1 /*
2 * Copyright © 2017 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "nir_serialize.h"
25 #include "util/u_dynarray.h"
26 #include "util/u_math.h"
27 #include "nir_control_flow.h"
28 #include "nir_xfb_info.h"
29
30 #define NIR_SERIALIZE_FUNC_HAS_IMPL ((void *)(intptr_t)1)
31 #define MAX_OBJECT_IDS (1 << 20)
32
33 typedef struct {
34 size_t blob_offset;
35 nir_def *src;
36 nir_block *block;
37 } write_phi_fixup;
38
39 typedef struct {
40 const nir_shader *nir;
41
42 struct blob *blob;
43
44 /* maps pointer to index */
45 struct hash_table *remap_table;
46
47 /* the next index to assign to a NIR in-memory object */
48 uint32_t next_idx;
49
50 /* Array of write_phi_fixup structs representing phi sources that need to
51 * be resolved in the second pass.
52 */
53 struct util_dynarray phi_fixups;
54
55 /* The last serialized type. */
56 const struct glsl_type *last_type;
57 const struct glsl_type *last_interface_type;
58 struct nir_variable_data last_var_data;
59
60 /* For skipping equal ALU headers (typical after scalarization). */
61 nir_instr_type last_instr_type;
62 uintptr_t last_alu_header_offset;
63 uint32_t last_alu_header;
64
65 /* Don't write optional data such as variable names. */
66 bool strip;
67 } write_ctx;
68
69 typedef struct {
70 nir_shader *nir;
71
72 struct blob_reader *blob;
73
74 /* the next index to assign to a NIR in-memory object */
75 uint32_t next_idx;
76
77 /* The length of the index -> object table */
78 uint32_t idx_table_len;
79
80 /* map from index to deserialized pointer */
81 void **idx_table;
82
83 /* List of phi sources. */
84 struct list_head phi_srcs;
85
86 /* The last deserialized type. */
87 const struct glsl_type *last_type;
88 const struct glsl_type *last_interface_type;
89 struct nir_variable_data last_var_data;
90 } read_ctx;
91
92 static void
write_add_object(write_ctx * ctx,const void * obj)93 write_add_object(write_ctx *ctx, const void *obj)
94 {
95 uint32_t index = ctx->next_idx++;
96 assert(index != MAX_OBJECT_IDS);
97 _mesa_hash_table_insert(ctx->remap_table, obj, (void *)(uintptr_t)index);
98 }
99
100 static uint32_t
write_lookup_object(write_ctx * ctx,const void * obj)101 write_lookup_object(write_ctx *ctx, const void *obj)
102 {
103 struct hash_entry *entry = _mesa_hash_table_search(ctx->remap_table, obj);
104 assert(entry);
105 return (uint32_t)(uintptr_t)entry->data;
106 }
107
108 static void
read_add_object(read_ctx * ctx,void * obj)109 read_add_object(read_ctx *ctx, void *obj)
110 {
111 assert(ctx->next_idx < ctx->idx_table_len);
112 ctx->idx_table[ctx->next_idx++] = obj;
113 }
114
115 static void *
read_lookup_object(read_ctx * ctx,uint32_t idx)116 read_lookup_object(read_ctx *ctx, uint32_t idx)
117 {
118 assert(idx < ctx->idx_table_len);
119 return ctx->idx_table[idx];
120 }
121
122 static void *
read_object(read_ctx * ctx)123 read_object(read_ctx *ctx)
124 {
125 return read_lookup_object(ctx, blob_read_uint32(ctx->blob));
126 }
127
128 static uint32_t
encode_bit_size_3bits(uint8_t bit_size)129 encode_bit_size_3bits(uint8_t bit_size)
130 {
131 /* Encode values of 0, 1, 2, 4, 8, 16, 32, 64 in 3 bits. */
132 assert(bit_size <= 64 && util_is_power_of_two_or_zero(bit_size));
133 if (bit_size)
134 return util_logbase2(bit_size) + 1;
135 return 0;
136 }
137
138 static uint8_t
decode_bit_size_3bits(uint8_t bit_size)139 decode_bit_size_3bits(uint8_t bit_size)
140 {
141 if (bit_size)
142 return 1 << (bit_size - 1);
143 return 0;
144 }
145
146 #define NUM_COMPONENTS_IS_SEPARATE_7 7
147
148 static uint8_t
encode_num_components_in_3bits(uint8_t num_components)149 encode_num_components_in_3bits(uint8_t num_components)
150 {
151 if (num_components <= 4)
152 return num_components;
153 if (num_components == 8)
154 return 5;
155 if (num_components == 16)
156 return 6;
157
158 /* special value indicating that num_components is in the next uint32 */
159 return NUM_COMPONENTS_IS_SEPARATE_7;
160 }
161
162 static uint8_t
decode_num_components_in_3bits(uint8_t value)163 decode_num_components_in_3bits(uint8_t value)
164 {
165 if (value <= 4)
166 return value;
167 if (value == 5)
168 return 8;
169 if (value == 6)
170 return 16;
171
172 unreachable("invalid num_components encoding");
173 return 0;
174 }
175
176 static void
write_constant(write_ctx * ctx,const nir_constant * c)177 write_constant(write_ctx *ctx, const nir_constant *c)
178 {
179 blob_write_bytes(ctx->blob, c->values, sizeof(c->values));
180 blob_write_uint32(ctx->blob, c->num_elements);
181 for (unsigned i = 0; i < c->num_elements; i++)
182 write_constant(ctx, c->elements[i]);
183 }
184
185 static nir_constant *
read_constant(read_ctx * ctx,nir_variable * nvar)186 read_constant(read_ctx *ctx, nir_variable *nvar)
187 {
188 nir_constant *c = ralloc(nvar, nir_constant);
189
190 static const nir_const_value zero_vals[ARRAY_SIZE(c->values)] = { 0 };
191 blob_copy_bytes(ctx->blob, (uint8_t *)c->values, sizeof(c->values));
192 c->is_null_constant = memcmp(c->values, zero_vals, sizeof(c->values)) == 0;
193 c->num_elements = blob_read_uint32(ctx->blob);
194 c->elements = ralloc_array(nvar, nir_constant *, c->num_elements);
195 for (unsigned i = 0; i < c->num_elements; i++) {
196 c->elements[i] = read_constant(ctx, nvar);
197 c->is_null_constant &= c->elements[i]->is_null_constant;
198 }
199
200 return c;
201 }
202
203 enum var_data_encoding {
204 var_encode_full,
205 var_encode_shader_temp,
206 var_encode_function_temp,
207 var_encode_location_diff,
208 };
209
210 union packed_var {
211 uint32_t u32;
212 struct {
213 unsigned has_name : 1;
214 unsigned has_constant_initializer : 1;
215 unsigned has_pointer_initializer : 1;
216 unsigned has_interface_type : 1;
217 unsigned num_state_slots : 7;
218 unsigned data_encoding : 2;
219 unsigned type_same_as_last : 1;
220 unsigned interface_type_same_as_last : 1;
221 unsigned ray_query : 1;
222 unsigned num_members : 16;
223 } u;
224 };
225
226 union packed_var_data_diff {
227 uint32_t u32;
228 struct {
229 int location : 13;
230 int location_frac : 3;
231 int driver_location : 16;
232 } u;
233 };
234
235 static void
write_variable(write_ctx * ctx,const nir_variable * var)236 write_variable(write_ctx *ctx, const nir_variable *var)
237 {
238 write_add_object(ctx, var);
239
240 assert(var->num_state_slots < (1 << 7));
241
242 STATIC_ASSERT(sizeof(union packed_var) == 4);
243 union packed_var flags;
244 flags.u32 = 0;
245
246 flags.u.has_name = !ctx->strip && var->name;
247 flags.u.has_constant_initializer = !!(var->constant_initializer);
248 flags.u.has_pointer_initializer = !!(var->pointer_initializer);
249 flags.u.has_interface_type = !!(var->interface_type);
250 flags.u.type_same_as_last = var->type == ctx->last_type;
251 flags.u.interface_type_same_as_last =
252 var->interface_type && var->interface_type == ctx->last_interface_type;
253 flags.u.num_state_slots = var->num_state_slots;
254 flags.u.num_members = var->num_members;
255
256 struct nir_variable_data data = var->data;
257
258 /* When stripping, we expect that the location is no longer needed,
259 * which is typically after shaders are linked.
260 */
261 if (ctx->strip &&
262 data.mode != nir_var_system_value &&
263 data.mode != nir_var_shader_in &&
264 data.mode != nir_var_shader_out)
265 data.location = 0;
266
267 /* Temporary variables don't serialize var->data. */
268 if (data.mode == nir_var_shader_temp)
269 flags.u.data_encoding = var_encode_shader_temp;
270 else if (data.mode == nir_var_function_temp)
271 flags.u.data_encoding = var_encode_function_temp;
272 else {
273 struct nir_variable_data tmp = data;
274
275 tmp.location = ctx->last_var_data.location;
276 tmp.location_frac = ctx->last_var_data.location_frac;
277 tmp.driver_location = ctx->last_var_data.driver_location;
278
279 /* See if we can encode only the difference in locations from the last
280 * variable.
281 */
282 if (memcmp(&ctx->last_var_data, &tmp, sizeof(tmp)) == 0 &&
283 abs((int)data.location -
284 (int)ctx->last_var_data.location) < (1 << 12) &&
285 abs((int)data.driver_location -
286 (int)ctx->last_var_data.driver_location) < (1 << 15))
287 flags.u.data_encoding = var_encode_location_diff;
288 else
289 flags.u.data_encoding = var_encode_full;
290 }
291
292 flags.u.ray_query = var->data.ray_query;
293
294 blob_write_uint32(ctx->blob, flags.u32);
295
296 if (!flags.u.type_same_as_last) {
297 encode_type_to_blob(ctx->blob, var->type);
298 ctx->last_type = var->type;
299 }
300
301 if (var->interface_type && !flags.u.interface_type_same_as_last) {
302 encode_type_to_blob(ctx->blob, var->interface_type);
303 ctx->last_interface_type = var->interface_type;
304 }
305
306 if (flags.u.has_name)
307 blob_write_string(ctx->blob, var->name);
308
309 if (flags.u.data_encoding == var_encode_full ||
310 flags.u.data_encoding == var_encode_location_diff) {
311 if (flags.u.data_encoding == var_encode_full) {
312 blob_write_bytes(ctx->blob, &data, sizeof(data));
313 } else {
314 /* Serialize only the difference in locations from the last variable.
315 */
316 union packed_var_data_diff diff;
317
318 diff.u.location = data.location - ctx->last_var_data.location;
319 diff.u.location_frac = data.location_frac -
320 ctx->last_var_data.location_frac;
321 diff.u.driver_location = data.driver_location -
322 ctx->last_var_data.driver_location;
323
324 blob_write_uint32(ctx->blob, diff.u32);
325 }
326
327 ctx->last_var_data = data;
328 }
329
330 for (unsigned i = 0; i < var->num_state_slots; i++) {
331 blob_write_bytes(ctx->blob, &var->state_slots[i],
332 sizeof(var->state_slots[i]));
333 }
334 if (var->constant_initializer)
335 write_constant(ctx, var->constant_initializer);
336 if (var->pointer_initializer)
337 blob_write_uint32(ctx->blob,
338 write_lookup_object(ctx, var->pointer_initializer));
339 if (var->num_members > 0) {
340 blob_write_bytes(ctx->blob, (uint8_t *)var->members,
341 var->num_members * sizeof(*var->members));
342 }
343 }
344
345 static nir_variable *
read_variable(read_ctx * ctx)346 read_variable(read_ctx *ctx)
347 {
348 nir_variable *var = rzalloc(ctx->nir, nir_variable);
349 read_add_object(ctx, var);
350
351 union packed_var flags;
352 flags.u32 = blob_read_uint32(ctx->blob);
353
354 if (flags.u.type_same_as_last) {
355 var->type = ctx->last_type;
356 } else {
357 var->type = decode_type_from_blob(ctx->blob);
358 ctx->last_type = var->type;
359 }
360
361 if (flags.u.has_interface_type) {
362 if (flags.u.interface_type_same_as_last) {
363 var->interface_type = ctx->last_interface_type;
364 } else {
365 var->interface_type = decode_type_from_blob(ctx->blob);
366 ctx->last_interface_type = var->interface_type;
367 }
368 }
369
370 if (flags.u.has_name) {
371 const char *name = blob_read_string(ctx->blob);
372 var->name = ralloc_strdup(var, name);
373 } else {
374 var->name = NULL;
375 }
376
377 if (flags.u.data_encoding == var_encode_shader_temp)
378 var->data.mode = nir_var_shader_temp;
379 else if (flags.u.data_encoding == var_encode_function_temp)
380 var->data.mode = nir_var_function_temp;
381 else if (flags.u.data_encoding == var_encode_full) {
382 blob_copy_bytes(ctx->blob, (uint8_t *)&var->data, sizeof(var->data));
383 ctx->last_var_data = var->data;
384 } else { /* var_encode_location_diff */
385 union packed_var_data_diff diff;
386 diff.u32 = blob_read_uint32(ctx->blob);
387
388 var->data = ctx->last_var_data;
389 var->data.location += diff.u.location;
390 var->data.location_frac += diff.u.location_frac;
391 var->data.driver_location += diff.u.driver_location;
392
393 ctx->last_var_data = var->data;
394 }
395
396 var->data.ray_query = flags.u.ray_query;
397
398 var->num_state_slots = flags.u.num_state_slots;
399 if (var->num_state_slots != 0) {
400 var->state_slots = ralloc_array(var, nir_state_slot,
401 var->num_state_slots);
402 for (unsigned i = 0; i < var->num_state_slots; i++) {
403 blob_copy_bytes(ctx->blob, &var->state_slots[i],
404 sizeof(var->state_slots[i]));
405 }
406 }
407 if (flags.u.has_constant_initializer)
408 var->constant_initializer = read_constant(ctx, var);
409 else
410 var->constant_initializer = NULL;
411
412 if (flags.u.has_pointer_initializer)
413 var->pointer_initializer = read_object(ctx);
414 else
415 var->pointer_initializer = NULL;
416
417 var->num_members = flags.u.num_members;
418 if (var->num_members > 0) {
419 var->members = ralloc_array(var, struct nir_variable_data,
420 var->num_members);
421 blob_copy_bytes(ctx->blob, (uint8_t *)var->members,
422 var->num_members * sizeof(*var->members));
423 }
424
425 return var;
426 }
427
428 static void
write_var_list(write_ctx * ctx,const struct exec_list * src)429 write_var_list(write_ctx *ctx, const struct exec_list *src)
430 {
431 blob_write_uint32(ctx->blob, exec_list_length(src));
432 foreach_list_typed(nir_variable, var, node, src) {
433 write_variable(ctx, var);
434 }
435 }
436
437 static void
read_var_list(read_ctx * ctx,struct exec_list * dst)438 read_var_list(read_ctx *ctx, struct exec_list *dst)
439 {
440 exec_list_make_empty(dst);
441 unsigned num_vars = blob_read_uint32(ctx->blob);
442 for (unsigned i = 0; i < num_vars; i++) {
443 nir_variable *var = read_variable(ctx);
444 exec_list_push_tail(dst, &var->node);
445 }
446 }
447
448 union packed_src {
449 uint32_t u32;
450 struct {
451 unsigned _pad : 2; /* <-- Header */
452 unsigned object_idx : 20;
453 unsigned _footer : 10; /* <-- Footer */
454 } any;
455 struct {
456 unsigned _header : 22; /* <-- Header */
457 unsigned _pad : 2; /* <-- Footer */
458 unsigned swizzle_x : 2;
459 unsigned swizzle_y : 2;
460 unsigned swizzle_z : 2;
461 unsigned swizzle_w : 2;
462 } alu;
463 struct {
464 unsigned _header : 22; /* <-- Header */
465 unsigned src_type : 5; /* <-- Footer */
466 unsigned _pad : 5;
467 } tex;
468 };
469
470 static void
write_src_full(write_ctx * ctx,const nir_src * src,union packed_src header)471 write_src_full(write_ctx *ctx, const nir_src *src, union packed_src header)
472 {
473 header.any.object_idx = write_lookup_object(ctx, src->ssa);
474 blob_write_uint32(ctx->blob, header.u32);
475 }
476
477 static void
write_src(write_ctx * ctx,const nir_src * src)478 write_src(write_ctx *ctx, const nir_src *src)
479 {
480 union packed_src header = { 0 };
481 write_src_full(ctx, src, header);
482 }
483
484 static union packed_src
read_src(read_ctx * ctx,nir_src * src)485 read_src(read_ctx *ctx, nir_src *src)
486 {
487 STATIC_ASSERT(sizeof(union packed_src) == 4);
488 union packed_src header;
489 header.u32 = blob_read_uint32(ctx->blob);
490
491 src->ssa = read_lookup_object(ctx, header.any.object_idx);
492 return header;
493 }
494
495 union packed_def {
496 uint8_t u8;
497 struct {
498 uint8_t _pad : 1;
499 uint8_t num_components : 3;
500 uint8_t bit_size : 3;
501 uint8_t divergent : 1;
502 };
503 };
504
505 enum intrinsic_const_indices_encoding {
506 /* Use packed_const_indices to store tightly packed indices.
507 *
508 * The common case for load_ubo is 0, 0, 0, which is trivially represented.
509 * The common cases for load_interpolated_input also fit here, e.g.: 7, 3
510 */
511 const_indices_all_combined,
512
513 const_indices_8bit, /* 8 bits per element */
514 const_indices_16bit, /* 16 bits per element */
515 const_indices_32bit, /* 32 bits per element */
516 };
517
518 enum load_const_packing {
519 /* Constants are not packed and are stored in following dwords. */
520 load_const_full,
521
522 /* packed_value contains high 19 bits, low bits are 0,
523 * good for floating-point decimals
524 */
525 load_const_scalar_hi_19bits,
526
527 /* packed_value contains low 19 bits, high bits are sign-extended */
528 load_const_scalar_lo_19bits_sext,
529 };
530
531 union packed_instr {
532 uint32_t u32;
533 struct {
534 unsigned instr_type : 4; /* always present */
535 unsigned _pad : 20;
536 unsigned def : 8; /* always last */
537 } any;
538 struct {
539 unsigned instr_type : 4;
540 unsigned exact : 1;
541 unsigned no_signed_wrap : 1;
542 unsigned no_unsigned_wrap : 1;
543 unsigned padding : 1;
544 /* Reg: writemask; SSA: swizzles for 2 srcs */
545 unsigned writemask_or_two_swizzles : 4;
546 unsigned op : 9;
547 unsigned packed_src_ssa_16bit : 1;
548 /* Scalarized ALUs always have the same header. */
549 unsigned num_followup_alu_sharing_header : 2;
550 unsigned def : 8;
551 } alu;
552 struct {
553 unsigned instr_type : 4;
554 unsigned deref_type : 3;
555 unsigned cast_type_same_as_last : 1;
556 unsigned modes : 5; /* See (de|en)code_deref_modes() */
557 unsigned _pad : 9;
558 unsigned in_bounds : 1;
559 unsigned packed_src_ssa_16bit : 1; /* deref_var redefines this */
560 unsigned def : 8;
561 } deref;
562 struct {
563 unsigned instr_type : 4;
564 unsigned deref_type : 3;
565 unsigned _pad : 1;
566 unsigned object_idx : 16; /* if 0, the object ID is a separate uint32 */
567 unsigned def : 8;
568 } deref_var;
569 struct {
570 unsigned instr_type : 4;
571 unsigned intrinsic : 10;
572 unsigned const_indices_encoding : 2;
573 unsigned packed_const_indices : 8;
574 unsigned def : 8;
575 } intrinsic;
576 struct {
577 unsigned instr_type : 4;
578 unsigned last_component : 4;
579 unsigned bit_size : 3;
580 unsigned packing : 2; /* enum load_const_packing */
581 unsigned packed_value : 19; /* meaning determined by packing */
582 } load_const;
583 struct {
584 unsigned instr_type : 4;
585 unsigned last_component : 4;
586 unsigned bit_size : 3;
587 unsigned _pad : 21;
588 } undef;
589 struct {
590 unsigned instr_type : 4;
591 unsigned num_srcs : 4;
592 unsigned op : 5;
593 unsigned _pad : 11;
594 unsigned def : 8;
595 } tex;
596 struct {
597 unsigned instr_type : 4;
598 unsigned num_srcs : 20;
599 unsigned def : 8;
600 } phi;
601 struct {
602 unsigned instr_type : 4;
603 unsigned type : 2;
604 unsigned _pad : 26;
605 } jump;
606 };
607
608 /* Write "lo24" as low 24 bits in the first uint32. */
609 static void
write_def(write_ctx * ctx,const nir_def * def,union packed_instr header,nir_instr_type instr_type)610 write_def(write_ctx *ctx, const nir_def *def, union packed_instr header,
611 nir_instr_type instr_type)
612 {
613 STATIC_ASSERT(sizeof(union packed_def) == 1);
614 union packed_def pdef;
615 pdef.u8 = 0;
616
617 pdef.num_components =
618 encode_num_components_in_3bits(def->num_components);
619 pdef.bit_size = encode_bit_size_3bits(def->bit_size);
620 pdef.divergent = def->divergent;
621 header.any.def = pdef.u8;
622
623 /* Check if the current ALU instruction has the same header as the previous
624 * instruction that is also ALU. If it is, we don't have to write
625 * the current header. This is a typical occurence after scalarization.
626 */
627 if (instr_type == nir_instr_type_alu) {
628 bool equal_header = false;
629
630 if (ctx->last_instr_type == nir_instr_type_alu) {
631 assert(ctx->last_alu_header_offset);
632 union packed_instr last_header;
633 last_header.u32 = ctx->last_alu_header;
634
635 /* Clear the field that counts ALUs with equal headers. */
636 union packed_instr clean_header;
637 clean_header.u32 = last_header.u32;
638 clean_header.alu.num_followup_alu_sharing_header = 0;
639
640 /* There can be at most 4 consecutive ALU instructions
641 * sharing the same header.
642 */
643 if (last_header.alu.num_followup_alu_sharing_header < 3 &&
644 header.u32 == clean_header.u32) {
645 last_header.alu.num_followup_alu_sharing_header++;
646 blob_overwrite_uint32(ctx->blob, ctx->last_alu_header_offset,
647 last_header.u32);
648 ctx->last_alu_header = last_header.u32;
649 equal_header = true;
650 }
651 }
652
653 if (!equal_header) {
654 ctx->last_alu_header_offset = blob_reserve_uint32(ctx->blob);
655 blob_overwrite_uint32(ctx->blob, ctx->last_alu_header_offset, header.u32);
656 ctx->last_alu_header = header.u32;
657 }
658 } else {
659 blob_write_uint32(ctx->blob, header.u32);
660 }
661
662 if (pdef.num_components == NUM_COMPONENTS_IS_SEPARATE_7)
663 blob_write_uint32(ctx->blob, def->num_components);
664
665 write_add_object(ctx, def);
666 }
667
668 static void
read_def(read_ctx * ctx,nir_def * def,nir_instr * instr,union packed_instr header)669 read_def(read_ctx *ctx, nir_def *def, nir_instr *instr,
670 union packed_instr header)
671 {
672 union packed_def pdef;
673 pdef.u8 = header.any.def;
674
675 unsigned bit_size = decode_bit_size_3bits(pdef.bit_size);
676 unsigned num_components;
677 if (pdef.num_components == NUM_COMPONENTS_IS_SEPARATE_7)
678 num_components = blob_read_uint32(ctx->blob);
679 else
680 num_components = decode_num_components_in_3bits(pdef.num_components);
681 nir_def_init(instr, def, num_components, bit_size);
682 def->divergent = pdef.divergent;
683 read_add_object(ctx, def);
684 }
685
686 static bool
are_object_ids_16bit(write_ctx * ctx)687 are_object_ids_16bit(write_ctx *ctx)
688 {
689 /* Check the highest object ID, because they are monotonic. */
690 return ctx->next_idx < (1 << 16);
691 }
692
693 static bool
is_alu_src_ssa_16bit(write_ctx * ctx,const nir_alu_instr * alu)694 is_alu_src_ssa_16bit(write_ctx *ctx, const nir_alu_instr *alu)
695 {
696 unsigned num_srcs = nir_op_infos[alu->op].num_inputs;
697
698 for (unsigned i = 0; i < num_srcs; i++) {
699 unsigned src_components = nir_ssa_alu_instr_src_components(alu, i);
700
701 for (unsigned chan = 0; chan < src_components; chan++) {
702 /* The swizzles for src0.x and src1.x are stored
703 * in writemask_or_two_swizzles for SSA ALUs.
704 */
705 if (i < 2 && chan == 0 && alu->src[i].swizzle[chan] < 4)
706 continue;
707
708 if (alu->src[i].swizzle[chan] != chan)
709 return false;
710 }
711 }
712
713 return are_object_ids_16bit(ctx);
714 }
715
716 static void
write_alu(write_ctx * ctx,const nir_alu_instr * alu)717 write_alu(write_ctx *ctx, const nir_alu_instr *alu)
718 {
719 unsigned num_srcs = nir_op_infos[alu->op].num_inputs;
720
721 /* 9 bits for nir_op */
722 STATIC_ASSERT(nir_num_opcodes <= 512);
723 union packed_instr header;
724 header.u32 = 0;
725
726 header.alu.instr_type = alu->instr.type;
727 header.alu.exact = alu->exact;
728 header.alu.no_signed_wrap = alu->no_signed_wrap;
729 header.alu.no_unsigned_wrap = alu->no_unsigned_wrap;
730 header.alu.op = alu->op;
731 header.alu.packed_src_ssa_16bit = is_alu_src_ssa_16bit(ctx, alu);
732
733 if (header.alu.packed_src_ssa_16bit) {
734 /* For packed srcs of SSA ALUs, this field stores the swizzles. */
735 header.alu.writemask_or_two_swizzles = alu->src[0].swizzle[0];
736 if (num_srcs > 1)
737 header.alu.writemask_or_two_swizzles |= alu->src[1].swizzle[0] << 2;
738 }
739
740 write_def(ctx, &alu->def, header, alu->instr.type);
741
742 if (header.alu.packed_src_ssa_16bit) {
743 for (unsigned i = 0; i < num_srcs; i++) {
744 unsigned idx = write_lookup_object(ctx, alu->src[i].src.ssa);
745 assert(idx < (1 << 16));
746 blob_write_uint16(ctx->blob, idx);
747 }
748 } else {
749 for (unsigned i = 0; i < num_srcs; i++) {
750 unsigned src_channels = nir_ssa_alu_instr_src_components(alu, i);
751 unsigned src_components = nir_src_num_components(alu->src[i].src);
752 union packed_src src;
753 bool packed = src_components <= 4 && src_channels <= 4;
754 src.u32 = 0;
755
756 if (packed) {
757 src.alu.swizzle_x = alu->src[i].swizzle[0];
758 src.alu.swizzle_y = alu->src[i].swizzle[1];
759 src.alu.swizzle_z = alu->src[i].swizzle[2];
760 src.alu.swizzle_w = alu->src[i].swizzle[3];
761 }
762
763 write_src_full(ctx, &alu->src[i].src, src);
764
765 /* Store swizzles for vec8 and vec16. */
766 if (!packed) {
767 for (unsigned o = 0; o < src_channels; o += 8) {
768 unsigned value = 0;
769
770 for (unsigned j = 0; j < 8 && o + j < src_channels; j++) {
771 value |= (uint32_t)alu->src[i].swizzle[o + j] << (4 * j); /* 4 bits per swizzle */
772 }
773
774 blob_write_uint32(ctx->blob, value);
775 }
776 }
777 }
778 }
779 }
780
781 static nir_alu_instr *
read_alu(read_ctx * ctx,union packed_instr header)782 read_alu(read_ctx *ctx, union packed_instr header)
783 {
784 unsigned num_srcs = nir_op_infos[header.alu.op].num_inputs;
785 nir_alu_instr *alu = nir_alu_instr_create(ctx->nir, header.alu.op);
786
787 alu->exact = header.alu.exact;
788 alu->no_signed_wrap = header.alu.no_signed_wrap;
789 alu->no_unsigned_wrap = header.alu.no_unsigned_wrap;
790
791 read_def(ctx, &alu->def, &alu->instr, header);
792
793 if (header.alu.packed_src_ssa_16bit) {
794 for (unsigned i = 0; i < num_srcs; i++) {
795 nir_alu_src *src = &alu->src[i];
796 src->src.ssa = read_lookup_object(ctx, blob_read_uint16(ctx->blob));
797
798 memset(&src->swizzle, 0, sizeof(src->swizzle));
799
800 unsigned src_components = nir_ssa_alu_instr_src_components(alu, i);
801
802 for (unsigned chan = 0; chan < src_components; chan++)
803 src->swizzle[chan] = chan;
804 }
805 } else {
806 for (unsigned i = 0; i < num_srcs; i++) {
807 union packed_src src = read_src(ctx, &alu->src[i].src);
808 unsigned src_channels = nir_ssa_alu_instr_src_components(alu, i);
809 unsigned src_components = nir_src_num_components(alu->src[i].src);
810 bool packed = src_components <= 4 && src_channels <= 4;
811
812 memset(&alu->src[i].swizzle, 0, sizeof(alu->src[i].swizzle));
813
814 if (packed) {
815 alu->src[i].swizzle[0] = src.alu.swizzle_x;
816 alu->src[i].swizzle[1] = src.alu.swizzle_y;
817 alu->src[i].swizzle[2] = src.alu.swizzle_z;
818 alu->src[i].swizzle[3] = src.alu.swizzle_w;
819 } else {
820 /* Load swizzles for vec8 and vec16. */
821 for (unsigned o = 0; o < src_channels; o += 8) {
822 unsigned value = blob_read_uint32(ctx->blob);
823
824 for (unsigned j = 0; j < 8 && o + j < src_channels; j++) {
825 alu->src[i].swizzle[o + j] =
826 (value >> (4 * j)) & 0xf; /* 4 bits per swizzle */
827 }
828 }
829 }
830 }
831 }
832
833 if (header.alu.packed_src_ssa_16bit) {
834 alu->src[0].swizzle[0] = header.alu.writemask_or_two_swizzles & 0x3;
835 if (num_srcs > 1)
836 alu->src[1].swizzle[0] = header.alu.writemask_or_two_swizzles >> 2;
837 }
838
839 return alu;
840 }
841
842 #define MODE_ENC_GENERIC_BIT (1 << 4)
843
844 static nir_variable_mode
decode_deref_modes(unsigned modes)845 decode_deref_modes(unsigned modes)
846 {
847 if (modes & MODE_ENC_GENERIC_BIT) {
848 modes &= ~MODE_ENC_GENERIC_BIT;
849 return modes << (ffs(nir_var_mem_generic) - 1);
850 } else {
851 return 1 << modes;
852 }
853 }
854
855 static unsigned
encode_deref_modes(nir_variable_mode modes)856 encode_deref_modes(nir_variable_mode modes)
857 {
858 /* Mode sets on derefs generally come in two forms. For certain OpenCL
859 * cases, we can have more than one of the generic modes set. In this
860 * case, we need the full bitfield. Fortunately, there are only 4 of
861 * these. For all other modes, we can only have one mode at a time so we
862 * can compress them by only storing the bit position. This, plus one bit
863 * to select encoding, lets us pack the entire bitfield in 5 bits.
864 */
865 STATIC_ASSERT((nir_var_all & ~nir_var_mem_generic) <
866 (1 << MODE_ENC_GENERIC_BIT));
867
868 unsigned enc;
869 if (modes == 0 || (modes & nir_var_mem_generic)) {
870 assert(!(modes & ~nir_var_mem_generic));
871 enc = modes >> (ffs(nir_var_mem_generic) - 1);
872 assert(enc < MODE_ENC_GENERIC_BIT);
873 enc |= MODE_ENC_GENERIC_BIT;
874 } else {
875 assert(util_is_power_of_two_nonzero(modes));
876 enc = ffs(modes) - 1;
877 assert(enc < MODE_ENC_GENERIC_BIT);
878 }
879 assert(modes == decode_deref_modes(enc));
880 return enc;
881 }
882
883 static void
write_deref(write_ctx * ctx,const nir_deref_instr * deref)884 write_deref(write_ctx *ctx, const nir_deref_instr *deref)
885 {
886 assert(deref->deref_type < 8);
887
888 union packed_instr header;
889 header.u32 = 0;
890
891 header.deref.instr_type = deref->instr.type;
892 header.deref.deref_type = deref->deref_type;
893
894 if (deref->deref_type == nir_deref_type_cast) {
895 header.deref.modes = encode_deref_modes(deref->modes);
896 header.deref.cast_type_same_as_last = deref->type == ctx->last_type;
897 }
898
899 unsigned var_idx = 0;
900 if (deref->deref_type == nir_deref_type_var) {
901 var_idx = write_lookup_object(ctx, deref->var);
902 if (var_idx && var_idx < (1 << 16))
903 header.deref_var.object_idx = var_idx;
904 }
905
906 if (deref->deref_type == nir_deref_type_array ||
907 deref->deref_type == nir_deref_type_ptr_as_array) {
908 header.deref.packed_src_ssa_16bit = are_object_ids_16bit(ctx);
909
910 header.deref.in_bounds = deref->arr.in_bounds;
911 }
912
913 write_def(ctx, &deref->def, header, deref->instr.type);
914
915 switch (deref->deref_type) {
916 case nir_deref_type_var:
917 if (!header.deref_var.object_idx)
918 blob_write_uint32(ctx->blob, var_idx);
919 break;
920
921 case nir_deref_type_struct:
922 write_src(ctx, &deref->parent);
923 blob_write_uint32(ctx->blob, deref->strct.index);
924 break;
925
926 case nir_deref_type_array:
927 case nir_deref_type_ptr_as_array:
928 if (header.deref.packed_src_ssa_16bit) {
929 blob_write_uint16(ctx->blob,
930 write_lookup_object(ctx, deref->parent.ssa));
931 blob_write_uint16(ctx->blob,
932 write_lookup_object(ctx, deref->arr.index.ssa));
933 } else {
934 write_src(ctx, &deref->parent);
935 write_src(ctx, &deref->arr.index);
936 }
937 break;
938
939 case nir_deref_type_cast:
940 write_src(ctx, &deref->parent);
941 blob_write_uint32(ctx->blob, deref->cast.ptr_stride);
942 blob_write_uint32(ctx->blob, deref->cast.align_mul);
943 blob_write_uint32(ctx->blob, deref->cast.align_offset);
944 if (!header.deref.cast_type_same_as_last) {
945 encode_type_to_blob(ctx->blob, deref->type);
946 ctx->last_type = deref->type;
947 }
948 break;
949
950 case nir_deref_type_array_wildcard:
951 write_src(ctx, &deref->parent);
952 break;
953
954 default:
955 unreachable("Invalid deref type");
956 }
957 }
958
959 static nir_deref_instr *
read_deref(read_ctx * ctx,union packed_instr header)960 read_deref(read_ctx *ctx, union packed_instr header)
961 {
962 nir_deref_type deref_type = header.deref.deref_type;
963 nir_deref_instr *deref = nir_deref_instr_create(ctx->nir, deref_type);
964
965 read_def(ctx, &deref->def, &deref->instr, header);
966
967 nir_deref_instr *parent;
968
969 switch (deref->deref_type) {
970 case nir_deref_type_var:
971 if (header.deref_var.object_idx)
972 deref->var = read_lookup_object(ctx, header.deref_var.object_idx);
973 else
974 deref->var = read_object(ctx);
975
976 deref->type = deref->var->type;
977 break;
978
979 case nir_deref_type_struct:
980 read_src(ctx, &deref->parent);
981 parent = nir_src_as_deref(deref->parent);
982 deref->strct.index = blob_read_uint32(ctx->blob);
983 deref->type = glsl_get_struct_field(parent->type, deref->strct.index);
984 break;
985
986 case nir_deref_type_array:
987 case nir_deref_type_ptr_as_array:
988 if (header.deref.packed_src_ssa_16bit) {
989 deref->parent.ssa = read_lookup_object(ctx, blob_read_uint16(ctx->blob));
990 deref->arr.index.ssa = read_lookup_object(ctx, blob_read_uint16(ctx->blob));
991 } else {
992 read_src(ctx, &deref->parent);
993 read_src(ctx, &deref->arr.index);
994 }
995
996 deref->arr.in_bounds = header.deref.in_bounds;
997
998 parent = nir_src_as_deref(deref->parent);
999 if (deref->deref_type == nir_deref_type_array)
1000 deref->type = glsl_get_array_element(parent->type);
1001 else
1002 deref->type = parent->type;
1003 break;
1004
1005 case nir_deref_type_cast:
1006 read_src(ctx, &deref->parent);
1007 deref->cast.ptr_stride = blob_read_uint32(ctx->blob);
1008 deref->cast.align_mul = blob_read_uint32(ctx->blob);
1009 deref->cast.align_offset = blob_read_uint32(ctx->blob);
1010 if (header.deref.cast_type_same_as_last) {
1011 deref->type = ctx->last_type;
1012 } else {
1013 deref->type = decode_type_from_blob(ctx->blob);
1014 ctx->last_type = deref->type;
1015 }
1016 break;
1017
1018 case nir_deref_type_array_wildcard:
1019 read_src(ctx, &deref->parent);
1020 parent = nir_src_as_deref(deref->parent);
1021 deref->type = glsl_get_array_element(parent->type);
1022 break;
1023
1024 default:
1025 unreachable("Invalid deref type");
1026 }
1027
1028 if (deref_type == nir_deref_type_var) {
1029 deref->modes = deref->var->data.mode;
1030 } else if (deref->deref_type == nir_deref_type_cast) {
1031 deref->modes = decode_deref_modes(header.deref.modes);
1032 } else {
1033 deref->modes = nir_instr_as_deref(deref->parent.ssa->parent_instr)->modes;
1034 }
1035
1036 return deref;
1037 }
1038
1039 static void
write_intrinsic(write_ctx * ctx,const nir_intrinsic_instr * intrin)1040 write_intrinsic(write_ctx *ctx, const nir_intrinsic_instr *intrin)
1041 {
1042 /* 10 bits for nir_intrinsic_op */
1043 STATIC_ASSERT(nir_num_intrinsics <= 1024);
1044 unsigned num_srcs = nir_intrinsic_infos[intrin->intrinsic].num_srcs;
1045 unsigned num_indices = nir_intrinsic_infos[intrin->intrinsic].num_indices;
1046 assert(intrin->intrinsic < 1024);
1047
1048 union packed_instr header;
1049 header.u32 = 0;
1050
1051 header.intrinsic.instr_type = intrin->instr.type;
1052 header.intrinsic.intrinsic = intrin->intrinsic;
1053
1054 /* Analyze constant indices to decide how to encode them. */
1055 if (num_indices) {
1056 unsigned max_bits = 0;
1057 for (unsigned i = 0; i < num_indices; i++) {
1058 unsigned max = util_last_bit(intrin->const_index[i]);
1059 max_bits = MAX2(max_bits, max);
1060 }
1061
1062 if (max_bits * num_indices <= 8) {
1063 header.intrinsic.const_indices_encoding = const_indices_all_combined;
1064
1065 /* Pack all const indices into 8 bits. */
1066 unsigned bit_size = 8 / num_indices;
1067 for (unsigned i = 0; i < num_indices; i++) {
1068 header.intrinsic.packed_const_indices |=
1069 intrin->const_index[i] << (i * bit_size);
1070 }
1071 } else if (max_bits <= 8)
1072 header.intrinsic.const_indices_encoding = const_indices_8bit;
1073 else if (max_bits <= 16)
1074 header.intrinsic.const_indices_encoding = const_indices_16bit;
1075 else
1076 header.intrinsic.const_indices_encoding = const_indices_32bit;
1077 }
1078
1079 if (nir_intrinsic_infos[intrin->intrinsic].has_dest)
1080 write_def(ctx, &intrin->def, header, intrin->instr.type);
1081 else
1082 blob_write_uint32(ctx->blob, header.u32);
1083
1084 for (unsigned i = 0; i < num_srcs; i++)
1085 write_src(ctx, &intrin->src[i]);
1086
1087 if (num_indices) {
1088 switch (header.intrinsic.const_indices_encoding) {
1089 case const_indices_8bit:
1090 for (unsigned i = 0; i < num_indices; i++)
1091 blob_write_uint8(ctx->blob, intrin->const_index[i]);
1092 break;
1093 case const_indices_16bit:
1094 for (unsigned i = 0; i < num_indices; i++)
1095 blob_write_uint16(ctx->blob, intrin->const_index[i]);
1096 break;
1097 case const_indices_32bit:
1098 for (unsigned i = 0; i < num_indices; i++)
1099 blob_write_uint32(ctx->blob, intrin->const_index[i]);
1100 break;
1101 }
1102 }
1103 }
1104
1105 static nir_intrinsic_instr *
read_intrinsic(read_ctx * ctx,union packed_instr header)1106 read_intrinsic(read_ctx *ctx, union packed_instr header)
1107 {
1108 nir_intrinsic_op op = header.intrinsic.intrinsic;
1109 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(ctx->nir, op);
1110
1111 unsigned num_srcs = nir_intrinsic_infos[op].num_srcs;
1112 unsigned num_indices = nir_intrinsic_infos[op].num_indices;
1113
1114 if (nir_intrinsic_infos[op].has_dest)
1115 read_def(ctx, &intrin->def, &intrin->instr, header);
1116
1117 for (unsigned i = 0; i < num_srcs; i++)
1118 read_src(ctx, &intrin->src[i]);
1119
1120 /* Vectorized instrinsics have num_components same as dst or src that has
1121 * 0 components in the info. Find it.
1122 */
1123 if (nir_intrinsic_infos[op].has_dest &&
1124 nir_intrinsic_infos[op].dest_components == 0) {
1125 intrin->num_components = intrin->def.num_components;
1126 } else {
1127 for (unsigned i = 0; i < num_srcs; i++) {
1128 if (nir_intrinsic_infos[op].src_components[i] == 0) {
1129 intrin->num_components = nir_src_num_components(intrin->src[i]);
1130 break;
1131 }
1132 }
1133 }
1134
1135 if (num_indices) {
1136 switch (header.intrinsic.const_indices_encoding) {
1137 case const_indices_all_combined: {
1138 unsigned bit_size = 8 / num_indices;
1139 unsigned bit_mask = u_bit_consecutive(0, bit_size);
1140 for (unsigned i = 0; i < num_indices; i++) {
1141 intrin->const_index[i] =
1142 (header.intrinsic.packed_const_indices >> (i * bit_size)) &
1143 bit_mask;
1144 }
1145 break;
1146 }
1147 case const_indices_8bit:
1148 for (unsigned i = 0; i < num_indices; i++)
1149 intrin->const_index[i] = blob_read_uint8(ctx->blob);
1150 break;
1151 case const_indices_16bit:
1152 for (unsigned i = 0; i < num_indices; i++)
1153 intrin->const_index[i] = blob_read_uint16(ctx->blob);
1154 break;
1155 case const_indices_32bit:
1156 for (unsigned i = 0; i < num_indices; i++)
1157 intrin->const_index[i] = blob_read_uint32(ctx->blob);
1158 break;
1159 }
1160 }
1161
1162 return intrin;
1163 }
1164
1165 static void
write_load_const(write_ctx * ctx,const nir_load_const_instr * lc)1166 write_load_const(write_ctx *ctx, const nir_load_const_instr *lc)
1167 {
1168 assert(lc->def.num_components >= 1 && lc->def.num_components <= 16);
1169 union packed_instr header;
1170 header.u32 = 0;
1171
1172 header.load_const.instr_type = lc->instr.type;
1173 header.load_const.last_component = lc->def.num_components - 1;
1174 header.load_const.bit_size = encode_bit_size_3bits(lc->def.bit_size);
1175 header.load_const.packing = load_const_full;
1176
1177 /* Try to pack 1-component constants into the 19 free bits in the header. */
1178 if (lc->def.num_components == 1) {
1179 switch (lc->def.bit_size) {
1180 case 64:
1181 if ((lc->value[0].u64 & 0x1fffffffffffull) == 0) {
1182 /* packed_value contains high 19 bits, low bits are 0 */
1183 header.load_const.packing = load_const_scalar_hi_19bits;
1184 header.load_const.packed_value = lc->value[0].u64 >> 45;
1185 } else if (util_mask_sign_extend(lc->value[0].i64, 19) == lc->value[0].i64) {
1186 /* packed_value contains low 19 bits, high bits are sign-extended */
1187 header.load_const.packing = load_const_scalar_lo_19bits_sext;
1188 header.load_const.packed_value = lc->value[0].u64;
1189 }
1190 break;
1191
1192 case 32:
1193 if ((lc->value[0].u32 & 0x1fff) == 0) {
1194 header.load_const.packing = load_const_scalar_hi_19bits;
1195 header.load_const.packed_value = lc->value[0].u32 >> 13;
1196 } else if (util_mask_sign_extend(lc->value[0].i32, 19) == lc->value[0].i32) {
1197 header.load_const.packing = load_const_scalar_lo_19bits_sext;
1198 header.load_const.packed_value = lc->value[0].u32;
1199 }
1200 break;
1201
1202 case 16:
1203 header.load_const.packing = load_const_scalar_lo_19bits_sext;
1204 header.load_const.packed_value = lc->value[0].u16;
1205 break;
1206 case 8:
1207 header.load_const.packing = load_const_scalar_lo_19bits_sext;
1208 header.load_const.packed_value = lc->value[0].u8;
1209 break;
1210 case 1:
1211 header.load_const.packing = load_const_scalar_lo_19bits_sext;
1212 header.load_const.packed_value = lc->value[0].b;
1213 break;
1214 default:
1215 unreachable("invalid bit_size");
1216 }
1217 }
1218
1219 blob_write_uint32(ctx->blob, header.u32);
1220
1221 if (header.load_const.packing == load_const_full) {
1222 switch (lc->def.bit_size) {
1223 case 64:
1224 blob_write_bytes(ctx->blob, lc->value,
1225 sizeof(*lc->value) * lc->def.num_components);
1226 break;
1227
1228 case 32:
1229 for (unsigned i = 0; i < lc->def.num_components; i++)
1230 blob_write_uint32(ctx->blob, lc->value[i].u32);
1231 break;
1232
1233 case 16:
1234 for (unsigned i = 0; i < lc->def.num_components; i++)
1235 blob_write_uint16(ctx->blob, lc->value[i].u16);
1236 break;
1237
1238 default:
1239 assert(lc->def.bit_size <= 8);
1240 for (unsigned i = 0; i < lc->def.num_components; i++)
1241 blob_write_uint8(ctx->blob, lc->value[i].u8);
1242 break;
1243 }
1244 }
1245
1246 write_add_object(ctx, &lc->def);
1247 }
1248
1249 static nir_load_const_instr *
read_load_const(read_ctx * ctx,union packed_instr header)1250 read_load_const(read_ctx *ctx, union packed_instr header)
1251 {
1252 nir_load_const_instr *lc =
1253 nir_load_const_instr_create(ctx->nir, header.load_const.last_component + 1,
1254 decode_bit_size_3bits(header.load_const.bit_size));
1255 lc->def.divergent = false;
1256
1257 switch (header.load_const.packing) {
1258 case load_const_scalar_hi_19bits:
1259 switch (lc->def.bit_size) {
1260 case 64:
1261 lc->value[0].u64 = (uint64_t)header.load_const.packed_value << 45;
1262 break;
1263 case 32:
1264 lc->value[0].u32 = (uint64_t)header.load_const.packed_value << 13;
1265 break;
1266 default:
1267 unreachable("invalid bit_size");
1268 }
1269 break;
1270
1271 case load_const_scalar_lo_19bits_sext:
1272 switch (lc->def.bit_size) {
1273 case 64:
1274 lc->value[0].u64 = header.load_const.packed_value;
1275 if (lc->value[0].u64 >> 18)
1276 lc->value[0].u64 |= UINT64_C(0xfffffffffff80000);
1277 break;
1278 case 32:
1279 lc->value[0].u32 = header.load_const.packed_value;
1280 if (lc->value[0].u32 >> 18)
1281 lc->value[0].u32 |= 0xfff80000;
1282 break;
1283 case 16:
1284 lc->value[0].u16 = header.load_const.packed_value;
1285 break;
1286 case 8:
1287 lc->value[0].u8 = header.load_const.packed_value;
1288 break;
1289 case 1:
1290 lc->value[0].b = header.load_const.packed_value;
1291 break;
1292 default:
1293 unreachable("invalid bit_size");
1294 }
1295 break;
1296
1297 case load_const_full:
1298 switch (lc->def.bit_size) {
1299 case 64:
1300 blob_copy_bytes(ctx->blob, lc->value, sizeof(*lc->value) * lc->def.num_components);
1301 break;
1302
1303 case 32:
1304 for (unsigned i = 0; i < lc->def.num_components; i++)
1305 lc->value[i].u32 = blob_read_uint32(ctx->blob);
1306 break;
1307
1308 case 16:
1309 for (unsigned i = 0; i < lc->def.num_components; i++)
1310 lc->value[i].u16 = blob_read_uint16(ctx->blob);
1311 break;
1312
1313 default:
1314 assert(lc->def.bit_size <= 8);
1315 for (unsigned i = 0; i < lc->def.num_components; i++)
1316 lc->value[i].u8 = blob_read_uint8(ctx->blob);
1317 break;
1318 }
1319 break;
1320 }
1321
1322 read_add_object(ctx, &lc->def);
1323 return lc;
1324 }
1325
1326 static void
write_ssa_undef(write_ctx * ctx,const nir_undef_instr * undef)1327 write_ssa_undef(write_ctx *ctx, const nir_undef_instr *undef)
1328 {
1329 assert(undef->def.num_components >= 1 && undef->def.num_components <= 16);
1330
1331 union packed_instr header;
1332 header.u32 = 0;
1333
1334 header.undef.instr_type = undef->instr.type;
1335 header.undef.last_component = undef->def.num_components - 1;
1336 header.undef.bit_size = encode_bit_size_3bits(undef->def.bit_size);
1337
1338 blob_write_uint32(ctx->blob, header.u32);
1339 write_add_object(ctx, &undef->def);
1340 }
1341
1342 static nir_undef_instr *
read_ssa_undef(read_ctx * ctx,union packed_instr header)1343 read_ssa_undef(read_ctx *ctx, union packed_instr header)
1344 {
1345 nir_undef_instr *undef =
1346 nir_undef_instr_create(ctx->nir, header.undef.last_component + 1,
1347 decode_bit_size_3bits(header.undef.bit_size));
1348
1349 undef->def.divergent = false;
1350
1351 read_add_object(ctx, &undef->def);
1352 return undef;
1353 }
1354
1355 union packed_tex_data {
1356 uint32_t u32;
1357 struct {
1358 unsigned sampler_dim : 4;
1359 unsigned dest_type : 8;
1360 unsigned coord_components : 3;
1361 unsigned is_array : 1;
1362 unsigned is_shadow : 1;
1363 unsigned is_new_style_shadow : 1;
1364 unsigned is_sparse : 1;
1365 unsigned component : 2;
1366 unsigned texture_non_uniform : 1;
1367 unsigned sampler_non_uniform : 1;
1368 unsigned array_is_lowered_cube : 1;
1369 unsigned is_gather_implicit_lod : 1;
1370 unsigned unused : 5; /* Mark unused for valgrind. */
1371 } u;
1372 };
1373
1374 static void
write_tex(write_ctx * ctx,const nir_tex_instr * tex)1375 write_tex(write_ctx *ctx, const nir_tex_instr *tex)
1376 {
1377 assert(tex->num_srcs < 16);
1378 assert(tex->op < 32);
1379
1380 union packed_instr header;
1381 header.u32 = 0;
1382
1383 header.tex.instr_type = tex->instr.type;
1384 header.tex.num_srcs = tex->num_srcs;
1385 header.tex.op = tex->op;
1386
1387 write_def(ctx, &tex->def, header, tex->instr.type);
1388
1389 blob_write_uint32(ctx->blob, tex->texture_index);
1390 blob_write_uint32(ctx->blob, tex->sampler_index);
1391 blob_write_uint32(ctx->blob, tex->backend_flags);
1392 if (tex->op == nir_texop_tg4)
1393 blob_write_bytes(ctx->blob, tex->tg4_offsets, sizeof(tex->tg4_offsets));
1394
1395 STATIC_ASSERT(sizeof(union packed_tex_data) == sizeof(uint32_t));
1396 union packed_tex_data packed = {
1397 .u.sampler_dim = tex->sampler_dim,
1398 .u.dest_type = tex->dest_type,
1399 .u.coord_components = tex->coord_components,
1400 .u.is_array = tex->is_array,
1401 .u.is_shadow = tex->is_shadow,
1402 .u.is_new_style_shadow = tex->is_new_style_shadow,
1403 .u.is_sparse = tex->is_sparse,
1404 .u.component = tex->component,
1405 .u.texture_non_uniform = tex->texture_non_uniform,
1406 .u.sampler_non_uniform = tex->sampler_non_uniform,
1407 .u.array_is_lowered_cube = tex->array_is_lowered_cube,
1408 .u.is_gather_implicit_lod = tex->is_gather_implicit_lod,
1409 };
1410 blob_write_uint32(ctx->blob, packed.u32);
1411
1412 for (unsigned i = 0; i < tex->num_srcs; i++) {
1413 union packed_src src;
1414 src.u32 = 0;
1415 src.tex.src_type = tex->src[i].src_type;
1416 write_src_full(ctx, &tex->src[i].src, src);
1417 }
1418 }
1419
1420 static nir_tex_instr *
read_tex(read_ctx * ctx,union packed_instr header)1421 read_tex(read_ctx *ctx, union packed_instr header)
1422 {
1423 nir_tex_instr *tex = nir_tex_instr_create(ctx->nir, header.tex.num_srcs);
1424
1425 read_def(ctx, &tex->def, &tex->instr, header);
1426
1427 tex->op = header.tex.op;
1428 tex->texture_index = blob_read_uint32(ctx->blob);
1429 tex->sampler_index = blob_read_uint32(ctx->blob);
1430 tex->backend_flags = blob_read_uint32(ctx->blob);
1431 if (tex->op == nir_texop_tg4)
1432 blob_copy_bytes(ctx->blob, tex->tg4_offsets, sizeof(tex->tg4_offsets));
1433
1434 union packed_tex_data packed;
1435 packed.u32 = blob_read_uint32(ctx->blob);
1436 tex->sampler_dim = packed.u.sampler_dim;
1437 tex->dest_type = packed.u.dest_type;
1438 tex->coord_components = packed.u.coord_components;
1439 tex->is_array = packed.u.is_array;
1440 tex->is_shadow = packed.u.is_shadow;
1441 tex->is_new_style_shadow = packed.u.is_new_style_shadow;
1442 tex->is_sparse = packed.u.is_sparse;
1443 tex->component = packed.u.component;
1444 tex->texture_non_uniform = packed.u.texture_non_uniform;
1445 tex->sampler_non_uniform = packed.u.sampler_non_uniform;
1446 tex->array_is_lowered_cube = packed.u.array_is_lowered_cube;
1447 tex->is_gather_implicit_lod = packed.u.is_gather_implicit_lod;
1448
1449 for (unsigned i = 0; i < tex->num_srcs; i++) {
1450 union packed_src src = read_src(ctx, &tex->src[i].src);
1451 tex->src[i].src_type = src.tex.src_type;
1452 }
1453
1454 return tex;
1455 }
1456
1457 static void
write_phi(write_ctx * ctx,const nir_phi_instr * phi)1458 write_phi(write_ctx *ctx, const nir_phi_instr *phi)
1459 {
1460 union packed_instr header;
1461 header.u32 = 0;
1462
1463 header.phi.instr_type = phi->instr.type;
1464 header.phi.num_srcs = exec_list_length(&phi->srcs);
1465
1466 /* Phi nodes are special, since they may reference SSA definitions and
1467 * basic blocks that don't exist yet. We leave two empty uint32_t's here,
1468 * and then store enough information so that a later fixup pass can fill
1469 * them in correctly.
1470 */
1471 write_def(ctx, &phi->def, header, phi->instr.type);
1472
1473 nir_foreach_phi_src(src, phi) {
1474 size_t blob_offset = blob_reserve_uint32(ctx->blob);
1475 ASSERTED size_t blob_offset2 = blob_reserve_uint32(ctx->blob);
1476 assert(blob_offset + sizeof(uint32_t) == blob_offset2);
1477 write_phi_fixup fixup = {
1478 .blob_offset = blob_offset,
1479 .src = src->src.ssa,
1480 .block = src->pred,
1481 };
1482 util_dynarray_append(&ctx->phi_fixups, write_phi_fixup, fixup);
1483 }
1484 }
1485
1486 static void
write_fixup_phis(write_ctx * ctx)1487 write_fixup_phis(write_ctx *ctx)
1488 {
1489 util_dynarray_foreach(&ctx->phi_fixups, write_phi_fixup, fixup) {
1490 blob_overwrite_uint32(ctx->blob, fixup->blob_offset,
1491 write_lookup_object(ctx, fixup->src));
1492 blob_overwrite_uint32(ctx->blob, fixup->blob_offset + sizeof(uint32_t),
1493 write_lookup_object(ctx, fixup->block));
1494 }
1495
1496 util_dynarray_clear(&ctx->phi_fixups);
1497 }
1498
1499 static nir_phi_instr *
read_phi(read_ctx * ctx,nir_block * blk,union packed_instr header)1500 read_phi(read_ctx *ctx, nir_block *blk, union packed_instr header)
1501 {
1502 nir_phi_instr *phi = nir_phi_instr_create(ctx->nir);
1503
1504 read_def(ctx, &phi->def, &phi->instr, header);
1505
1506 /* For similar reasons as before, we just store the index directly into the
1507 * pointer, and let a later pass resolve the phi sources.
1508 *
1509 * In order to ensure that the copied sources (which are just the indices
1510 * from the blob for now) don't get inserted into the old shader's use-def
1511 * lists, we have to add the phi instruction *before* we set up its
1512 * sources.
1513 */
1514 nir_instr_insert_after_block(blk, &phi->instr);
1515
1516 for (unsigned i = 0; i < header.phi.num_srcs; i++) {
1517 nir_def *def = (nir_def *)(uintptr_t)blob_read_uint32(ctx->blob);
1518 nir_block *pred = (nir_block *)(uintptr_t)blob_read_uint32(ctx->blob);
1519 nir_phi_src *src = nir_phi_instr_add_src(phi, pred, def);
1520
1521 /* Since we're not letting nir_insert_instr handle use/def stuff for us,
1522 * we have to set the parent_instr manually. It doesn't really matter
1523 * when we do it, so we might as well do it here.
1524 */
1525 nir_src_set_parent_instr(&src->src, &phi->instr);
1526
1527 /* Stash it in the list of phi sources. We'll walk this list and fix up
1528 * sources at the very end of read_function_impl.
1529 */
1530 list_add(&src->src.use_link, &ctx->phi_srcs);
1531 }
1532
1533 return phi;
1534 }
1535
1536 static void
read_fixup_phis(read_ctx * ctx)1537 read_fixup_phis(read_ctx *ctx)
1538 {
1539 list_for_each_entry_safe(nir_phi_src, src, &ctx->phi_srcs, src.use_link) {
1540 src->pred = read_lookup_object(ctx, (uintptr_t)src->pred);
1541 src->src.ssa = read_lookup_object(ctx, (uintptr_t)src->src.ssa);
1542
1543 /* Remove from this list */
1544 list_del(&src->src.use_link);
1545
1546 list_addtail(&src->src.use_link, &src->src.ssa->uses);
1547 }
1548 assert(list_is_empty(&ctx->phi_srcs));
1549 }
1550
1551 static void
write_jump(write_ctx * ctx,const nir_jump_instr * jmp)1552 write_jump(write_ctx *ctx, const nir_jump_instr *jmp)
1553 {
1554 /* These aren't handled because they require special block linking */
1555 assert(jmp->type != nir_jump_goto && jmp->type != nir_jump_goto_if);
1556
1557 assert(jmp->type < 4);
1558
1559 union packed_instr header;
1560 header.u32 = 0;
1561
1562 header.jump.instr_type = jmp->instr.type;
1563 header.jump.type = jmp->type;
1564
1565 blob_write_uint32(ctx->blob, header.u32);
1566 }
1567
1568 static nir_jump_instr *
read_jump(read_ctx * ctx,union packed_instr header)1569 read_jump(read_ctx *ctx, union packed_instr header)
1570 {
1571 /* These aren't handled because they require special block linking */
1572 assert(header.jump.type != nir_jump_goto &&
1573 header.jump.type != nir_jump_goto_if);
1574
1575 nir_jump_instr *jmp = nir_jump_instr_create(ctx->nir, header.jump.type);
1576 return jmp;
1577 }
1578
1579 static void
write_call(write_ctx * ctx,const nir_call_instr * call)1580 write_call(write_ctx *ctx, const nir_call_instr *call)
1581 {
1582 blob_write_uint32(ctx->blob, write_lookup_object(ctx, call->callee));
1583
1584 for (unsigned i = 0; i < call->num_params; i++)
1585 write_src(ctx, &call->params[i]);
1586 }
1587
1588 static nir_call_instr *
read_call(read_ctx * ctx)1589 read_call(read_ctx *ctx)
1590 {
1591 nir_function *callee = read_object(ctx);
1592 nir_call_instr *call = nir_call_instr_create(ctx->nir, callee);
1593
1594 for (unsigned i = 0; i < call->num_params; i++)
1595 read_src(ctx, &call->params[i]);
1596
1597 return call;
1598 }
1599
1600 static void
write_instr(write_ctx * ctx,const nir_instr * instr)1601 write_instr(write_ctx *ctx, const nir_instr *instr)
1602 {
1603 /* We have only 4 bits for the instruction type. */
1604 assert(instr->type < 16);
1605
1606 switch (instr->type) {
1607 case nir_instr_type_alu:
1608 write_alu(ctx, nir_instr_as_alu(instr));
1609 break;
1610 case nir_instr_type_deref:
1611 write_deref(ctx, nir_instr_as_deref(instr));
1612 break;
1613 case nir_instr_type_intrinsic:
1614 write_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1615 break;
1616 case nir_instr_type_load_const:
1617 write_load_const(ctx, nir_instr_as_load_const(instr));
1618 break;
1619 case nir_instr_type_undef:
1620 write_ssa_undef(ctx, nir_instr_as_undef(instr));
1621 break;
1622 case nir_instr_type_tex:
1623 write_tex(ctx, nir_instr_as_tex(instr));
1624 break;
1625 case nir_instr_type_phi:
1626 write_phi(ctx, nir_instr_as_phi(instr));
1627 break;
1628 case nir_instr_type_jump:
1629 write_jump(ctx, nir_instr_as_jump(instr));
1630 break;
1631 case nir_instr_type_call:
1632 blob_write_uint32(ctx->blob, instr->type);
1633 write_call(ctx, nir_instr_as_call(instr));
1634 break;
1635 case nir_instr_type_parallel_copy:
1636 unreachable("Cannot write parallel copies");
1637 default:
1638 unreachable("bad instr type");
1639 }
1640 }
1641
1642 /* Return the number of instructions read. */
1643 static unsigned
read_instr(read_ctx * ctx,nir_block * block)1644 read_instr(read_ctx *ctx, nir_block *block)
1645 {
1646 STATIC_ASSERT(sizeof(union packed_instr) == 4);
1647 union packed_instr header;
1648 header.u32 = blob_read_uint32(ctx->blob);
1649 nir_instr *instr;
1650
1651 switch (header.any.instr_type) {
1652 case nir_instr_type_alu:
1653 for (unsigned i = 0; i <= header.alu.num_followup_alu_sharing_header; i++)
1654 nir_instr_insert_after_block(block, &read_alu(ctx, header)->instr);
1655 return header.alu.num_followup_alu_sharing_header + 1;
1656 case nir_instr_type_deref:
1657 instr = &read_deref(ctx, header)->instr;
1658 break;
1659 case nir_instr_type_intrinsic:
1660 instr = &read_intrinsic(ctx, header)->instr;
1661 break;
1662 case nir_instr_type_load_const:
1663 instr = &read_load_const(ctx, header)->instr;
1664 break;
1665 case nir_instr_type_undef:
1666 instr = &read_ssa_undef(ctx, header)->instr;
1667 break;
1668 case nir_instr_type_tex:
1669 instr = &read_tex(ctx, header)->instr;
1670 break;
1671 case nir_instr_type_phi:
1672 /* Phi instructions are a bit of a special case when reading because we
1673 * don't want inserting the instruction to automatically handle use/defs
1674 * for us. Instead, we need to wait until all the blocks/instructions
1675 * are read so that we can set their sources up.
1676 */
1677 read_phi(ctx, block, header);
1678 return 1;
1679 case nir_instr_type_jump:
1680 instr = &read_jump(ctx, header)->instr;
1681 break;
1682 case nir_instr_type_call:
1683 instr = &read_call(ctx)->instr;
1684 break;
1685 case nir_instr_type_parallel_copy:
1686 unreachable("Cannot read parallel copies");
1687 default:
1688 unreachable("bad instr type");
1689 }
1690
1691 nir_instr_insert_after_block(block, instr);
1692 return 1;
1693 }
1694
1695 static void
write_block(write_ctx * ctx,const nir_block * block)1696 write_block(write_ctx *ctx, const nir_block *block)
1697 {
1698 write_add_object(ctx, block);
1699 blob_write_uint32(ctx->blob, exec_list_length(&block->instr_list));
1700
1701 ctx->last_instr_type = ~0;
1702 ctx->last_alu_header_offset = 0;
1703
1704 nir_foreach_instr(instr, block) {
1705 write_instr(ctx, instr);
1706 ctx->last_instr_type = instr->type;
1707 }
1708 }
1709
1710 static void
read_block(read_ctx * ctx,struct exec_list * cf_list)1711 read_block(read_ctx *ctx, struct exec_list *cf_list)
1712 {
1713 /* Don't actually create a new block. Just use the one from the tail of
1714 * the list. NIR guarantees that the tail of the list is a block and that
1715 * no two blocks are side-by-side in the IR; It should be empty.
1716 */
1717 nir_block *block =
1718 exec_node_data(nir_block, exec_list_get_tail(cf_list), cf_node.node);
1719
1720 read_add_object(ctx, block);
1721 unsigned num_instrs = blob_read_uint32(ctx->blob);
1722 for (unsigned i = 0; i < num_instrs;) {
1723 i += read_instr(ctx, block);
1724 }
1725 }
1726
1727 static void
1728 write_cf_list(write_ctx *ctx, const struct exec_list *cf_list);
1729
1730 static void
1731 read_cf_list(read_ctx *ctx, struct exec_list *cf_list);
1732
1733 static void
write_if(write_ctx * ctx,nir_if * nif)1734 write_if(write_ctx *ctx, nir_if *nif)
1735 {
1736 write_src(ctx, &nif->condition);
1737 blob_write_uint8(ctx->blob, nif->control);
1738
1739 write_cf_list(ctx, &nif->then_list);
1740 write_cf_list(ctx, &nif->else_list);
1741 }
1742
1743 static void
read_if(read_ctx * ctx,struct exec_list * cf_list)1744 read_if(read_ctx *ctx, struct exec_list *cf_list)
1745 {
1746 nir_if *nif = nir_if_create(ctx->nir);
1747
1748 read_src(ctx, &nif->condition);
1749 nif->control = blob_read_uint8(ctx->blob);
1750
1751 nir_cf_node_insert_end(cf_list, &nif->cf_node);
1752
1753 read_cf_list(ctx, &nif->then_list);
1754 read_cf_list(ctx, &nif->else_list);
1755 }
1756
1757 static void
write_loop(write_ctx * ctx,nir_loop * loop)1758 write_loop(write_ctx *ctx, nir_loop *loop)
1759 {
1760 blob_write_uint8(ctx->blob, loop->control);
1761 blob_write_uint8(ctx->blob, loop->divergent);
1762 bool has_continue_construct = nir_loop_has_continue_construct(loop);
1763 blob_write_uint8(ctx->blob, has_continue_construct);
1764
1765 write_cf_list(ctx, &loop->body);
1766 if (has_continue_construct) {
1767 write_cf_list(ctx, &loop->continue_list);
1768 }
1769 }
1770
1771 static void
read_loop(read_ctx * ctx,struct exec_list * cf_list)1772 read_loop(read_ctx *ctx, struct exec_list *cf_list)
1773 {
1774 nir_loop *loop = nir_loop_create(ctx->nir);
1775
1776 nir_cf_node_insert_end(cf_list, &loop->cf_node);
1777
1778 loop->control = blob_read_uint8(ctx->blob);
1779 loop->divergent = blob_read_uint8(ctx->blob);
1780 bool has_continue_construct = blob_read_uint8(ctx->blob);
1781
1782 read_cf_list(ctx, &loop->body);
1783 if (has_continue_construct) {
1784 nir_loop_add_continue_construct(loop);
1785 read_cf_list(ctx, &loop->continue_list);
1786 }
1787 }
1788
1789 static void
write_cf_node(write_ctx * ctx,nir_cf_node * cf)1790 write_cf_node(write_ctx *ctx, nir_cf_node *cf)
1791 {
1792 blob_write_uint32(ctx->blob, cf->type);
1793
1794 switch (cf->type) {
1795 case nir_cf_node_block:
1796 write_block(ctx, nir_cf_node_as_block(cf));
1797 break;
1798 case nir_cf_node_if:
1799 write_if(ctx, nir_cf_node_as_if(cf));
1800 break;
1801 case nir_cf_node_loop:
1802 write_loop(ctx, nir_cf_node_as_loop(cf));
1803 break;
1804 default:
1805 unreachable("bad cf type");
1806 }
1807 }
1808
1809 static void
read_cf_node(read_ctx * ctx,struct exec_list * list)1810 read_cf_node(read_ctx *ctx, struct exec_list *list)
1811 {
1812 nir_cf_node_type type = blob_read_uint32(ctx->blob);
1813
1814 switch (type) {
1815 case nir_cf_node_block:
1816 read_block(ctx, list);
1817 break;
1818 case nir_cf_node_if:
1819 read_if(ctx, list);
1820 break;
1821 case nir_cf_node_loop:
1822 read_loop(ctx, list);
1823 break;
1824 default:
1825 unreachable("bad cf type");
1826 }
1827 }
1828
1829 static void
write_cf_list(write_ctx * ctx,const struct exec_list * cf_list)1830 write_cf_list(write_ctx *ctx, const struct exec_list *cf_list)
1831 {
1832 blob_write_uint32(ctx->blob, exec_list_length(cf_list));
1833 foreach_list_typed(nir_cf_node, cf, node, cf_list) {
1834 write_cf_node(ctx, cf);
1835 }
1836 }
1837
1838 static void
read_cf_list(read_ctx * ctx,struct exec_list * cf_list)1839 read_cf_list(read_ctx *ctx, struct exec_list *cf_list)
1840 {
1841 uint32_t num_cf_nodes = blob_read_uint32(ctx->blob);
1842 for (unsigned i = 0; i < num_cf_nodes; i++)
1843 read_cf_node(ctx, cf_list);
1844 }
1845
1846 static void
write_function_impl(write_ctx * ctx,const nir_function_impl * fi)1847 write_function_impl(write_ctx *ctx, const nir_function_impl *fi)
1848 {
1849 blob_write_uint8(ctx->blob, fi->structured);
1850 blob_write_uint8(ctx->blob, !!fi->preamble);
1851
1852 if (fi->preamble)
1853 blob_write_uint32(ctx->blob, write_lookup_object(ctx, fi->preamble));
1854
1855 write_var_list(ctx, &fi->locals);
1856
1857 write_cf_list(ctx, &fi->body);
1858 write_fixup_phis(ctx);
1859 }
1860
1861 static nir_function_impl *
read_function_impl(read_ctx * ctx)1862 read_function_impl(read_ctx *ctx)
1863 {
1864 nir_function_impl *fi = nir_function_impl_create_bare(ctx->nir);
1865
1866 fi->structured = blob_read_uint8(ctx->blob);
1867 bool preamble = blob_read_uint8(ctx->blob);
1868
1869 if (preamble)
1870 fi->preamble = read_object(ctx);
1871
1872 read_var_list(ctx, &fi->locals);
1873
1874 read_cf_list(ctx, &fi->body);
1875 read_fixup_phis(ctx);
1876
1877 fi->valid_metadata = 0;
1878
1879 return fi;
1880 }
1881
1882 static void
write_function(write_ctx * ctx,const nir_function * fxn)1883 write_function(write_ctx *ctx, const nir_function *fxn)
1884 {
1885 uint32_t flags = 0;
1886 if (fxn->is_entrypoint)
1887 flags |= 0x1;
1888 if (fxn->is_preamble)
1889 flags |= 0x2;
1890 if (fxn->name)
1891 flags |= 0x4;
1892 if (fxn->impl)
1893 flags |= 0x8;
1894 if (fxn->should_inline)
1895 flags |= 0x10;
1896 if (fxn->dont_inline)
1897 flags |= 0x20;
1898 blob_write_uint32(ctx->blob, flags);
1899 if (fxn->name)
1900 blob_write_string(ctx->blob, fxn->name);
1901
1902 write_add_object(ctx, fxn);
1903
1904 blob_write_uint32(ctx->blob, fxn->num_params);
1905 for (unsigned i = 0; i < fxn->num_params; i++) {
1906 uint32_t val =
1907 ((uint32_t)fxn->params[i].num_components) |
1908 ((uint32_t)fxn->params[i].bit_size) << 8;
1909 blob_write_uint32(ctx->blob, val);
1910 }
1911
1912 /* At first glance, it looks like we should write the function_impl here.
1913 * However, call instructions need to be able to reference at least the
1914 * function and those will get processed as we write the function_impls.
1915 * We stop here and write function_impls as a second pass.
1916 */
1917 }
1918
1919 static void
read_function(read_ctx * ctx)1920 read_function(read_ctx *ctx)
1921 {
1922 uint32_t flags = blob_read_uint32(ctx->blob);
1923 bool has_name = flags & 0x4;
1924 char *name = has_name ? blob_read_string(ctx->blob) : NULL;
1925
1926 nir_function *fxn = nir_function_create(ctx->nir, name);
1927
1928 read_add_object(ctx, fxn);
1929
1930 fxn->num_params = blob_read_uint32(ctx->blob);
1931 fxn->params = ralloc_array(fxn, nir_parameter, fxn->num_params);
1932 for (unsigned i = 0; i < fxn->num_params; i++) {
1933 uint32_t val = blob_read_uint32(ctx->blob);
1934 fxn->params[i].num_components = val & 0xff;
1935 fxn->params[i].bit_size = (val >> 8) & 0xff;
1936 }
1937
1938 fxn->is_entrypoint = flags & 0x1;
1939 fxn->is_preamble = flags & 0x2;
1940 if (flags & 0x8)
1941 fxn->impl = NIR_SERIALIZE_FUNC_HAS_IMPL;
1942 fxn->should_inline = flags & 0x10;
1943 fxn->dont_inline = flags & 0x20;
1944 }
1945
1946 static void
write_xfb_info(write_ctx * ctx,const nir_xfb_info * xfb)1947 write_xfb_info(write_ctx *ctx, const nir_xfb_info *xfb)
1948 {
1949 if (xfb == NULL) {
1950 blob_write_uint32(ctx->blob, 0);
1951 } else {
1952 size_t size = nir_xfb_info_size(xfb->output_count);
1953 assert(size <= UINT32_MAX);
1954 blob_write_uint32(ctx->blob, size);
1955 blob_write_bytes(ctx->blob, xfb, size);
1956 }
1957 }
1958
1959 static nir_xfb_info *
read_xfb_info(read_ctx * ctx)1960 read_xfb_info(read_ctx *ctx)
1961 {
1962 uint32_t size = blob_read_uint32(ctx->blob);
1963 if (size == 0)
1964 return NULL;
1965
1966 struct nir_xfb_info *xfb = ralloc_size(ctx->nir, size);
1967 blob_copy_bytes(ctx->blob, (void *)xfb, size);
1968
1969 return xfb;
1970 }
1971
1972 /**
1973 * Serialize NIR into a binary blob.
1974 *
1975 * \param strip Don't serialize information only useful for debugging,
1976 * such as variable names, making cache hits from similar
1977 * shaders more likely.
1978 */
1979 void
nir_serialize(struct blob * blob,const nir_shader * nir,bool strip)1980 nir_serialize(struct blob *blob, const nir_shader *nir, bool strip)
1981 {
1982 write_ctx ctx = { 0 };
1983 ctx.remap_table = _mesa_pointer_hash_table_create(NULL);
1984 ctx.blob = blob;
1985 ctx.nir = nir;
1986 ctx.strip = strip;
1987 util_dynarray_init(&ctx.phi_fixups, NULL);
1988
1989 size_t idx_size_offset = blob_reserve_uint32(blob);
1990
1991 struct shader_info info = nir->info;
1992 uint32_t strings = 0;
1993 if (!strip && info.name)
1994 strings |= 0x1;
1995 if (!strip && info.label)
1996 strings |= 0x2;
1997 blob_write_uint32(blob, strings);
1998 if (!strip && info.name)
1999 blob_write_string(blob, info.name);
2000 if (!strip && info.label)
2001 blob_write_string(blob, info.label);
2002 info.name = info.label = NULL;
2003 blob_write_bytes(blob, (uint8_t *)&info, sizeof(info));
2004
2005 write_var_list(&ctx, &nir->variables);
2006
2007 blob_write_uint32(blob, nir->num_inputs);
2008 blob_write_uint32(blob, nir->num_uniforms);
2009 blob_write_uint32(blob, nir->num_outputs);
2010 blob_write_uint32(blob, nir->scratch_size);
2011
2012 blob_write_uint32(blob, exec_list_length(&nir->functions));
2013 nir_foreach_function(fxn, nir) {
2014 write_function(&ctx, fxn);
2015 }
2016
2017 nir_foreach_function_impl(impl, nir) {
2018 write_function_impl(&ctx, impl);
2019 }
2020
2021 blob_write_uint32(blob, nir->constant_data_size);
2022 if (nir->constant_data_size > 0)
2023 blob_write_bytes(blob, nir->constant_data, nir->constant_data_size);
2024
2025 write_xfb_info(&ctx, nir->xfb_info);
2026
2027 if (nir->info.uses_printf)
2028 nir_serialize_printf_info(blob, nir->printf_info, nir->printf_info_count);
2029
2030 blob_overwrite_uint32(blob, idx_size_offset, ctx.next_idx);
2031
2032 _mesa_hash_table_destroy(ctx.remap_table, NULL);
2033 util_dynarray_fini(&ctx.phi_fixups);
2034 }
2035
2036 nir_shader *
nir_deserialize(void * mem_ctx,const struct nir_shader_compiler_options * options,struct blob_reader * blob)2037 nir_deserialize(void *mem_ctx,
2038 const struct nir_shader_compiler_options *options,
2039 struct blob_reader *blob)
2040 {
2041 read_ctx ctx = { 0 };
2042 ctx.blob = blob;
2043 list_inithead(&ctx.phi_srcs);
2044 ctx.idx_table_len = blob_read_uint32(blob);
2045 ctx.idx_table = calloc(ctx.idx_table_len, sizeof(uintptr_t));
2046
2047 uint32_t strings = blob_read_uint32(blob);
2048 char *name = (strings & 0x1) ? blob_read_string(blob) : NULL;
2049 char *label = (strings & 0x2) ? blob_read_string(blob) : NULL;
2050
2051 struct shader_info info;
2052 blob_copy_bytes(blob, (uint8_t *)&info, sizeof(info));
2053
2054 ctx.nir = nir_shader_create(mem_ctx, info.stage, options, NULL);
2055
2056 info.name = name ? ralloc_strdup(ctx.nir, name) : NULL;
2057 info.label = label ? ralloc_strdup(ctx.nir, label) : NULL;
2058
2059 ctx.nir->info = info;
2060
2061 read_var_list(&ctx, &ctx.nir->variables);
2062
2063 ctx.nir->num_inputs = blob_read_uint32(blob);
2064 ctx.nir->num_uniforms = blob_read_uint32(blob);
2065 ctx.nir->num_outputs = blob_read_uint32(blob);
2066 ctx.nir->scratch_size = blob_read_uint32(blob);
2067
2068 unsigned num_functions = blob_read_uint32(blob);
2069 for (unsigned i = 0; i < num_functions; i++)
2070 read_function(&ctx);
2071
2072 nir_foreach_function(fxn, ctx.nir) {
2073 if (fxn->impl == NIR_SERIALIZE_FUNC_HAS_IMPL)
2074 nir_function_set_impl(fxn, read_function_impl(&ctx));
2075 }
2076
2077 ctx.nir->constant_data_size = blob_read_uint32(blob);
2078 if (ctx.nir->constant_data_size > 0) {
2079 ctx.nir->constant_data =
2080 ralloc_size(ctx.nir, ctx.nir->constant_data_size);
2081 blob_copy_bytes(blob, ctx.nir->constant_data,
2082 ctx.nir->constant_data_size);
2083 }
2084
2085 ctx.nir->xfb_info = read_xfb_info(&ctx);
2086
2087 if (ctx.nir->info.uses_printf) {
2088 ctx.nir->printf_info =
2089 nir_deserialize_printf_info(ctx.nir, blob,
2090 &ctx.nir->printf_info_count);
2091 }
2092
2093 free(ctx.idx_table);
2094
2095 nir_validate_shader(ctx.nir, "after deserialize");
2096
2097 return ctx.nir;
2098 }
2099
2100 void
nir_shader_serialize_deserialize(nir_shader * shader)2101 nir_shader_serialize_deserialize(nir_shader *shader)
2102 {
2103 const struct nir_shader_compiler_options *options = shader->options;
2104
2105 struct blob writer;
2106 blob_init(&writer);
2107 nir_serialize(&writer, shader, false);
2108
2109 /* Delete all of dest's ralloc children but leave dest alone */
2110 void *dead_ctx = ralloc_context(NULL);
2111 ralloc_adopt(dead_ctx, shader);
2112 ralloc_free(dead_ctx);
2113
2114 dead_ctx = ralloc_context(NULL);
2115
2116 struct blob_reader reader;
2117 blob_reader_init(&reader, writer.data, writer.size);
2118 nir_shader *copy = nir_deserialize(dead_ctx, options, &reader);
2119
2120 blob_finish(&writer);
2121
2122 nir_shader_replace(shader, copy);
2123 ralloc_free(dead_ctx);
2124 }
2125
2126 void
nir_serialize_printf_info(struct blob * blob,const u_printf_info * printf_info,unsigned printf_info_count)2127 nir_serialize_printf_info(struct blob *blob,
2128 const u_printf_info *printf_info,
2129 unsigned printf_info_count)
2130 {
2131 blob_write_uint32(blob, printf_info_count);
2132 for (int i = 0; i < printf_info_count; i++) {
2133 const u_printf_info *info = &printf_info[i];
2134 blob_write_uint32(blob, info->num_args);
2135 blob_write_uint32(blob, info->string_size);
2136 blob_write_bytes(blob, info->arg_sizes,
2137 info->num_args * sizeof(info->arg_sizes[0]));
2138 /* we can't use blob_write_string, because it contains multiple NULL
2139 * terminated strings */
2140 blob_write_bytes(blob, info->strings, info->string_size);
2141 }
2142 }
2143
2144 u_printf_info *
nir_deserialize_printf_info(void * mem_ctx,struct blob_reader * blob,unsigned * printf_info_count)2145 nir_deserialize_printf_info(void *mem_ctx,
2146 struct blob_reader *blob,
2147 unsigned *printf_info_count)
2148 {
2149 *printf_info_count = blob_read_uint32(blob);
2150
2151 u_printf_info *printf_info =
2152 ralloc_array(mem_ctx, u_printf_info, *printf_info_count);
2153
2154 for (int i = 0; i < *printf_info_count; i++) {
2155 u_printf_info *info = &printf_info[i];
2156 info->num_args = blob_read_uint32(blob);
2157 info->string_size = blob_read_uint32(blob);
2158 info->arg_sizes = ralloc_array(mem_ctx, unsigned, info->num_args);
2159 blob_copy_bytes(blob, info->arg_sizes,
2160 info->num_args * sizeof(info->arg_sizes[0]));
2161 info->strings = ralloc_array(mem_ctx, char, info->string_size);
2162 blob_copy_bytes(blob, info->strings, info->string_size);
2163 }
2164
2165 return printf_info;
2166 }
2167