1 /*
2 * Copyright © 2014-2015 Broadcom
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "nir.h"
25 #include "nir_builder.h"
26
27 struct alu_width_data {
28 nir_vectorize_cb cb;
29 const void *data;
30 };
31
32 /** @file nir_lower_alu_width.c
33 *
34 * Replaces nir_alu_instr operations with more than one channel used in the
35 * arguments with individual per-channel operations.
36 *
37 * Optionally, a callback function which returns the max vectorization width
38 * per instruction can be provided.
39 *
40 * The max vectorization width must be a power of 2.
41 */
42
43 static bool
inst_is_vector_alu(const nir_instr * instr,const void * _state)44 inst_is_vector_alu(const nir_instr *instr, const void *_state)
45 {
46 if (instr->type != nir_instr_type_alu)
47 return false;
48
49 nir_alu_instr *alu = nir_instr_as_alu(instr);
50
51 /* There is no ALU instruction which has a scalar destination, scalar
52 * src[0], and some other vector source.
53 */
54 return alu->def.num_components > 1 ||
55 nir_op_infos[alu->op].input_sizes[0] > 1;
56 }
57
58 /* Checks whether all operands of an ALU instruction are swizzled
59 * within the targeted vectorization width.
60 *
61 * The assumption here is that a vecN instruction can only swizzle
62 * within the first N channels of the values it consumes, irrespective
63 * of the capabilities of the instruction which produced those values.
64 * If we assume values are packed consistently (i.e., they always start
65 * at the beginning of a hardware register), we can actually access any
66 * aligned group of N channels so long as we stay within the group.
67 * This means for a vectorization width of 4 that only swizzles from
68 * either [xyzw] or [abcd] etc are allowed. For a width of 2 these are
69 * swizzles from either [xy] or [zw] etc.
70 */
71 static bool
alu_is_swizzled_in_bounds(const nir_alu_instr * alu,unsigned width)72 alu_is_swizzled_in_bounds(const nir_alu_instr *alu, unsigned width)
73 {
74 for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
75 if (nir_op_infos[alu->op].input_sizes[i] == 1)
76 continue;
77
78 unsigned mask = ~(width - 1);
79 for (unsigned j = 1; j < alu->def.num_components; j++) {
80 if ((alu->src[i].swizzle[0] & mask) != (alu->src[i].swizzle[j] & mask))
81 return false;
82 }
83 }
84
85 return true;
86 }
87
88 static void
nir_alu_ssa_dest_init(nir_alu_instr * alu,unsigned num_components,unsigned bit_size)89 nir_alu_ssa_dest_init(nir_alu_instr *alu, unsigned num_components,
90 unsigned bit_size)
91 {
92 nir_def_init(&alu->instr, &alu->def, num_components, bit_size);
93 }
94
95 static nir_def *
lower_reduction(nir_alu_instr * alu,nir_op chan_op,nir_op merge_op,nir_builder * builder,bool reverse_order)96 lower_reduction(nir_alu_instr *alu, nir_op chan_op, nir_op merge_op,
97 nir_builder *builder, bool reverse_order)
98 {
99 unsigned num_components = nir_op_infos[alu->op].input_sizes[0];
100
101 nir_def *last = NULL;
102 for (int i = 0; i < num_components; i++) {
103 int channel = reverse_order ? num_components - 1 - i : i;
104 nir_alu_instr *chan = nir_alu_instr_create(builder->shader, chan_op);
105 nir_alu_ssa_dest_init(chan, 1, alu->def.bit_size);
106 nir_alu_src_copy(&chan->src[0], &alu->src[0]);
107 chan->src[0].swizzle[0] = chan->src[0].swizzle[channel];
108 if (nir_op_infos[chan_op].num_inputs > 1) {
109 assert(nir_op_infos[chan_op].num_inputs == 2);
110 nir_alu_src_copy(&chan->src[1], &alu->src[1]);
111 chan->src[1].swizzle[0] = chan->src[1].swizzle[channel];
112 }
113 chan->exact = alu->exact;
114
115 nir_builder_instr_insert(builder, &chan->instr);
116
117 if (i == 0) {
118 last = &chan->def;
119 } else {
120 last = nir_build_alu(builder, merge_op,
121 last, &chan->def, NULL, NULL);
122 }
123 }
124
125 return last;
126 }
127
128 static inline bool
will_lower_ffma(nir_shader * shader,unsigned bit_size)129 will_lower_ffma(nir_shader *shader, unsigned bit_size)
130 {
131 switch (bit_size) {
132 case 16:
133 return shader->options->lower_ffma16;
134 case 32:
135 return shader->options->lower_ffma32;
136 case 64:
137 return shader->options->lower_ffma64;
138 }
139 unreachable("bad bit size");
140 }
141
142 static nir_def *
lower_fdot(nir_alu_instr * alu,nir_builder * builder)143 lower_fdot(nir_alu_instr *alu, nir_builder *builder)
144 {
145 /* Reversed order can result in lower instruction count because it
146 * creates more MAD/FMA in the case of fdot(a, vec4(b, 1.0)).
147 * Some games expect xyzw order, so only reverse the order for imprecise fdot.
148 */
149 bool reverse_order = !builder->exact;
150
151 /* If we don't want to lower ffma, create several ffma instead of fmul+fadd
152 * and fusing later because fusing is not possible for exact fdot instructions.
153 */
154 if (will_lower_ffma(builder->shader, alu->def.bit_size))
155 return lower_reduction(alu, nir_op_fmul, nir_op_fadd, builder, reverse_order);
156
157 unsigned num_components = nir_op_infos[alu->op].input_sizes[0];
158
159 nir_def *prev = NULL;
160 for (int i = 0; i < num_components; i++) {
161 int channel = reverse_order ? num_components - 1 - i : i;
162 nir_alu_instr *instr = nir_alu_instr_create(
163 builder->shader, prev ? nir_op_ffma : nir_op_fmul);
164 nir_alu_ssa_dest_init(instr, 1, alu->def.bit_size);
165 for (unsigned j = 0; j < 2; j++) {
166 nir_alu_src_copy(&instr->src[j], &alu->src[j]);
167 instr->src[j].swizzle[0] = alu->src[j].swizzle[channel];
168 }
169 if (i != 0)
170 instr->src[2].src = nir_src_for_ssa(prev);
171 instr->exact = builder->exact;
172
173 nir_builder_instr_insert(builder, &instr->instr);
174
175 prev = &instr->def;
176 }
177
178 return prev;
179 }
180
181 static nir_def *
lower_alu_instr_width(nir_builder * b,nir_instr * instr,void * _data)182 lower_alu_instr_width(nir_builder *b, nir_instr *instr, void *_data)
183 {
184 struct alu_width_data *data = _data;
185 nir_alu_instr *alu = nir_instr_as_alu(instr);
186 unsigned num_src = nir_op_infos[alu->op].num_inputs;
187 unsigned i, chan;
188
189 b->exact = alu->exact;
190
191 unsigned num_components = alu->def.num_components;
192 unsigned target_width = 1;
193
194 if (data->cb) {
195 target_width = data->cb(instr, data->data);
196 assert(util_is_power_of_two_or_zero(target_width));
197 if (target_width == 0)
198 return NULL;
199 }
200
201 #define LOWER_REDUCTION(name, chan, merge) \
202 case name##2: \
203 case name##3: \
204 case name##4: \
205 case name##8: \
206 case name##16: \
207 return lower_reduction(alu, chan, merge, b, true);
208
209 switch (alu->op) {
210 case nir_op_vec16:
211 case nir_op_vec8:
212 case nir_op_vec5:
213 case nir_op_vec4:
214 case nir_op_vec3:
215 case nir_op_vec2:
216 case nir_op_cube_amd:
217 /* We don't need to scalarize these ops, they're the ones generated to
218 * group up outputs into a value that can be SSAed.
219 */
220 return NULL;
221
222 case nir_op_pack_half_2x16: {
223 if (!b->shader->options->lower_pack_half_2x16)
224 return NULL;
225
226 nir_def *src_vec2 = nir_ssa_for_alu_src(b, alu, 0);
227 return nir_pack_half_2x16_split(b, nir_channel(b, src_vec2, 0),
228 nir_channel(b, src_vec2, 1));
229 }
230
231 case nir_op_unpack_unorm_4x8:
232 case nir_op_unpack_snorm_4x8:
233 case nir_op_unpack_unorm_2x16:
234 case nir_op_unpack_snorm_2x16:
235 /* There is no scalar version of these ops, unless we were to break it
236 * down to bitshifts and math (which is definitely not intended).
237 */
238 return NULL;
239
240 case nir_op_unpack_half_2x16_flush_to_zero:
241 case nir_op_unpack_half_2x16: {
242 if (!b->shader->options->lower_unpack_half_2x16)
243 return NULL;
244
245 nir_def *packed = nir_ssa_for_alu_src(b, alu, 0);
246 if (alu->op == nir_op_unpack_half_2x16_flush_to_zero) {
247 return nir_vec2(b,
248 nir_unpack_half_2x16_split_x_flush_to_zero(b,
249 packed),
250 nir_unpack_half_2x16_split_y_flush_to_zero(b,
251 packed));
252 } else {
253 return nir_vec2(b,
254 nir_unpack_half_2x16_split_x(b, packed),
255 nir_unpack_half_2x16_split_y(b, packed));
256 }
257 }
258
259 case nir_op_pack_uvec2_to_uint: {
260 assert(b->shader->options->lower_pack_snorm_2x16 ||
261 b->shader->options->lower_pack_unorm_2x16);
262
263 nir_def *word = nir_extract_u16(b, nir_ssa_for_alu_src(b, alu, 0),
264 nir_imm_int(b, 0));
265 return nir_ior(b, nir_ishl(b, nir_channel(b, word, 1), nir_imm_int(b, 16)),
266 nir_channel(b, word, 0));
267 }
268
269 case nir_op_pack_uvec4_to_uint: {
270 assert(b->shader->options->lower_pack_snorm_4x8 ||
271 b->shader->options->lower_pack_unorm_4x8);
272
273 nir_def *byte = nir_extract_u8(b, nir_ssa_for_alu_src(b, alu, 0),
274 nir_imm_int(b, 0));
275 return nir_ior(b, nir_ior(b, nir_ishl(b, nir_channel(b, byte, 3), nir_imm_int(b, 24)), nir_ishl(b, nir_channel(b, byte, 2), nir_imm_int(b, 16))),
276 nir_ior(b, nir_ishl(b, nir_channel(b, byte, 1), nir_imm_int(b, 8)),
277 nir_channel(b, byte, 0)));
278 }
279
280 case nir_op_fdph: {
281 nir_def *src0_vec = nir_ssa_for_alu_src(b, alu, 0);
282 nir_def *src1_vec = nir_ssa_for_alu_src(b, alu, 1);
283
284 /* Only use reverse order for imprecise fdph, see explanation in lower_fdot. */
285 bool reverse_order = !b->exact;
286 if (will_lower_ffma(b->shader, alu->def.bit_size)) {
287 nir_def *sum[4];
288 for (unsigned i = 0; i < 3; i++) {
289 int dest = reverse_order ? 3 - i : i;
290 sum[dest] = nir_fmul(b, nir_channel(b, src0_vec, i),
291 nir_channel(b, src1_vec, i));
292 }
293 sum[reverse_order ? 0 : 3] = nir_channel(b, src1_vec, 3);
294
295 return nir_fadd(b, nir_fadd(b, nir_fadd(b, sum[0], sum[1]), sum[2]), sum[3]);
296 } else if (reverse_order) {
297 nir_def *sum = nir_channel(b, src1_vec, 3);
298 for (int i = 2; i >= 0; i--)
299 sum = nir_ffma(b, nir_channel(b, src0_vec, i), nir_channel(b, src1_vec, i), sum);
300 return sum;
301 } else {
302 nir_def *sum = nir_fmul(b, nir_channel(b, src0_vec, 0), nir_channel(b, src1_vec, 0));
303 sum = nir_ffma(b, nir_channel(b, src0_vec, 1), nir_channel(b, src1_vec, 1), sum);
304 sum = nir_ffma(b, nir_channel(b, src0_vec, 2), nir_channel(b, src1_vec, 2), sum);
305 return nir_fadd(b, sum, nir_channel(b, src1_vec, 3));
306 }
307 }
308
309 case nir_op_pack_64_2x32: {
310 if (!b->shader->options->lower_pack_64_2x32)
311 return NULL;
312
313 nir_def *src_vec2 = nir_ssa_for_alu_src(b, alu, 0);
314 return nir_pack_64_2x32_split(b, nir_channel(b, src_vec2, 0),
315 nir_channel(b, src_vec2, 1));
316 }
317 case nir_op_pack_64_4x16: {
318 if (!b->shader->options->lower_pack_64_4x16)
319 return NULL;
320
321 nir_def *src_vec4 = nir_ssa_for_alu_src(b, alu, 0);
322 nir_def *xy = nir_pack_32_2x16_split(b, nir_channel(b, src_vec4, 0),
323 nir_channel(b, src_vec4, 1));
324 nir_def *zw = nir_pack_32_2x16_split(b, nir_channel(b, src_vec4, 2),
325 nir_channel(b, src_vec4, 3));
326
327 return nir_pack_64_2x32_split(b, xy, zw);
328 }
329 case nir_op_pack_32_2x16: {
330 if (!b->shader->options->lower_pack_32_2x16)
331 return NULL;
332
333 nir_def *src_vec2 = nir_ssa_for_alu_src(b, alu, 0);
334 return nir_pack_32_2x16_split(b, nir_channel(b, src_vec2, 0),
335 nir_channel(b, src_vec2, 1));
336 }
337 case nir_op_unpack_64_2x32:
338 case nir_op_unpack_64_4x16:
339 case nir_op_unpack_32_2x16:
340 case nir_op_unpack_32_4x8:
341 case nir_op_unpack_double_2x32_dxil:
342 return NULL;
343
344 case nir_op_fdot2:
345 case nir_op_fdot3:
346 case nir_op_fdot4:
347 case nir_op_fdot8:
348 case nir_op_fdot16:
349 return lower_fdot(alu, b);
350
351 LOWER_REDUCTION(nir_op_ball_fequal, nir_op_feq, nir_op_iand);
352 LOWER_REDUCTION(nir_op_ball_iequal, nir_op_ieq, nir_op_iand);
353 LOWER_REDUCTION(nir_op_bany_fnequal, nir_op_fneu, nir_op_ior);
354 LOWER_REDUCTION(nir_op_bany_inequal, nir_op_ine, nir_op_ior);
355 LOWER_REDUCTION(nir_op_b8all_fequal, nir_op_feq8, nir_op_iand);
356 LOWER_REDUCTION(nir_op_b8all_iequal, nir_op_ieq8, nir_op_iand);
357 LOWER_REDUCTION(nir_op_b8any_fnequal, nir_op_fneu8, nir_op_ior);
358 LOWER_REDUCTION(nir_op_b8any_inequal, nir_op_ine8, nir_op_ior);
359 LOWER_REDUCTION(nir_op_b16all_fequal, nir_op_feq16, nir_op_iand);
360 LOWER_REDUCTION(nir_op_b16all_iequal, nir_op_ieq16, nir_op_iand);
361 LOWER_REDUCTION(nir_op_b16any_fnequal, nir_op_fneu16, nir_op_ior);
362 LOWER_REDUCTION(nir_op_b16any_inequal, nir_op_ine16, nir_op_ior);
363 LOWER_REDUCTION(nir_op_b32all_fequal, nir_op_feq32, nir_op_iand);
364 LOWER_REDUCTION(nir_op_b32all_iequal, nir_op_ieq32, nir_op_iand);
365 LOWER_REDUCTION(nir_op_b32any_fnequal, nir_op_fneu32, nir_op_ior);
366 LOWER_REDUCTION(nir_op_b32any_inequal, nir_op_ine32, nir_op_ior);
367 LOWER_REDUCTION(nir_op_fall_equal, nir_op_seq, nir_op_fmin);
368 LOWER_REDUCTION(nir_op_fany_nequal, nir_op_sne, nir_op_fmax);
369
370 default:
371 break;
372 }
373
374 if (num_components == 1)
375 return NULL;
376
377 if (num_components <= target_width) {
378 /* If the ALU instr is swizzled outside the target width,
379 * reduce the target width.
380 */
381 if (alu_is_swizzled_in_bounds(alu, target_width))
382 return NULL;
383 else
384 target_width = DIV_ROUND_UP(num_components, 2);
385 }
386
387 nir_alu_instr *vec = nir_alu_instr_create(b->shader, nir_op_vec(num_components));
388
389 for (chan = 0; chan < num_components; chan += target_width) {
390 unsigned components = MIN2(target_width, num_components - chan);
391 nir_alu_instr *lower = nir_alu_instr_create(b->shader, alu->op);
392
393 for (i = 0; i < num_src; i++) {
394 nir_alu_src_copy(&lower->src[i], &alu->src[i]);
395
396 /* We only handle same-size-as-dest (input_sizes[] == 0) or scalar
397 * args (input_sizes[] == 1).
398 */
399 assert(nir_op_infos[alu->op].input_sizes[i] < 2);
400 for (int j = 0; j < components; j++) {
401 unsigned src_chan = nir_op_infos[alu->op].input_sizes[i] == 1 ? 0 : chan + j;
402 lower->src[i].swizzle[j] = alu->src[i].swizzle[src_chan];
403 }
404 }
405
406 nir_alu_ssa_dest_init(lower, components, alu->def.bit_size);
407 lower->exact = alu->exact;
408
409 for (i = 0; i < components; i++) {
410 vec->src[chan + i].src = nir_src_for_ssa(&lower->def);
411 vec->src[chan + i].swizzle[0] = i;
412 }
413
414 nir_builder_instr_insert(b, &lower->instr);
415 }
416
417 return nir_builder_alu_instr_finish_and_insert(b, vec);
418 }
419
420 bool
nir_lower_alu_width(nir_shader * shader,nir_vectorize_cb cb,const void * _data)421 nir_lower_alu_width(nir_shader *shader, nir_vectorize_cb cb, const void *_data)
422 {
423 struct alu_width_data data = {
424 .cb = cb,
425 .data = _data,
426 };
427
428 return nir_shader_lower_instructions(shader,
429 inst_is_vector_alu,
430 lower_alu_instr_width,
431 &data);
432 }
433
434 struct alu_to_scalar_data {
435 nir_instr_filter_cb cb;
436 const void *data;
437 };
438
439 static uint8_t
scalar_cb(const nir_instr * instr,const void * data)440 scalar_cb(const nir_instr *instr, const void *data)
441 {
442 /* return vectorization-width = 1 for filtered instructions */
443 const struct alu_to_scalar_data *filter = data;
444 return filter->cb(instr, filter->data) ? 1 : 0;
445 }
446
447 bool
nir_lower_alu_to_scalar(nir_shader * shader,nir_instr_filter_cb cb,const void * _data)448 nir_lower_alu_to_scalar(nir_shader *shader, nir_instr_filter_cb cb, const void *_data)
449 {
450 struct alu_to_scalar_data data = {
451 .cb = cb,
452 .data = _data,
453 };
454
455 return nir_lower_alu_width(shader, cb ? scalar_cb : NULL, &data);
456 }
457
458 static bool
lower_alu_vec8_16_src(nir_builder * b,nir_instr * instr,void * _data)459 lower_alu_vec8_16_src(nir_builder *b, nir_instr *instr, void *_data)
460 {
461 if (instr->type != nir_instr_type_alu)
462 return false;
463
464 nir_alu_instr *alu = nir_instr_as_alu(instr);
465 const nir_op_info *info = &nir_op_infos[alu->op];
466
467 bool changed = false;
468 b->cursor = nir_before_instr(instr);
469 for (int i = 0; i < info->num_inputs; i++) {
470 if (alu->src[i].src.ssa->num_components < 8 || info->input_sizes[i])
471 continue;
472
473 changed = true;
474 nir_def *comps[4];
475 for (int c = 0; c < alu->def.num_components; c++) {
476 unsigned swizzle = alu->src[i].swizzle[c];
477 alu->src[i].swizzle[c] = c;
478
479 nir_const_value *const_val = nir_src_as_const_value(alu->src[i].src);
480 if (const_val) {
481 comps[c] = nir_build_imm(b, 1, alu->src[i].src.ssa->bit_size, &const_val[swizzle]);
482 } else {
483 comps[c] = nir_swizzle(b, alu->src[i].src.ssa, &swizzle, 1);
484 }
485 }
486 nir_def *src = nir_vec(b, comps, alu->def.num_components);
487 nir_src_rewrite(&alu->src[i].src, src);
488 }
489
490 return changed;
491 }
492
493 bool
nir_lower_alu_vec8_16_srcs(nir_shader * shader)494 nir_lower_alu_vec8_16_srcs(nir_shader *shader)
495 {
496 return nir_shader_instructions_pass(shader, lower_alu_vec8_16_src,
497 nir_metadata_block_index | nir_metadata_dominance,
498 NULL);
499 }
500