• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 /**
25  * \file linker.cpp
26  * GLSL linker implementation
27  *
28  * Given a set of shaders that are to be linked to generate a final program,
29  * there are three distinct stages.
30  *
31  * In the first stage shaders are partitioned into groups based on the shader
32  * type.  All shaders of a particular type (e.g., vertex shaders) are linked
33  * together.
34  *
35  *   - Undefined references in each shader are resolve to definitions in
36  *     another shader.
37  *   - Types and qualifiers of uniforms, outputs, and global variables defined
38  *     in multiple shaders with the same name are verified to be the same.
39  *   - Initializers for uniforms and global variables defined
40  *     in multiple shaders with the same name are verified to be the same.
41  *
42  * The result, in the terminology of the GLSL spec, is a set of shader
43  * executables for each processing unit.
44  *
45  * After the first stage is complete, a series of semantic checks are performed
46  * on each of the shader executables.
47  *
48  *   - Each shader executable must define a \c main function.
49  *   - Each vertex shader executable must write to \c gl_Position.
50  *   - Each fragment shader executable must write to either \c gl_FragData or
51  *     \c gl_FragColor.
52  *
53  * In the final stage individual shader executables are linked to create a
54  * complete exectuable.
55  *
56  *   - Types of uniforms defined in multiple shader stages with the same name
57  *     are verified to be the same.
58  *   - Initializers for uniforms defined in multiple shader stages with the
59  *     same name are verified to be the same.
60  *   - Types and qualifiers of outputs defined in one stage are verified to
61  *     be the same as the types and qualifiers of inputs defined with the same
62  *     name in a later stage.
63  *
64  * \author Ian Romanick <ian.d.romanick@intel.com>
65  */
66 
67 #include <ctype.h>
68 #include "util/strndup.h"
69 #include "glsl_symbol_table.h"
70 #include "glsl_parser_extras.h"
71 #include "ir.h"
72 #include "nir.h"
73 #include "program.h"
74 #include "program/prog_instruction.h"
75 #include "program/program.h"
76 #include "util/mesa-sha1.h"
77 #include "util/set.h"
78 #include "string_to_uint_map.h"
79 #include "linker.h"
80 #include "linker_util.h"
81 #include "ir_optimization.h"
82 #include "ir_rvalue_visitor.h"
83 #include "ir_uniform.h"
84 #include "builtin_functions.h"
85 #include "shader_cache.h"
86 #include "util/u_string.h"
87 #include "util/u_math.h"
88 
89 
90 #include "main/shaderobj.h"
91 #include "main/enums.h"
92 #include "main/mtypes.h"
93 #include "main/context.h"
94 
95 
96 namespace {
97 
98 struct find_variable {
99    const char *name;
100    bool found;
101 
find_variable__anoncffb47c90111::find_variable102    find_variable(const char *name) : name(name), found(false) {}
103 };
104 
105 /**
106  * Visitor that determines whether or not a variable is ever written.
107  * Note: this is only considering if the variable is statically written
108  * (= regardless of the runtime flow of control)
109  *
110  * Use \ref find_assignments for convenience.
111  */
112 class find_assignment_visitor : public ir_hierarchical_visitor {
113 public:
find_assignment_visitor(unsigned num_vars,find_variable * const * vars)114    find_assignment_visitor(unsigned num_vars,
115                            find_variable * const *vars)
116       : num_variables(num_vars), num_found(0), variables(vars)
117    {
118    }
119 
visit_enter(ir_assignment * ir)120    virtual ir_visitor_status visit_enter(ir_assignment *ir)
121    {
122       ir_variable *const var = ir->lhs->variable_referenced();
123 
124       return check_variable_name(var->name);
125    }
126 
visit_enter(ir_call * ir)127    virtual ir_visitor_status visit_enter(ir_call *ir)
128    {
129       foreach_two_lists(formal_node, &ir->callee->parameters,
130                         actual_node, &ir->actual_parameters) {
131          ir_rvalue *param_rval = (ir_rvalue *) actual_node;
132          ir_variable *sig_param = (ir_variable *) formal_node;
133 
134          if (sig_param->data.mode == ir_var_function_out ||
135              sig_param->data.mode == ir_var_function_inout) {
136             ir_variable *var = param_rval->variable_referenced();
137             if (var && check_variable_name(var->name) == visit_stop)
138                return visit_stop;
139          }
140       }
141 
142       if (ir->return_deref != NULL) {
143          ir_variable *const var = ir->return_deref->variable_referenced();
144 
145          if (check_variable_name(var->name) == visit_stop)
146             return visit_stop;
147       }
148 
149       return visit_continue_with_parent;
150    }
151 
152 private:
check_variable_name(const char * name)153    ir_visitor_status check_variable_name(const char *name)
154    {
155       for (unsigned i = 0; i < num_variables; ++i) {
156          if (strcmp(variables[i]->name, name) == 0) {
157             if (!variables[i]->found) {
158                variables[i]->found = true;
159 
160                assert(num_found < num_variables);
161                if (++num_found == num_variables)
162                   return visit_stop;
163             }
164             break;
165          }
166       }
167 
168       return visit_continue_with_parent;
169    }
170 
171 private:
172    unsigned num_variables;           /**< Number of variables to find */
173    unsigned num_found;               /**< Number of variables already found */
174    find_variable * const *variables; /**< Variables to find */
175 };
176 
177 /**
178  * Determine whether or not any of NULL-terminated list of variables is ever
179  * written to.
180  */
181 static void
find_assignments(exec_list * ir,find_variable * const * vars)182 find_assignments(exec_list *ir, find_variable * const *vars)
183 {
184    unsigned num_variables = 0;
185 
186    for (find_variable * const *v = vars; *v; ++v)
187       num_variables++;
188 
189    find_assignment_visitor visitor(num_variables, vars);
190    visitor.run(ir);
191 }
192 
193 /**
194  * Determine whether or not the given variable is ever written to.
195  */
196 static void
find_assignments(exec_list * ir,find_variable * var)197 find_assignments(exec_list *ir, find_variable *var)
198 {
199    find_assignment_visitor visitor(1, &var);
200    visitor.run(ir);
201 }
202 
203 /**
204  * Visitor that determines whether or not a variable is ever read.
205  */
206 class find_deref_visitor : public ir_hierarchical_visitor {
207 public:
find_deref_visitor(const char * name)208    find_deref_visitor(const char *name)
209       : name(name), found(false)
210    {
211       /* empty */
212    }
213 
visit(ir_dereference_variable * ir)214    virtual ir_visitor_status visit(ir_dereference_variable *ir)
215    {
216       if (strcmp(this->name, ir->var->name) == 0) {
217          this->found = true;
218          return visit_stop;
219       }
220 
221       return visit_continue;
222    }
223 
variable_found() const224    bool variable_found() const
225    {
226       return this->found;
227    }
228 
229 private:
230    const char *name;       /**< Find writes to a variable with this name. */
231    bool found;             /**< Was a write to the variable found? */
232 };
233 
234 
235 /**
236  * A visitor helper that provides methods for updating the types of
237  * ir_dereferences.  Classes that update variable types (say, updating
238  * array sizes) will want to use this so that dereference types stay in sync.
239  */
240 class deref_type_updater : public ir_hierarchical_visitor {
241 public:
visit(ir_dereference_variable * ir)242    virtual ir_visitor_status visit(ir_dereference_variable *ir)
243    {
244       ir->type = ir->var->type;
245       return visit_continue;
246    }
247 
visit_leave(ir_dereference_array * ir)248    virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
249    {
250       const glsl_type *const vt = ir->array->type;
251       if (glsl_type_is_array(vt))
252          ir->type = vt->fields.array;
253       return visit_continue;
254    }
255 
visit_leave(ir_dereference_record * ir)256    virtual ir_visitor_status visit_leave(ir_dereference_record *ir)
257    {
258       ir->type = ir->record->type->fields.structure[ir->field_idx].type;
259       return visit_continue;
260    }
261 };
262 
263 
264 class array_resize_visitor : public deref_type_updater {
265 public:
266    using deref_type_updater::visit;
267 
268    unsigned num_vertices;
269    gl_shader_program *prog;
270    gl_shader_stage stage;
271 
array_resize_visitor(unsigned num_vertices,gl_shader_program * prog,gl_shader_stage stage)272    array_resize_visitor(unsigned num_vertices,
273                         gl_shader_program *prog,
274                         gl_shader_stage stage)
275    {
276       this->num_vertices = num_vertices;
277       this->prog = prog;
278       this->stage = stage;
279    }
280 
~array_resize_visitor()281    virtual ~array_resize_visitor()
282    {
283       /* empty */
284    }
285 
visit(ir_variable * var)286    virtual ir_visitor_status visit(ir_variable *var)
287    {
288       if (!glsl_type_is_array(var->type) || var->data.mode != ir_var_shader_in ||
289           var->data.patch)
290          return visit_continue;
291 
292       unsigned size = var->type->length;
293 
294       if (stage == MESA_SHADER_GEOMETRY) {
295          /* Generate a link error if the shader has declared this array with
296           * an incorrect size.
297           */
298          if (!var->data.implicit_sized_array &&
299              size && size != this->num_vertices) {
300             linker_error(this->prog, "size of array %s declared as %u, "
301                          "but number of input vertices is %u\n",
302                          var->name, size, this->num_vertices);
303             return visit_continue;
304          }
305 
306          /* Generate a link error if the shader attempts to access an input
307           * array using an index too large for its actual size assigned at
308           * link time.
309           */
310          if (var->data.max_array_access >= (int)this->num_vertices) {
311             linker_error(this->prog, "%s shader accesses element %i of "
312                          "%s, but only %i input vertices\n",
313                          _mesa_shader_stage_to_string(this->stage),
314                          var->data.max_array_access, var->name, this->num_vertices);
315             return visit_continue;
316          }
317       }
318 
319       var->type = glsl_array_type(var->type->fields.array,
320                                   this->num_vertices, 0);
321       var->data.max_array_access = this->num_vertices - 1;
322 
323       return visit_continue;
324    }
325 };
326 
327 class array_length_to_const_visitor : public ir_rvalue_visitor {
328 public:
array_length_to_const_visitor()329    array_length_to_const_visitor()
330    {
331       this->progress = false;
332    }
333 
~array_length_to_const_visitor()334    virtual ~array_length_to_const_visitor()
335    {
336       /* empty */
337    }
338 
339    bool progress;
340 
handle_rvalue(ir_rvalue ** rvalue)341    virtual void handle_rvalue(ir_rvalue **rvalue)
342    {
343       if (*rvalue == NULL || (*rvalue)->ir_type != ir_type_expression)
344          return;
345 
346       ir_expression *expr = (*rvalue)->as_expression();
347       if (expr) {
348          if (expr->operation == ir_unop_implicitly_sized_array_length) {
349             assert(!glsl_type_is_unsized_array(expr->operands[0]->type));
350             ir_constant *constant = new(expr)
351                ir_constant(glsl_array_size(expr->operands[0]->type));
352             if (constant) {
353                *rvalue = constant;
354             }
355          }
356       }
357    }
358 };
359 
360 } /* anonymous namespace */
361 
362 void
linker_error(gl_shader_program * prog,const char * fmt,...)363 linker_error(gl_shader_program *prog, const char *fmt, ...)
364 {
365    va_list ap;
366 
367    ralloc_strcat(&prog->data->InfoLog, "error: ");
368    va_start(ap, fmt);
369    ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
370    va_end(ap);
371 
372    prog->data->LinkStatus = LINKING_FAILURE;
373 }
374 
375 
376 void
linker_warning(gl_shader_program * prog,const char * fmt,...)377 linker_warning(gl_shader_program *prog, const char *fmt, ...)
378 {
379    va_list ap;
380 
381    ralloc_strcat(&prog->data->InfoLog, "warning: ");
382    va_start(ap, fmt);
383    ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
384    va_end(ap);
385 
386 }
387 
388 
389 /**
390  * Set clip_distance_array_size based and cull_distance_array_size on the given
391  * shader.
392  *
393  * Also check for errors based on incorrect usage of gl_ClipVertex and
394  * gl_ClipDistance and gl_CullDistance.
395  * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance
396  * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances.
397  *
398  * Return false if an error was reported.
399  */
400 static void
analyze_clip_cull_usage(struct gl_shader_program * prog,struct gl_linked_shader * shader,const struct gl_constants * consts,struct shader_info * info)401 analyze_clip_cull_usage(struct gl_shader_program *prog,
402                         struct gl_linked_shader *shader,
403                         const struct gl_constants *consts,
404                         struct shader_info *info)
405 {
406    if (consts->DoDCEBeforeClipCullAnalysis) {
407       /* Remove dead functions to avoid raising an error (eg: dead function
408        * writes to gl_ClipVertex, and main() writes to gl_ClipDistance).
409        */
410       do_dead_functions(shader->ir);
411    }
412 
413    info->clip_distance_array_size = 0;
414    info->cull_distance_array_size = 0;
415 
416    if (prog->GLSL_Version >= (prog->IsES ? 300 : 130)) {
417       /* From section 7.1 (Vertex Shader Special Variables) of the
418        * GLSL 1.30 spec:
419        *
420        *   "It is an error for a shader to statically write both
421        *   gl_ClipVertex and gl_ClipDistance."
422        *
423        * This does not apply to GLSL ES shaders, since GLSL ES defines neither
424        * gl_ClipVertex nor gl_ClipDistance. However with
425        * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0.
426        */
427       find_variable gl_ClipDistance("gl_ClipDistance");
428       find_variable gl_CullDistance("gl_CullDistance");
429       find_variable gl_ClipVertex("gl_ClipVertex");
430       find_variable * const variables[] = {
431          &gl_ClipDistance,
432          &gl_CullDistance,
433          !prog->IsES ? &gl_ClipVertex : NULL,
434          NULL
435       };
436       find_assignments(shader->ir, variables);
437 
438       /* From the ARB_cull_distance spec:
439        *
440        * It is a compile-time or link-time error for the set of shaders forming
441        * a program to statically read or write both gl_ClipVertex and either
442        * gl_ClipDistance or gl_CullDistance.
443        *
444        * This does not apply to GLSL ES shaders, since GLSL ES doesn't define
445        * gl_ClipVertex.
446        */
447       if (!prog->IsES) {
448          if (gl_ClipVertex.found && gl_ClipDistance.found) {
449             linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
450                          "and `gl_ClipDistance'\n",
451                          _mesa_shader_stage_to_string(shader->Stage));
452             return;
453          }
454          if (gl_ClipVertex.found && gl_CullDistance.found) {
455             linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
456                          "and `gl_CullDistance'\n",
457                          _mesa_shader_stage_to_string(shader->Stage));
458             return;
459          }
460       }
461 
462       if (gl_ClipDistance.found) {
463          ir_variable *clip_distance_var =
464                 shader->symbols->get_variable("gl_ClipDistance");
465          assert(clip_distance_var);
466          info->clip_distance_array_size = clip_distance_var->type->length;
467       }
468       if (gl_CullDistance.found) {
469          ir_variable *cull_distance_var =
470                 shader->symbols->get_variable("gl_CullDistance");
471          assert(cull_distance_var);
472          info->cull_distance_array_size = cull_distance_var->type->length;
473       }
474       /* From the ARB_cull_distance spec:
475        *
476        * It is a compile-time or link-time error for the set of shaders forming
477        * a program to have the sum of the sizes of the gl_ClipDistance and
478        * gl_CullDistance arrays to be larger than
479        * gl_MaxCombinedClipAndCullDistances.
480        */
481       if ((uint32_t)(info->clip_distance_array_size + info->cull_distance_array_size) >
482           consts->MaxClipPlanes) {
483           linker_error(prog, "%s shader: the combined size of "
484                        "'gl_ClipDistance' and 'gl_CullDistance' size cannot "
485                        "be larger than "
486                        "gl_MaxCombinedClipAndCullDistances (%u)",
487                        _mesa_shader_stage_to_string(shader->Stage),
488                        consts->MaxClipPlanes);
489       }
490    }
491 }
492 
493 
494 /**
495  * Verify that a vertex shader executable meets all semantic requirements.
496  *
497  * Also sets info.clip_distance_array_size and
498  * info.cull_distance_array_size as a side effect.
499  *
500  * \param shader  Vertex shader executable to be verified
501  */
502 static void
validate_vertex_shader_executable(struct gl_shader_program * prog,struct gl_linked_shader * shader,const struct gl_constants * consts)503 validate_vertex_shader_executable(struct gl_shader_program *prog,
504                                   struct gl_linked_shader *shader,
505                                   const struct gl_constants *consts)
506 {
507    if (shader == NULL)
508       return;
509 
510    /* From the GLSL 1.10 spec, page 48:
511     *
512     *     "The variable gl_Position is available only in the vertex
513     *      language and is intended for writing the homogeneous vertex
514     *      position. All executions of a well-formed vertex shader
515     *      executable must write a value into this variable. [...] The
516     *      variable gl_Position is available only in the vertex
517     *      language and is intended for writing the homogeneous vertex
518     *      position. All executions of a well-formed vertex shader
519     *      executable must write a value into this variable."
520     *
521     * while in GLSL 1.40 this text is changed to:
522     *
523     *     "The variable gl_Position is available only in the vertex
524     *      language and is intended for writing the homogeneous vertex
525     *      position. It can be written at any time during shader
526     *      execution. It may also be read back by a vertex shader
527     *      after being written. This value will be used by primitive
528     *      assembly, clipping, culling, and other fixed functionality
529     *      operations, if present, that operate on primitives after
530     *      vertex processing has occurred. Its value is undefined if
531     *      the vertex shader executable does not write gl_Position."
532     *
533     * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
534     * gl_Position is not an error.
535     */
536    if (prog->GLSL_Version < (prog->IsES ? 300 : 140)) {
537       find_variable gl_Position("gl_Position");
538       find_assignments(shader->ir, &gl_Position);
539       if (!gl_Position.found) {
540         if (prog->IsES) {
541           linker_warning(prog,
542                          "vertex shader does not write to `gl_Position'. "
543                          "Its value is undefined. \n");
544         } else {
545           linker_error(prog,
546                        "vertex shader does not write to `gl_Position'. \n");
547         }
548          return;
549       }
550    }
551 
552    analyze_clip_cull_usage(prog, shader, consts, &shader->Program->info);
553 }
554 
555 static void
validate_tess_eval_shader_executable(struct gl_shader_program * prog,struct gl_linked_shader * shader,const struct gl_constants * consts)556 validate_tess_eval_shader_executable(struct gl_shader_program *prog,
557                                      struct gl_linked_shader *shader,
558                                      const struct gl_constants *consts)
559 {
560    if (shader == NULL)
561       return;
562 
563    analyze_clip_cull_usage(prog, shader, consts, &shader->Program->info);
564 }
565 
566 
567 /**
568  * Verify that a fragment shader executable meets all semantic requirements
569  *
570  * \param shader  Fragment shader executable to be verified
571  */
572 static void
validate_fragment_shader_executable(struct gl_shader_program * prog,struct gl_linked_shader * shader)573 validate_fragment_shader_executable(struct gl_shader_program *prog,
574                                     struct gl_linked_shader *shader)
575 {
576    if (shader == NULL)
577       return;
578 
579    find_variable gl_FragColor("gl_FragColor");
580    find_variable gl_FragData("gl_FragData");
581    find_variable * const variables[] = { &gl_FragColor, &gl_FragData, NULL };
582    find_assignments(shader->ir, variables);
583 
584    if (gl_FragColor.found && gl_FragData.found) {
585       linker_error(prog,  "fragment shader writes to both "
586                    "`gl_FragColor' and `gl_FragData'\n");
587    }
588 }
589 
590 /**
591  * Verify that a geometry shader executable meets all semantic requirements
592  *
593  * Also sets prog->Geom.VerticesIn, and info.clip_distance_array_sizeand
594  * info.cull_distance_array_size as a side effect.
595  *
596  * \param shader Geometry shader executable to be verified
597  */
598 static void
validate_geometry_shader_executable(struct gl_shader_program * prog,struct gl_linked_shader * shader,const struct gl_constants * consts)599 validate_geometry_shader_executable(struct gl_shader_program *prog,
600                                     struct gl_linked_shader *shader,
601                                     const struct gl_constants *consts)
602 {
603    if (shader == NULL)
604       return;
605 
606    unsigned num_vertices =
607       mesa_vertices_per_prim(shader->Program->info.gs.input_primitive);
608    prog->Geom.VerticesIn = num_vertices;
609 
610    analyze_clip_cull_usage(prog, shader, consts, &shader->Program->info);
611 }
612 
613 bool
validate_intrastage_arrays(struct gl_shader_program * prog,ir_variable * const var,ir_variable * const existing,bool match_precision)614 validate_intrastage_arrays(struct gl_shader_program *prog,
615                            ir_variable *const var,
616                            ir_variable *const existing,
617                            bool match_precision)
618 {
619    /* Consider the types to be "the same" if both types are arrays
620     * of the same type and one of the arrays is implicitly sized.
621     * In addition, set the type of the linked variable to the
622     * explicitly sized array.
623     */
624    if (glsl_type_is_array(var->type) && glsl_type_is_array(existing->type)) {
625       const glsl_type *no_array_var = var->type->fields.array;
626       const glsl_type *no_array_existing = existing->type->fields.array;
627       bool type_matches;
628 
629       type_matches = (match_precision ?
630                       no_array_var == no_array_existing :
631                       glsl_type_compare_no_precision(no_array_var, no_array_existing));
632 
633       if (type_matches &&
634           ((var->type->length == 0)|| (existing->type->length == 0))) {
635          if (var->type->length != 0) {
636             if ((int)var->type->length <= existing->data.max_array_access) {
637                linker_error(prog, "%s `%s' declared as type "
638                            "`%s' but outermost dimension has an index"
639                            " of `%i'\n",
640                            mode_string(var),
641                            var->name, glsl_get_type_name(var->type),
642                            existing->data.max_array_access);
643             }
644             existing->type = var->type;
645             return true;
646          } else if (existing->type->length != 0) {
647             if((int)existing->type->length <= var->data.max_array_access &&
648                !existing->data.from_ssbo_unsized_array) {
649                linker_error(prog, "%s `%s' declared as type "
650                            "`%s' but outermost dimension has an index"
651                            " of `%i'\n",
652                            mode_string(var),
653                            var->name, glsl_get_type_name(existing->type),
654                            var->data.max_array_access);
655             }
656             return true;
657          }
658       }
659    }
660    return false;
661 }
662 
663 
664 /**
665  * Perform validation of global variables used across multiple shaders
666  */
667 static void
cross_validate_globals(const struct gl_constants * consts,struct gl_shader_program * prog,struct exec_list * ir,glsl_symbol_table * variables,bool uniforms_only)668 cross_validate_globals(const struct gl_constants *consts,
669                        struct gl_shader_program *prog,
670                        struct exec_list *ir, glsl_symbol_table *variables,
671                        bool uniforms_only)
672 {
673    foreach_in_list(ir_instruction, node, ir) {
674       ir_variable *const var = node->as_variable();
675 
676       if (var == NULL)
677          continue;
678 
679       if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
680          continue;
681 
682       /* don't cross validate subroutine uniforms */
683       if (glsl_contains_subroutine(var->type))
684          continue;
685 
686       /* Don't cross validate interface instances. These are only relevant
687        * inside a shader. The cross validation is done at the Interface Block
688        * name level.
689        */
690       if (var->is_interface_instance())
691          continue;
692 
693       /* Don't cross validate temporaries that are at global scope.  These
694        * will eventually get pulled into the shaders 'main'.
695        */
696       if (var->data.mode == ir_var_temporary)
697          continue;
698 
699       /* If a global with this name has already been seen, verify that the
700        * new instance has the same type.  In addition, if the globals have
701        * initializers, the values of the initializers must be the same.
702        */
703       ir_variable *const existing = variables->get_variable(var->name);
704       if (existing != NULL) {
705          /* Check if types match. */
706          if (var->type != existing->type) {
707             if (!validate_intrastage_arrays(prog, var, existing)) {
708                /* If it is an unsized array in a Shader Storage Block,
709                 * two different shaders can access to different elements.
710                 * Because of that, they might be converted to different
711                 * sized arrays, then check that they are compatible but
712                 * ignore the array size.
713                 */
714                if (!(var->data.mode == ir_var_shader_storage &&
715                      var->data.from_ssbo_unsized_array &&
716                      existing->data.mode == ir_var_shader_storage &&
717                      existing->data.from_ssbo_unsized_array &&
718                      var->type->gl_type == existing->type->gl_type)) {
719                   linker_error(prog, "%s `%s' declared as type "
720                                  "`%s' and type `%s'\n",
721                                  mode_string(var),
722                                  var->name, glsl_get_type_name(var->type),
723                                  glsl_get_type_name(existing->type));
724                   return;
725                }
726             }
727          }
728 
729          if (var->data.explicit_location) {
730             if (existing->data.explicit_location
731                 && (var->data.location != existing->data.location)) {
732                linker_error(prog, "explicit locations for %s "
733                             "`%s' have differing values\n",
734                             mode_string(var), var->name);
735                return;
736             }
737 
738             if (var->data.location_frac != existing->data.location_frac) {
739                linker_error(prog, "explicit components for %s `%s' have "
740                             "differing values\n", mode_string(var), var->name);
741                return;
742             }
743 
744             existing->data.location = var->data.location;
745             existing->data.explicit_location = true;
746          } else {
747             /* Check if uniform with implicit location was marked explicit
748              * by earlier shader stage. If so, mark it explicit in this stage
749              * too to make sure later processing does not treat it as
750              * implicit one.
751              */
752             if (existing->data.explicit_location) {
753                var->data.location = existing->data.location;
754                var->data.explicit_location = true;
755             }
756          }
757 
758          /* From the GLSL 4.20 specification:
759           * "A link error will result if two compilation units in a program
760           *  specify different integer-constant bindings for the same
761           *  opaque-uniform name.  However, it is not an error to specify a
762           *  binding on some but not all declarations for the same name"
763           */
764          if (var->data.explicit_binding) {
765             if (existing->data.explicit_binding &&
766                 var->data.binding != existing->data.binding) {
767                linker_error(prog, "explicit bindings for %s "
768                             "`%s' have differing values\n",
769                             mode_string(var), var->name);
770                return;
771             }
772 
773             existing->data.binding = var->data.binding;
774             existing->data.explicit_binding = true;
775          }
776 
777          if (glsl_contains_atomic(var->type) &&
778              var->data.offset != existing->data.offset) {
779             linker_error(prog, "offset specifications for %s "
780                          "`%s' have differing values\n",
781                          mode_string(var), var->name);
782             return;
783          }
784 
785          /* Validate layout qualifiers for gl_FragDepth.
786           *
787           * From the AMD/ARB_conservative_depth specs:
788           *
789           *    "If gl_FragDepth is redeclared in any fragment shader in a
790           *    program, it must be redeclared in all fragment shaders in
791           *    that program that have static assignments to
792           *    gl_FragDepth. All redeclarations of gl_FragDepth in all
793           *    fragment shaders in a single program must have the same set
794           *    of qualifiers."
795           */
796          if (strcmp(var->name, "gl_FragDepth") == 0) {
797             bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
798             bool layout_differs =
799                var->data.depth_layout != existing->data.depth_layout;
800 
801             if (layout_declared && layout_differs) {
802                linker_error(prog,
803                             "All redeclarations of gl_FragDepth in all "
804                             "fragment shaders in a single program must have "
805                             "the same set of qualifiers.\n");
806             }
807 
808             if (var->data.used && layout_differs) {
809                linker_error(prog,
810                             "If gl_FragDepth is redeclared with a layout "
811                             "qualifier in any fragment shader, it must be "
812                             "redeclared with the same layout qualifier in "
813                             "all fragment shaders that have assignments to "
814                             "gl_FragDepth\n");
815             }
816          }
817 
818          /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
819           *
820           *     "If a shared global has multiple initializers, the
821           *     initializers must all be constant expressions, and they
822           *     must all have the same value. Otherwise, a link error will
823           *     result. (A shared global having only one initializer does
824           *     not require that initializer to be a constant expression.)"
825           *
826           * Previous to 4.20 the GLSL spec simply said that initializers
827           * must have the same value.  In this case of non-constant
828           * initializers, this was impossible to determine.  As a result,
829           * no vendor actually implemented that behavior.  The 4.20
830           * behavior matches the implemented behavior of at least one other
831           * vendor, so we'll implement that for all GLSL versions.
832           * If (at least) one of these constant expressions is implicit,
833           * because it was added by glsl_zero_init, we skip the verification.
834           */
835          if (var->constant_initializer != NULL) {
836             if (existing->constant_initializer != NULL &&
837                 !existing->data.is_implicit_initializer &&
838                 !var->data.is_implicit_initializer) {
839                if (!var->constant_initializer->has_value(existing->constant_initializer)) {
840                   linker_error(prog, "initializers for %s "
841                                "`%s' have differing values\n",
842                                mode_string(var), var->name);
843                   return;
844                }
845             } else {
846                /* If the first-seen instance of a particular uniform did
847                 * not have an initializer but a later instance does,
848                 * replace the former with the later.
849                 */
850                if (!var->data.is_implicit_initializer)
851                   variables->replace_variable(existing->name, var);
852             }
853          }
854 
855          if (var->data.has_initializer) {
856             if (existing->data.has_initializer
857                 && (var->constant_initializer == NULL
858                     || existing->constant_initializer == NULL)) {
859                linker_error(prog,
860                             "shared global variable `%s' has multiple "
861                             "non-constant initializers.\n",
862                             var->name);
863                return;
864             }
865          }
866 
867          if (existing->data.explicit_invariant != var->data.explicit_invariant) {
868             linker_error(prog, "declarations for %s `%s' have "
869                          "mismatching invariant qualifiers\n",
870                          mode_string(var), var->name);
871             return;
872          }
873          if (existing->data.centroid != var->data.centroid) {
874             linker_error(prog, "declarations for %s `%s' have "
875                          "mismatching centroid qualifiers\n",
876                          mode_string(var), var->name);
877             return;
878          }
879          if (existing->data.sample != var->data.sample) {
880             linker_error(prog, "declarations for %s `%s` have "
881                          "mismatching sample qualifiers\n",
882                          mode_string(var), var->name);
883             return;
884          }
885          if (existing->data.image_format != var->data.image_format) {
886             linker_error(prog, "declarations for %s `%s` have "
887                          "mismatching image format qualifiers\n",
888                          mode_string(var), var->name);
889             return;
890          }
891 
892          /* Check the precision qualifier matches for uniform variables on
893           * GLSL ES.
894           */
895          if (!consts->AllowGLSLRelaxedES &&
896              prog->IsES && !var->get_interface_type() &&
897              existing->data.precision != var->data.precision) {
898             if ((existing->data.used && var->data.used) ||
899                 prog->GLSL_Version >= 300) {
900                linker_error(prog, "declarations for %s `%s` have "
901                             "mismatching precision qualifiers\n",
902                             mode_string(var), var->name);
903                return;
904             } else {
905                linker_warning(prog, "declarations for %s `%s` have "
906                               "mismatching precision qualifiers\n",
907                               mode_string(var), var->name);
908             }
909          }
910 
911          /* In OpenGL GLSL 3.20 spec, section 4.3.9:
912           *
913           *   "It is a link-time error if any particular shader interface
914           *    contains:
915           *
916           *    - two different blocks, each having no instance name, and each
917           *      having a member of the same name, or
918           *
919           *    - a variable outside a block, and a block with no instance name,
920           *      where the variable has the same name as a member in the block."
921           */
922          const glsl_type *var_itype = var->get_interface_type();
923          const glsl_type *existing_itype = existing->get_interface_type();
924          if (var_itype != existing_itype) {
925             if (!var_itype || !existing_itype) {
926                linker_error(prog, "declarations for %s `%s` are inside block "
927                             "`%s` and outside a block",
928                             mode_string(var), var->name,
929                             glsl_get_type_name(var_itype ? var_itype : existing_itype));
930                return;
931             } else if (strcmp(glsl_get_type_name(var_itype), glsl_get_type_name(existing_itype)) != 0) {
932                linker_error(prog, "declarations for %s `%s` are inside blocks "
933                             "`%s` and `%s`",
934                             mode_string(var), var->name,
935                             glsl_get_type_name(existing_itype),
936                             glsl_get_type_name(var_itype));
937                return;
938             }
939          }
940       } else
941          variables->add_variable(var);
942    }
943 }
944 
945 
946 /**
947  * Perform validation of uniforms used across multiple shader stages
948  */
949 static void
cross_validate_uniforms(const struct gl_constants * consts,struct gl_shader_program * prog)950 cross_validate_uniforms(const struct gl_constants *consts,
951                         struct gl_shader_program *prog)
952 {
953    glsl_symbol_table variables;
954    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
955       if (prog->_LinkedShaders[i] == NULL)
956          continue;
957 
958       cross_validate_globals(consts, prog, prog->_LinkedShaders[i]->ir,
959                              &variables, true);
960    }
961 }
962 
963 /**
964  * Verifies the invariance of built-in special variables.
965  */
966 static bool
validate_invariant_builtins(struct gl_shader_program * prog,const gl_linked_shader * vert,const gl_linked_shader * frag)967 validate_invariant_builtins(struct gl_shader_program *prog,
968                             const gl_linked_shader *vert,
969                             const gl_linked_shader *frag)
970 {
971    const ir_variable *var_vert;
972    const ir_variable *var_frag;
973 
974    if (!vert || !frag)
975       return true;
976 
977    /*
978     * From OpenGL ES Shading Language 1.0 specification
979     * (4.6.4 Invariance and Linkage):
980     *     "The invariance of varyings that are declared in both the vertex and
981     *     fragment shaders must match. For the built-in special variables,
982     *     gl_FragCoord can only be declared invariant if and only if
983     *     gl_Position is declared invariant. Similarly gl_PointCoord can only
984     *     be declared invariant if and only if gl_PointSize is declared
985     *     invariant. It is an error to declare gl_FrontFacing as invariant.
986     *     The invariance of gl_FrontFacing is the same as the invariance of
987     *     gl_Position."
988     */
989    var_frag = frag->symbols->get_variable("gl_FragCoord");
990    if (var_frag && var_frag->data.invariant) {
991       var_vert = vert->symbols->get_variable("gl_Position");
992       if (var_vert && !var_vert->data.invariant) {
993          linker_error(prog,
994                "fragment shader built-in `%s' has invariant qualifier, "
995                "but vertex shader built-in `%s' lacks invariant qualifier\n",
996                var_frag->name, var_vert->name);
997          return false;
998       }
999    }
1000 
1001    var_frag = frag->symbols->get_variable("gl_PointCoord");
1002    if (var_frag && var_frag->data.invariant) {
1003       var_vert = vert->symbols->get_variable("gl_PointSize");
1004       if (var_vert && !var_vert->data.invariant) {
1005          linker_error(prog,
1006                "fragment shader built-in `%s' has invariant qualifier, "
1007                "but vertex shader built-in `%s' lacks invariant qualifier\n",
1008                var_frag->name, var_vert->name);
1009          return false;
1010       }
1011    }
1012 
1013    var_frag = frag->symbols->get_variable("gl_FrontFacing");
1014    if (var_frag && var_frag->data.invariant) {
1015       linker_error(prog,
1016             "fragment shader built-in `%s' can not be declared as invariant\n",
1017             var_frag->name);
1018       return false;
1019    }
1020 
1021    return true;
1022 }
1023 
1024 /**
1025  * Populates a shaders symbol table with all global declarations
1026  */
1027 static void
populate_symbol_table(gl_linked_shader * sh,glsl_symbol_table * symbols)1028 populate_symbol_table(gl_linked_shader *sh, glsl_symbol_table *symbols)
1029 {
1030    sh->symbols = new(sh) glsl_symbol_table;
1031 
1032    _mesa_glsl_copy_symbols_from_table(sh->ir, symbols, sh->symbols);
1033 }
1034 
1035 
1036 /**
1037  * Remap variables referenced in an instruction tree
1038  *
1039  * This is used when instruction trees are cloned from one shader and placed in
1040  * another.  These trees will contain references to \c ir_variable nodes that
1041  * do not exist in the target shader.  This function finds these \c ir_variable
1042  * references and replaces the references with matching variables in the target
1043  * shader.
1044  *
1045  * If there is no matching variable in the target shader, a clone of the
1046  * \c ir_variable is made and added to the target shader.  The new variable is
1047  * added to \b both the instruction stream and the symbol table.
1048  *
1049  * \param inst         IR tree that is to be processed.
1050  * \param symbols      Symbol table containing global scope symbols in the
1051  *                     linked shader.
1052  * \param instructions Instruction stream where new variable declarations
1053  *                     should be added.
1054  */
1055 static void
remap_variables(ir_instruction * inst,struct gl_linked_shader * target,hash_table * temps)1056 remap_variables(ir_instruction *inst, struct gl_linked_shader *target,
1057                 hash_table *temps)
1058 {
1059    class remap_visitor : public ir_hierarchical_visitor {
1060    public:
1061          remap_visitor(struct gl_linked_shader *target, hash_table *temps)
1062       {
1063          this->target = target;
1064          this->symbols = target->symbols;
1065          this->instructions = target->ir;
1066          this->temps = temps;
1067       }
1068 
1069       virtual ir_visitor_status visit(ir_dereference_variable *ir)
1070       {
1071          if (ir->var->data.mode == ir_var_temporary) {
1072             hash_entry *entry = _mesa_hash_table_search(temps, ir->var);
1073             ir_variable *var = entry ? (ir_variable *) entry->data : NULL;
1074 
1075             assert(var != NULL);
1076             ir->var = var;
1077             return visit_continue;
1078          }
1079 
1080          ir_variable *const existing =
1081             this->symbols->get_variable(ir->var->name);
1082          if (existing != NULL)
1083             ir->var = existing;
1084          else {
1085             ir_variable *copy = ir->var->clone(this->target, NULL);
1086 
1087             this->symbols->add_variable(copy);
1088             this->instructions->push_head(copy);
1089             ir->var = copy;
1090          }
1091 
1092          return visit_continue;
1093       }
1094 
1095    private:
1096       struct gl_linked_shader *target;
1097       glsl_symbol_table *symbols;
1098       exec_list *instructions;
1099       hash_table *temps;
1100    };
1101 
1102    remap_visitor v(target, temps);
1103 
1104    inst->accept(&v);
1105 }
1106 
1107 
1108 /**
1109  * Move non-declarations from one instruction stream to another
1110  *
1111  * The intended usage pattern of this function is to pass the pointer to the
1112  * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1113  * pointer) for \c last and \c false for \c make_copies on the first
1114  * call.  Successive calls pass the return value of the previous call for
1115  * \c last and \c true for \c make_copies.
1116  *
1117  * \param instructions Source instruction stream
1118  * \param last         Instruction after which new instructions should be
1119  *                     inserted in the target instruction stream
1120  * \param make_copies  Flag selecting whether instructions in \c instructions
1121  *                     should be copied (via \c ir_instruction::clone) into the
1122  *                     target list or moved.
1123  *
1124  * \return
1125  * The new "last" instruction in the target instruction stream.  This pointer
1126  * is suitable for use as the \c last parameter of a later call to this
1127  * function.
1128  */
1129 static exec_node *
move_non_declarations(exec_list * instructions,exec_node * last,bool make_copies,gl_linked_shader * target)1130 move_non_declarations(exec_list *instructions, exec_node *last,
1131                       bool make_copies, gl_linked_shader *target)
1132 {
1133    hash_table *temps = NULL;
1134 
1135    if (make_copies)
1136       temps = _mesa_pointer_hash_table_create(NULL);
1137 
1138    foreach_in_list_safe(ir_instruction, inst, instructions) {
1139       if (inst->as_function())
1140          continue;
1141 
1142       ir_variable *var = inst->as_variable();
1143       if ((var != NULL) && (var->data.mode != ir_var_temporary))
1144          continue;
1145 
1146       assert(inst->as_assignment()
1147              || inst->as_call()
1148              || inst->as_if() /* for initializers with the ?: operator */
1149              || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1150 
1151       if (make_copies) {
1152          inst = inst->clone(target, NULL);
1153 
1154          if (var != NULL)
1155             _mesa_hash_table_insert(temps, var, inst);
1156          else
1157             remap_variables(inst, target, temps);
1158       } else {
1159          inst->remove();
1160       }
1161 
1162       last->insert_after(inst);
1163       last = inst;
1164    }
1165 
1166    if (make_copies)
1167       _mesa_hash_table_destroy(temps, NULL);
1168 
1169    return last;
1170 }
1171 
1172 
1173 /**
1174  * This class is only used in link_intrastage_shaders() below but declaring
1175  * it inside that function leads to compiler warnings with some versions of
1176  * gcc.
1177  */
1178 class array_sizing_visitor : public deref_type_updater {
1179 public:
1180    using deref_type_updater::visit;
1181 
array_sizing_visitor()1182    array_sizing_visitor()
1183       : mem_ctx(ralloc_context(NULL)),
1184         unnamed_interfaces(_mesa_pointer_hash_table_create(NULL))
1185    {
1186    }
1187 
~array_sizing_visitor()1188    ~array_sizing_visitor()
1189    {
1190       _mesa_hash_table_destroy(this->unnamed_interfaces, NULL);
1191       ralloc_free(this->mem_ctx);
1192    }
1193 
visit(ir_variable * var)1194    virtual ir_visitor_status visit(ir_variable *var)
1195    {
1196       const glsl_type *type_without_array;
1197       bool implicit_sized_array = var->data.implicit_sized_array;
1198       fixup_type(&var->type, var->data.max_array_access,
1199                  var->data.from_ssbo_unsized_array,
1200                  &implicit_sized_array);
1201       var->data.implicit_sized_array = implicit_sized_array;
1202       type_without_array = glsl_without_array(var->type);
1203       if (glsl_type_is_interface(var->type)) {
1204          if (interface_contains_unsized_arrays(var->type)) {
1205             const glsl_type *new_type =
1206                resize_interface_members(var->type,
1207                                         var->get_max_ifc_array_access(),
1208                                         var->is_in_shader_storage_block());
1209             var->type = new_type;
1210             var->change_interface_type(new_type);
1211          }
1212       } else if (glsl_type_is_interface(type_without_array)) {
1213          if (interface_contains_unsized_arrays(type_without_array)) {
1214             const glsl_type *new_type =
1215                resize_interface_members(type_without_array,
1216                                         var->get_max_ifc_array_access(),
1217                                         var->is_in_shader_storage_block());
1218             var->change_interface_type(new_type);
1219             var->type = update_interface_members_array(var->type, new_type);
1220          }
1221       } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1222          /* Store a pointer to the variable in the unnamed_interfaces
1223           * hashtable.
1224           */
1225          hash_entry *entry =
1226                _mesa_hash_table_search(this->unnamed_interfaces,
1227                                        ifc_type);
1228 
1229          ir_variable **interface_vars = entry ? (ir_variable **) entry->data : NULL;
1230 
1231          if (interface_vars == NULL) {
1232             interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1233                                            ifc_type->length);
1234             _mesa_hash_table_insert(this->unnamed_interfaces, ifc_type,
1235                                     interface_vars);
1236          }
1237          unsigned index = glsl_get_field_index(ifc_type, var->name);
1238          assert(index < ifc_type->length);
1239          assert(interface_vars[index] == NULL);
1240          interface_vars[index] = var;
1241       }
1242       return visit_continue;
1243    }
1244 
1245    /**
1246     * For each unnamed interface block that was discovered while running the
1247     * visitor, adjust the interface type to reflect the newly assigned array
1248     * sizes, and fix up the ir_variable nodes to point to the new interface
1249     * type.
1250     */
fixup_unnamed_interface_types()1251    void fixup_unnamed_interface_types()
1252    {
1253       hash_table_call_foreach(this->unnamed_interfaces,
1254                               fixup_unnamed_interface_type, NULL);
1255    }
1256 
1257 private:
1258    /**
1259     * If the type pointed to by \c type represents an unsized array, replace
1260     * it with a sized array whose size is determined by max_array_access.
1261     */
fixup_type(const glsl_type ** type,unsigned max_array_access,bool from_ssbo_unsized_array,bool * implicit_sized)1262    static void fixup_type(const glsl_type **type, unsigned max_array_access,
1263                           bool from_ssbo_unsized_array, bool *implicit_sized)
1264    {
1265       if (!from_ssbo_unsized_array && glsl_type_is_unsized_array(*type)) {
1266          *type = glsl_array_type((*type)->fields.array,
1267                                  max_array_access + 1, 0);
1268          *implicit_sized = true;
1269          assert(*type != NULL);
1270       }
1271    }
1272 
1273    static const glsl_type *
update_interface_members_array(const glsl_type * type,const glsl_type * new_interface_type)1274    update_interface_members_array(const glsl_type *type,
1275                                   const glsl_type *new_interface_type)
1276    {
1277       const glsl_type *element_type = type->fields.array;
1278       if (glsl_type_is_array(element_type)) {
1279          const glsl_type *new_array_type =
1280             update_interface_members_array(element_type, new_interface_type);
1281          return glsl_array_type(new_array_type, type->length, 0);
1282       } else {
1283          return glsl_array_type(new_interface_type, type->length, 0);
1284       }
1285    }
1286 
1287    /**
1288     * Determine whether the given interface type contains unsized arrays (if
1289     * it doesn't, array_sizing_visitor doesn't need to process it).
1290     */
interface_contains_unsized_arrays(const glsl_type * type)1291    static bool interface_contains_unsized_arrays(const glsl_type *type)
1292    {
1293       for (unsigned i = 0; i < type->length; i++) {
1294          const glsl_type *elem_type = type->fields.structure[i].type;
1295          if (glsl_type_is_unsized_array(elem_type))
1296             return true;
1297       }
1298       return false;
1299    }
1300 
1301    /**
1302     * Create a new interface type based on the given type, with unsized arrays
1303     * replaced by sized arrays whose size is determined by
1304     * max_ifc_array_access.
1305     */
1306    static const glsl_type *
resize_interface_members(const glsl_type * type,const int * max_ifc_array_access,bool is_ssbo)1307    resize_interface_members(const glsl_type *type,
1308                             const int *max_ifc_array_access,
1309                             bool is_ssbo)
1310    {
1311       unsigned num_fields = type->length;
1312       glsl_struct_field *fields = new glsl_struct_field[num_fields];
1313       memcpy(fields, type->fields.structure,
1314              num_fields * sizeof(*fields));
1315       for (unsigned i = 0; i < num_fields; i++) {
1316          bool implicit_sized_array = fields[i].implicit_sized_array;
1317          /* If SSBO last member is unsized array, we don't replace it by a sized
1318           * array.
1319           */
1320          if (is_ssbo && i == (num_fields - 1))
1321             fixup_type(&fields[i].type, max_ifc_array_access[i],
1322                        true, &implicit_sized_array);
1323          else
1324             fixup_type(&fields[i].type, max_ifc_array_access[i],
1325                        false, &implicit_sized_array);
1326          fields[i].implicit_sized_array = implicit_sized_array;
1327       }
1328       glsl_interface_packing packing =
1329          (glsl_interface_packing) type->interface_packing;
1330       bool row_major = (bool) type->interface_row_major;
1331       const glsl_type *new_ifc_type =
1332          glsl_interface_type(fields, num_fields,
1333                              packing, row_major, glsl_get_type_name(type));
1334       delete [] fields;
1335       return new_ifc_type;
1336    }
1337 
fixup_unnamed_interface_type(const void * key,void * data,void *)1338    static void fixup_unnamed_interface_type(const void *key, void *data,
1339                                             void *)
1340    {
1341       const glsl_type *ifc_type = (const glsl_type *) key;
1342       ir_variable **interface_vars = (ir_variable **) data;
1343       unsigned num_fields = ifc_type->length;
1344       glsl_struct_field *fields = new glsl_struct_field[num_fields];
1345       memcpy(fields, ifc_type->fields.structure,
1346              num_fields * sizeof(*fields));
1347       bool interface_type_changed = false;
1348       for (unsigned i = 0; i < num_fields; i++) {
1349          if (interface_vars[i] != NULL &&
1350              fields[i].type != interface_vars[i]->type) {
1351             fields[i].type = interface_vars[i]->type;
1352             interface_type_changed = true;
1353          }
1354       }
1355       if (!interface_type_changed) {
1356          delete [] fields;
1357          return;
1358       }
1359       glsl_interface_packing packing =
1360          (glsl_interface_packing) ifc_type->interface_packing;
1361       bool row_major = (bool) ifc_type->interface_row_major;
1362       const glsl_type *new_ifc_type =
1363          glsl_interface_type(fields, num_fields, packing,
1364                              row_major, glsl_get_type_name(ifc_type));
1365       delete [] fields;
1366       for (unsigned i = 0; i < num_fields; i++) {
1367          if (interface_vars[i] != NULL)
1368             interface_vars[i]->change_interface_type(new_ifc_type);
1369       }
1370    }
1371 
1372    /**
1373     * Memory context used to allocate the data in \c unnamed_interfaces.
1374     */
1375    void *mem_ctx;
1376 
1377    /**
1378     * Hash table from const glsl_type * to an array of ir_variable *'s
1379     * pointing to the ir_variables constituting each unnamed interface block.
1380     */
1381    hash_table *unnamed_interfaces;
1382 };
1383 
1384 static bool
validate_xfb_buffer_stride(const struct gl_constants * consts,unsigned idx,struct gl_shader_program * prog)1385 validate_xfb_buffer_stride(const struct gl_constants *consts, unsigned idx,
1386                            struct gl_shader_program *prog)
1387 {
1388    /* We will validate doubles at a later stage */
1389    if (prog->TransformFeedback.BufferStride[idx] % 4) {
1390       linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
1391                    "multiple of 4 or if its applied to a type that is "
1392                    "or contains a double a multiple of 8.",
1393                    prog->TransformFeedback.BufferStride[idx]);
1394       return false;
1395    }
1396 
1397    if (prog->TransformFeedback.BufferStride[idx] / 4 >
1398        consts->MaxTransformFeedbackInterleavedComponents) {
1399       linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1400                    "limit has been exceeded.");
1401       return false;
1402    }
1403 
1404    return true;
1405 }
1406 
1407 /**
1408  * Check for conflicting xfb_stride default qualifiers and store buffer stride
1409  * for later use.
1410  */
1411 static void
link_xfb_stride_layout_qualifiers(const struct gl_constants * consts,struct gl_shader_program * prog,struct gl_shader ** shader_list,unsigned num_shaders)1412 link_xfb_stride_layout_qualifiers(const struct gl_constants *consts,
1413                                   struct gl_shader_program *prog,
1414                                   struct gl_shader **shader_list,
1415                                   unsigned num_shaders)
1416 {
1417    for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
1418       prog->TransformFeedback.BufferStride[i] = 0;
1419    }
1420 
1421    for (unsigned i = 0; i < num_shaders; i++) {
1422       struct gl_shader *shader = shader_list[i];
1423 
1424       for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1425          if (shader->TransformFeedbackBufferStride[j]) {
1426             if (prog->TransformFeedback.BufferStride[j] == 0) {
1427                prog->TransformFeedback.BufferStride[j] =
1428                   shader->TransformFeedbackBufferStride[j];
1429                if (!validate_xfb_buffer_stride(consts, j, prog))
1430                   return;
1431             } else if (prog->TransformFeedback.BufferStride[j] !=
1432                        shader->TransformFeedbackBufferStride[j]){
1433                linker_error(prog,
1434                             "intrastage shaders defined with conflicting "
1435                             "xfb_stride for buffer %d (%d and %d)\n", j,
1436                             prog->TransformFeedback.BufferStride[j],
1437                             shader->TransformFeedbackBufferStride[j]);
1438                return;
1439             }
1440          }
1441       }
1442    }
1443 }
1444 
1445 /**
1446  * Check for conflicting bindless/bound sampler/image layout qualifiers at
1447  * global scope.
1448  */
1449 static void
link_bindless_layout_qualifiers(struct gl_shader_program * prog,struct gl_shader ** shader_list,unsigned num_shaders)1450 link_bindless_layout_qualifiers(struct gl_shader_program *prog,
1451                                 struct gl_shader **shader_list,
1452                                 unsigned num_shaders)
1453 {
1454    bool bindless_sampler, bindless_image;
1455    bool bound_sampler, bound_image;
1456 
1457    bindless_sampler = bindless_image = false;
1458    bound_sampler = bound_image = false;
1459 
1460    for (unsigned i = 0; i < num_shaders; i++) {
1461       struct gl_shader *shader = shader_list[i];
1462 
1463       if (shader->bindless_sampler)
1464          bindless_sampler = true;
1465       if (shader->bindless_image)
1466          bindless_image = true;
1467       if (shader->bound_sampler)
1468          bound_sampler = true;
1469       if (shader->bound_image)
1470          bound_image = true;
1471 
1472       if ((bindless_sampler && bound_sampler) ||
1473           (bindless_image && bound_image)) {
1474          /* From section 4.4.6 of the ARB_bindless_texture spec:
1475           *
1476           *     "If both bindless_sampler and bound_sampler, or bindless_image
1477           *      and bound_image, are declared at global scope in any
1478           *      compilation unit, a link- time error will be generated."
1479           */
1480          linker_error(prog, "both bindless_sampler and bound_sampler, or "
1481                       "bindless_image and bound_image, can't be declared at "
1482                       "global scope");
1483       }
1484    }
1485 }
1486 
1487 /**
1488  * Check for conflicting viewport_relative settings across shaders, and sets
1489  * the value for the linked shader.
1490  */
1491 static void
link_layer_viewport_relative_qualifier(struct gl_shader_program * prog,struct gl_program * gl_prog,struct gl_shader ** shader_list,unsigned num_shaders)1492 link_layer_viewport_relative_qualifier(struct gl_shader_program *prog,
1493                                        struct gl_program *gl_prog,
1494                                        struct gl_shader **shader_list,
1495                                        unsigned num_shaders)
1496 {
1497    unsigned i;
1498 
1499    /* Find first shader with explicit layer declaration */
1500    for (i = 0; i < num_shaders; i++) {
1501       if (shader_list[i]->redeclares_gl_layer) {
1502          gl_prog->info.layer_viewport_relative =
1503             shader_list[i]->layer_viewport_relative;
1504          break;
1505       }
1506    }
1507 
1508    /* Now make sure that each subsequent shader's explicit layer declaration
1509     * matches the first one's.
1510     */
1511    for (; i < num_shaders; i++) {
1512       if (shader_list[i]->redeclares_gl_layer &&
1513           shader_list[i]->layer_viewport_relative !=
1514           gl_prog->info.layer_viewport_relative) {
1515          linker_error(prog, "all gl_Layer redeclarations must have identical "
1516                       "viewport_relative settings");
1517       }
1518    }
1519 }
1520 
1521 /**
1522  * Performs the cross-validation of tessellation control shader vertices and
1523  * layout qualifiers for the attached tessellation control shaders,
1524  * and propagates them to the linked TCS and linked shader program.
1525  */
1526 static void
link_tcs_out_layout_qualifiers(struct gl_shader_program * prog,struct gl_program * gl_prog,struct gl_shader ** shader_list,unsigned num_shaders)1527 link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1528                                struct gl_program *gl_prog,
1529                                struct gl_shader **shader_list,
1530                                unsigned num_shaders)
1531 {
1532    if (gl_prog->info.stage != MESA_SHADER_TESS_CTRL)
1533       return;
1534 
1535    gl_prog->info.tess.tcs_vertices_out = 0;
1536 
1537    /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1538     *
1539     *     "All tessellation control shader layout declarations in a program
1540     *      must specify the same output patch vertex count.  There must be at
1541     *      least one layout qualifier specifying an output patch vertex count
1542     *      in any program containing tessellation control shaders; however,
1543     *      such a declaration is not required in all tessellation control
1544     *      shaders."
1545     */
1546 
1547    for (unsigned i = 0; i < num_shaders; i++) {
1548       struct gl_shader *shader = shader_list[i];
1549 
1550       if (shader->info.TessCtrl.VerticesOut != 0) {
1551          if (gl_prog->info.tess.tcs_vertices_out != 0 &&
1552              gl_prog->info.tess.tcs_vertices_out !=
1553              (unsigned) shader->info.TessCtrl.VerticesOut) {
1554             linker_error(prog, "tessellation control shader defined with "
1555                          "conflicting output vertex count (%d and %d)\n",
1556                          gl_prog->info.tess.tcs_vertices_out,
1557                          shader->info.TessCtrl.VerticesOut);
1558             return;
1559          }
1560          gl_prog->info.tess.tcs_vertices_out =
1561             shader->info.TessCtrl.VerticesOut;
1562       }
1563    }
1564 
1565    /* Just do the intrastage -> interstage propagation right now,
1566     * since we already know we're in the right type of shader program
1567     * for doing it.
1568     */
1569    if (gl_prog->info.tess.tcs_vertices_out == 0) {
1570       linker_error(prog, "tessellation control shader didn't declare "
1571                    "vertices out layout qualifier\n");
1572       return;
1573    }
1574 }
1575 
1576 
1577 /**
1578  * Performs the cross-validation of tessellation evaluation shader
1579  * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1580  * for the attached tessellation evaluation shaders, and propagates them
1581  * to the linked TES and linked shader program.
1582  */
1583 static void
link_tes_in_layout_qualifiers(struct gl_shader_program * prog,struct gl_program * gl_prog,struct gl_shader ** shader_list,unsigned num_shaders)1584 link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1585                               struct gl_program *gl_prog,
1586                               struct gl_shader **shader_list,
1587                               unsigned num_shaders)
1588 {
1589    if (gl_prog->info.stage != MESA_SHADER_TESS_EVAL)
1590       return;
1591 
1592    int point_mode = -1;
1593    unsigned vertex_order = 0;
1594 
1595    gl_prog->info.tess._primitive_mode = TESS_PRIMITIVE_UNSPECIFIED;
1596    gl_prog->info.tess.spacing = TESS_SPACING_UNSPECIFIED;
1597 
1598    /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1599     *
1600     *     "At least one tessellation evaluation shader (compilation unit) in
1601     *      a program must declare a primitive mode in its input layout.
1602     *      Declaration vertex spacing, ordering, and point mode identifiers is
1603     *      optional.  It is not required that all tessellation evaluation
1604     *      shaders in a program declare a primitive mode.  If spacing or
1605     *      vertex ordering declarations are omitted, the tessellation
1606     *      primitive generator will use equal spacing or counter-clockwise
1607     *      vertex ordering, respectively.  If a point mode declaration is
1608     *      omitted, the tessellation primitive generator will produce lines or
1609     *      triangles according to the primitive mode."
1610     */
1611 
1612    for (unsigned i = 0; i < num_shaders; i++) {
1613       struct gl_shader *shader = shader_list[i];
1614 
1615       if (shader->info.TessEval._PrimitiveMode != TESS_PRIMITIVE_UNSPECIFIED) {
1616          if (gl_prog->info.tess._primitive_mode != TESS_PRIMITIVE_UNSPECIFIED &&
1617              gl_prog->info.tess._primitive_mode !=
1618              shader->info.TessEval._PrimitiveMode) {
1619             linker_error(prog, "tessellation evaluation shader defined with "
1620                          "conflicting input primitive modes.\n");
1621             return;
1622          }
1623          gl_prog->info.tess._primitive_mode =
1624             shader->info.TessEval._PrimitiveMode;
1625       }
1626 
1627       if (shader->info.TessEval.Spacing != 0) {
1628          if (gl_prog->info.tess.spacing != 0 && gl_prog->info.tess.spacing !=
1629              shader->info.TessEval.Spacing) {
1630             linker_error(prog, "tessellation evaluation shader defined with "
1631                          "conflicting vertex spacing.\n");
1632             return;
1633          }
1634          gl_prog->info.tess.spacing = shader->info.TessEval.Spacing;
1635       }
1636 
1637       if (shader->info.TessEval.VertexOrder != 0) {
1638          if (vertex_order != 0 &&
1639              vertex_order != shader->info.TessEval.VertexOrder) {
1640             linker_error(prog, "tessellation evaluation shader defined with "
1641                          "conflicting ordering.\n");
1642             return;
1643          }
1644          vertex_order = shader->info.TessEval.VertexOrder;
1645       }
1646 
1647       if (shader->info.TessEval.PointMode != -1) {
1648          if (point_mode != -1 &&
1649              point_mode != shader->info.TessEval.PointMode) {
1650             linker_error(prog, "tessellation evaluation shader defined with "
1651                          "conflicting point modes.\n");
1652             return;
1653          }
1654          point_mode = shader->info.TessEval.PointMode;
1655       }
1656 
1657    }
1658 
1659    /* Just do the intrastage -> interstage propagation right now,
1660     * since we already know we're in the right type of shader program
1661     * for doing it.
1662     */
1663    if (gl_prog->info.tess._primitive_mode == TESS_PRIMITIVE_UNSPECIFIED) {
1664       linker_error(prog,
1665                    "tessellation evaluation shader didn't declare input "
1666                    "primitive modes.\n");
1667       return;
1668    }
1669 
1670    if (gl_prog->info.tess.spacing == TESS_SPACING_UNSPECIFIED)
1671       gl_prog->info.tess.spacing = TESS_SPACING_EQUAL;
1672 
1673    if (vertex_order == 0 || vertex_order == GL_CCW)
1674       gl_prog->info.tess.ccw = true;
1675    else
1676       gl_prog->info.tess.ccw = false;
1677 
1678 
1679    if (point_mode == -1 || point_mode == GL_FALSE)
1680       gl_prog->info.tess.point_mode = false;
1681    else
1682       gl_prog->info.tess.point_mode = true;
1683 }
1684 
1685 
1686 /**
1687  * Performs the cross-validation of layout qualifiers specified in
1688  * redeclaration of gl_FragCoord for the attached fragment shaders,
1689  * and propagates them to the linked FS and linked shader program.
1690  */
1691 static void
link_fs_inout_layout_qualifiers(struct gl_shader_program * prog,struct gl_linked_shader * linked_shader,struct gl_shader ** shader_list,unsigned num_shaders,bool arb_fragment_coord_conventions_enable)1692 link_fs_inout_layout_qualifiers(struct gl_shader_program *prog,
1693                                 struct gl_linked_shader *linked_shader,
1694                                 struct gl_shader **shader_list,
1695                                 unsigned num_shaders,
1696                                 bool arb_fragment_coord_conventions_enable)
1697 {
1698    bool redeclares_gl_fragcoord = false;
1699    bool uses_gl_fragcoord = false;
1700    bool origin_upper_left = false;
1701    bool pixel_center_integer = false;
1702 
1703    if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1704        (prog->GLSL_Version < 150 && !arb_fragment_coord_conventions_enable))
1705       return;
1706 
1707    for (unsigned i = 0; i < num_shaders; i++) {
1708       struct gl_shader *shader = shader_list[i];
1709       /* From the GLSL 1.50 spec, page 39:
1710        *
1711        *   "If gl_FragCoord is redeclared in any fragment shader in a program,
1712        *    it must be redeclared in all the fragment shaders in that program
1713        *    that have a static use gl_FragCoord."
1714        */
1715       if ((redeclares_gl_fragcoord && !shader->redeclares_gl_fragcoord &&
1716            shader->uses_gl_fragcoord)
1717           || (shader->redeclares_gl_fragcoord && !redeclares_gl_fragcoord &&
1718               uses_gl_fragcoord)) {
1719              linker_error(prog, "fragment shader defined with conflicting "
1720                          "layout qualifiers for gl_FragCoord\n");
1721       }
1722 
1723       /* From the GLSL 1.50 spec, page 39:
1724        *
1725        *   "All redeclarations of gl_FragCoord in all fragment shaders in a
1726        *    single program must have the same set of qualifiers."
1727        */
1728       if (redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord &&
1729           (shader->origin_upper_left != origin_upper_left ||
1730            shader->pixel_center_integer != pixel_center_integer)) {
1731          linker_error(prog, "fragment shader defined with conflicting "
1732                       "layout qualifiers for gl_FragCoord\n");
1733       }
1734 
1735       /* Update the linked shader state.  Note that uses_gl_fragcoord should
1736        * accumulate the results.  The other values should replace.  If there
1737        * are multiple redeclarations, all the fields except uses_gl_fragcoord
1738        * are already known to be the same.
1739        */
1740       if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
1741          redeclares_gl_fragcoord = shader->redeclares_gl_fragcoord;
1742          uses_gl_fragcoord |= shader->uses_gl_fragcoord;
1743          origin_upper_left = shader->origin_upper_left;
1744          pixel_center_integer = shader->pixel_center_integer;
1745       }
1746 
1747       linked_shader->Program->info.fs.early_fragment_tests |=
1748          shader->EarlyFragmentTests || shader->PostDepthCoverage;
1749       linked_shader->Program->info.fs.inner_coverage |= shader->InnerCoverage;
1750       linked_shader->Program->info.fs.post_depth_coverage |=
1751          shader->PostDepthCoverage;
1752       linked_shader->Program->info.fs.pixel_interlock_ordered |=
1753          shader->PixelInterlockOrdered;
1754       linked_shader->Program->info.fs.pixel_interlock_unordered |=
1755          shader->PixelInterlockUnordered;
1756       linked_shader->Program->info.fs.sample_interlock_ordered |=
1757          shader->SampleInterlockOrdered;
1758       linked_shader->Program->info.fs.sample_interlock_unordered |=
1759          shader->SampleInterlockUnordered;
1760       linked_shader->Program->info.fs.advanced_blend_modes |= shader->BlendSupport;
1761    }
1762 
1763    linked_shader->Program->info.fs.pixel_center_integer = pixel_center_integer;
1764    linked_shader->Program->info.fs.origin_upper_left = origin_upper_left;
1765 }
1766 
1767 /**
1768  * Performs the cross-validation of geometry shader max_vertices and
1769  * primitive type layout qualifiers for the attached geometry shaders,
1770  * and propagates them to the linked GS and linked shader program.
1771  */
1772 static void
link_gs_inout_layout_qualifiers(struct gl_shader_program * prog,struct gl_program * gl_prog,struct gl_shader ** shader_list,unsigned num_shaders)1773 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1774                                 struct gl_program *gl_prog,
1775                                 struct gl_shader **shader_list,
1776                                 unsigned num_shaders)
1777 {
1778    /* No in/out qualifiers defined for anything but GLSL 1.50+
1779     * geometry shaders so far.
1780     */
1781    if (gl_prog->info.stage != MESA_SHADER_GEOMETRY || prog->GLSL_Version < 150)
1782       return;
1783 
1784    int vertices_out = -1;
1785 
1786    gl_prog->info.gs.invocations = 0;
1787    gl_prog->info.gs.input_primitive = MESA_PRIM_UNKNOWN;
1788    gl_prog->info.gs.output_primitive = MESA_PRIM_UNKNOWN;
1789 
1790    /* From the GLSL 1.50 spec, page 46:
1791     *
1792     *     "All geometry shader output layout declarations in a program
1793     *      must declare the same layout and same value for
1794     *      max_vertices. There must be at least one geometry output
1795     *      layout declaration somewhere in a program, but not all
1796     *      geometry shaders (compilation units) are required to
1797     *      declare it."
1798     */
1799 
1800    for (unsigned i = 0; i < num_shaders; i++) {
1801       struct gl_shader *shader = shader_list[i];
1802 
1803       if (shader->info.Geom.InputType != MESA_PRIM_UNKNOWN) {
1804          if (gl_prog->info.gs.input_primitive != MESA_PRIM_UNKNOWN &&
1805              gl_prog->info.gs.input_primitive !=
1806              shader->info.Geom.InputType) {
1807             linker_error(prog, "geometry shader defined with conflicting "
1808                          "input types\n");
1809             return;
1810          }
1811          gl_prog->info.gs.input_primitive = (enum mesa_prim)shader->info.Geom.InputType;
1812       }
1813 
1814       if (shader->info.Geom.OutputType != MESA_PRIM_UNKNOWN) {
1815          if (gl_prog->info.gs.output_primitive != MESA_PRIM_UNKNOWN &&
1816              gl_prog->info.gs.output_primitive !=
1817              shader->info.Geom.OutputType) {
1818             linker_error(prog, "geometry shader defined with conflicting "
1819                          "output types\n");
1820             return;
1821          }
1822          gl_prog->info.gs.output_primitive = (enum mesa_prim)shader->info.Geom.OutputType;
1823       }
1824 
1825       if (shader->info.Geom.VerticesOut != -1) {
1826          if (vertices_out != -1 &&
1827              vertices_out != shader->info.Geom.VerticesOut) {
1828             linker_error(prog, "geometry shader defined with conflicting "
1829                          "output vertex count (%d and %d)\n",
1830                          vertices_out, shader->info.Geom.VerticesOut);
1831             return;
1832          }
1833          vertices_out = shader->info.Geom.VerticesOut;
1834       }
1835 
1836       if (shader->info.Geom.Invocations != 0) {
1837          if (gl_prog->info.gs.invocations != 0 &&
1838              gl_prog->info.gs.invocations !=
1839              (unsigned) shader->info.Geom.Invocations) {
1840             linker_error(prog, "geometry shader defined with conflicting "
1841                          "invocation count (%d and %d)\n",
1842                          gl_prog->info.gs.invocations,
1843                          shader->info.Geom.Invocations);
1844             return;
1845          }
1846          gl_prog->info.gs.invocations = shader->info.Geom.Invocations;
1847       }
1848    }
1849 
1850    /* Just do the intrastage -> interstage propagation right now,
1851     * since we already know we're in the right type of shader program
1852     * for doing it.
1853     */
1854    if (gl_prog->info.gs.input_primitive == MESA_PRIM_UNKNOWN) {
1855       linker_error(prog,
1856                    "geometry shader didn't declare primitive input type\n");
1857       return;
1858    }
1859 
1860    if (gl_prog->info.gs.output_primitive == MESA_PRIM_UNKNOWN) {
1861       linker_error(prog,
1862                    "geometry shader didn't declare primitive output type\n");
1863       return;
1864    }
1865 
1866    if (vertices_out == -1) {
1867       linker_error(prog,
1868                    "geometry shader didn't declare max_vertices\n");
1869       return;
1870    } else {
1871       gl_prog->info.gs.vertices_out = vertices_out;
1872    }
1873 
1874    if (gl_prog->info.gs.invocations == 0)
1875       gl_prog->info.gs.invocations = 1;
1876 }
1877 
1878 
1879 /**
1880  * Perform cross-validation of compute shader local_size_{x,y,z} layout and
1881  * derivative arrangement qualifiers for the attached compute shaders, and
1882  * propagate them to the linked CS and linked shader program.
1883  */
1884 static void
link_cs_input_layout_qualifiers(struct gl_shader_program * prog,struct gl_program * gl_prog,struct gl_shader ** shader_list,unsigned num_shaders)1885 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
1886                                 struct gl_program *gl_prog,
1887                                 struct gl_shader **shader_list,
1888                                 unsigned num_shaders)
1889 {
1890    /* This function is called for all shader stages, but it only has an effect
1891     * for compute shaders.
1892     */
1893    if (gl_prog->info.stage != MESA_SHADER_COMPUTE)
1894       return;
1895 
1896    for (int i = 0; i < 3; i++)
1897       gl_prog->info.workgroup_size[i] = 0;
1898 
1899    gl_prog->info.workgroup_size_variable = false;
1900 
1901    gl_prog->info.cs.derivative_group = DERIVATIVE_GROUP_NONE;
1902 
1903    /* From the ARB_compute_shader spec, in the section describing local size
1904     * declarations:
1905     *
1906     *     If multiple compute shaders attached to a single program object
1907     *     declare local work-group size, the declarations must be identical;
1908     *     otherwise a link-time error results. Furthermore, if a program
1909     *     object contains any compute shaders, at least one must contain an
1910     *     input layout qualifier specifying the local work sizes of the
1911     *     program, or a link-time error will occur.
1912     */
1913    for (unsigned sh = 0; sh < num_shaders; sh++) {
1914       struct gl_shader *shader = shader_list[sh];
1915 
1916       if (shader->info.Comp.LocalSize[0] != 0) {
1917          if (gl_prog->info.workgroup_size[0] != 0) {
1918             for (int i = 0; i < 3; i++) {
1919                if (gl_prog->info.workgroup_size[i] !=
1920                    shader->info.Comp.LocalSize[i]) {
1921                   linker_error(prog, "compute shader defined with conflicting "
1922                                "local sizes\n");
1923                   return;
1924                }
1925             }
1926          }
1927          for (int i = 0; i < 3; i++) {
1928             gl_prog->info.workgroup_size[i] =
1929                shader->info.Comp.LocalSize[i];
1930          }
1931       } else if (shader->info.Comp.LocalSizeVariable) {
1932          if (gl_prog->info.workgroup_size[0] != 0) {
1933             /* The ARB_compute_variable_group_size spec says:
1934              *
1935              *     If one compute shader attached to a program declares a
1936              *     variable local group size and a second compute shader
1937              *     attached to the same program declares a fixed local group
1938              *     size, a link-time error results.
1939              */
1940             linker_error(prog, "compute shader defined with both fixed and "
1941                          "variable local group size\n");
1942             return;
1943          }
1944          gl_prog->info.workgroup_size_variable = true;
1945       }
1946 
1947       enum gl_derivative_group group = shader->info.Comp.DerivativeGroup;
1948       if (group != DERIVATIVE_GROUP_NONE) {
1949          if (gl_prog->info.cs.derivative_group != DERIVATIVE_GROUP_NONE &&
1950              gl_prog->info.cs.derivative_group != group) {
1951             linker_error(prog, "compute shader defined with conflicting "
1952                          "derivative groups\n");
1953             return;
1954          }
1955          gl_prog->info.cs.derivative_group = group;
1956       }
1957    }
1958 
1959    /* Just do the intrastage -> interstage propagation right now,
1960     * since we already know we're in the right type of shader program
1961     * for doing it.
1962     */
1963    if (gl_prog->info.workgroup_size[0] == 0 &&
1964        !gl_prog->info.workgroup_size_variable) {
1965       linker_error(prog, "compute shader must contain a fixed or a variable "
1966                          "local group size\n");
1967       return;
1968    }
1969 
1970    if (gl_prog->info.cs.derivative_group == DERIVATIVE_GROUP_QUADS) {
1971       if (gl_prog->info.workgroup_size[0] % 2 != 0) {
1972          linker_error(prog, "derivative_group_quadsNV must be used with a "
1973                       "local group size whose first dimension "
1974                       "is a multiple of 2\n");
1975          return;
1976       }
1977       if (gl_prog->info.workgroup_size[1] % 2 != 0) {
1978          linker_error(prog, "derivative_group_quadsNV must be used with a local"
1979                       "group size whose second dimension "
1980                       "is a multiple of 2\n");
1981          return;
1982       }
1983    } else if (gl_prog->info.cs.derivative_group == DERIVATIVE_GROUP_LINEAR) {
1984       if ((gl_prog->info.workgroup_size[0] *
1985            gl_prog->info.workgroup_size[1] *
1986            gl_prog->info.workgroup_size[2]) % 4 != 0) {
1987          linker_error(prog, "derivative_group_linearNV must be used with a "
1988                       "local group size whose total number of invocations "
1989                       "is a multiple of 4\n");
1990          return;
1991       }
1992    }
1993 }
1994 
1995 /**
1996  * Link all out variables on a single stage which are not
1997  * directly used in a shader with the main function.
1998  */
1999 static void
link_output_variables(struct gl_linked_shader * linked_shader,struct gl_shader ** shader_list,unsigned num_shaders)2000 link_output_variables(struct gl_linked_shader *linked_shader,
2001                       struct gl_shader **shader_list,
2002                       unsigned num_shaders)
2003 {
2004    struct glsl_symbol_table *symbols = linked_shader->symbols;
2005 
2006    for (unsigned i = 0; i < num_shaders; i++) {
2007 
2008       /* Skip shader object with main function */
2009       if (shader_list[i]->symbols->get_function("main"))
2010          continue;
2011 
2012       foreach_in_list(ir_instruction, ir, shader_list[i]->ir) {
2013          if (ir->ir_type != ir_type_variable)
2014             continue;
2015 
2016          ir_variable *var = (ir_variable *) ir;
2017 
2018          if (var->data.mode == ir_var_shader_out &&
2019                !symbols->get_variable(var->name)) {
2020             var = var->clone(linked_shader, NULL);
2021             symbols->add_variable(var);
2022             linked_shader->ir->push_head(var);
2023          }
2024       }
2025    }
2026 
2027    return;
2028 }
2029 
2030 
2031 /**
2032  * Combine a group of shaders for a single stage to generate a linked shader
2033  *
2034  * \note
2035  * If this function is supplied a single shader, it is cloned, and the new
2036  * shader is returned.
2037  */
2038 struct gl_linked_shader *
link_intrastage_shaders(void * mem_ctx,struct gl_context * ctx,struct gl_shader_program * prog,struct gl_shader ** shader_list,unsigned num_shaders,bool allow_missing_main)2039 link_intrastage_shaders(void *mem_ctx,
2040                         struct gl_context *ctx,
2041                         struct gl_shader_program *prog,
2042                         struct gl_shader **shader_list,
2043                         unsigned num_shaders,
2044                         bool allow_missing_main)
2045 {
2046    bool arb_fragment_coord_conventions_enable = false;
2047 
2048    /* Check that global variables defined in multiple shaders are consistent.
2049     */
2050    glsl_symbol_table variables;
2051    for (unsigned i = 0; i < num_shaders; i++) {
2052       if (shader_list[i] == NULL)
2053          continue;
2054       cross_validate_globals(&ctx->Const, prog, shader_list[i]->ir, &variables,
2055                              false);
2056       if (shader_list[i]->ARB_fragment_coord_conventions_enable)
2057          arb_fragment_coord_conventions_enable = true;
2058    }
2059 
2060    if (!prog->data->LinkStatus)
2061       return NULL;
2062 
2063    /* Check that interface blocks defined in multiple shaders are consistent.
2064     */
2065    validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
2066                                         num_shaders);
2067    if (!prog->data->LinkStatus)
2068       return NULL;
2069 
2070    /* Check that there is only a single definition of each function signature
2071     * across all shaders.
2072     */
2073    for (unsigned i = 0; i < (num_shaders - 1); i++) {
2074       foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
2075          ir_function *const f = node->as_function();
2076 
2077          if (f == NULL)
2078             continue;
2079 
2080          for (unsigned j = i + 1; j < num_shaders; j++) {
2081             ir_function *const other =
2082                shader_list[j]->symbols->get_function(f->name);
2083 
2084             /* If the other shader has no function (and therefore no function
2085              * signatures) with the same name, skip to the next shader.
2086              */
2087             if (other == NULL)
2088                continue;
2089 
2090             foreach_in_list(ir_function_signature, sig, &f->signatures) {
2091                if (!sig->is_defined)
2092                   continue;
2093 
2094                ir_function_signature *other_sig =
2095                   other->exact_matching_signature(NULL, &sig->parameters);
2096 
2097                if (other_sig != NULL && other_sig->is_defined) {
2098                   linker_error(prog, "function `%s' is multiply defined\n",
2099                                f->name);
2100                   return NULL;
2101                }
2102             }
2103          }
2104       }
2105    }
2106 
2107    /* Find the shader that defines main, and make a clone of it.
2108     *
2109     * Starting with the clone, search for undefined references.  If one is
2110     * found, find the shader that defines it.  Clone the reference and add
2111     * it to the shader.  Repeat until there are no undefined references or
2112     * until a reference cannot be resolved.
2113     */
2114    gl_shader *main = NULL;
2115    for (unsigned i = 0; i < num_shaders; i++) {
2116       if (_mesa_get_main_function_signature(shader_list[i]->symbols)) {
2117          main = shader_list[i];
2118          break;
2119       }
2120    }
2121 
2122    if (main == NULL && allow_missing_main)
2123       main = shader_list[0];
2124 
2125    if (main == NULL) {
2126       linker_error(prog, "%s shader lacks `main'\n",
2127                    _mesa_shader_stage_to_string(shader_list[0]->Stage));
2128       return NULL;
2129    }
2130 
2131    gl_linked_shader *linked = rzalloc(NULL, struct gl_linked_shader);
2132    linked->Stage = shader_list[0]->Stage;
2133 
2134    /* Create program and attach it to the linked shader */
2135    struct gl_program *gl_prog =
2136       ctx->Driver.NewProgram(ctx, shader_list[0]->Stage, prog->Name, false);
2137    if (!gl_prog) {
2138       prog->data->LinkStatus = LINKING_FAILURE;
2139       _mesa_delete_linked_shader(ctx, linked);
2140       return NULL;
2141    }
2142 
2143    _mesa_reference_shader_program_data(&gl_prog->sh.data, prog->data);
2144 
2145    /* Don't use _mesa_reference_program() just take ownership */
2146    linked->Program = gl_prog;
2147 
2148    linked->ir = new(linked) exec_list;
2149    clone_ir_list(mem_ctx, linked->ir, main->ir);
2150 
2151    link_fs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders,
2152                                    arb_fragment_coord_conventions_enable);
2153    link_tcs_out_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2154    link_tes_in_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2155    link_gs_inout_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2156    link_cs_input_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2157 
2158    if (linked->Stage != MESA_SHADER_FRAGMENT)
2159       link_xfb_stride_layout_qualifiers(&ctx->Const, prog, shader_list, num_shaders);
2160 
2161    link_bindless_layout_qualifiers(prog, shader_list, num_shaders);
2162 
2163    link_layer_viewport_relative_qualifier(prog, gl_prog, shader_list, num_shaders);
2164 
2165    populate_symbol_table(linked, shader_list[0]->symbols);
2166 
2167    /* The pointer to the main function in the final linked shader (i.e., the
2168     * copy of the original shader that contained the main function).
2169     */
2170    ir_function_signature *const main_sig =
2171       _mesa_get_main_function_signature(linked->symbols);
2172 
2173    /* Move any instructions other than variable declarations or function
2174     * declarations into main.
2175     */
2176    if (main_sig != NULL) {
2177       exec_node *insertion_point =
2178          move_non_declarations(linked->ir, &main_sig->body.head_sentinel, false,
2179                                linked);
2180 
2181       for (unsigned i = 0; i < num_shaders; i++) {
2182          if (shader_list[i] == main)
2183             continue;
2184 
2185          insertion_point = move_non_declarations(shader_list[i]->ir,
2186                                                  insertion_point, true, linked);
2187       }
2188    }
2189 
2190    if (!link_function_calls(prog, linked, shader_list, num_shaders)) {
2191       _mesa_delete_linked_shader(ctx, linked);
2192       return NULL;
2193    }
2194 
2195    if (linked->Stage != MESA_SHADER_FRAGMENT)
2196       link_output_variables(linked, shader_list, num_shaders);
2197 
2198    /* Make a pass over all variable declarations to ensure that arrays with
2199     * unspecified sizes have a size specified.  The size is inferred from the
2200     * max_array_access field.
2201     */
2202    array_sizing_visitor v;
2203    v.run(linked->ir);
2204    v.fixup_unnamed_interface_types();
2205 
2206    /* Now that we know the sizes of all the arrays, we can replace .length()
2207     * calls with a constant expression.
2208     */
2209    array_length_to_const_visitor len_v;
2210    len_v.run(linked->ir);
2211 
2212    if (!prog->data->LinkStatus) {
2213       _mesa_delete_linked_shader(ctx, linked);
2214       return NULL;
2215    }
2216 
2217    /* At this point linked should contain all of the linked IR, so
2218     * validate it to make sure nothing went wrong.
2219     */
2220    validate_ir_tree(linked->ir);
2221 
2222    /* Set the size of geometry shader input arrays */
2223    if (linked->Stage == MESA_SHADER_GEOMETRY) {
2224       unsigned num_vertices =
2225          mesa_vertices_per_prim(gl_prog->info.gs.input_primitive);
2226       array_resize_visitor input_resize_visitor(num_vertices, prog,
2227                                                 MESA_SHADER_GEOMETRY);
2228       foreach_in_list(ir_instruction, ir, linked->ir) {
2229          ir->accept(&input_resize_visitor);
2230       }
2231    }
2232 
2233    /* Set the linked source SHA1. */
2234    if (num_shaders == 1) {
2235       memcpy(linked->linked_source_sha1, shader_list[0]->compiled_source_sha1,
2236              SHA1_DIGEST_LENGTH);
2237    } else {
2238       struct mesa_sha1 sha1_ctx;
2239       _mesa_sha1_init(&sha1_ctx);
2240 
2241       for (unsigned i = 0; i < num_shaders; i++) {
2242          if (shader_list[i] == NULL)
2243             continue;
2244 
2245          _mesa_sha1_update(&sha1_ctx, shader_list[i]->compiled_source_sha1,
2246                            SHA1_DIGEST_LENGTH);
2247       }
2248       _mesa_sha1_final(&sha1_ctx, linked->linked_source_sha1);
2249    }
2250 
2251    return linked;
2252 }
2253 
2254 /**
2255  * Resize tessellation evaluation per-vertex inputs to the size of
2256  * tessellation control per-vertex outputs.
2257  */
2258 static void
resize_tes_inputs(const struct gl_constants * consts,struct gl_shader_program * prog)2259 resize_tes_inputs(const struct gl_constants *consts,
2260                   struct gl_shader_program *prog)
2261 {
2262    if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2263       return;
2264 
2265    gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2266    gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2267 
2268    /* If no control shader is present, then the TES inputs are statically
2269     * sized to MaxPatchVertices; the actual size of the arrays won't be
2270     * known until draw time.
2271     */
2272    const int num_vertices = tcs
2273       ? tcs->Program->info.tess.tcs_vertices_out
2274       : consts->MaxPatchVertices;
2275 
2276    array_resize_visitor input_resize_visitor(num_vertices, prog,
2277                                              MESA_SHADER_TESS_EVAL);
2278    foreach_in_list(ir_instruction, ir, tes->ir) {
2279       ir->accept(&input_resize_visitor);
2280    }
2281 
2282    if (tcs) {
2283       /* Convert the gl_PatchVerticesIn system value into a constant, since
2284        * the value is known at this point.
2285        */
2286       foreach_in_list(ir_instruction, ir, tes->ir) {
2287          ir_variable *var = ir->as_variable();
2288          if (var && var->data.mode == ir_var_system_value &&
2289              var->data.location == SYSTEM_VALUE_VERTICES_IN) {
2290             void *mem_ctx = ralloc_parent(var);
2291             var->data.location = 0;
2292             var->data.explicit_location = false;
2293             var->data.mode = ir_var_auto;
2294             var->constant_value = new(mem_ctx) ir_constant(num_vertices);
2295          }
2296       }
2297    }
2298 }
2299 
2300 
2301 /**
2302  * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
2303  * for a variable, checks for overlaps between other uniforms using explicit
2304  * locations.
2305  */
2306 static int
reserve_explicit_locations(struct gl_shader_program * prog,string_to_uint_map * map,ir_variable * var)2307 reserve_explicit_locations(struct gl_shader_program *prog,
2308                            string_to_uint_map *map, ir_variable *var)
2309 {
2310    unsigned slots = glsl_type_uniform_locations(var->type);
2311    unsigned max_loc = var->data.location + slots - 1;
2312    unsigned return_value = slots;
2313 
2314    /* Resize remap table if locations do not fit in the current one. */
2315    if (max_loc + 1 > prog->NumUniformRemapTable) {
2316       prog->UniformRemapTable =
2317          reralloc(prog, prog->UniformRemapTable,
2318                   gl_uniform_storage *,
2319                   max_loc + 1);
2320 
2321       if (!prog->UniformRemapTable) {
2322          linker_error(prog, "Out of memory during linking.\n");
2323          return -1;
2324       }
2325 
2326       /* Initialize allocated space. */
2327       for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
2328          prog->UniformRemapTable[i] = NULL;
2329 
2330       prog->NumUniformRemapTable = max_loc + 1;
2331    }
2332 
2333    for (unsigned i = 0; i < slots; i++) {
2334       unsigned loc = var->data.location + i;
2335 
2336       /* Check if location is already used. */
2337       if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
2338 
2339          /* Possibly same uniform from a different stage, this is ok. */
2340          unsigned hash_loc;
2341          if (map->get(hash_loc, var->name) && hash_loc == loc - i) {
2342             return_value = 0;
2343             continue;
2344          }
2345 
2346          /* ARB_explicit_uniform_location specification states:
2347           *
2348           *     "No two default-block uniform variables in the program can have
2349           *     the same location, even if they are unused, otherwise a compiler
2350           *     or linker error will be generated."
2351           */
2352          linker_error(prog,
2353                       "location qualifier for uniform %s overlaps "
2354                       "previously used location\n",
2355                       var->name);
2356          return -1;
2357       }
2358 
2359       /* Initialize location as inactive before optimization
2360        * rounds and location assignment.
2361        */
2362       prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
2363    }
2364 
2365    /* Note, base location used for arrays. */
2366    map->put(var->data.location, var->name);
2367 
2368    return return_value;
2369 }
2370 
2371 static bool
reserve_subroutine_explicit_locations(struct gl_shader_program * prog,struct gl_program * p,ir_variable * var)2372 reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
2373                                       struct gl_program *p,
2374                                       ir_variable *var)
2375 {
2376    unsigned slots = glsl_type_uniform_locations(var->type);
2377    unsigned max_loc = var->data.location + slots - 1;
2378 
2379    /* Resize remap table if locations do not fit in the current one. */
2380    if (max_loc + 1 > p->sh.NumSubroutineUniformRemapTable) {
2381       p->sh.SubroutineUniformRemapTable =
2382          reralloc(p, p->sh.SubroutineUniformRemapTable,
2383                   gl_uniform_storage *,
2384                   max_loc + 1);
2385 
2386       if (!p->sh.SubroutineUniformRemapTable) {
2387          linker_error(prog, "Out of memory during linking.\n");
2388          return false;
2389       }
2390 
2391       /* Initialize allocated space. */
2392       for (unsigned i = p->sh.NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
2393          p->sh.SubroutineUniformRemapTable[i] = NULL;
2394 
2395       p->sh.NumSubroutineUniformRemapTable = max_loc + 1;
2396    }
2397 
2398    for (unsigned i = 0; i < slots; i++) {
2399       unsigned loc = var->data.location + i;
2400 
2401       /* Check if location is already used. */
2402       if (p->sh.SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
2403 
2404          /* ARB_explicit_uniform_location specification states:
2405           *     "No two subroutine uniform variables can have the same location
2406           *     in the same shader stage, otherwise a compiler or linker error
2407           *     will be generated."
2408           */
2409          linker_error(prog,
2410                       "location qualifier for uniform %s overlaps "
2411                       "previously used location\n",
2412                       var->name);
2413          return false;
2414       }
2415 
2416       /* Initialize location as inactive before optimization
2417        * rounds and location assignment.
2418        */
2419       p->sh.SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
2420    }
2421 
2422    return true;
2423 }
2424 /**
2425  * Check and reserve all explicit uniform locations, called before
2426  * any optimizations happen to handle also inactive uniforms and
2427  * inactive array elements that may get trimmed away.
2428  */
2429 static void
check_explicit_uniform_locations(const struct gl_extensions * exts,struct gl_shader_program * prog)2430 check_explicit_uniform_locations(const struct gl_extensions *exts,
2431                                  struct gl_shader_program *prog)
2432 {
2433    prog->NumExplicitUniformLocations = 0;
2434 
2435    if (!exts->ARB_explicit_uniform_location)
2436       return;
2437 
2438    /* This map is used to detect if overlapping explicit locations
2439     * occur with the same uniform (from different stage) or a different one.
2440     */
2441    string_to_uint_map *uniform_map = new string_to_uint_map;
2442 
2443    if (!uniform_map) {
2444       linker_error(prog, "Out of memory during linking.\n");
2445       return;
2446    }
2447 
2448    unsigned entries_total = 0;
2449    unsigned mask = prog->data->linked_stages;
2450    while (mask) {
2451       const int i = u_bit_scan(&mask);
2452       struct gl_program *p = prog->_LinkedShaders[i]->Program;
2453 
2454       foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2455          ir_variable *var = node->as_variable();
2456          if (!var || var->data.mode != ir_var_uniform)
2457             continue;
2458 
2459          if (var->data.explicit_location) {
2460             bool ret = false;
2461             if (glsl_type_is_subroutine(glsl_without_array(var->type)))
2462                ret = reserve_subroutine_explicit_locations(prog, p, var);
2463             else {
2464                int slots = reserve_explicit_locations(prog, uniform_map,
2465                                                       var);
2466                if (slots != -1) {
2467                   ret = true;
2468                   entries_total += slots;
2469                }
2470             }
2471             if (!ret) {
2472                delete uniform_map;
2473                return;
2474             }
2475          }
2476       }
2477    }
2478 
2479    link_util_update_empty_uniform_locations(prog);
2480 
2481    delete uniform_map;
2482    prog->NumExplicitUniformLocations = entries_total;
2483 }
2484 
2485 static void
link_assign_subroutine_types(struct gl_shader_program * prog)2486 link_assign_subroutine_types(struct gl_shader_program *prog)
2487 {
2488    unsigned mask = prog->data->linked_stages;
2489    while (mask) {
2490       const int i = u_bit_scan(&mask);
2491       gl_program *p = prog->_LinkedShaders[i]->Program;
2492 
2493       p->sh.MaxSubroutineFunctionIndex = 0;
2494       foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2495          ir_function *fn = node->as_function();
2496          if (!fn)
2497             continue;
2498 
2499          if (fn->is_subroutine)
2500             p->sh.NumSubroutineUniformTypes++;
2501 
2502          if (!fn->num_subroutine_types)
2503             continue;
2504 
2505          /* these should have been calculated earlier. */
2506          assert(fn->subroutine_index != -1);
2507          if (p->sh.NumSubroutineFunctions + 1 > MAX_SUBROUTINES) {
2508             linker_error(prog, "Too many subroutine functions declared.\n");
2509             return;
2510          }
2511          p->sh.SubroutineFunctions = reralloc(p, p->sh.SubroutineFunctions,
2512                                             struct gl_subroutine_function,
2513                                             p->sh.NumSubroutineFunctions + 1);
2514          p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].name.string = ralloc_strdup(p, fn->name);
2515          resource_name_updated(&p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].name);
2516          p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
2517          p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types =
2518             ralloc_array(p, const struct glsl_type *,
2519                          fn->num_subroutine_types);
2520 
2521          /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
2522           * GLSL 4.5 spec:
2523           *
2524           *    "Each subroutine with an index qualifier in the shader must be
2525           *    given a unique index, otherwise a compile or link error will be
2526           *    generated."
2527           */
2528          for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
2529             if (p->sh.SubroutineFunctions[j].index != -1 &&
2530                 p->sh.SubroutineFunctions[j].index == fn->subroutine_index) {
2531                linker_error(prog, "each subroutine index qualifier in the "
2532                             "shader must be unique\n");
2533                return;
2534             }
2535          }
2536          p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].index =
2537             fn->subroutine_index;
2538 
2539          if (fn->subroutine_index > (int)p->sh.MaxSubroutineFunctionIndex)
2540             p->sh.MaxSubroutineFunctionIndex = fn->subroutine_index;
2541 
2542          for (int j = 0; j < fn->num_subroutine_types; j++)
2543             p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
2544          p->sh.NumSubroutineFunctions++;
2545       }
2546    }
2547 }
2548 
2549 static void
verify_subroutine_associated_funcs(struct gl_shader_program * prog)2550 verify_subroutine_associated_funcs(struct gl_shader_program *prog)
2551 {
2552    unsigned mask = prog->data->linked_stages;
2553    while (mask) {
2554       const int i = u_bit_scan(&mask);
2555       gl_program *p = prog->_LinkedShaders[i]->Program;
2556       glsl_symbol_table *symbols = prog->_LinkedShaders[i]->symbols;
2557 
2558       /* Section 6.1.2 (Subroutines) of the GLSL 4.00 spec says:
2559        *
2560        *   "A program will fail to compile or link if any shader
2561        *    or stage contains two or more functions with the same
2562        *    name if the name is associated with a subroutine type."
2563        */
2564       for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
2565          unsigned definitions = 0;
2566          char *name = p->sh.SubroutineFunctions[j].name.string;
2567          ir_function *fn = symbols->get_function(name);
2568 
2569          /* Calculate number of function definitions with the same name */
2570          foreach_in_list(ir_function_signature, sig, &fn->signatures) {
2571             if (sig->is_defined) {
2572                if (++definitions > 1) {
2573                   linker_error(prog, "%s shader contains two or more function "
2574                                "definitions with name `%s', which is "
2575                                "associated with a subroutine type.\n",
2576                                _mesa_shader_stage_to_string(i),
2577                                fn->name);
2578                   return;
2579                }
2580             }
2581          }
2582       }
2583    }
2584 }
2585 
2586 /* glsl_to_nir can only handle converting certain function paramaters
2587  * to NIR. This visitor checks for parameters it can't currently handle.
2588  */
2589 class ir_function_param_visitor : public ir_hierarchical_visitor
2590 {
2591 public:
ir_function_param_visitor()2592    ir_function_param_visitor()
2593       : unsupported(false)
2594    {
2595    }
2596 
visit_enter(ir_function_signature * ir)2597    virtual ir_visitor_status visit_enter(ir_function_signature *ir)
2598    {
2599 
2600       if (ir->is_intrinsic())
2601          return visit_continue;
2602 
2603       foreach_in_list(ir_variable, param, &ir->parameters) {
2604          if (!glsl_type_is_vector_or_scalar(param->type)) {
2605             unsupported = true;
2606             return visit_stop;
2607          }
2608 
2609          if (param->data.mode != ir_var_function_in &&
2610              param->data.mode != ir_var_const_in)
2611             continue;
2612 
2613          /* SSBO and shared vars might be passed to a built-in such as an
2614           * atomic memory function, where copying these to a temp before
2615           * passing to the atomic function is not valid so we must replace
2616           * these instead. Also, shader inputs for interpolateAt functions
2617           * also need to be replaced.
2618           *
2619           * We have no way to handle this in NIR or the glsl to nir pass
2620           * currently so let the GLSL IR lowering handle it.
2621           */
2622          if (ir->is_builtin()) {
2623             unsupported = true;
2624             return visit_stop;
2625          }
2626 
2627          /* For opaque types, we want the inlined variable references
2628           * referencing the passed in variable, since that will have
2629           * the location information, which an assignment of an opaque
2630           * variable wouldn't.
2631           *
2632           * We have no way to handle this in NIR or the glsl to nir pass
2633           * currently so let the GLSL IR lowering handle it.
2634           */
2635          if (glsl_contains_opaque(param->type)) {
2636             unsupported = true;
2637             return visit_stop;
2638          }
2639       }
2640 
2641       if (!glsl_type_is_vector_or_scalar(ir->return_type) &&
2642           !glsl_type_is_void(ir->return_type)) {
2643          unsupported = true;
2644          return visit_stop;
2645       }
2646 
2647       return visit_continue;
2648    }
2649 
2650    bool unsupported;
2651 };
2652 
2653 static bool
has_unsupported_function_param(exec_list * ir)2654 has_unsupported_function_param(exec_list *ir)
2655 {
2656    ir_function_param_visitor visitor;
2657    visit_list_elements(&visitor, ir);
2658    return visitor.unsupported;
2659 }
2660 
2661 void
link_shaders(struct gl_context * ctx,struct gl_shader_program * prog)2662 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
2663 {
2664    const struct gl_constants *consts = &ctx->Const;
2665    prog->data->LinkStatus = LINKING_SUCCESS; /* All error paths will set this to false */
2666    prog->data->Validated = false;
2667 
2668    /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says:
2669     *
2670     *     "Linking can fail for a variety of reasons as specified in the
2671     *     OpenGL Shading Language Specification, as well as any of the
2672     *     following reasons:
2673     *
2674     *     - No shader objects are attached to program."
2675     *
2676     * The Compatibility Profile specification does not list the error.  In
2677     * Compatibility Profile missing shader stages are replaced by
2678     * fixed-function.  This applies to the case where all stages are
2679     * missing.
2680     */
2681    if (prog->NumShaders == 0) {
2682       if (ctx->API != API_OPENGL_COMPAT)
2683          linker_error(prog, "no shaders attached to the program\n");
2684       return;
2685    }
2686 
2687 #ifdef ENABLE_SHADER_CACHE
2688    if (shader_cache_read_program_metadata(ctx, prog))
2689       return;
2690 #endif
2691 
2692    void *mem_ctx = ralloc_context(NULL); // temporary linker context
2693    unsigned prev = MESA_SHADER_STAGES;
2694 
2695    /* Separate the shaders into groups based on their type.
2696     */
2697    struct gl_shader **shader_list[MESA_SHADER_STAGES];
2698    unsigned num_shaders[MESA_SHADER_STAGES];
2699 
2700    for (int i = 0; i < MESA_SHADER_STAGES; i++) {
2701       shader_list[i] = (struct gl_shader **)
2702          calloc(prog->NumShaders, sizeof(struct gl_shader *));
2703       num_shaders[i] = 0;
2704    }
2705 
2706    unsigned min_version = UINT_MAX;
2707    unsigned max_version = 0;
2708    for (unsigned i = 0; i < prog->NumShaders; i++) {
2709       min_version = MIN2(min_version, prog->Shaders[i]->Version);
2710       max_version = MAX2(max_version, prog->Shaders[i]->Version);
2711 
2712       if (!consts->AllowGLSLRelaxedES &&
2713           prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) {
2714          linker_error(prog, "all shaders must use same shading "
2715                       "language version\n");
2716          goto done;
2717       }
2718 
2719       gl_shader_stage shader_type = prog->Shaders[i]->Stage;
2720       shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
2721       num_shaders[shader_type]++;
2722    }
2723 
2724    /* In desktop GLSL, different shader versions may be linked together.  In
2725     * GLSL ES, all shader versions must be the same.
2726     */
2727    if (!consts->AllowGLSLRelaxedES && prog->Shaders[0]->IsES &&
2728        min_version != max_version) {
2729       linker_error(prog, "all shaders must use same shading "
2730                    "language version\n");
2731       goto done;
2732    }
2733 
2734    prog->GLSL_Version = max_version;
2735    prog->IsES = prog->Shaders[0]->IsES;
2736 
2737    /* Some shaders have to be linked with some other shaders present.
2738     */
2739    if (!prog->SeparateShader) {
2740       if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
2741           num_shaders[MESA_SHADER_VERTEX] == 0) {
2742          linker_error(prog, "Geometry shader must be linked with "
2743                       "vertex shader\n");
2744          goto done;
2745       }
2746       if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
2747           num_shaders[MESA_SHADER_VERTEX] == 0) {
2748          linker_error(prog, "Tessellation evaluation shader must be linked "
2749                       "with vertex shader\n");
2750          goto done;
2751       }
2752       if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
2753           num_shaders[MESA_SHADER_VERTEX] == 0) {
2754          linker_error(prog, "Tessellation control shader must be linked with "
2755                       "vertex shader\n");
2756          goto done;
2757       }
2758 
2759       /* Section 7.3 of the OpenGL ES 3.2 specification says:
2760        *
2761        *    "Linking can fail for [...] any of the following reasons:
2762        *
2763        *     * program contains an object to form a tessellation control
2764        *       shader [...] and [...] the program is not separable and
2765        *       contains no object to form a tessellation evaluation shader"
2766        *
2767        * The OpenGL spec is contradictory. It allows linking without a tess
2768        * eval shader, but that can only be used with transform feedback and
2769        * rasterization disabled. However, transform feedback isn't allowed
2770        * with GL_PATCHES, so it can't be used.
2771        *
2772        * More investigation showed that the idea of transform feedback after
2773        * a tess control shader was dropped, because some hw vendors couldn't
2774        * support tessellation without a tess eval shader, but the linker
2775        * section wasn't updated to reflect that.
2776        *
2777        * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
2778        * spec bug.
2779        *
2780        * Do what's reasonable and always require a tess eval shader if a tess
2781        * control shader is present.
2782        */
2783       if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
2784           num_shaders[MESA_SHADER_TESS_EVAL] == 0) {
2785          linker_error(prog, "Tessellation control shader must be linked with "
2786                       "tessellation evaluation shader\n");
2787          goto done;
2788       }
2789 
2790       if (prog->IsES) {
2791          if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
2792              num_shaders[MESA_SHADER_TESS_CTRL] == 0) {
2793             linker_error(prog, "GLSL ES requires non-separable programs "
2794                          "containing a tessellation evaluation shader to also "
2795                          "be linked with a tessellation control shader\n");
2796             goto done;
2797          }
2798       }
2799    }
2800 
2801    /* Compute shaders have additional restrictions. */
2802    if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
2803        num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
2804       linker_error(prog, "Compute shaders may not be linked with any other "
2805                    "type of shader\n");
2806    }
2807 
2808    /* Link all shaders for a particular stage and validate the result.
2809     */
2810    for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
2811       if (num_shaders[stage] > 0) {
2812          gl_linked_shader *const sh =
2813             link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
2814                                     num_shaders[stage], false);
2815 
2816          if (!prog->data->LinkStatus) {
2817             if (sh)
2818                _mesa_delete_linked_shader(ctx, sh);
2819             goto done;
2820          }
2821 
2822          switch (stage) {
2823          case MESA_SHADER_VERTEX:
2824             validate_vertex_shader_executable(prog, sh, consts);
2825             break;
2826          case MESA_SHADER_TESS_CTRL:
2827             /* nothing to be done */
2828             break;
2829          case MESA_SHADER_TESS_EVAL:
2830             validate_tess_eval_shader_executable(prog, sh, consts);
2831             break;
2832          case MESA_SHADER_GEOMETRY:
2833             validate_geometry_shader_executable(prog, sh, consts);
2834             break;
2835          case MESA_SHADER_FRAGMENT:
2836             validate_fragment_shader_executable(prog, sh);
2837             break;
2838          }
2839          if (!prog->data->LinkStatus) {
2840             if (sh)
2841                _mesa_delete_linked_shader(ctx, sh);
2842             goto done;
2843          }
2844 
2845          prog->_LinkedShaders[stage] = sh;
2846          prog->data->linked_stages |= 1 << stage;
2847       }
2848    }
2849 
2850    /* Here begins the inter-stage linking phase.  Some initial validation is
2851     * performed, then locations are assigned for uniforms, attributes, and
2852     * varyings.
2853     */
2854    cross_validate_uniforms(consts, prog);
2855    if (!prog->data->LinkStatus)
2856       goto done;
2857 
2858    check_explicit_uniform_locations(&ctx->Extensions, prog);
2859    link_assign_subroutine_types(prog);
2860    verify_subroutine_associated_funcs(prog);
2861 
2862    if (!prog->data->LinkStatus)
2863       goto done;
2864 
2865    resize_tes_inputs(consts, prog);
2866 
2867    /* Validate the inputs of each stage with the output of the preceding
2868     * stage.
2869     */
2870    for (unsigned i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
2871       if (prog->_LinkedShaders[i] == NULL)
2872          continue;
2873 
2874       if (prev == MESA_SHADER_STAGES) {
2875          prev = i;
2876          continue;
2877       }
2878 
2879       validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
2880                                        prog->_LinkedShaders[i]);
2881       if (!prog->data->LinkStatus)
2882          goto done;
2883 
2884       prev = i;
2885    }
2886 
2887    /* Cross-validate uniform blocks between shader stages */
2888    validate_interstage_uniform_blocks(prog, prog->_LinkedShaders);
2889    if (!prog->data->LinkStatus)
2890       goto done;
2891 
2892    if (prog->IsES && prog->GLSL_Version == 100)
2893       if (!validate_invariant_builtins(prog,
2894             prog->_LinkedShaders[MESA_SHADER_VERTEX],
2895             prog->_LinkedShaders[MESA_SHADER_FRAGMENT]))
2896          goto done;
2897 
2898    /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
2899     * it before optimization because we want most of the checks to get
2900     * dropped thanks to constant propagation.
2901     *
2902     * This rule also applies to GLSL ES 3.00.
2903     */
2904    if (max_version >= (prog->IsES ? 300 : 130)) {
2905       struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
2906       if (sh) {
2907          lower_discard_flow(sh->ir);
2908       }
2909    }
2910 
2911    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2912       if (prog->_LinkedShaders[i] == NULL)
2913          continue;
2914 
2915       struct gl_linked_shader *shader = prog->_LinkedShaders[i];
2916       exec_list *ir = shader->ir;
2917 
2918       detect_recursion_linked(prog, ir);
2919       if (!prog->data->LinkStatus)
2920          goto done;
2921 
2922       const struct gl_shader_compiler_options *gl_options =
2923          &consts->ShaderCompilerOptions[i];
2924 
2925       /* NIR cannot handle instructions after a break so we use the GLSL IR do
2926        * lower jumps pass to clean those up for now.
2927        */
2928       do_lower_jumps(ir, true, true, gl_options->EmitNoMainReturn,
2929                      gl_options->EmitNoCont);
2930 
2931       /* glsl_to_nir can only handle converting certain function paramaters
2932        * to NIR. If we find something we can't handle then we get the GLSL IR
2933        * opts to remove it before we continue on.
2934        *
2935        * TODO: add missing glsl ir to nir support and remove this loop.
2936        */
2937       while (has_unsupported_function_param(ir)) {
2938          do_common_optimization(ir, true, gl_options, consts->NativeIntegers);
2939       }
2940    }
2941 
2942 done:
2943    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2944       free(shader_list[i]);
2945       if (prog->_LinkedShaders[i] == NULL)
2946          continue;
2947 
2948       /* Do a final validation step to make sure that the IR wasn't
2949        * invalidated by any modifications performed after intrastage linking.
2950        */
2951       validate_ir_tree(prog->_LinkedShaders[i]->ir);
2952 
2953       /* Retain any live IR, but trash the rest. */
2954       reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
2955 
2956       /* The symbol table in the linked shaders may contain references to
2957        * variables that were removed (e.g., unused uniforms).  Since it may
2958        * contain junk, there is no possible valid use.  Delete it and set the
2959        * pointer to NULL.
2960        */
2961       delete prog->_LinkedShaders[i]->symbols;
2962       prog->_LinkedShaders[i]->symbols = NULL;
2963    }
2964 
2965    ralloc_free(mem_ctx);
2966 }
2967 
2968 void
resource_name_updated(struct gl_resource_name * name)2969 resource_name_updated(struct gl_resource_name *name)
2970 {
2971    if (name->string) {
2972       name->length = strlen(name->string);
2973 
2974       const char *last_square_bracket = strrchr(name->string, '[');
2975       if (last_square_bracket) {
2976          name->last_square_bracket = last_square_bracket - name->string;
2977          name->suffix_is_zero_square_bracketed =
2978             strcmp(last_square_bracket, "[0]") == 0;
2979       } else {
2980          name->last_square_bracket = -1;
2981          name->suffix_is_zero_square_bracketed = false;
2982       }
2983    } else {
2984       name->length = 0;
2985       name->last_square_bracket = -1;
2986       name->suffix_is_zero_square_bracketed = false;
2987    }
2988 }
2989