_innermost = saved_is_switch_innermost;
7296 
7297    /* Loops do not have r-values.
7298     */
7299    return NULL;
7300 }
7301 
7302 
7303 /**
7304  * Determine if the given type is valid for establishing a default precision
7305  * qualifier.
7306  *
7307  * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
7308  *
7309  *     "The precision statement
7310  *
7311  *         precision precision-qualifier type;
7312  *
7313  *     can be used to establish a default precision qualifier. The type field
7314  *     can be either int or float or any of the sampler types, and the
7315  *     precision-qualifier can be lowp, mediump, or highp."
7316  *
7317  * GLSL ES 1.00 has similar language.  GLSL 1.30 doesn't allow precision
7318  * qualifiers on sampler types, but this seems like an oversight (since the
7319  * intention of including these in GLSL 1.30 is to allow compatibility with ES
7320  * shaders).  So we allow int, float, and all sampler types regardless of GLSL
7321  * version.
7322  */
7323 static bool
is_valid_default_precision_type(const struct glsl_type * const type)7324 is_valid_default_precision_type(const struct glsl_type *const type)
7325 {
7326    if (type == NULL)
7327       return false;
7328 
7329    switch (type->base_type) {
7330    case GLSL_TYPE_INT:
7331    case GLSL_TYPE_FLOAT:
7332       /* "int" and "float" are valid, but vectors and matrices are not. */
7333       return type->vector_elements == 1 && type->matrix_columns == 1;
7334    case GLSL_TYPE_SAMPLER:
7335    case GLSL_TYPE_TEXTURE:
7336    case GLSL_TYPE_IMAGE:
7337    case GLSL_TYPE_ATOMIC_UINT:
7338       return true;
7339    default:
7340       return false;
7341    }
7342 }
7343 
7344 
7345 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7346 ast_type_specifier::hir(exec_list *instructions,
7347                         struct _mesa_glsl_parse_state *state)
7348 {
7349    if (this->default_precision == ast_precision_none && this->structure == NULL)
7350       return NULL;
7351 
7352    YYLTYPE loc = this->get_location();
7353 
7354    /* If this is a precision statement, check that the type to which it is
7355     * applied is either float or int.
7356     *
7357     * From section 4.5.3 of the GLSL 1.30 spec:
7358     *    "The precision statement
7359     *       precision precision-qualifier type;
7360     *    can be used to establish a default precision qualifier. The type
7361     *    field can be either int or float [...].  Any other types or
7362     *    qualifiers will result in an error.
7363     */
7364    if (this->default_precision != ast_precision_none) {
7365       if (!state->check_precision_qualifiers_allowed(&loc))
7366          return NULL;
7367 
7368       if (this->structure != NULL) {
7369          _mesa_glsl_error(&loc, state,
7370                           "precision qualifiers do not apply to structures");
7371          return NULL;
7372       }
7373 
7374       if (this->array_specifier != NULL) {
7375          _mesa_glsl_error(&loc, state,
7376                           "default precision statements do not apply to "
7377                           "arrays");
7378          return NULL;
7379       }
7380 
7381       const struct glsl_type *const type =
7382          state->symbols->get_type(this->type_name);
7383       if (!is_valid_default_precision_type(type)) {
7384          _mesa_glsl_error(&loc, state,
7385                           "default precision statements apply only to "
7386                           "float, int, and opaque types");
7387          return NULL;
7388       }
7389 
7390       if (state->es_shader) {
7391          /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
7392           * spec says:
7393           *
7394           *     "Non-precision qualified declarations will use the precision
7395           *     qualifier specified in the most recent precision statement
7396           *     that is still in scope. The precision statement has the same
7397           *     scoping rules as variable declarations. If it is declared
7398           *     inside a compound statement, its effect stops at the end of
7399           *     the innermost statement it was declared in. Precision
7400           *     statements in nested scopes override precision statements in
7401           *     outer scopes. Multiple precision statements for the same basic
7402           *     type can appear inside the same scope, with later statements
7403           *     overriding earlier statements within that scope."
7404           *
7405           * Default precision specifications follow the same scope rules as
7406           * variables.  So, we can track the state of the default precision
7407           * qualifiers in the symbol table, and the rules will just work.  This
7408           * is a slight abuse of the symbol table, but it has the semantics
7409           * that we want.
7410           */
7411          state->symbols->add_default_precision_qualifier(this->type_name,
7412                                                          this->default_precision);
7413       }
7414 
7415       /* FINISHME: Translate precision statements into IR. */
7416       return NULL;
7417    }
7418 
7419    /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
7420     * process_record_constructor() can do type-checking on C-style initializer
7421     * expressions of structs, but ast_struct_specifier should only be translated
7422     * to HIR if it is declaring the type of a structure.
7423     *
7424     * The ->is_declaration field is false for initializers of variables
7425     * declared separately from the struct's type definition.
7426     *
7427     *    struct S { ... };              (is_declaration = true)
7428     *    struct T { ... } t = { ... };  (is_declaration = true)
7429     *    S s = { ... };                 (is_declaration = false)
7430     */
7431    if (this->structure != NULL && this->structure->is_declaration)
7432       return this->structure->hir(instructions, state);
7433 
7434    return NULL;
7435 }
7436 
7437 
7438 /**
7439  * Process a structure or interface block tree into an array of structure fields
7440  *
7441  * After parsing, where there are some syntax differnces, structures and
7442  * interface blocks are almost identical.  They are similar enough that the
7443  * AST for each can be processed the same way into a set of
7444  * \c glsl_struct_field to describe the members.
7445  *
7446  * If we're processing an interface block, var_mode should be the type of the
7447  * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
7448  * ir_var_shader_storage).  If we're processing a structure, var_mode should be
7449  * ir_var_auto.
7450  *
7451  * \return
7452  * The number of fields processed.  A pointer to the array structure fields is
7453  * stored in \c *fields_ret.
7454  */
7455 static unsigned
ast_process_struct_or_iface_block_members(exec_list * instructions,struct _mesa_glsl_parse_state * state,exec_list * declarations,glsl_struct_field ** fields_ret,bool is_interface,enum glsl_matrix_layout matrix_layout,bool allow_reserved_names,ir_variable_mode var_mode,ast_type_qualifier * layout,unsigned block_stream,unsigned block_xfb_buffer,unsigned block_xfb_offset,unsigned expl_location,unsigned expl_align)7456 ast_process_struct_or_iface_block_members(exec_list *instructions,
7457                                           struct _mesa_glsl_parse_state *state,
7458                                           exec_list *declarations,
7459                                           glsl_struct_field **fields_ret,
7460                                           bool is_interface,
7461                                           enum glsl_matrix_layout matrix_layout,
7462                                           bool allow_reserved_names,
7463                                           ir_variable_mode var_mode,
7464                                           ast_type_qualifier *layout,
7465                                           unsigned block_stream,
7466                                           unsigned block_xfb_buffer,
7467                                           unsigned block_xfb_offset,
7468                                           unsigned expl_location,
7469                                           unsigned expl_align)
7470 {
7471    unsigned decl_count = 0;
7472    unsigned next_offset = 0;
7473 
7474    /* Make an initial pass over the list of fields to determine how
7475     * many there are.  Each element in this list is an ast_declarator_list.
7476     * This means that we actually need to count the number of elements in the
7477     * 'declarations' list in each of the elements.
7478     */
7479    foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7480       decl_count += decl_list->declarations.length();
7481    }
7482 
7483    /* Allocate storage for the fields and process the field
7484     * declarations.  As the declarations are processed, try to also convert
7485     * the types to HIR.  This ensures that structure definitions embedded in
7486     * other structure definitions or in interface blocks are processed.
7487     */
7488    glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field,
7489                                                    decl_count);
7490 
7491    bool first_member = true;
7492    bool first_member_has_explicit_location = false;
7493 
7494    unsigned i = 0;
7495    foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7496       const char *type_name;
7497       YYLTYPE loc = decl_list->get_location();
7498 
7499       decl_list->type->specifier->hir(instructions, state);
7500 
7501       /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
7502        *
7503        *    "Anonymous structures are not supported; so embedded structures
7504        *    must have a declarator. A name given to an embedded struct is
7505        *    scoped at the same level as the struct it is embedded in."
7506        *
7507        * The same section of the  GLSL 1.20 spec says:
7508        *
7509        *    "Anonymous structures are not supported. Embedded structures are
7510        *    not supported."
7511        *
7512        * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
7513        * embedded structures in 1.10 only.
7514        */
7515       if (state->language_version != 110 &&
7516           decl_list->type->specifier->structure != NULL)
7517          _mesa_glsl_error(&loc, state,
7518                           "embedded structure declarations are not allowed");
7519 
7520       const glsl_type *decl_type =
7521          decl_list->type->glsl_type(& type_name, state);
7522 
7523       const struct ast_type_qualifier *const qual =
7524          &decl_list->type->qualifier;
7525 
7526       /* From section 4.3.9 of the GLSL 4.40 spec:
7527        *
7528        *    "[In interface blocks] opaque types are not allowed."
7529        *
7530        * It should be impossible for decl_type to be NULL here.  Cases that
7531        * might naturally lead to decl_type being NULL, especially for the
7532        * is_interface case, will have resulted in compilation having
7533        * already halted due to a syntax error.
7534        */
7535       assert(decl_type);
7536 
7537       if (is_interface) {
7538          /* From section 4.3.7 of the ARB_bindless_texture spec:
7539           *
7540           *    "(remove the following bullet from the last list on p. 39,
7541           *     thereby permitting sampler types in interface blocks; image
7542           *     types are also permitted in blocks by this extension)"
7543           *
7544           *     * sampler types are not allowed
7545           */
7546          if (glsl_contains_atomic(decl_type) ||
7547              (!state->has_bindless() && glsl_contains_opaque(decl_type))) {
7548             _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
7549                              "interface block contains %s variable",
7550                              state->has_bindless() ? "atomic" : "opaque");
7551          }
7552       } else {
7553          if (glsl_contains_atomic(decl_type)) {
7554             /* From section 4.1.7.3 of the GLSL 4.40 spec:
7555              *
7556              *    "Members of structures cannot be declared as atomic counter
7557              *     types."
7558              */
7559             _mesa_glsl_error(&loc, state, "atomic counter in structure");
7560          }
7561 
7562          if (!state->has_bindless() && glsl_type_contains_image(decl_type)) {
7563             /* FINISHME: Same problem as with atomic counters.
7564              * FINISHME: Request clarification from Khronos and add
7565              * FINISHME: spec quotation here.
7566              */
7567             _mesa_glsl_error(&loc, state, "image in structure");
7568          }
7569       }
7570 
7571       if (qual->flags.q.explicit_binding) {
7572          _mesa_glsl_error(&loc, state,
7573                           "binding layout qualifier cannot be applied "
7574                           "to struct or interface block members");
7575       }
7576 
7577       if (is_interface) {
7578          if (!first_member) {
7579             if (!layout->flags.q.explicit_location &&
7580                 ((first_member_has_explicit_location &&
7581                   !qual->flags.q.explicit_location) ||
7582                  (!first_member_has_explicit_location &&
7583                   qual->flags.q.explicit_location))) {
7584                _mesa_glsl_error(&loc, state,
7585                                 "when block-level location layout qualifier "
7586                                 "is not supplied either all members must "
7587                                 "have a location layout qualifier or all "
7588                                 "members must not have a location layout "
7589                                 "qualifier");
7590             }
7591          } else {
7592             first_member = false;
7593             first_member_has_explicit_location =
7594                qual->flags.q.explicit_location;
7595          }
7596       }
7597 
7598       if (qual->flags.q.std140 ||
7599           qual->flags.q.std430 ||
7600           qual->flags.q.packed ||
7601           qual->flags.q.shared) {
7602          _mesa_glsl_error(&loc, state,
7603                           "uniform/shader storage block layout qualifiers "
7604                           "std140, std430, packed, and shared can only be "
7605                           "applied to uniform/shader storage blocks, not "
7606                           "members");
7607       }
7608 
7609       if (qual->flags.q.constant) {
7610          _mesa_glsl_error(&loc, state,
7611                           "const storage qualifier cannot be applied "
7612                           "to struct or interface block members");
7613       }
7614 
7615       validate_memory_qualifier_for_type(state, &loc, qual, decl_type);
7616       validate_image_format_qualifier_for_type(state, &loc, qual, decl_type);
7617 
7618       /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
7619        *
7620        *   "A block member may be declared with a stream identifier, but
7621        *   the specified stream must match the stream associated with the
7622        *   containing block."
7623        */
7624       if (qual->flags.q.explicit_stream) {
7625          unsigned qual_stream;
7626          if (process_qualifier_constant(state, &loc, "stream",
7627                                         qual->stream, &qual_stream) &&
7628              qual_stream != block_stream) {
7629             _mesa_glsl_error(&loc, state, "stream layout qualifier on "
7630                              "interface block member does not match "
7631                              "the interface block (%u vs %u)", qual_stream,
7632                              block_stream);
7633          }
7634       }
7635 
7636       int xfb_buffer;
7637       unsigned explicit_xfb_buffer = 0;
7638       if (qual->flags.q.explicit_xfb_buffer) {
7639          unsigned qual_xfb_buffer;
7640          if (process_qualifier_constant(state, &loc, "xfb_buffer",
7641                                         qual->xfb_buffer, &qual_xfb_buffer)) {
7642             explicit_xfb_buffer = 1;
7643             if (qual_xfb_buffer != block_xfb_buffer)
7644                _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
7645                                 "interface block member does not match "
7646                                 "the interface block (%u vs %u)",
7647                                 qual_xfb_buffer, block_xfb_buffer);
7648          }
7649          xfb_buffer = (int) qual_xfb_buffer;
7650       } else {
7651          if (layout)
7652             explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
7653          xfb_buffer = (int) block_xfb_buffer;
7654       }
7655 
7656       int xfb_stride = -1;
7657       if (qual->flags.q.explicit_xfb_stride) {
7658          unsigned qual_xfb_stride;
7659          if (process_qualifier_constant(state, &loc, "xfb_stride",
7660                                         qual->xfb_stride, &qual_xfb_stride)) {
7661             xfb_stride = (int) qual_xfb_stride;
7662          }
7663       }
7664 
7665       if (qual->flags.q.uniform && qual->has_interpolation()) {
7666          _mesa_glsl_error(&loc, state,
7667                           "interpolation qualifiers cannot be used "
7668                           "with uniform interface blocks");
7669       }
7670 
7671       if ((qual->flags.q.uniform || !is_interface) &&
7672           qual->has_auxiliary_storage()) {
7673          _mesa_glsl_error(&loc, state,
7674                           "auxiliary storage qualifiers cannot be used "
7675                           "in uniform blocks or structures.");
7676       }
7677 
7678       if (qual->flags.q.row_major || qual->flags.q.column_major) {
7679          if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
7680             _mesa_glsl_error(&loc, state,
7681                              "row_major and column_major can only be "
7682                              "applied to interface blocks");
7683          } else
7684             validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
7685       }
7686 
7687       foreach_list_typed (ast_declaration, decl, link,
7688                           &decl_list->declarations) {
7689          YYLTYPE loc = decl->get_location();
7690 
7691          if (!allow_reserved_names)
7692             validate_identifier(decl->identifier, loc, state);
7693 
7694          const struct glsl_type *field_type =
7695             process_array_type(&loc, decl_type, decl->array_specifier, state);
7696          validate_array_dimensions(field_type, state, &loc);
7697          fields[i].type = field_type;
7698          fields[i].name = decl->identifier;
7699          fields[i].interpolation =
7700             interpret_interpolation_qualifier(qual, field_type,
7701                                               var_mode, state, &loc);
7702          fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
7703          fields[i].sample = qual->flags.q.sample ? 1 : 0;
7704          fields[i].patch = qual->flags.q.patch ? 1 : 0;
7705          fields[i].offset = -1;
7706          fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
7707          fields[i].xfb_buffer = xfb_buffer;
7708          fields[i].xfb_stride = xfb_stride;
7709 
7710          if (qual->flags.q.explicit_location) {
7711             unsigned qual_location;
7712             if (process_qualifier_constant(state, &loc, "location",
7713                                            qual->location, &qual_location)) {
7714                fields[i].location = qual_location +
7715                   (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
7716                expl_location = fields[i].location +
7717                   glsl_count_attribute_slots(fields[i].type, false);
7718             }
7719          } else {
7720             if (layout && layout->flags.q.explicit_location) {
7721                fields[i].location = expl_location;
7722                expl_location += glsl_count_attribute_slots(fields[i].type, false);
7723             } else {
7724                fields[i].location = -1;
7725             }
7726          }
7727 
7728          if (qual->flags.q.explicit_component) {
7729             unsigned qual_component;
7730             if (process_qualifier_constant(state, &loc, "component",
7731                                            qual->component, &qual_component)) {
7732                validate_component_layout_for_type(state, &loc, fields[i].type,
7733                                                   qual_component);
7734                fields[i].component = qual_component;
7735             }
7736          } else {
7737             fields[i].component = -1;
7738          }
7739 
7740          /* Offset can only be used with std430 and std140 layouts an initial
7741           * value of 0 is used for error detection.
7742           */
7743          unsigned base_alignment = 0;
7744          unsigned size = 0;
7745          if (layout) {
7746             bool row_major;
7747             if (qual->flags.q.row_major ||
7748                 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
7749                row_major = true;
7750             } else {
7751                row_major = false;
7752             }
7753 
7754             if(layout->flags.q.std140) {
7755                base_alignment = glsl_get_std140_base_alignment(field_type, row_major);
7756                size = glsl_get_std140_size(field_type, row_major);
7757             } else if (layout->flags.q.std430) {
7758                base_alignment = glsl_get_std430_base_alignment(field_type, row_major);
7759                size = glsl_get_std430_size(field_type, row_major);
7760             }
7761          }
7762 
7763          if (qual->flags.q.explicit_offset) {
7764             unsigned qual_offset;
7765             if (process_qualifier_constant(state, &loc, "offset",
7766                                            qual->offset, &qual_offset)) {
7767                if (base_alignment != 0 && size != 0) {
7768                    if (next_offset > qual_offset)
7769                       _mesa_glsl_error(&loc, state, "layout qualifier "
7770                                        "offset overlaps previous member");
7771 
7772                   if (qual_offset % base_alignment) {
7773                      _mesa_glsl_error(&loc, state, "layout qualifier offset "
7774                                       "must be a multiple of the base "
7775                                       "alignment of %s", glsl_get_type_name(field_type));
7776                   }
7777                   fields[i].offset = qual_offset;
7778                   next_offset = qual_offset + size;
7779                } else {
7780                   _mesa_glsl_error(&loc, state, "offset can only be used "
7781                                    "with std430 and std140 layouts");
7782                }
7783             }
7784          }
7785 
7786          if (qual->flags.q.explicit_align || expl_align != 0) {
7787             unsigned offset = fields[i].offset != -1 ? fields[i].offset :
7788                next_offset;
7789             if (base_alignment == 0 || size == 0) {
7790                _mesa_glsl_error(&loc, state, "align can only be used with "
7791                                 "std430 and std140 layouts");
7792             } else if (qual->flags.q.explicit_align) {
7793                unsigned member_align;
7794                if (process_qualifier_constant(state, &loc, "align",
7795                                               qual->align, &member_align)) {
7796                   if (member_align == 0 ||
7797                       member_align & (member_align - 1)) {
7798                      _mesa_glsl_error(&loc, state, "align layout qualifier "
7799                                       "is not a power of 2");
7800                   } else {
7801                      fields[i].offset = align(offset, member_align);
7802                      next_offset = fields[i].offset + size;
7803                   }
7804                }
7805             } else {
7806                fields[i].offset = align(offset, expl_align);
7807                next_offset = fields[i].offset + size;
7808             }
7809          } else if (!qual->flags.q.explicit_offset) {
7810             if (base_alignment != 0 && size != 0)
7811                next_offset = align(next_offset, base_alignment) + size;
7812          }
7813 
7814          /* From the ARB_enhanced_layouts spec:
7815           *
7816           *    "The given offset applies to the first component of the first
7817           *    member of the qualified entity.  Then, within the qualified
7818           *    entity, subsequent components are each assigned, in order, to
7819           *    the next available offset aligned to a multiple of that
7820           *    component's size.  Aggregate types are flattened down to the
7821           *    component level to get this sequence of components."
7822           */
7823          if (qual->flags.q.explicit_xfb_offset) {
7824             unsigned xfb_offset;
7825             if (process_qualifier_constant(state, &loc, "xfb_offset",
7826                                            qual->offset, &xfb_offset)) {
7827                fields[i].offset = xfb_offset;
7828                block_xfb_offset = fields[i].offset +
7829                   4 * glsl_get_component_slots(field_type);
7830             }
7831          } else {
7832             if (layout && layout->flags.q.explicit_xfb_offset) {
7833                unsigned base_alignment = glsl_type_is_64bit(field_type) ? 8 : 4;
7834                fields[i].offset = align(block_xfb_offset, base_alignment);
7835                block_xfb_offset += 4 * glsl_get_component_slots(field_type);
7836             }
7837          }
7838 
7839          /* Propogate row- / column-major information down the fields of the
7840           * structure or interface block.  Structures need this data because
7841           * the structure may contain a structure that contains ... a matrix
7842           * that need the proper layout.
7843           */
7844          if (is_interface && layout &&
7845              (layout->flags.q.uniform || layout->flags.q.buffer) &&
7846              (glsl_type_is_matrix(glsl_without_array(field_type))
7847               || glsl_type_is_struct(glsl_without_array(field_type)))) {
7848             /* If no layout is specified for the field, inherit the layout
7849              * from the block.
7850              */
7851             fields[i].matrix_layout = matrix_layout;
7852 
7853             if (qual->flags.q.row_major)
7854                fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7855             else if (qual->flags.q.column_major)
7856                fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7857 
7858             /* If we're processing an uniform or buffer block, the matrix
7859              * layout must be decided by this point.
7860              */
7861             assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
7862                    || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
7863          }
7864 
7865          /* Memory qualifiers are allowed on buffer and image variables, while
7866           * the format qualifier is only accepted for images.
7867           */
7868          if (var_mode == ir_var_shader_storage ||
7869              glsl_type_is_image(glsl_without_array(field_type))) {
7870             /* For readonly and writeonly qualifiers the field definition,
7871              * if set, overwrites the layout qualifier.
7872              */
7873             if (qual->flags.q.read_only || qual->flags.q.write_only) {
7874                fields[i].memory_read_only = qual->flags.q.read_only;
7875                fields[i].memory_write_only = qual->flags.q.write_only;
7876             } else {
7877                fields[i].memory_read_only =
7878                   layout ? layout->flags.q.read_only : 0;
7879                fields[i].memory_write_only =
7880                   layout ? layout->flags.q.write_only : 0;
7881             }
7882 
7883             /* For other qualifiers, we set the flag if either the layout
7884              * qualifier or the field qualifier are set
7885              */
7886             fields[i].memory_coherent = qual->flags.q.coherent ||
7887                                         (layout && layout->flags.q.coherent);
7888             fields[i].memory_volatile = qual->flags.q._volatile ||
7889                                         (layout && layout->flags.q._volatile);
7890             fields[i].memory_restrict = qual->flags.q.restrict_flag ||
7891                                         (layout && layout->flags.q.restrict_flag);
7892 
7893             if (glsl_type_is_image(glsl_without_array(field_type))) {
7894                if (qual->flags.q.explicit_image_format) {
7895                   if (qual->image_base_type !=
7896                       glsl_without_array(field_type)->sampled_type) {
7897                      _mesa_glsl_error(&loc, state, "format qualifier doesn't "
7898                                       "match the base data type of the image");
7899                   }
7900 
7901                   fields[i].image_format = qual->image_format;
7902                } else {
7903                   if (!qual->flags.q.write_only) {
7904                      _mesa_glsl_error(&loc, state, "image not qualified with "
7905                                       "`writeonly' must have a format layout "
7906                                       "qualifier");
7907                   }
7908 
7909                   fields[i].image_format = PIPE_FORMAT_NONE;
7910                }
7911             }
7912          }
7913 
7914          /* Precision qualifiers do not hold any meaning in Desktop GLSL */
7915          if (state->es_shader) {
7916             fields[i].precision = select_gles_precision(qual->precision,
7917                                                         field_type,
7918                                                         state,
7919                                                         &loc);
7920          } else {
7921             fields[i].precision = qual->precision;
7922          }
7923 
7924          i++;
7925       }
7926    }
7927 
7928    assert(i == decl_count);
7929 
7930    *fields_ret = fields;
7931    return decl_count;
7932 }
7933 
7934 static bool
is_anonymous(const glsl_type * t)7935 is_anonymous(const glsl_type *t)
7936 {
7937    /* See handling for struct_specifier in glsl_parser.yy. */
7938    return !strncmp(glsl_get_type_name(t), "#anon", 5);
7939 }
7940 
7941 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7942 ast_struct_specifier::hir(exec_list *instructions,
7943                           struct _mesa_glsl_parse_state *state)
7944 {
7945    YYLTYPE loc = this->get_location();
7946 
7947    unsigned expl_location = 0;
7948    if (layout && layout->flags.q.explicit_location) {
7949       if (!process_qualifier_constant(state, &loc, "location",
7950                                       layout->location, &expl_location)) {
7951          return NULL;
7952       } else {
7953          expl_location = VARYING_SLOT_VAR0 + expl_location;
7954       }
7955    }
7956 
7957    glsl_struct_field *fields;
7958    unsigned decl_count =
7959       ast_process_struct_or_iface_block_members(instructions,
7960                                                 state,
7961                                                 &this->declarations,
7962                                                 &fields,
7963                                                 false,
7964                                                 GLSL_MATRIX_LAYOUT_INHERITED,
7965                                                 false /* allow_reserved_names */,
7966                                                 ir_var_auto,
7967                                                 layout,
7968                                                 0, /* for interface only */
7969                                                 0, /* for interface only */
7970                                                 0, /* for interface only */
7971                                                 expl_location,
7972                                                 0 /* for interface only */);
7973 
7974    validate_identifier(this->name, loc, state);
7975 
7976    type = glsl_struct_type(fields, decl_count, this->name, false /* packed */);
7977 
7978    if (!is_anonymous(type) && !state->symbols->add_type(name, type)) {
7979       const glsl_type *match = state->symbols->get_type(name);
7980       /* allow struct matching for desktop GL - older UE4 does this */
7981       if (match != NULL && state->is_version(130, 0) && glsl_record_compare(match, type, true, false, true))
7982          _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
7983       else
7984          _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
7985    } else {
7986       const glsl_type **s = reralloc(state, state->user_structures,
7987                                      const glsl_type *,
7988                                      state->num_user_structures + 1);
7989       if (s != NULL) {
7990          s[state->num_user_structures] = type;
7991          state->user_structures = s;
7992          state->num_user_structures++;
7993       }
7994    }
7995 
7996    /* Structure type definitions do not have r-values.
7997     */
7998    return NULL;
7999 }
8000 
8001 
8002 /**
8003  * Visitor class which detects whether a given interface block has been used.
8004  */
8005 class interface_block_usage_visitor : public ir_hierarchical_visitor
8006 {
8007 public:
interface_block_usage_visitor(ir_variable_mode mode,const glsl_type * block)8008    interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
8009       : mode(mode), block(block), found(false)
8010    {
8011    }
8012 
visit(ir_dereference_variable * ir)8013    virtual ir_visitor_status visit(ir_dereference_variable *ir)
8014    {
8015       if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
8016          found = true;
8017          return visit_stop;
8018       }
8019       return visit_continue;
8020    }
8021 
usage_found() const8022    bool usage_found() const
8023    {
8024       return this->found;
8025    }
8026 
8027 private:
8028    ir_variable_mode mode;
8029    const glsl_type *block;
8030    bool found;
8031 };
8032 
8033 static bool
is_unsized_array_last_element(ir_variable * v)8034 is_unsized_array_last_element(ir_variable *v)
8035 {
8036    const glsl_type *interface_type = v->get_interface_type();
8037    int length = interface_type->length;
8038 
8039    assert(glsl_type_is_unsized_array(v->type));
8040 
8041    /* Check if it is the last element of the interface */
8042    if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
8043       return true;
8044    return false;
8045 }
8046 
8047 static void
apply_memory_qualifiers(ir_variable * var,glsl_struct_field field)8048 apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
8049 {
8050    var->data.memory_read_only = field.memory_read_only;
8051    var->data.memory_write_only = field.memory_write_only;
8052    var->data.memory_coherent = field.memory_coherent;
8053    var->data.memory_volatile = field.memory_volatile;
8054    var->data.memory_restrict = field.memory_restrict;
8055 }
8056 
8057 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)8058 ast_interface_block::hir(exec_list *instructions,
8059                          struct _mesa_glsl_parse_state *state)
8060 {
8061    YYLTYPE loc = this->get_location();
8062 
8063    /* Interface blocks must be declared at global scope */
8064    if (state->current_function != NULL) {
8065       _mesa_glsl_error(&loc, state,
8066                        "Interface block `%s' must be declared "
8067                        "at global scope",
8068                        this->block_name);
8069    }
8070 
8071    /* Validate qualifiers:
8072     *
8073     * - Layout Qualifiers as per the table in Section 4.4
8074     *   ("Layout Qualifiers") of the GLSL 4.50 spec.
8075     *
8076     * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the
8077     *   GLSL 4.50 spec:
8078     *
8079     *     "Additionally, memory qualifiers may also be used in the declaration
8080     *      of shader storage blocks"
8081     *
8082     * Note the table in Section 4.4 says std430 is allowed on both uniform and
8083     * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block
8084     * Layout Qualifiers) of the GLSL 4.50 spec says:
8085     *
8086     *    "The std430 qualifier is supported only for shader storage blocks;
8087     *    using std430 on a uniform block will result in a compile-time error."
8088     */
8089    ast_type_qualifier allowed_blk_qualifiers;
8090    allowed_blk_qualifiers.flags.i = 0;
8091    if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) {
8092       allowed_blk_qualifiers.flags.q.shared = 1;
8093       allowed_blk_qualifiers.flags.q.packed = 1;
8094       allowed_blk_qualifiers.flags.q.std140 = 1;
8095       allowed_blk_qualifiers.flags.q.row_major = 1;
8096       allowed_blk_qualifiers.flags.q.column_major = 1;
8097       allowed_blk_qualifiers.flags.q.explicit_align = 1;
8098       allowed_blk_qualifiers.flags.q.explicit_binding = 1;
8099       if (this->layout.flags.q.buffer) {
8100          allowed_blk_qualifiers.flags.q.buffer = 1;
8101          allowed_blk_qualifiers.flags.q.std430 = 1;
8102          allowed_blk_qualifiers.flags.q.coherent = 1;
8103          allowed_blk_qualifiers.flags.q._volatile = 1;
8104          allowed_blk_qualifiers.flags.q.restrict_flag = 1;
8105          allowed_blk_qualifiers.flags.q.read_only = 1;
8106          allowed_blk_qualifiers.flags.q.write_only = 1;
8107       } else {
8108          allowed_blk_qualifiers.flags.q.uniform = 1;
8109       }
8110    } else {
8111       /* Interface block */
8112       assert(this->layout.flags.q.in || this->layout.flags.q.out);
8113 
8114       allowed_blk_qualifiers.flags.q.explicit_location = 1;
8115       if (this->layout.flags.q.out) {
8116          allowed_blk_qualifiers.flags.q.out = 1;
8117          if (state->stage == MESA_SHADER_GEOMETRY ||
8118              state->stage == MESA_SHADER_TESS_CTRL ||
8119              state->stage == MESA_SHADER_TESS_EVAL ||
8120              state->stage == MESA_SHADER_VERTEX ) {
8121             allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1;
8122             allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1;
8123             allowed_blk_qualifiers.flags.q.xfb_buffer = 1;
8124             allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1;
8125             allowed_blk_qualifiers.flags.q.xfb_stride = 1;
8126          }
8127          if (state->stage == MESA_SHADER_GEOMETRY) {
8128             allowed_blk_qualifiers.flags.q.stream = 1;
8129             allowed_blk_qualifiers.flags.q.explicit_stream = 1;
8130          }
8131          if (state->stage == MESA_SHADER_TESS_CTRL) {
8132             allowed_blk_qualifiers.flags.q.patch = 1;
8133          }
8134       } else {
8135          allowed_blk_qualifiers.flags.q.in = 1;
8136          if (state->stage == MESA_SHADER_TESS_EVAL) {
8137             allowed_blk_qualifiers.flags.q.patch = 1;
8138          }
8139       }
8140    }
8141 
8142    this->layout.validate_flags(&loc, state, allowed_blk_qualifiers,
8143                                "invalid qualifier for block",
8144                                this->block_name);
8145 
8146    enum glsl_interface_packing packing;
8147    if (this->layout.flags.q.std140) {
8148       packing = GLSL_INTERFACE_PACKING_STD140;
8149    } else if (this->layout.flags.q.packed) {
8150       packing = GLSL_INTERFACE_PACKING_PACKED;
8151    } else if (this->layout.flags.q.std430) {
8152       packing = GLSL_INTERFACE_PACKING_STD430;
8153    } else {
8154       /* The default layout is shared.
8155        */
8156       packing = GLSL_INTERFACE_PACKING_SHARED;
8157    }
8158 
8159    ir_variable_mode var_mode;
8160    const char *iface_type_name;
8161    if (this->layout.flags.q.in) {
8162       var_mode = ir_var_shader_in;
8163       iface_type_name = "in";
8164    } else if (this->layout.flags.q.out) {
8165       var_mode = ir_var_shader_out;
8166       iface_type_name = "out";
8167    } else if (this->layout.flags.q.uniform) {
8168       var_mode = ir_var_uniform;
8169       iface_type_name = "uniform";
8170    } else if (this->layout.flags.q.buffer) {
8171       var_mode = ir_var_shader_storage;
8172       iface_type_name = "buffer";
8173    } else {
8174       var_mode = ir_var_auto;
8175       iface_type_name = "UNKNOWN";
8176       assert(!"interface block layout qualifier not found!");
8177    }
8178 
8179    enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
8180    if (this->layout.flags.q.row_major)
8181       matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
8182    else if (this->layout.flags.q.column_major)
8183       matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
8184 
8185    bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
8186    exec_list declared_variables;
8187    glsl_struct_field *fields;
8188 
8189    /* For blocks that accept memory qualifiers (i.e. shader storage), verify
8190     * that we don't have incompatible qualifiers
8191     */
8192    if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
8193       _mesa_glsl_error(&loc, state,
8194                        "Interface block sets both readonly and writeonly");
8195    }
8196 
8197    unsigned qual_stream;
8198    if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
8199                                    &qual_stream) ||
8200        !validate_stream_qualifier(&loc, state, qual_stream)) {
8201       /* If the stream qualifier is invalid it doesn't make sense to continue
8202        * on and try to compare stream layouts on member variables against it
8203        * so just return early.
8204        */
8205       return NULL;
8206    }
8207 
8208    unsigned qual_xfb_buffer = 0;
8209    if (layout.flags.q.xfb_buffer) {
8210       if (!process_qualifier_constant(state, &loc, "xfb_buffer",
8211                                       layout.xfb_buffer, &qual_xfb_buffer) ||
8212           !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
8213          return NULL;
8214       }
8215    }
8216 
8217    unsigned qual_xfb_offset = 0;
8218    if (layout.flags.q.explicit_xfb_offset) {
8219       if (!process_qualifier_constant(state, &loc, "xfb_offset",
8220                                       layout.offset, &qual_xfb_offset)) {
8221          return NULL;
8222       }
8223    }
8224 
8225    unsigned qual_xfb_stride = 0;
8226    if (layout.flags.q.explicit_xfb_stride) {
8227       if (!process_qualifier_constant(state, &loc, "xfb_stride",
8228                                       layout.xfb_stride, &qual_xfb_stride)) {
8229          return NULL;
8230       }
8231    }
8232 
8233    unsigned expl_location = 0;
8234    if (layout.flags.q.explicit_location) {
8235       if (!process_qualifier_constant(state, &loc, "location",
8236                                       layout.location, &expl_location)) {
8237          return NULL;
8238       } else {
8239          expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0
8240                                                      : VARYING_SLOT_VAR0;
8241       }
8242    }
8243 
8244    unsigned expl_align = 0;
8245    if (layout.flags.q.explicit_align) {
8246       if (!process_qualifier_constant(state, &loc, "align",
8247                                       layout.align, &expl_align)) {
8248          return NULL;
8249       } else {
8250          if (expl_align == 0 || expl_align & (expl_align - 1)) {
8251             _mesa_glsl_error(&loc, state, "align layout qualifier is not a "
8252                              "power of 2.");
8253             return NULL;
8254          }
8255       }
8256    }
8257 
8258    unsigned int num_variables =
8259       ast_process_struct_or_iface_block_members(&declared_variables,
8260                                                 state,
8261                                                 &this->declarations,
8262                                                 &fields,
8263                                                 true,
8264                                                 matrix_layout,
8265                                                 redeclaring_per_vertex,
8266                                                 var_mode,
8267                                                 &this->layout,
8268                                                 qual_stream,
8269                                                 qual_xfb_buffer,
8270                                                 qual_xfb_offset,
8271                                                 expl_location,
8272                                                 expl_align);
8273 
8274    if (!redeclaring_per_vertex) {
8275       validate_identifier(this->block_name, loc, state);
8276 
8277       /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
8278        *
8279        *     "Block names have no other use within a shader beyond interface
8280        *     matching; it is a compile-time error to use a block name at global
8281        *     scope for anything other than as a block name."
8282        */
8283       ir_variable *var = state->symbols->get_variable(this->block_name);
8284       if (var && !glsl_type_is_interface(var->type)) {
8285          _mesa_glsl_error(&loc, state, "Block name `%s' is "
8286                           "already used in the scope.",
8287                           this->block_name);
8288       }
8289    }
8290 
8291    const glsl_type *earlier_per_vertex = NULL;
8292    if (redeclaring_per_vertex) {
8293       /* Find the previous declaration of gl_PerVertex.  If we're redeclaring
8294        * the named interface block gl_in, we can find it by looking at the
8295        * previous declaration of gl_in.  Otherwise we can find it by looking
8296        * at the previous decalartion of any of the built-in outputs,
8297        * e.g. gl_Position.
8298        *
8299        * Also check that the instance name and array-ness of the redeclaration
8300        * are correct.
8301        */
8302       switch (var_mode) {
8303       case ir_var_shader_in:
8304          if (ir_variable *earlier_gl_in =
8305              state->symbols->get_variable("gl_in")) {
8306             earlier_per_vertex = earlier_gl_in->get_interface_type();
8307          } else {
8308             _mesa_glsl_error(&loc, state,
8309                              "redeclaration of gl_PerVertex input not allowed "
8310                              "in the %s shader",
8311                              _mesa_shader_stage_to_string(state->stage));
8312          }
8313          if (this->instance_name == NULL ||
8314              strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
8315              !this->array_specifier->is_single_dimension()) {
8316             _mesa_glsl_error(&loc, state,
8317                              "gl_PerVertex input must be redeclared as "
8318                              "gl_in[]");
8319          }
8320          break;
8321       case ir_var_shader_out:
8322          if (ir_variable *earlier_gl_Position =
8323              state->symbols->get_variable("gl_Position")) {
8324             earlier_per_vertex = earlier_gl_Position->get_interface_type();
8325          } else if (ir_variable *earlier_gl_out =
8326                state->symbols->get_variable("gl_out")) {
8327             earlier_per_vertex = earlier_gl_out->get_interface_type();
8328          } else {
8329             _mesa_glsl_error(&loc, state,
8330                              "redeclaration of gl_PerVertex output not "
8331                              "allowed in the %s shader",
8332                              _mesa_shader_stage_to_string(state->stage));
8333          }
8334          if (state->stage == MESA_SHADER_TESS_CTRL) {
8335             if (this->instance_name == NULL ||
8336                 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
8337                _mesa_glsl_error(&loc, state,
8338                                 "gl_PerVertex output must be redeclared as "
8339                                 "gl_out[]");
8340             }
8341          } else {
8342             if (this->instance_name != NULL) {
8343                _mesa_glsl_error(&loc, state,
8344                                 "gl_PerVertex output may not be redeclared with "
8345                                 "an instance name");
8346             }
8347          }
8348          break;
8349       default:
8350          _mesa_glsl_error(&loc, state,
8351                           "gl_PerVertex must be declared as an input or an "
8352                           "output");
8353          break;
8354       }
8355 
8356       if (earlier_per_vertex == NULL) {
8357          /* An error has already been reported.  Bail out to avoid null
8358           * dereferences later in this function.
8359           */
8360          return NULL;
8361       }
8362 
8363       /* Copy locations from the old gl_PerVertex interface block. */
8364       for (unsigned i = 0; i < num_variables; i++) {
8365          int j = glsl_get_field_index(earlier_per_vertex, fields[i].name);
8366          if (j == -1) {
8367             _mesa_glsl_error(&loc, state,
8368                              "redeclaration of gl_PerVertex must be a subset "
8369                              "of the built-in members of gl_PerVertex");
8370          } else {
8371             fields[i].location =
8372                earlier_per_vertex->fields.structure[j].location;
8373             fields[i].offset =
8374                earlier_per_vertex->fields.structure[j].offset;
8375             fields[i].interpolation =
8376                earlier_per_vertex->fields.structure[j].interpolation;
8377             fields[i].centroid =
8378                earlier_per_vertex->fields.structure[j].centroid;
8379             fields[i].sample =
8380                earlier_per_vertex->fields.structure[j].sample;
8381             fields[i].patch =
8382                earlier_per_vertex->fields.structure[j].patch;
8383             fields[i].precision =
8384                earlier_per_vertex->fields.structure[j].precision;
8385             fields[i].explicit_xfb_buffer =
8386                earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
8387             fields[i].xfb_buffer =
8388                earlier_per_vertex->fields.structure[j].xfb_buffer;
8389             fields[i].xfb_stride =
8390                earlier_per_vertex->fields.structure[j].xfb_stride;
8391          }
8392       }
8393 
8394       /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
8395        * spec:
8396        *
8397        *     If a built-in interface block is redeclared, it must appear in
8398        *     the shader before any use of any member included in the built-in
8399        *     declaration, or a compilation error will result.
8400        *
8401        * This appears to be a clarification to the behaviour established for
8402        * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
8403        * regardless of GLSL version.
8404        */
8405       interface_block_usage_visitor v(var_mode, earlier_per_vertex);
8406       v.run(instructions);
8407       if (v.usage_found()) {
8408          _mesa_glsl_error(&loc, state,
8409                           "redeclaration of a built-in interface block must "
8410                           "appear before any use of any member of the "
8411                           "interface block");
8412       }
8413    }
8414 
8415    const glsl_type *block_type =
8416       glsl_interface_type(fields,
8417                           num_variables,
8418                           packing,
8419                           matrix_layout ==
8420                           GLSL_MATRIX_LAYOUT_ROW_MAJOR,
8421                           this->block_name);
8422 
8423    unsigned component_size = glsl_contains_double(block_type) ? 8 : 4;
8424    int xfb_offset =
8425       layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
8426    validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
8427                                  component_size);
8428 
8429    if (!state->symbols->add_interface(glsl_get_type_name(block_type), block_type, var_mode)) {
8430       YYLTYPE loc = this->get_location();
8431       _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
8432                        "already taken in the current scope",
8433                        this->block_name, iface_type_name);
8434    }
8435 
8436    /* Since interface blocks cannot contain statements, it should be
8437     * impossible for the block to generate any instructions.
8438     */
8439    assert(declared_variables.is_empty());
8440 
8441    /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
8442     *
8443     *     Geometry shader input variables get the per-vertex values written
8444     *     out by vertex shader output variables of the same names. Since a
8445     *     geometry shader operates on a set of vertices, each input varying
8446     *     variable (or input block, see interface blocks below) needs to be
8447     *     declared as an array.
8448     */
8449    if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
8450        var_mode == ir_var_shader_in) {
8451       _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
8452    } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8453                state->stage == MESA_SHADER_TESS_EVAL) &&
8454               !this->layout.flags.q.patch &&
8455               this->array_specifier == NULL &&
8456               var_mode == ir_var_shader_in) {
8457       _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
8458    } else if (state->stage == MESA_SHADER_TESS_CTRL &&
8459               !this->layout.flags.q.patch &&
8460               this->array_specifier == NULL &&
8461               var_mode == ir_var_shader_out) {
8462       _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
8463    }
8464 
8465 
8466    /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
8467     * says:
8468     *
8469     *     "If an instance name (instance-name) is used, then it puts all the
8470     *     members inside a scope within its own name space, accessed with the
8471     *     field selector ( . ) operator (analogously to structures)."
8472     */
8473    if (this->instance_name) {
8474       if (redeclaring_per_vertex) {
8475          /* When a built-in in an unnamed interface block is redeclared,
8476           * get_variable_being_redeclared() calls
8477           * check_builtin_array_max_size() to make sure that built-in array
8478           * variables aren't redeclared to illegal sizes.  But we're looking
8479           * at a redeclaration of a named built-in interface block.  So we
8480           * have to manually call check_builtin_array_max_size() for all parts
8481           * of the interface that are arrays.
8482           */
8483          for (unsigned i = 0; i < num_variables; i++) {
8484             if (glsl_type_is_array(fields[i].type)) {
8485                const unsigned size = glsl_array_size(fields[i].type);
8486                check_builtin_array_max_size(fields[i].name, size, loc, state);
8487             }
8488          }
8489       } else {
8490          validate_identifier(this->instance_name, loc, state);
8491       }
8492 
8493       ir_variable *var;
8494 
8495       if (this->array_specifier != NULL) {
8496          const glsl_type *block_array_type =
8497             process_array_type(&loc, block_type, this->array_specifier, state);
8498 
8499          /* From Section 4.4.1 (Input Layout Qualifiers) of the GLSL 4.50 spec:
8500           *
8501           *    "For some blocks declared as arrays, the location can only be applied
8502           *    at the block level: When a block is declared as an array where
8503           *    additional locations are needed for each member for each block array
8504           *    element, it is a compile-time error to specify locations on the block
8505           *    members. That is, when locations would be under specified by applying
8506           *    them on block members, they are not allowed on block members. For
8507           *    arrayed interfaces (those generally having an extra level of
8508           *    arrayness due to interface expansion), the outer array is stripped
8509           *    before applying this rule"
8510           *
8511           * From 4.4.1 (Input Layout Qualifiers) and
8512           * 4.4.2 (Output Layout Qualifiers) of GLSL ES 3.20
8513           *
8514           *    "If an input is declared as an array of blocks, excluding
8515           *     per-vertex-arrays as required for tessellation, it is an error
8516           *     to declare a member of the block with a location qualifier."
8517           *
8518           *    "If an output is declared as an array of blocks, excluding
8519           *     per-vertex-arrays as required for tessellation, it is an error
8520           *     to declare a member of the block with a location qualifier."
8521           */
8522          if (!redeclaring_per_vertex &&
8523              (state->has_enhanced_layouts() || state->has_shader_io_blocks())) {
8524             bool allow_location;
8525             switch (state->stage)
8526             {
8527             case MESA_SHADER_TESS_CTRL:
8528                allow_location = this->array_specifier->is_single_dimension();
8529                break;
8530             case MESA_SHADER_TESS_EVAL:
8531             case MESA_SHADER_GEOMETRY:
8532                allow_location = (this->array_specifier->is_single_dimension()
8533                                  && var_mode == ir_var_shader_in);
8534                break;
8535             default:
8536                allow_location = false;
8537                break;
8538             }
8539 
8540             if (!allow_location) {
8541                for (unsigned i = 0; i < num_variables; i++) {
8542                   if (fields[i].location != -1) {
8543                      _mesa_glsl_error(&loc, state,
8544                                        "explicit member locations are not allowed in "
8545                                        "blocks declared as arrays %s shader",
8546                                        _mesa_shader_stage_to_string(state->stage));
8547                   }
8548                }
8549             }
8550          }
8551 
8552          /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
8553           *
8554           *     For uniform blocks declared an array, each individual array
8555           *     element corresponds to a separate buffer object backing one
8556           *     instance of the block. As the array size indicates the number
8557           *     of buffer objects needed, uniform block array declarations
8558           *     must specify an array size.
8559           *
8560           * And a few paragraphs later:
8561           *
8562           *     Geometry shader input blocks must be declared as arrays and
8563           *     follow the array declaration and linking rules for all
8564           *     geometry shader inputs. All other input and output block
8565           *     arrays must specify an array size.
8566           *
8567           * The same applies to tessellation shaders.
8568           *
8569           * The upshot of this is that the only circumstance where an
8570           * interface array size *doesn't* need to be specified is on a
8571           * geometry shader input, tessellation control shader input,
8572           * tessellation control shader output, and tessellation evaluation
8573           * shader input.
8574           */
8575          if (glsl_type_is_unsized_array(block_array_type)) {
8576             bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
8577                                 state->stage == MESA_SHADER_TESS_CTRL ||
8578                                 state->stage == MESA_SHADER_TESS_EVAL;
8579             bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
8580 
8581             if (this->layout.flags.q.in) {
8582                if (!allow_inputs)
8583                   _mesa_glsl_error(&loc, state,
8584                                    "unsized input block arrays not allowed in "
8585                                    "%s shader",
8586                                    _mesa_shader_stage_to_string(state->stage));
8587             } else if (this->layout.flags.q.out) {
8588                if (!allow_outputs)
8589                   _mesa_glsl_error(&loc, state,
8590                                    "unsized output block arrays not allowed in "
8591                                    "%s shader",
8592                                    _mesa_shader_stage_to_string(state->stage));
8593             } else {
8594                /* by elimination, this is a uniform block array */
8595                _mesa_glsl_error(&loc, state,
8596                                 "unsized uniform block arrays not allowed in "
8597                                 "%s shader",
8598                                 _mesa_shader_stage_to_string(state->stage));
8599             }
8600          }
8601 
8602          /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
8603           *
8604           *     * Arrays of arrays of blocks are not allowed
8605           */
8606          if (state->es_shader && glsl_type_is_array(block_array_type) &&
8607              glsl_type_is_array(block_array_type->fields.array)) {
8608             _mesa_glsl_error(&loc, state,
8609                              "arrays of arrays interface blocks are "
8610                              "not allowed");
8611          }
8612 
8613          var = new(state) ir_variable(block_array_type,
8614                                       this->instance_name,
8615                                       var_mode);
8616       } else {
8617          var = new(state) ir_variable(block_type,
8618                                       this->instance_name,
8619                                       var_mode);
8620       }
8621 
8622       var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8623          ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8624 
8625       if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8626          var->data.read_only = true;
8627 
8628       var->data.patch = this->layout.flags.q.patch;
8629 
8630       if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
8631          handle_geometry_shader_input_decl(state, loc, var);
8632       else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8633            state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
8634          handle_tess_shader_input_decl(state, loc, var);
8635       else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
8636          handle_tess_ctrl_shader_output_decl(state, loc, var);
8637 
8638       for (unsigned i = 0; i < num_variables; i++) {
8639          if (var->data.mode == ir_var_shader_storage)
8640             apply_memory_qualifiers(var, fields[i]);
8641       }
8642 
8643       if (ir_variable *earlier =
8644           state->symbols->get_variable(this->instance_name)) {
8645          if (!redeclaring_per_vertex) {
8646             _mesa_glsl_error(&loc, state, "`%s' redeclared",
8647                              this->instance_name);
8648          }
8649          earlier->data.how_declared = ir_var_declared_normally;
8650          earlier->type = var->type;
8651          earlier->reinit_interface_type(block_type);
8652          delete var;
8653       } else {
8654          if (this->layout.flags.q.explicit_binding) {
8655             apply_explicit_binding(state, &loc, var, var->type,
8656                                    &this->layout);
8657          }
8658 
8659          var->data.stream = qual_stream;
8660          if (layout.flags.q.explicit_location) {
8661             var->data.location = expl_location;
8662             var->data.explicit_location = true;
8663          }
8664 
8665          state->symbols->add_variable(var);
8666          instructions->push_tail(var);
8667       }
8668    } else {
8669       /* In order to have an array size, the block must also be declared with
8670        * an instance name.
8671        */
8672       assert(this->array_specifier == NULL);
8673 
8674       for (unsigned i = 0; i < num_variables; i++) {
8675          ir_variable *var =
8676             new(state) ir_variable(fields[i].type,
8677                                    ralloc_strdup(state, fields[i].name),
8678                                    var_mode);
8679          var->data.interpolation = fields[i].interpolation;
8680          var->data.centroid = fields[i].centroid;
8681          var->data.sample = fields[i].sample;
8682          var->data.patch = fields[i].patch;
8683          var->data.stream = qual_stream;
8684          var->data.location = fields[i].location;
8685 
8686          if (fields[i].location != -1)
8687             var->data.explicit_location = true;
8688 
8689          var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
8690          var->data.xfb_buffer = fields[i].xfb_buffer;
8691 
8692          if (fields[i].offset != -1)
8693             var->data.explicit_xfb_offset = true;
8694          var->data.offset = fields[i].offset;
8695 
8696          var->init_interface_type(block_type);
8697 
8698          if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8699             var->data.read_only = true;
8700 
8701          /* Precision qualifiers do not have any meaning in Desktop GLSL */
8702          if (state->es_shader) {
8703             var->data.precision =
8704                select_gles_precision(fields[i].precision, fields[i].type,
8705                                      state, &loc);
8706          }
8707 
8708          if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
8709             var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8710                ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8711          } else {
8712             var->data.matrix_layout = fields[i].matrix_layout;
8713          }
8714 
8715          if (var->data.mode == ir_var_shader_storage)
8716             apply_memory_qualifiers(var, fields[i]);
8717 
8718          /* Examine var name here since var may get deleted in the next call */
8719          bool var_is_gl_id = is_gl_identifier(var->name);
8720 
8721          if (redeclaring_per_vertex) {
8722             bool is_redeclaration;
8723             var =
8724                get_variable_being_redeclared(&var, loc, state,
8725                                              true /* allow_all_redeclarations */,
8726                                              &is_redeclaration);
8727             if (!var_is_gl_id || !is_redeclaration) {
8728                _mesa_glsl_error(&loc, state,
8729                                 "redeclaration of gl_PerVertex can only "
8730                                 "include built-in variables");
8731             } else if (var->data.how_declared == ir_var_declared_normally) {
8732                _mesa_glsl_error(&loc, state,
8733                                 "`%s' has already been redeclared",
8734                                 var->name);
8735             } else {
8736                var->data.how_declared = ir_var_declared_in_block;
8737                var->reinit_interface_type(block_type);
8738             }
8739             continue;
8740          }
8741 
8742          if (state->symbols->get_variable(var->name) != NULL)
8743             _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
8744 
8745          /* Propagate the "binding" keyword into this UBO/SSBO's fields.
8746           * The UBO declaration itself doesn't get an ir_variable unless it
8747           * has an instance name.  This is ugly.
8748           */
8749          if (this->layout.flags.q.explicit_binding) {
8750             apply_explicit_binding(state, &loc, var,
8751                                    var->get_interface_type(), &this->layout);
8752          }
8753 
8754          if (glsl_type_is_unsized_array(var->type)) {
8755             if (var->is_in_shader_storage_block() &&
8756                 is_unsized_array_last_element(var)) {
8757                var->data.from_ssbo_unsized_array = true;
8758             } else {
8759                /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
8760                 *
8761                 * "If an array is declared as the last member of a shader storage
8762                 * block and the size is not specified at compile-time, it is
8763                 * sized at run-time. In all other cases, arrays are sized only
8764                 * at compile-time."
8765                 *
8766                 * In desktop GLSL it is allowed to have unsized-arrays that are
8767                 * not last, as long as we can determine that they are implicitly
8768                 * sized.
8769                 */
8770                if (state->es_shader) {
8771                   _mesa_glsl_error(&loc, state, "unsized array `%s' "
8772                                    "definition: only last member of a shader "
8773                                    "storage block can be defined as unsized "
8774                                    "array", fields[i].name);
8775                }
8776             }
8777          }
8778 
8779          state->symbols->add_variable(var);
8780          instructions->push_tail(var);
8781       }
8782 
8783       if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
8784          /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
8785           *
8786           *     It is also a compilation error ... to redeclare a built-in
8787           *     block and then use a member from that built-in block that was
8788           *     not included in the redeclaration.
8789           *
8790           * This appears to be a clarification to the behaviour established
8791           * for gl_PerVertex by GLSL 1.50, therefore we implement this
8792           * behaviour regardless of GLSL version.
8793           *
8794           * To prevent the shader from using a member that was not included in
8795           * the redeclaration, we disable any ir_variables that are still
8796           * associated with the old declaration of gl_PerVertex (since we've
8797           * already updated all of the variables contained in the new
8798           * gl_PerVertex to point to it).
8799           *
8800           * As a side effect this will prevent
8801           * validate_intrastage_interface_blocks() from getting confused and
8802           * thinking there are conflicting definitions of gl_PerVertex in the
8803           * shader.
8804           */
8805          foreach_in_list_safe(ir_instruction, node, instructions) {
8806             ir_variable *const var = node->as_variable();
8807             if (var != NULL &&
8808                 var->get_interface_type() == earlier_per_vertex &&
8809                 var->data.mode == var_mode) {
8810                if (var->data.how_declared == ir_var_declared_normally) {
8811                   _mesa_glsl_error(&loc, state,
8812                                    "redeclaration of gl_PerVertex cannot "
8813                                    "follow a redeclaration of `%s'",
8814                                    var->name);
8815                }
8816                state->symbols->disable_variable(var->name);
8817                var->remove();
8818             }
8819          }
8820       }
8821    }
8822 
8823    return NULL;
8824 }
8825 
8826 
8827 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)8828 ast_tcs_output_layout::hir(exec_list *instructions,
8829                            struct _mesa_glsl_parse_state *state)
8830 {
8831    YYLTYPE loc = this->get_location();
8832 
8833    unsigned num_vertices;
8834    if (!state->out_qualifier->vertices->
8835           process_qualifier_constant(state, "vertices", &num_vertices,
8836                                      false)) {
8837       /* return here to stop cascading incorrect error messages */
8838      return NULL;
8839    }
8840 
8841    /* If any shader outputs occurred before this declaration and specified an
8842     * array size, make sure the size they specified is consistent with the
8843     * primitive type.
8844     */
8845    if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
8846       _mesa_glsl_error(&loc, state,
8847                        "this tessellation control shader output layout "
8848                        "specifies %u vertices, but a previous output "
8849                        "is declared with size %u",
8850                        num_vertices, state->tcs_output_size);
8851       return NULL;
8852    }
8853 
8854    state->tcs_output_vertices_specified = true;
8855 
8856    /* If any shader outputs occurred before this declaration and did not
8857     * specify an array size, their size is determined now.
8858     */
8859    foreach_in_list (ir_instruction, node, instructions) {
8860       ir_variable *var = node->as_variable();
8861       if (var == NULL || var->data.mode != ir_var_shader_out)
8862          continue;
8863 
8864       /* Note: Not all tessellation control shader output are arrays. */
8865       if (!glsl_type_is_unsized_array(var->type) || var->data.patch)
8866          continue;
8867 
8868       if (var->data.max_array_access >= (int)num_vertices) {
8869          _mesa_glsl_error(&loc, state,
8870                           "this tessellation control shader output layout "
8871                           "specifies %u vertices, but an access to element "
8872                           "%u of output `%s' already exists", num_vertices,
8873                           var->data.max_array_access, var->name);
8874       } else {
8875          var->type = glsl_array_type(var->type->fields.array,
8876                                      num_vertices, 0);
8877       }
8878    }
8879 
8880    return NULL;
8881 }
8882 
8883 
8884 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)8885 ast_gs_input_layout::hir(exec_list *instructions,
8886                          struct _mesa_glsl_parse_state *state)
8887 {
8888    YYLTYPE loc = this->get_location();
8889 
8890    /* Should have been prevented by the parser. */
8891    assert(!state->gs_input_prim_type_specified
8892           || state->in_qualifier->prim_type == this->prim_type);
8893 
8894    /* If any shader inputs occurred before this declaration and specified an
8895     * array size, make sure the size they specified is consistent with the
8896     * primitive type.
8897     */
8898    unsigned num_vertices =
8899       mesa_vertices_per_prim(gl_to_mesa_prim(this->prim_type));
8900    if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
8901       _mesa_glsl_error(&loc, state,
8902                        "this geometry shader input layout implies %u vertices"
8903                        " per primitive, but a previous input is declared"
8904                        " with size %u", num_vertices, state->gs_input_size);
8905       return NULL;
8906    }
8907 
8908    state->gs_input_prim_type_specified = true;
8909 
8910    /* If any shader inputs occurred before this declaration and did not
8911     * specify an array size, their size is determined now.
8912     */
8913    foreach_in_list(ir_instruction, node, instructions) {
8914       ir_variable *var = node->as_variable();
8915       if (var == NULL || var->data.mode != ir_var_shader_in)
8916          continue;
8917 
8918       /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
8919        * array; skip it.
8920        */
8921 
8922       if (glsl_type_is_unsized_array(var->type)) {
8923          if (var->data.max_array_access >= (int)num_vertices) {
8924             _mesa_glsl_error(&loc, state,
8925                              "this geometry shader input layout implies %u"
8926                              " vertices, but an access to element %u of input"
8927                              " `%s' already exists", num_vertices,
8928                              var->data.max_array_access, var->name);
8929          } else {
8930             var->type = glsl_array_type(var->type->fields.array,
8931                                         num_vertices, 0);
8932          }
8933       }
8934    }
8935 
8936    return NULL;
8937 }
8938 
8939 
8940 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)8941 ast_cs_input_layout::hir(exec_list *instructions,
8942                          struct _mesa_glsl_parse_state *state)
8943 {
8944    YYLTYPE loc = this->get_location();
8945 
8946    /* From the ARB_compute_shader specification:
8947     *
8948     *     If the local size of the shader in any dimension is greater
8949     *     than the maximum size supported by the implementation for that
8950     *     dimension, a compile-time error results.
8951     *
8952     * It is not clear from the spec how the error should be reported if
8953     * the total size of the work group exceeds
8954     * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
8955     * report it at compile time as well.
8956     */
8957    GLuint64 total_invocations = 1;
8958    unsigned qual_local_size[3];
8959    for (int i = 0; i < 3; i++) {
8960 
8961       char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
8962                                              'x' + i);
8963       /* Infer a local_size of 1 for unspecified dimensions */
8964       if (this->local_size[i] == NULL) {
8965          qual_local_size[i] = 1;
8966       } else if (!this->local_size[i]->
8967              process_qualifier_constant(state, local_size_str,
8968                                         &qual_local_size[i], false)) {
8969          ralloc_free(local_size_str);
8970          return NULL;
8971       }
8972       ralloc_free(local_size_str);
8973 
8974       if (qual_local_size[i] > state->consts->MaxComputeWorkGroupSize[i]) {
8975          _mesa_glsl_error(&loc, state,
8976                           "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
8977                           " (%d)", 'x' + i,
8978                           state->consts->MaxComputeWorkGroupSize[i]);
8979          break;
8980       }
8981       total_invocations *= qual_local_size[i];
8982       if (total_invocations >
8983           state->consts->MaxComputeWorkGroupInvocations) {
8984          _mesa_glsl_error(&loc, state,
8985                           "product of local_sizes exceeds "
8986                           "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
8987                           state->consts->MaxComputeWorkGroupInvocations);
8988          break;
8989       }
8990    }
8991 
8992    /* If any compute input layout declaration preceded this one, make sure it
8993     * was consistent with this one.
8994     */
8995    if (state->cs_input_local_size_specified) {
8996       for (int i = 0; i < 3; i++) {
8997          if (state->cs_input_local_size[i] != qual_local_size[i]) {
8998             _mesa_glsl_error(&loc, state,
8999                              "compute shader input layout does not match"
9000                              " previous declaration");
9001             return NULL;
9002          }
9003       }
9004    }
9005 
9006    /* The ARB_compute_variable_group_size spec says:
9007     *
9008     *     If a compute shader including a *local_size_variable* qualifier also
9009     *     declares a fixed local group size using the *local_size_x*,
9010     *     *local_size_y*, or *local_size_z* qualifiers, a compile-time error
9011     *     results
9012     */
9013    if (state->cs_input_local_size_variable_specified) {
9014       _mesa_glsl_error(&loc, state,
9015                        "compute shader can't include both a variable and a "
9016                        "fixed local group size");
9017       return NULL;
9018    }
9019 
9020    state->cs_input_local_size_specified = true;
9021    for (int i = 0; i < 3; i++)
9022       state->cs_input_local_size[i] = qual_local_size[i];
9023 
9024    /* We may now declare the built-in constant gl_WorkGroupSize (see
9025     * builtin_variable_generator::generate_constants() for why we didn't
9026     * declare it earlier).
9027     */
9028    ir_variable *var = new(state->symbols)
9029       ir_variable(&glsl_type_builtin_uvec3, "gl_WorkGroupSize", ir_var_auto);
9030    var->data.how_declared = ir_var_declared_implicitly;
9031    var->data.read_only = true;
9032    instructions->push_tail(var);
9033    state->symbols->add_variable(var);
9034    ir_constant_data data;
9035    memset(&data, 0, sizeof(data));
9036    for (int i = 0; i < 3; i++)
9037       data.u[i] = qual_local_size[i];
9038    var->constant_value = new(var) ir_constant(&glsl_type_builtin_uvec3, &data);
9039    var->constant_initializer =
9040       new(var) ir_constant(&glsl_type_builtin_uvec3, &data);
9041    var->data.has_initializer = true;
9042    var->data.is_implicit_initializer = false;
9043 
9044    return NULL;
9045 }
9046 
9047 
9048 static void
detect_conflicting_assignments(struct _mesa_glsl_parse_state * state,exec_list * instructions)9049 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
9050                                exec_list *instructions)
9051 {
9052    bool gl_FragColor_assigned = false;
9053    bool gl_FragData_assigned = false;
9054    bool gl_FragSecondaryColor_assigned = false;
9055    bool gl_FragSecondaryData_assigned = false;
9056    bool user_defined_fs_output_assigned = false;
9057    ir_variable *user_defined_fs_output = NULL;
9058 
9059    /* It would be nice to have proper location information. */
9060    YYLTYPE loc;
9061    memset(&loc, 0, sizeof(loc));
9062 
9063    foreach_in_list(ir_instruction, node, instructions) {
9064       ir_variable *var = node->as_variable();
9065 
9066       if (!var || !var->data.assigned)
9067          continue;
9068 
9069       if (strcmp(var->name, "gl_FragColor") == 0) {
9070          gl_FragColor_assigned = true;
9071          if (!var->constant_initializer && state->zero_init) {
9072             const ir_constant_data data = { { 0 } };
9073             var->data.has_initializer = true;
9074             var->data.is_implicit_initializer = true;
9075             var->constant_initializer = new(var) ir_constant(var->type, &data);
9076          }
9077       }
9078       else if (strcmp(var->name, "gl_FragData") == 0)
9079          gl_FragData_assigned = true;
9080         else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
9081          gl_FragSecondaryColor_assigned = true;
9082         else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
9083          gl_FragSecondaryData_assigned = true;
9084       else if (!is_gl_identifier(var->name)) {
9085          if (state->stage == MESA_SHADER_FRAGMENT &&
9086              var->data.mode == ir_var_shader_out) {
9087             user_defined_fs_output_assigned = true;
9088             user_defined_fs_output = var;
9089          }
9090       }
9091    }
9092 
9093    /* From the GLSL 1.30 spec:
9094     *
9095     *     "If a shader statically assigns a value to gl_FragColor, it
9096     *      may not assign a value to any element of gl_FragData. If a
9097     *      shader statically writes a value to any element of
9098     *      gl_FragData, it may not assign a value to
9099     *      gl_FragColor. That is, a shader may assign values to either
9100     *      gl_FragColor or gl_FragData, but not both. Multiple shaders
9101     *      linked together must also consistently write just one of
9102     *      these variables.  Similarly, if user declared output
9103     *      variables are in use (statically assigned to), then the
9104     *      built-in variables gl_FragColor and gl_FragData may not be
9105     *      assigned to. These incorrect usages all generate compile
9106     *      time errors."
9107     */
9108    if (gl_FragColor_assigned && gl_FragData_assigned) {
9109       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
9110                        "`gl_FragColor' and `gl_FragData'");
9111    } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
9112       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
9113                        "`gl_FragColor' and `%s'",
9114                        user_defined_fs_output->name);
9115    } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
9116       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
9117                        "`gl_FragSecondaryColorEXT' and"
9118                        " `gl_FragSecondaryDataEXT'");
9119    } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
9120       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
9121                        "`gl_FragColor' and"
9122                        " `gl_FragSecondaryDataEXT'");
9123    } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
9124       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
9125                        "`gl_FragData' and"
9126                        " `gl_FragSecondaryColorEXT'");
9127    } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
9128       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
9129                        "`gl_FragData' and `%s'",
9130                        user_defined_fs_output->name);
9131    }
9132 
9133    if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
9134        !state->EXT_blend_func_extended_enable) {
9135       _mesa_glsl_error(&loc, state,
9136                        "Dual source blending requires EXT_blend_func_extended");
9137    }
9138 }
9139 
9140 static void
verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state * state)9141 verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state)
9142 {
9143    YYLTYPE loc;
9144    memset(&loc, 0, sizeof(loc));
9145 
9146    /* Section 6.1.2 (Subroutines) of the GLSL 4.00 spec says:
9147     *
9148     *   "A program will fail to compile or link if any shader
9149     *    or stage contains two or more functions with the same
9150     *    name if the name is associated with a subroutine type."
9151     */
9152 
9153    for (int i = 0; i < state->num_subroutines; i++) {
9154       unsigned definitions = 0;
9155       ir_function *fn = state->subroutines[i];
9156       /* Calculate number of function definitions with the same name */
9157       foreach_in_list(ir_function_signature, sig, &fn->signatures) {
9158          if (sig->is_defined) {
9159             if (++definitions > 1) {
9160                _mesa_glsl_error(&loc, state,
9161                      "%s shader contains two or more function "
9162                      "definitions with name `%s', which is "
9163                      "associated with a subroutine type.\n",
9164                      _mesa_shader_stage_to_string(state->stage),
9165                      fn->name);
9166                return;
9167             }
9168          }
9169       }
9170    }
9171 }
9172 
9173 static void
remove_per_vertex_blocks(exec_list * instructions,_mesa_glsl_parse_state * state,ir_variable_mode mode)9174 remove_per_vertex_blocks(exec_list *instructions,
9175                          _mesa_glsl_parse_state *state, ir_variable_mode mode)
9176 {
9177    /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
9178     * if it exists in this shader type.
9179     */
9180    const glsl_type *per_vertex = NULL;
9181    switch (mode) {
9182    case ir_var_shader_in:
9183       if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
9184          per_vertex = gl_in->get_interface_type();
9185       break;
9186    case ir_var_shader_out:
9187       if (ir_variable *gl_Position =
9188           state->symbols->get_variable("gl_Position")) {
9189          per_vertex = gl_Position->get_interface_type();
9190       }
9191       break;
9192    default:
9193       assert(!"Unexpected mode");
9194       break;
9195    }
9196 
9197    /* If we didn't find a built-in gl_PerVertex interface block, then we don't
9198     * need to do anything.
9199     */
9200    if (per_vertex == NULL)
9201       return;
9202 
9203    /* If the interface block is used by the shader, then we don't need to do
9204     * anything.
9205     */
9206    interface_block_usage_visitor v(mode, per_vertex);
9207    v.run(instructions);
9208    if (v.usage_found())
9209       return;
9210 
9211    /* Remove any ir_variable declarations that refer to the interface block
9212     * we're removing.
9213     */
9214    foreach_in_list_safe(ir_instruction, node, instructions) {
9215       ir_variable *const var = node->as_variable();
9216       if (var != NULL && var->get_interface_type() == per_vertex &&
9217           var->data.mode == mode) {
9218          state->symbols->disable_variable(var->name);
9219          var->remove();
9220       }
9221    }
9222 }
9223 
9224 ir_rvalue *
hir(exec_list *,struct _mesa_glsl_parse_state * state)9225 ast_warnings_toggle::hir(exec_list *,
9226                          struct _mesa_glsl_parse_state *state)
9227 {
9228    state->warnings_enabled = enable;
9229    return NULL;
9230 }
9231