1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "vtn_private.h"
25 #include "spirv_info.h"
26 #include "nir_deref.h"
27 #include <vulkan/vulkan_core.h>
28
29 static struct vtn_pointer*
vtn_align_pointer(struct vtn_builder * b,struct vtn_pointer * ptr,unsigned alignment)30 vtn_align_pointer(struct vtn_builder *b, struct vtn_pointer *ptr,
31 unsigned alignment)
32 {
33 if (alignment == 0)
34 return ptr;
35
36 if (!util_is_power_of_two_nonzero(alignment)) {
37 vtn_warn("Provided alignment is not a power of two");
38 alignment = 1 << (ffs(alignment) - 1);
39 }
40
41 /* If this pointer doesn't have a deref, bail. This either means we're
42 * using the old offset+alignment pointers which don't support carrying
43 * alignment information or we're a pointer that is below the block
44 * boundary in our access chain in which case alignment is meaningless.
45 */
46 if (ptr->deref == NULL)
47 return ptr;
48
49 /* Ignore alignment information on logical pointers. This way, we don't
50 * trip up drivers with unnecessary casts.
51 */
52 nir_address_format addr_format = vtn_mode_to_address_format(b, ptr->mode);
53 if (addr_format == nir_address_format_logical)
54 return ptr;
55
56 struct vtn_pointer *copy = vtn_alloc(b, struct vtn_pointer);
57 *copy = *ptr;
58 copy->deref = nir_alignment_deref_cast(&b->nb, ptr->deref, alignment, 0);
59
60 return copy;
61 }
62
63 static void
ptr_decoration_cb(struct vtn_builder * b,struct vtn_value * val,int member,const struct vtn_decoration * dec,void * void_ptr)64 ptr_decoration_cb(struct vtn_builder *b, struct vtn_value *val, int member,
65 const struct vtn_decoration *dec, void *void_ptr)
66 {
67 struct vtn_pointer *ptr = void_ptr;
68
69 switch (dec->decoration) {
70 case SpvDecorationNonUniformEXT:
71 ptr->access |= ACCESS_NON_UNIFORM;
72 break;
73
74 default:
75 break;
76 }
77 }
78
79 struct access_align {
80 enum gl_access_qualifier access;
81 uint32_t alignment;
82 };
83
84 static void
access_align_cb(struct vtn_builder * b,struct vtn_value * val,int member,const struct vtn_decoration * dec,void * void_ptr)85 access_align_cb(struct vtn_builder *b, struct vtn_value *val, int member,
86 const struct vtn_decoration *dec, void *void_ptr)
87 {
88 struct access_align *aa = void_ptr;
89
90 switch (dec->decoration) {
91 case SpvDecorationAlignment:
92 aa->alignment = dec->operands[0];
93 break;
94
95 case SpvDecorationNonUniformEXT:
96 aa->access |= ACCESS_NON_UNIFORM;
97 break;
98
99 default:
100 break;
101 }
102 }
103
104 static struct vtn_pointer*
vtn_decorate_pointer(struct vtn_builder * b,struct vtn_value * val,struct vtn_pointer * ptr)105 vtn_decorate_pointer(struct vtn_builder *b, struct vtn_value *val,
106 struct vtn_pointer *ptr)
107 {
108 struct access_align aa = { 0, };
109 vtn_foreach_decoration(b, val, access_align_cb, &aa);
110
111 ptr = vtn_align_pointer(b, ptr, aa.alignment);
112
113 /* If we're adding access flags, make a copy of the pointer. We could
114 * probably just OR them in without doing so but this prevents us from
115 * leaking them any further than actually specified in the SPIR-V.
116 */
117 if (aa.access & ~ptr->access) {
118 struct vtn_pointer *copy = vtn_alloc(b, struct vtn_pointer);
119 *copy = *ptr;
120 copy->access |= aa.access;
121 return copy;
122 }
123
124 return ptr;
125 }
126
127 struct vtn_value *
vtn_push_pointer(struct vtn_builder * b,uint32_t value_id,struct vtn_pointer * ptr)128 vtn_push_pointer(struct vtn_builder *b, uint32_t value_id,
129 struct vtn_pointer *ptr)
130 {
131 struct vtn_value *val = vtn_push_value(b, value_id, vtn_value_type_pointer);
132 val->pointer = vtn_decorate_pointer(b, val, ptr);
133 return val;
134 }
135
136 void
vtn_copy_value(struct vtn_builder * b,uint32_t src_value_id,uint32_t dst_value_id)137 vtn_copy_value(struct vtn_builder *b, uint32_t src_value_id,
138 uint32_t dst_value_id)
139 {
140 struct vtn_value *src = vtn_untyped_value(b, src_value_id);
141 struct vtn_value *dst = vtn_untyped_value(b, dst_value_id);
142
143 vtn_fail_if(dst->value_type != vtn_value_type_invalid,
144 "SPIR-V id %u has already been written by another instruction",
145 dst_value_id);
146
147 vtn_fail_if(dst->type->id != src->type->id,
148 "Result Type must equal Operand type");
149
150 if (src->value_type == vtn_value_type_ssa && src->ssa->is_variable) {
151 nir_variable *dst_var =
152 nir_local_variable_create(b->nb.impl, src->ssa->type, "var_copy");
153 nir_deref_instr *dst_deref = nir_build_deref_var(&b->nb, dst_var);
154 nir_deref_instr *src_deref = vtn_get_deref_for_ssa_value(b, src->ssa);
155
156 vtn_local_store(b, vtn_local_load(b, src_deref, 0), dst_deref, 0);
157
158 vtn_push_var_ssa(b, dst_value_id, dst_var);
159 return;
160 }
161
162 struct vtn_value src_copy = *src;
163 src_copy.name = dst->name;
164 src_copy.decoration = dst->decoration;
165 src_copy.type = dst->type;
166 *dst = src_copy;
167
168 if (dst->value_type == vtn_value_type_pointer)
169 dst->pointer = vtn_decorate_pointer(b, dst, dst->pointer);
170 }
171
172 static struct vtn_access_chain *
vtn_access_chain_create(struct vtn_builder * b,unsigned length)173 vtn_access_chain_create(struct vtn_builder *b, unsigned length)
174 {
175 struct vtn_access_chain *chain;
176
177 /* Subtract 1 from the length since there's already one built in */
178 size_t size = sizeof(*chain) +
179 (MAX2(length, 1) - 1) * sizeof(chain->link[0]);
180 chain = vtn_zalloc_size(b, size);
181 chain->length = length;
182
183 return chain;
184 }
185
186 static bool
vtn_mode_is_cross_invocation(struct vtn_builder * b,enum vtn_variable_mode mode)187 vtn_mode_is_cross_invocation(struct vtn_builder *b,
188 enum vtn_variable_mode mode)
189 {
190 /* TODO: add TCS here once nir_remove_unused_io_vars() can handle vector indexing. */
191 bool cross_invocation_outputs = b->shader->info.stage == MESA_SHADER_MESH;
192 return mode == vtn_variable_mode_ssbo ||
193 mode == vtn_variable_mode_ubo ||
194 mode == vtn_variable_mode_phys_ssbo ||
195 mode == vtn_variable_mode_push_constant ||
196 mode == vtn_variable_mode_workgroup ||
197 mode == vtn_variable_mode_cross_workgroup ||
198 mode == vtn_variable_mode_node_payload ||
199 (cross_invocation_outputs && mode == vtn_variable_mode_output) ||
200 (b->shader->info.stage == MESA_SHADER_TASK && mode == vtn_variable_mode_task_payload);
201 }
202
203 static bool
vtn_pointer_is_external_block(struct vtn_builder * b,struct vtn_pointer * ptr)204 vtn_pointer_is_external_block(struct vtn_builder *b,
205 struct vtn_pointer *ptr)
206 {
207 return ptr->mode == vtn_variable_mode_ssbo ||
208 ptr->mode == vtn_variable_mode_ubo ||
209 ptr->mode == vtn_variable_mode_phys_ssbo;
210 }
211
212 static nir_def *
vtn_access_link_as_ssa(struct vtn_builder * b,struct vtn_access_link link,unsigned stride,unsigned bit_size)213 vtn_access_link_as_ssa(struct vtn_builder *b, struct vtn_access_link link,
214 unsigned stride, unsigned bit_size)
215 {
216 vtn_assert(stride > 0);
217 if (link.mode == vtn_access_mode_literal) {
218 return nir_imm_intN_t(&b->nb, link.id * stride, bit_size);
219 } else {
220 nir_def *ssa = vtn_ssa_value(b, link.id)->def;
221 if (ssa->bit_size != bit_size)
222 ssa = nir_i2iN(&b->nb, ssa, bit_size);
223 return nir_imul_imm(&b->nb, ssa, stride);
224 }
225 }
226
227 static VkDescriptorType
vk_desc_type_for_mode(struct vtn_builder * b,enum vtn_variable_mode mode)228 vk_desc_type_for_mode(struct vtn_builder *b, enum vtn_variable_mode mode)
229 {
230 switch (mode) {
231 case vtn_variable_mode_ubo:
232 return VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
233 case vtn_variable_mode_ssbo:
234 return VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
235 case vtn_variable_mode_accel_struct:
236 return VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR;
237 default:
238 vtn_fail("Invalid mode for vulkan_resource_index");
239 }
240 }
241
242 static nir_def *
vtn_variable_resource_index(struct vtn_builder * b,struct vtn_variable * var,nir_def * desc_array_index)243 vtn_variable_resource_index(struct vtn_builder *b, struct vtn_variable *var,
244 nir_def *desc_array_index)
245 {
246 vtn_assert(b->options->environment == NIR_SPIRV_VULKAN);
247
248 if (!desc_array_index)
249 desc_array_index = nir_imm_int(&b->nb, 0);
250
251 if (b->vars_used_indirectly) {
252 vtn_assert(var->var);
253 _mesa_set_add(b->vars_used_indirectly, var->var);
254 }
255
256 if (b->vars_used_indirectly) {
257 vtn_assert(var->var);
258 _mesa_set_add(b->vars_used_indirectly, var->var);
259 }
260
261 nir_intrinsic_instr *instr =
262 nir_intrinsic_instr_create(b->nb.shader,
263 nir_intrinsic_vulkan_resource_index);
264 instr->src[0] = nir_src_for_ssa(desc_array_index);
265 nir_intrinsic_set_desc_set(instr, var->descriptor_set);
266 nir_intrinsic_set_binding(instr, var->binding);
267 nir_intrinsic_set_desc_type(instr, vk_desc_type_for_mode(b, var->mode));
268
269 nir_address_format addr_format = vtn_mode_to_address_format(b, var->mode);
270 nir_def_init(&instr->instr, &instr->def,
271 nir_address_format_num_components(addr_format),
272 nir_address_format_bit_size(addr_format));
273 instr->num_components = instr->def.num_components;
274 nir_builder_instr_insert(&b->nb, &instr->instr);
275
276 return &instr->def;
277 }
278
279 static nir_def *
vtn_resource_reindex(struct vtn_builder * b,enum vtn_variable_mode mode,nir_def * base_index,nir_def * offset_index)280 vtn_resource_reindex(struct vtn_builder *b, enum vtn_variable_mode mode,
281 nir_def *base_index, nir_def *offset_index)
282 {
283 vtn_assert(b->options->environment == NIR_SPIRV_VULKAN);
284
285 nir_intrinsic_instr *instr =
286 nir_intrinsic_instr_create(b->nb.shader,
287 nir_intrinsic_vulkan_resource_reindex);
288 instr->src[0] = nir_src_for_ssa(base_index);
289 instr->src[1] = nir_src_for_ssa(offset_index);
290 nir_intrinsic_set_desc_type(instr, vk_desc_type_for_mode(b, mode));
291
292 nir_address_format addr_format = vtn_mode_to_address_format(b, mode);
293 nir_def_init(&instr->instr, &instr->def,
294 nir_address_format_num_components(addr_format),
295 nir_address_format_bit_size(addr_format));
296 instr->num_components = instr->def.num_components;
297 nir_builder_instr_insert(&b->nb, &instr->instr);
298
299 return &instr->def;
300 }
301
302 static nir_def *
vtn_descriptor_load(struct vtn_builder * b,enum vtn_variable_mode mode,nir_def * desc_index)303 vtn_descriptor_load(struct vtn_builder *b, enum vtn_variable_mode mode,
304 nir_def *desc_index)
305 {
306 vtn_assert(b->options->environment == NIR_SPIRV_VULKAN);
307
308 nir_intrinsic_instr *desc_load =
309 nir_intrinsic_instr_create(b->nb.shader,
310 nir_intrinsic_load_vulkan_descriptor);
311 desc_load->src[0] = nir_src_for_ssa(desc_index);
312 nir_intrinsic_set_desc_type(desc_load, vk_desc_type_for_mode(b, mode));
313
314 nir_address_format addr_format = vtn_mode_to_address_format(b, mode);
315 nir_def_init(&desc_load->instr, &desc_load->def,
316 nir_address_format_num_components(addr_format),
317 nir_address_format_bit_size(addr_format));
318 desc_load->num_components = desc_load->def.num_components;
319 nir_builder_instr_insert(&b->nb, &desc_load->instr);
320
321 return &desc_load->def;
322 }
323
324 static struct vtn_pointer *
vtn_pointer_dereference(struct vtn_builder * b,struct vtn_pointer * base,struct vtn_access_chain * deref_chain)325 vtn_pointer_dereference(struct vtn_builder *b,
326 struct vtn_pointer *base,
327 struct vtn_access_chain *deref_chain)
328 {
329 struct vtn_type *type = base->type;
330 enum gl_access_qualifier access = base->access | deref_chain->access;
331 unsigned idx = 0;
332
333 nir_deref_instr *tail;
334 if (base->deref) {
335 tail = base->deref;
336 } else if (b->options->environment == NIR_SPIRV_VULKAN &&
337 (vtn_pointer_is_external_block(b, base) ||
338 base->mode == vtn_variable_mode_accel_struct)) {
339 nir_def *block_index = base->block_index;
340
341 /* We dereferencing an external block pointer. Correctness of this
342 * operation relies on one particular line in the SPIR-V spec, section
343 * entitled "Validation Rules for Shader Capabilities":
344 *
345 * "Block and BufferBlock decorations cannot decorate a structure
346 * type that is nested at any level inside another structure type
347 * decorated with Block or BufferBlock."
348 *
349 * This means that we can detect the point where we cross over from
350 * descriptor indexing to buffer indexing by looking for the block
351 * decorated struct type. Anything before the block decorated struct
352 * type is a descriptor indexing operation and anything after the block
353 * decorated struct is a buffer offset operation.
354 */
355
356 /* Figure out the descriptor array index if any
357 *
358 * Some of the Vulkan CTS tests with hand-rolled SPIR-V have been known
359 * to forget the Block or BufferBlock decoration from time to time.
360 * It's more robust if we check for both !block_index and for the type
361 * to contain a block. This way there's a decent chance that arrays of
362 * UBOs/SSBOs will work correctly even if variable pointers are
363 * completley toast.
364 */
365 nir_def *desc_arr_idx = NULL;
366 if (!block_index || vtn_type_contains_block(b, type) ||
367 base->mode == vtn_variable_mode_accel_struct) {
368 /* If our type contains a block, then we're still outside the block
369 * and we need to process enough levels of dereferences to get inside
370 * of it. Same applies to acceleration structures.
371 */
372 if (deref_chain->ptr_as_array) {
373 unsigned aoa_size = glsl_get_aoa_size(type->type);
374 desc_arr_idx = vtn_access_link_as_ssa(b, deref_chain->link[idx],
375 MAX2(aoa_size, 1), 32);
376 idx++;
377 }
378
379 for (; idx < deref_chain->length; idx++) {
380 if (type->base_type != vtn_base_type_array) {
381 vtn_assert(type->base_type == vtn_base_type_struct);
382 break;
383 }
384
385 unsigned aoa_size = glsl_get_aoa_size(type->array_element->type);
386 nir_def *arr_offset =
387 vtn_access_link_as_ssa(b, deref_chain->link[idx],
388 MAX2(aoa_size, 1), 32);
389 if (desc_arr_idx)
390 desc_arr_idx = nir_iadd(&b->nb, desc_arr_idx, arr_offset);
391 else
392 desc_arr_idx = arr_offset;
393
394 type = type->array_element;
395 access |= type->access;
396 }
397 }
398
399 if (!block_index) {
400 vtn_assert(base->var && base->type);
401 block_index = vtn_variable_resource_index(b, base->var, desc_arr_idx);
402 } else if (desc_arr_idx) {
403 block_index = vtn_resource_reindex(b, base->mode,
404 block_index, desc_arr_idx);
405 }
406
407 if (idx == deref_chain->length) {
408 /* The entire deref was consumed in finding the block index. Return
409 * a pointer which just has a block index and a later access chain
410 * will dereference deeper.
411 */
412 struct vtn_pointer *ptr = vtn_zalloc(b, struct vtn_pointer);
413 ptr->mode = base->mode;
414 ptr->type = type;
415 ptr->block_index = block_index;
416 ptr->access = access;
417 return ptr;
418 }
419
420 /* If we got here, there's more access chain to handle and we have the
421 * final block index. Insert a descriptor load and cast to a deref to
422 * start the deref chain.
423 */
424 nir_def *desc = vtn_descriptor_load(b, base->mode, block_index);
425
426 assert(base->mode == vtn_variable_mode_ssbo ||
427 base->mode == vtn_variable_mode_ubo);
428 nir_variable_mode nir_mode =
429 base->mode == vtn_variable_mode_ssbo ? nir_var_mem_ssbo : nir_var_mem_ubo;
430 const uint32_t align = base->mode == vtn_variable_mode_ssbo ?
431 b->options->min_ssbo_alignment : b->options->min_ubo_alignment;
432
433 tail = nir_build_deref_cast(&b->nb, desc, nir_mode,
434 vtn_type_get_nir_type(b, type, base->mode),
435 base->ptr_type->stride);
436 tail->cast.align_mul = align;
437 tail->cast.align_offset = 0;
438
439 } else if (base->mode == vtn_variable_mode_shader_record) {
440 /* For ShaderRecordBufferKHR variables, we don't have a nir_variable.
441 * It's just a fancy handle around a pointer to the shader record for
442 * the current shader.
443 */
444 tail = nir_build_deref_cast(&b->nb, nir_load_shader_record_ptr(&b->nb),
445 nir_var_mem_constant,
446 vtn_type_get_nir_type(b, base->type,
447 base->mode),
448 0 /* ptr_as_array stride */);
449 } else {
450 assert(base->var && base->var->var);
451 tail = nir_build_deref_var(&b->nb, base->var->var);
452 if (base->ptr_type && base->ptr_type->type) {
453 tail->def.num_components =
454 glsl_get_vector_elements(base->ptr_type->type);
455 tail->def.bit_size = glsl_get_bit_size(base->ptr_type->type);
456 }
457 }
458
459 if (idx == 0 && deref_chain->ptr_as_array) {
460 /* We start with a deref cast to get the stride. Hopefully, we'll be
461 * able to delete that cast eventually.
462 */
463 tail = nir_build_deref_cast(&b->nb, &tail->def, tail->modes,
464 tail->type, base->ptr_type->stride);
465
466 nir_def *index = vtn_access_link_as_ssa(b, deref_chain->link[0], 1,
467 tail->def.bit_size);
468 tail = nir_build_deref_ptr_as_array(&b->nb, tail, index);
469 idx++;
470 }
471
472 for (; idx < deref_chain->length; idx++) {
473 if (glsl_type_is_struct_or_ifc(type->type)) {
474 vtn_assert(deref_chain->link[idx].mode == vtn_access_mode_literal);
475 unsigned field = deref_chain->link[idx].id;
476 tail = nir_build_deref_struct(&b->nb, tail, field);
477 type = type->members[field];
478 } else {
479 nir_def *arr_index =
480 vtn_access_link_as_ssa(b, deref_chain->link[idx], 1,
481 tail->def.bit_size);
482 if (type->base_type == vtn_base_type_cooperative_matrix) {
483 const struct glsl_type *element_type = glsl_get_cmat_element(type->type);
484 tail = nir_build_deref_cast(&b->nb, &tail->def, tail->modes,
485 glsl_array_type(element_type, 0, 0), 0);
486 type = type->component_type;
487 } else {
488 type = type->array_element;
489 }
490 tail = nir_build_deref_array(&b->nb, tail, arr_index);
491 }
492 tail->arr.in_bounds = deref_chain->in_bounds;
493
494 access |= type->access;
495 }
496
497 struct vtn_pointer *ptr = vtn_zalloc(b, struct vtn_pointer);
498 ptr->mode = base->mode;
499 ptr->type = type;
500 ptr->var = base->var;
501 ptr->deref = tail;
502 ptr->access = access;
503
504 return ptr;
505 }
506
507 nir_deref_instr *
vtn_pointer_to_deref(struct vtn_builder * b,struct vtn_pointer * ptr)508 vtn_pointer_to_deref(struct vtn_builder *b, struct vtn_pointer *ptr)
509 {
510 if (!ptr->deref) {
511 struct vtn_access_chain chain = {
512 .length = 0,
513 };
514 ptr = vtn_pointer_dereference(b, ptr, &chain);
515 }
516
517 return ptr->deref;
518 }
519
520 static void
_vtn_local_load_store(struct vtn_builder * b,bool load,nir_deref_instr * deref,struct vtn_ssa_value * inout,enum gl_access_qualifier access)521 _vtn_local_load_store(struct vtn_builder *b, bool load, nir_deref_instr *deref,
522 struct vtn_ssa_value *inout,
523 enum gl_access_qualifier access)
524 {
525 if (glsl_type_is_cmat(deref->type)) {
526 if (load) {
527 nir_deref_instr *temp = vtn_create_cmat_temporary(b, deref->type, "cmat_ssa");
528 nir_cmat_copy(&b->nb, &temp->def, &deref->def);
529 vtn_set_ssa_value_var(b, inout, temp->var);
530 } else {
531 nir_deref_instr *src_deref = vtn_get_deref_for_ssa_value(b, inout);
532 nir_cmat_copy(&b->nb, &deref->def, &src_deref->def);
533 }
534 } else if (glsl_type_is_vector_or_scalar(deref->type)) {
535 if (load) {
536 inout->def = nir_load_deref_with_access(&b->nb, deref, access);
537 } else {
538 nir_store_deref_with_access(&b->nb, deref, inout->def, ~0, access);
539 }
540 } else if (glsl_type_is_array(deref->type) ||
541 glsl_type_is_matrix(deref->type)) {
542 unsigned elems = glsl_get_length(deref->type);
543 for (unsigned i = 0; i < elems; i++) {
544 nir_deref_instr *child =
545 nir_build_deref_array_imm(&b->nb, deref, i);
546 _vtn_local_load_store(b, load, child, inout->elems[i], access);
547 }
548 } else {
549 vtn_assert(glsl_type_is_struct_or_ifc(deref->type));
550 unsigned elems = glsl_get_length(deref->type);
551 for (unsigned i = 0; i < elems; i++) {
552 nir_deref_instr *child = nir_build_deref_struct(&b->nb, deref, i);
553 _vtn_local_load_store(b, load, child, inout->elems[i], access);
554 }
555 }
556 }
557
558 nir_deref_instr *
vtn_nir_deref(struct vtn_builder * b,uint32_t id)559 vtn_nir_deref(struct vtn_builder *b, uint32_t id)
560 {
561 struct vtn_pointer *ptr = vtn_pointer(b, id);
562 return vtn_pointer_to_deref(b, ptr);
563 }
564
565 /*
566 * Gets the NIR-level deref tail, which may have as a child an array deref
567 * selecting which component due to OpAccessChain supporting per-component
568 * indexing in SPIR-V.
569 */
570 static nir_deref_instr *
get_deref_tail(nir_deref_instr * deref)571 get_deref_tail(nir_deref_instr *deref)
572 {
573 if (deref->deref_type != nir_deref_type_array)
574 return deref;
575
576 nir_deref_instr *parent =
577 nir_instr_as_deref(deref->parent.ssa->parent_instr);
578
579 if (parent->deref_type == nir_deref_type_cast &&
580 parent->parent.ssa->parent_instr->type == nir_instr_type_deref) {
581 nir_deref_instr *grandparent =
582 nir_instr_as_deref(parent->parent.ssa->parent_instr);
583
584 if (glsl_type_is_cmat(grandparent->type))
585 return grandparent;
586 }
587
588 if (glsl_type_is_vector(parent->type) ||
589 glsl_type_is_cmat(parent->type))
590 return parent;
591 else
592 return deref;
593 }
594
595 struct vtn_ssa_value *
vtn_local_load(struct vtn_builder * b,nir_deref_instr * src,enum gl_access_qualifier access)596 vtn_local_load(struct vtn_builder *b, nir_deref_instr *src,
597 enum gl_access_qualifier access)
598 {
599 nir_deref_instr *src_tail = get_deref_tail(src);
600 struct vtn_ssa_value *val = vtn_create_ssa_value(b, src_tail->type);
601 _vtn_local_load_store(b, true, src_tail, val, access);
602
603 if (src_tail != src) {
604 val->type = src->type;
605
606 if (glsl_type_is_cmat(src_tail->type)) {
607 assert(val->is_variable);
608 nir_deref_instr *mat = vtn_get_deref_for_ssa_value(b, val);
609
610 /* Reset is_variable because we are repurposing val. */
611 val->is_variable = false;
612 val->def = nir_cmat_extract(&b->nb,
613 glsl_get_bit_size(src->type),
614 &mat->def, src->arr.index.ssa);
615 } else {
616 val->def = nir_vector_extract(&b->nb, val->def, src->arr.index.ssa);
617 }
618 }
619
620 return val;
621 }
622
623 void
vtn_local_store(struct vtn_builder * b,struct vtn_ssa_value * src,nir_deref_instr * dest,enum gl_access_qualifier access)624 vtn_local_store(struct vtn_builder *b, struct vtn_ssa_value *src,
625 nir_deref_instr *dest, enum gl_access_qualifier access)
626 {
627 nir_deref_instr *dest_tail = get_deref_tail(dest);
628
629 if (dest_tail != dest) {
630 struct vtn_ssa_value *val = vtn_create_ssa_value(b, dest_tail->type);
631 _vtn_local_load_store(b, true, dest_tail, val, access);
632
633 if (glsl_type_is_cmat(dest_tail->type)) {
634 nir_deref_instr *mat = vtn_get_deref_for_ssa_value(b, val);
635 nir_deref_instr *dst = vtn_create_cmat_temporary(b, dest_tail->type, "cmat_insert");
636 nir_cmat_insert(&b->nb, &dst->def, src->def, &mat->def, dest->arr.index.ssa);
637 vtn_set_ssa_value_var(b, val, dst->var);
638 } else {
639 val->def = nir_vector_insert(&b->nb, val->def, src->def,
640 dest->arr.index.ssa);
641 }
642
643 _vtn_local_load_store(b, false, dest_tail, val, access);
644 } else {
645 _vtn_local_load_store(b, false, dest_tail, src, access);
646 }
647 }
648
649 static nir_def *
vtn_pointer_to_descriptor(struct vtn_builder * b,struct vtn_pointer * ptr)650 vtn_pointer_to_descriptor(struct vtn_builder *b, struct vtn_pointer *ptr)
651 {
652 assert(ptr->mode == vtn_variable_mode_accel_struct);
653 if (!ptr->block_index) {
654 struct vtn_access_chain chain = {
655 .length = 0,
656 };
657 ptr = vtn_pointer_dereference(b, ptr, &chain);
658 }
659
660 vtn_assert(ptr->deref == NULL && ptr->block_index != NULL);
661 return vtn_descriptor_load(b, ptr->mode, ptr->block_index);
662 }
663
664 static void
_vtn_variable_load_store(struct vtn_builder * b,bool load,struct vtn_pointer * ptr,enum gl_access_qualifier access,struct vtn_ssa_value ** inout)665 _vtn_variable_load_store(struct vtn_builder *b, bool load,
666 struct vtn_pointer *ptr,
667 enum gl_access_qualifier access,
668 struct vtn_ssa_value **inout)
669 {
670 if (ptr->mode == vtn_variable_mode_uniform ||
671 ptr->mode == vtn_variable_mode_image) {
672 if (ptr->type->base_type == vtn_base_type_image ||
673 ptr->type->base_type == vtn_base_type_sampler) {
674 /* See also our handling of OpTypeSampler and OpTypeImage */
675 vtn_assert(load);
676 (*inout)->def = vtn_pointer_to_ssa(b, ptr);
677 return;
678 } else if (ptr->type->base_type == vtn_base_type_sampled_image) {
679 /* See also our handling of OpTypeSampledImage */
680 vtn_assert(load);
681 struct vtn_sampled_image si = {
682 .image = vtn_pointer_to_deref(b, ptr),
683 .sampler = vtn_pointer_to_deref(b, ptr),
684 };
685 (*inout)->def = vtn_sampled_image_to_nir_ssa(b, si);
686 return;
687 }
688 } else if (ptr->mode == vtn_variable_mode_accel_struct) {
689 vtn_assert(load);
690 (*inout)->def = vtn_pointer_to_descriptor(b, ptr);
691 return;
692 }
693
694 enum glsl_base_type base_type = glsl_get_base_type(ptr->type->type);
695 switch (base_type) {
696 case GLSL_TYPE_UINT:
697 case GLSL_TYPE_INT:
698 case GLSL_TYPE_UINT16:
699 case GLSL_TYPE_INT16:
700 case GLSL_TYPE_UINT8:
701 case GLSL_TYPE_INT8:
702 case GLSL_TYPE_UINT64:
703 case GLSL_TYPE_INT64:
704 case GLSL_TYPE_FLOAT:
705 case GLSL_TYPE_FLOAT16:
706 case GLSL_TYPE_BOOL:
707 case GLSL_TYPE_DOUBLE:
708 case GLSL_TYPE_COOPERATIVE_MATRIX:
709 if (glsl_type_is_vector_or_scalar(ptr->type->type)) {
710 /* We hit a vector or scalar; go ahead and emit the load[s] */
711 nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr);
712 if (vtn_mode_is_cross_invocation(b, ptr->mode)) {
713 /* If it's cross-invocation, we call nir_load/store_deref
714 * directly. The vtn_local_load/store helpers are too clever and
715 * do magic to avoid array derefs of vectors. That magic is both
716 * less efficient than the direct load/store and, in the case of
717 * stores, is broken because it creates a race condition if two
718 * threads are writing to different components of the same vector
719 * due to the load+insert+store it uses to emulate the array
720 * deref.
721 */
722 if (load) {
723 (*inout)->def = nir_load_deref_with_access(&b->nb, deref,
724 ptr->type->access | access);
725 } else {
726 nir_store_deref_with_access(&b->nb, deref, (*inout)->def, ~0,
727 ptr->type->access | access);
728 }
729 } else {
730 if (load) {
731 *inout = vtn_local_load(b, deref, ptr->type->access | access);
732 } else {
733 vtn_local_store(b, *inout, deref, ptr->type->access | access);
734 }
735 }
736 return;
737 }
738 FALLTHROUGH;
739
740 case GLSL_TYPE_INTERFACE:
741 case GLSL_TYPE_ARRAY:
742 case GLSL_TYPE_STRUCT: {
743 unsigned elems = glsl_get_length(ptr->type->type);
744 struct vtn_access_chain chain = {
745 .length = 1,
746 .link = {
747 { .mode = vtn_access_mode_literal, },
748 }
749 };
750 for (unsigned i = 0; i < elems; i++) {
751 chain.link[0].id = i;
752 struct vtn_pointer *elem = vtn_pointer_dereference(b, ptr, &chain);
753 _vtn_variable_load_store(b, load, elem, ptr->type->access | access,
754 &(*inout)->elems[i]);
755 }
756 return;
757 }
758
759 default:
760 vtn_fail("Invalid access chain type");
761 }
762 }
763
764 struct vtn_ssa_value *
vtn_variable_load(struct vtn_builder * b,struct vtn_pointer * src,enum gl_access_qualifier access)765 vtn_variable_load(struct vtn_builder *b, struct vtn_pointer *src,
766 enum gl_access_qualifier access)
767 {
768 struct vtn_ssa_value *val = vtn_create_ssa_value(b, src->type->type);
769 _vtn_variable_load_store(b, true, src, src->access | access, &val);
770 return val;
771 }
772
773 void
vtn_variable_store(struct vtn_builder * b,struct vtn_ssa_value * src,struct vtn_pointer * dest,enum gl_access_qualifier access)774 vtn_variable_store(struct vtn_builder *b, struct vtn_ssa_value *src,
775 struct vtn_pointer *dest, enum gl_access_qualifier access)
776 {
777 _vtn_variable_load_store(b, false, dest, dest->access | access, &src);
778 }
779
780 static void
_vtn_variable_copy(struct vtn_builder * b,struct vtn_pointer * dest,struct vtn_pointer * src,enum gl_access_qualifier dest_access,enum gl_access_qualifier src_access)781 _vtn_variable_copy(struct vtn_builder *b, struct vtn_pointer *dest,
782 struct vtn_pointer *src, enum gl_access_qualifier dest_access,
783 enum gl_access_qualifier src_access)
784 {
785 vtn_assert(glsl_get_bare_type(src->type->type) ==
786 glsl_get_bare_type(dest->type->type));
787 enum glsl_base_type base_type = glsl_get_base_type(src->type->type);
788 switch (base_type) {
789 case GLSL_TYPE_UINT:
790 case GLSL_TYPE_INT:
791 case GLSL_TYPE_UINT16:
792 case GLSL_TYPE_INT16:
793 case GLSL_TYPE_UINT8:
794 case GLSL_TYPE_INT8:
795 case GLSL_TYPE_UINT64:
796 case GLSL_TYPE_INT64:
797 case GLSL_TYPE_FLOAT:
798 case GLSL_TYPE_FLOAT16:
799 case GLSL_TYPE_DOUBLE:
800 case GLSL_TYPE_BOOL:
801 /* At this point, we have a scalar, vector, or matrix so we know that
802 * there cannot be any structure splitting still in the way. By
803 * stopping at the matrix level rather than the vector level, we
804 * ensure that matrices get loaded in the optimal way even if they
805 * are storred row-major in a UBO.
806 */
807 vtn_variable_store(b, vtn_variable_load(b, src, src_access), dest, dest_access);
808 return;
809
810 case GLSL_TYPE_INTERFACE:
811 case GLSL_TYPE_ARRAY:
812 case GLSL_TYPE_STRUCT: {
813 struct vtn_access_chain chain = {
814 .length = 1,
815 .link = {
816 { .mode = vtn_access_mode_literal, },
817 }
818 };
819 unsigned elems = glsl_get_length(src->type->type);
820 for (unsigned i = 0; i < elems; i++) {
821 chain.link[0].id = i;
822 struct vtn_pointer *src_elem =
823 vtn_pointer_dereference(b, src, &chain);
824 struct vtn_pointer *dest_elem =
825 vtn_pointer_dereference(b, dest, &chain);
826
827 _vtn_variable_copy(b, dest_elem, src_elem, dest_access, src_access);
828 }
829 return;
830 }
831
832 default:
833 vtn_fail("Invalid access chain type");
834 }
835 }
836
837 static void
vtn_variable_copy(struct vtn_builder * b,struct vtn_pointer * dest,struct vtn_pointer * src,enum gl_access_qualifier dest_access,enum gl_access_qualifier src_access)838 vtn_variable_copy(struct vtn_builder *b, struct vtn_pointer *dest,
839 struct vtn_pointer *src, enum gl_access_qualifier dest_access,
840 enum gl_access_qualifier src_access)
841 {
842 /* TODO: At some point, we should add a special-case for when we can
843 * just emit a copy_var intrinsic.
844 */
845 _vtn_variable_copy(b, dest, src, dest_access, src_access);
846 }
847
848 static void
set_mode_system_value(struct vtn_builder * b,nir_variable_mode * mode)849 set_mode_system_value(struct vtn_builder *b, nir_variable_mode *mode)
850 {
851 vtn_assert(*mode == nir_var_system_value || *mode == nir_var_shader_in ||
852 /* Hack for NV_mesh_shader due to lack of dedicated storage class. */
853 *mode == nir_var_mem_task_payload ||
854 /* Hack for DPCPP, see https://github.com/intel/llvm/issues/6703 */
855 *mode == nir_var_mem_global);
856 *mode = nir_var_system_value;
857 }
858
859 static void
vtn_get_builtin_location(struct vtn_builder * b,SpvBuiltIn builtin,int * location,nir_variable_mode * mode)860 vtn_get_builtin_location(struct vtn_builder *b,
861 SpvBuiltIn builtin, int *location,
862 nir_variable_mode *mode)
863 {
864 switch (builtin) {
865 case SpvBuiltInPosition:
866 case SpvBuiltInPositionPerViewNV:
867 *location = VARYING_SLOT_POS;
868 break;
869 case SpvBuiltInPointSize:
870 *location = VARYING_SLOT_PSIZ;
871 break;
872 case SpvBuiltInClipDistance:
873 case SpvBuiltInClipDistancePerViewNV:
874 *location = VARYING_SLOT_CLIP_DIST0;
875 break;
876 case SpvBuiltInCullDistance:
877 case SpvBuiltInCullDistancePerViewNV:
878 *location = VARYING_SLOT_CULL_DIST0;
879 break;
880 case SpvBuiltInVertexId:
881 case SpvBuiltInVertexIndex:
882 /* The Vulkan spec defines VertexIndex to be non-zero-based and doesn't
883 * allow VertexId. The ARB_gl_spirv spec defines VertexId to be the
884 * same as gl_VertexID, which is non-zero-based, and removes
885 * VertexIndex. Since they're both defined to be non-zero-based, we use
886 * SYSTEM_VALUE_VERTEX_ID for both.
887 */
888 *location = SYSTEM_VALUE_VERTEX_ID;
889 set_mode_system_value(b, mode);
890 break;
891 case SpvBuiltInInstanceIndex:
892 *location = SYSTEM_VALUE_INSTANCE_INDEX;
893 set_mode_system_value(b, mode);
894 break;
895 case SpvBuiltInInstanceId:
896 *location = SYSTEM_VALUE_INSTANCE_ID;
897 set_mode_system_value(b, mode);
898 break;
899 case SpvBuiltInPrimitiveId:
900 if (b->shader->info.stage == MESA_SHADER_FRAGMENT) {
901 vtn_assert(*mode == nir_var_shader_in);
902 *location = VARYING_SLOT_PRIMITIVE_ID;
903 } else if (*mode == nir_var_shader_out) {
904 *location = VARYING_SLOT_PRIMITIVE_ID;
905 } else {
906 *location = SYSTEM_VALUE_PRIMITIVE_ID;
907 set_mode_system_value(b, mode);
908 }
909 break;
910 case SpvBuiltInInvocationId:
911 *location = SYSTEM_VALUE_INVOCATION_ID;
912 set_mode_system_value(b, mode);
913 break;
914 case SpvBuiltInLayer:
915 case SpvBuiltInLayerPerViewNV:
916 *location = VARYING_SLOT_LAYER;
917 if (b->shader->info.stage == MESA_SHADER_FRAGMENT)
918 *mode = nir_var_shader_in;
919 else if (b->shader->info.stage == MESA_SHADER_GEOMETRY)
920 *mode = nir_var_shader_out;
921 else if (b->options && b->options->caps.shader_viewport_index_layer &&
922 (b->shader->info.stage == MESA_SHADER_VERTEX ||
923 b->shader->info.stage == MESA_SHADER_TESS_EVAL ||
924 b->shader->info.stage == MESA_SHADER_MESH))
925 *mode = nir_var_shader_out;
926 else
927 vtn_fail("invalid stage for SpvBuiltInLayer");
928 break;
929 case SpvBuiltInViewportIndex:
930 *location = VARYING_SLOT_VIEWPORT;
931 if (b->shader->info.stage == MESA_SHADER_GEOMETRY)
932 *mode = nir_var_shader_out;
933 else if (b->options && b->options->caps.shader_viewport_index_layer &&
934 (b->shader->info.stage == MESA_SHADER_VERTEX ||
935 b->shader->info.stage == MESA_SHADER_TESS_EVAL ||
936 b->shader->info.stage == MESA_SHADER_MESH))
937 *mode = nir_var_shader_out;
938 else if (b->shader->info.stage == MESA_SHADER_FRAGMENT)
939 *mode = nir_var_shader_in;
940 else
941 vtn_fail("invalid stage for SpvBuiltInViewportIndex");
942 break;
943 case SpvBuiltInViewportMaskNV:
944 case SpvBuiltInViewportMaskPerViewNV:
945 *location = VARYING_SLOT_VIEWPORT_MASK;
946 *mode = nir_var_shader_out;
947 break;
948 case SpvBuiltInTessLevelOuter:
949 *location = VARYING_SLOT_TESS_LEVEL_OUTER;
950 break;
951 case SpvBuiltInTessLevelInner:
952 *location = VARYING_SLOT_TESS_LEVEL_INNER;
953 break;
954 case SpvBuiltInTessCoord:
955 *location = SYSTEM_VALUE_TESS_COORD;
956 set_mode_system_value(b, mode);
957 break;
958 case SpvBuiltInPatchVertices:
959 *location = SYSTEM_VALUE_VERTICES_IN;
960 set_mode_system_value(b, mode);
961 break;
962 case SpvBuiltInFragCoord:
963 vtn_assert(*mode == nir_var_shader_in);
964 *mode = nir_var_system_value;
965 *location = SYSTEM_VALUE_FRAG_COORD;
966 break;
967 case SpvBuiltInPointCoord:
968 vtn_assert(*mode == nir_var_shader_in);
969 set_mode_system_value(b, mode);
970 *location = SYSTEM_VALUE_POINT_COORD;
971 break;
972 case SpvBuiltInFrontFacing:
973 *location = SYSTEM_VALUE_FRONT_FACE;
974 set_mode_system_value(b, mode);
975 break;
976 case SpvBuiltInSampleId:
977 *location = SYSTEM_VALUE_SAMPLE_ID;
978 set_mode_system_value(b, mode);
979 break;
980 case SpvBuiltInSamplePosition:
981 *location = SYSTEM_VALUE_SAMPLE_POS;
982 set_mode_system_value(b, mode);
983 break;
984 case SpvBuiltInSampleMask:
985 if (*mode == nir_var_shader_out) {
986 *location = FRAG_RESULT_SAMPLE_MASK;
987 } else {
988 *location = SYSTEM_VALUE_SAMPLE_MASK_IN;
989 set_mode_system_value(b, mode);
990 }
991 break;
992 case SpvBuiltInFragDepth:
993 *location = FRAG_RESULT_DEPTH;
994 vtn_assert(*mode == nir_var_shader_out);
995 break;
996 case SpvBuiltInHelperInvocation:
997 *location = SYSTEM_VALUE_HELPER_INVOCATION;
998 set_mode_system_value(b, mode);
999 break;
1000 case SpvBuiltInNumWorkgroups:
1001 *location = SYSTEM_VALUE_NUM_WORKGROUPS;
1002 set_mode_system_value(b, mode);
1003 break;
1004 case SpvBuiltInWorkgroupSize:
1005 case SpvBuiltInEnqueuedWorkgroupSize:
1006 *location = SYSTEM_VALUE_WORKGROUP_SIZE;
1007 set_mode_system_value(b, mode);
1008 break;
1009 case SpvBuiltInWorkgroupId:
1010 *location = SYSTEM_VALUE_WORKGROUP_ID;
1011 set_mode_system_value(b, mode);
1012 break;
1013 case SpvBuiltInLocalInvocationId:
1014 *location = SYSTEM_VALUE_LOCAL_INVOCATION_ID;
1015 set_mode_system_value(b, mode);
1016 break;
1017 case SpvBuiltInLocalInvocationIndex:
1018 *location = SYSTEM_VALUE_LOCAL_INVOCATION_INDEX;
1019 set_mode_system_value(b, mode);
1020 break;
1021 case SpvBuiltInGlobalInvocationId:
1022 *location = SYSTEM_VALUE_GLOBAL_INVOCATION_ID;
1023 set_mode_system_value(b, mode);
1024 break;
1025 case SpvBuiltInGlobalLinearId:
1026 *location = SYSTEM_VALUE_GLOBAL_INVOCATION_INDEX;
1027 set_mode_system_value(b, mode);
1028 break;
1029 case SpvBuiltInGlobalOffset:
1030 *location = SYSTEM_VALUE_BASE_GLOBAL_INVOCATION_ID;
1031 set_mode_system_value(b, mode);
1032 break;
1033 case SpvBuiltInBaseVertex:
1034 /* OpenGL gl_BaseVertex (SYSTEM_VALUE_BASE_VERTEX) is not the same
1035 * semantic as Vulkan BaseVertex (SYSTEM_VALUE_FIRST_VERTEX).
1036 */
1037 if (b->options->environment == NIR_SPIRV_OPENGL)
1038 *location = SYSTEM_VALUE_BASE_VERTEX;
1039 else
1040 *location = SYSTEM_VALUE_FIRST_VERTEX;
1041 set_mode_system_value(b, mode);
1042 break;
1043 case SpvBuiltInBaseInstance:
1044 *location = SYSTEM_VALUE_BASE_INSTANCE;
1045 set_mode_system_value(b, mode);
1046 break;
1047 case SpvBuiltInDrawIndex:
1048 *location = SYSTEM_VALUE_DRAW_ID;
1049 set_mode_system_value(b, mode);
1050 break;
1051 case SpvBuiltInSubgroupSize:
1052 /* TODO once we support non uniform work groups we have to fix this */
1053 case SpvBuiltInSubgroupMaxSize:
1054 *location = SYSTEM_VALUE_SUBGROUP_SIZE;
1055 set_mode_system_value(b, mode);
1056 break;
1057 case SpvBuiltInSubgroupId:
1058 *location = SYSTEM_VALUE_SUBGROUP_ID;
1059 set_mode_system_value(b, mode);
1060 break;
1061 case SpvBuiltInSubgroupLocalInvocationId:
1062 *location = SYSTEM_VALUE_SUBGROUP_INVOCATION;
1063 set_mode_system_value(b, mode);
1064 break;
1065 case SpvBuiltInNumSubgroups:
1066 /* TODO once we support non uniform work groups we have to fix this */
1067 case SpvBuiltInNumEnqueuedSubgroups:
1068 *location = SYSTEM_VALUE_NUM_SUBGROUPS;
1069 set_mode_system_value(b, mode);
1070 break;
1071 case SpvBuiltInDeviceIndex:
1072 *location = SYSTEM_VALUE_DEVICE_INDEX;
1073 set_mode_system_value(b, mode);
1074 break;
1075 case SpvBuiltInViewIndex:
1076 if (b->options && b->options->view_index_is_input) {
1077 *location = VARYING_SLOT_VIEW_INDEX;
1078 vtn_assert(*mode == nir_var_shader_in);
1079 } else {
1080 *location = SYSTEM_VALUE_VIEW_INDEX;
1081 set_mode_system_value(b, mode);
1082 }
1083 break;
1084 case SpvBuiltInSubgroupEqMask:
1085 *location = SYSTEM_VALUE_SUBGROUP_EQ_MASK,
1086 set_mode_system_value(b, mode);
1087 break;
1088 case SpvBuiltInSubgroupGeMask:
1089 *location = SYSTEM_VALUE_SUBGROUP_GE_MASK,
1090 set_mode_system_value(b, mode);
1091 break;
1092 case SpvBuiltInSubgroupGtMask:
1093 *location = SYSTEM_VALUE_SUBGROUP_GT_MASK,
1094 set_mode_system_value(b, mode);
1095 break;
1096 case SpvBuiltInSubgroupLeMask:
1097 *location = SYSTEM_VALUE_SUBGROUP_LE_MASK,
1098 set_mode_system_value(b, mode);
1099 break;
1100 case SpvBuiltInSubgroupLtMask:
1101 *location = SYSTEM_VALUE_SUBGROUP_LT_MASK,
1102 set_mode_system_value(b, mode);
1103 break;
1104 case SpvBuiltInFragStencilRefEXT:
1105 *location = FRAG_RESULT_STENCIL;
1106 vtn_assert(*mode == nir_var_shader_out);
1107 break;
1108 case SpvBuiltInWorkDim:
1109 *location = SYSTEM_VALUE_WORK_DIM;
1110 set_mode_system_value(b, mode);
1111 break;
1112 case SpvBuiltInGlobalSize:
1113 *location = SYSTEM_VALUE_GLOBAL_GROUP_SIZE;
1114 set_mode_system_value(b, mode);
1115 break;
1116 case SpvBuiltInBaryCoordNoPerspAMD:
1117 *location = SYSTEM_VALUE_BARYCENTRIC_LINEAR_PIXEL;
1118 set_mode_system_value(b, mode);
1119 break;
1120 case SpvBuiltInBaryCoordNoPerspCentroidAMD:
1121 *location = SYSTEM_VALUE_BARYCENTRIC_LINEAR_CENTROID;
1122 set_mode_system_value(b, mode);
1123 break;
1124 case SpvBuiltInBaryCoordNoPerspSampleAMD:
1125 *location = SYSTEM_VALUE_BARYCENTRIC_LINEAR_SAMPLE;
1126 set_mode_system_value(b, mode);
1127 break;
1128 case SpvBuiltInBaryCoordSmoothAMD:
1129 *location = SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL;
1130 set_mode_system_value(b, mode);
1131 break;
1132 case SpvBuiltInBaryCoordSmoothCentroidAMD:
1133 *location = SYSTEM_VALUE_BARYCENTRIC_PERSP_CENTROID;
1134 set_mode_system_value(b, mode);
1135 break;
1136 case SpvBuiltInBaryCoordSmoothSampleAMD:
1137 *location = SYSTEM_VALUE_BARYCENTRIC_PERSP_SAMPLE;
1138 set_mode_system_value(b, mode);
1139 break;
1140 case SpvBuiltInBaryCoordPullModelAMD:
1141 *location = SYSTEM_VALUE_BARYCENTRIC_PULL_MODEL;
1142 set_mode_system_value(b, mode);
1143 break;
1144 case SpvBuiltInLaunchIdKHR:
1145 *location = SYSTEM_VALUE_RAY_LAUNCH_ID;
1146 set_mode_system_value(b, mode);
1147 break;
1148 case SpvBuiltInLaunchSizeKHR:
1149 *location = SYSTEM_VALUE_RAY_LAUNCH_SIZE;
1150 set_mode_system_value(b, mode);
1151 break;
1152 case SpvBuiltInWorldRayOriginKHR:
1153 *location = SYSTEM_VALUE_RAY_WORLD_ORIGIN;
1154 set_mode_system_value(b, mode);
1155 break;
1156 case SpvBuiltInWorldRayDirectionKHR:
1157 *location = SYSTEM_VALUE_RAY_WORLD_DIRECTION;
1158 set_mode_system_value(b, mode);
1159 break;
1160 case SpvBuiltInObjectRayOriginKHR:
1161 *location = SYSTEM_VALUE_RAY_OBJECT_ORIGIN;
1162 set_mode_system_value(b, mode);
1163 break;
1164 case SpvBuiltInObjectRayDirectionKHR:
1165 *location = SYSTEM_VALUE_RAY_OBJECT_DIRECTION;
1166 set_mode_system_value(b, mode);
1167 break;
1168 case SpvBuiltInObjectToWorldKHR:
1169 *location = SYSTEM_VALUE_RAY_OBJECT_TO_WORLD;
1170 set_mode_system_value(b, mode);
1171 break;
1172 case SpvBuiltInWorldToObjectKHR:
1173 *location = SYSTEM_VALUE_RAY_WORLD_TO_OBJECT;
1174 set_mode_system_value(b, mode);
1175 break;
1176 case SpvBuiltInRayTminKHR:
1177 *location = SYSTEM_VALUE_RAY_T_MIN;
1178 set_mode_system_value(b, mode);
1179 break;
1180 case SpvBuiltInRayTmaxKHR:
1181 case SpvBuiltInHitTNV:
1182 *location = SYSTEM_VALUE_RAY_T_MAX;
1183 set_mode_system_value(b, mode);
1184 break;
1185 case SpvBuiltInInstanceCustomIndexKHR:
1186 *location = SYSTEM_VALUE_RAY_INSTANCE_CUSTOM_INDEX;
1187 set_mode_system_value(b, mode);
1188 break;
1189 case SpvBuiltInHitKindKHR:
1190 *location = SYSTEM_VALUE_RAY_HIT_KIND;
1191 set_mode_system_value(b, mode);
1192 break;
1193 case SpvBuiltInIncomingRayFlagsKHR:
1194 *location = SYSTEM_VALUE_RAY_FLAGS;
1195 set_mode_system_value(b, mode);
1196 break;
1197 case SpvBuiltInRayGeometryIndexKHR:
1198 *location = SYSTEM_VALUE_RAY_GEOMETRY_INDEX;
1199 set_mode_system_value(b, mode);
1200 break;
1201 case SpvBuiltInCullMaskKHR:
1202 *location = SYSTEM_VALUE_CULL_MASK;
1203 set_mode_system_value(b, mode);
1204 break;
1205 case SpvBuiltInShadingRateKHR:
1206 *location = SYSTEM_VALUE_FRAG_SHADING_RATE;
1207 set_mode_system_value(b, mode);
1208 break;
1209 case SpvBuiltInPrimitiveShadingRateKHR:
1210 if (b->shader->info.stage == MESA_SHADER_VERTEX ||
1211 b->shader->info.stage == MESA_SHADER_GEOMETRY ||
1212 b->shader->info.stage == MESA_SHADER_MESH) {
1213 *location = VARYING_SLOT_PRIMITIVE_SHADING_RATE;
1214 *mode = nir_var_shader_out;
1215 } else {
1216 vtn_fail("invalid stage for SpvBuiltInPrimitiveShadingRateKHR");
1217 }
1218 break;
1219 case SpvBuiltInPrimitiveCountNV:
1220 *location = VARYING_SLOT_PRIMITIVE_COUNT;
1221 break;
1222 case SpvBuiltInPrimitivePointIndicesEXT:
1223 case SpvBuiltInPrimitiveLineIndicesEXT:
1224 case SpvBuiltInPrimitiveTriangleIndicesEXT:
1225 case SpvBuiltInPrimitiveIndicesNV:
1226 *location = VARYING_SLOT_PRIMITIVE_INDICES;
1227 break;
1228 case SpvBuiltInTaskCountNV:
1229 /* NV_mesh_shader only. */
1230 *location = VARYING_SLOT_TASK_COUNT;
1231 *mode = nir_var_shader_out;
1232 break;
1233 case SpvBuiltInMeshViewCountNV:
1234 *location = SYSTEM_VALUE_MESH_VIEW_COUNT;
1235 set_mode_system_value(b, mode);
1236 break;
1237 case SpvBuiltInMeshViewIndicesNV:
1238 *location = SYSTEM_VALUE_MESH_VIEW_INDICES;
1239 set_mode_system_value(b, mode);
1240 break;
1241 case SpvBuiltInCullPrimitiveEXT:
1242 *location = VARYING_SLOT_CULL_PRIMITIVE;
1243 break;
1244 case SpvBuiltInFullyCoveredEXT:
1245 *location = SYSTEM_VALUE_FULLY_COVERED;
1246 set_mode_system_value(b, mode);
1247 break;
1248 case SpvBuiltInFragSizeEXT:
1249 *location = SYSTEM_VALUE_FRAG_SIZE;
1250 set_mode_system_value(b, mode);
1251 break;
1252 case SpvBuiltInFragInvocationCountEXT:
1253 *location = SYSTEM_VALUE_FRAG_INVOCATION_COUNT;
1254 set_mode_system_value(b, mode);
1255 break;
1256 case SpvBuiltInHitTriangleVertexPositionsKHR:
1257 *location = SYSTEM_VALUE_RAY_TRIANGLE_VERTEX_POSITIONS;
1258 set_mode_system_value(b, mode);
1259 break;
1260 case SpvBuiltInBaryCoordKHR:
1261 *location = SYSTEM_VALUE_BARYCENTRIC_PERSP_COORD;
1262 set_mode_system_value(b, mode);
1263 break;
1264 case SpvBuiltInBaryCoordNoPerspKHR:
1265 *location = SYSTEM_VALUE_BARYCENTRIC_LINEAR_COORD;
1266 set_mode_system_value(b, mode);
1267 break;
1268 case SpvBuiltInShaderIndexAMDX:
1269 *location = SYSTEM_VALUE_SHADER_INDEX;
1270 set_mode_system_value(b, mode);
1271 break;
1272 case SpvBuiltInCoalescedInputCountAMDX:
1273 *location = SYSTEM_VALUE_COALESCED_INPUT_COUNT;
1274 set_mode_system_value(b, mode);
1275 break;
1276
1277 case SpvBuiltInWarpsPerSMNV:
1278 *location = SYSTEM_VALUE_WARPS_PER_SM_NV;
1279 set_mode_system_value(b, mode);
1280 break;
1281
1282 case SpvBuiltInSMCountNV:
1283 *location = SYSTEM_VALUE_SM_COUNT_NV;
1284 set_mode_system_value(b, mode);
1285 break;
1286
1287 case SpvBuiltInWarpIDNV:
1288 *location = SYSTEM_VALUE_WARP_ID_NV;
1289 set_mode_system_value(b, mode);
1290 break;
1291
1292 case SpvBuiltInSMIDNV:
1293 *location = SYSTEM_VALUE_SM_ID_NV;
1294 set_mode_system_value(b, mode);
1295 break;
1296
1297 default:
1298 vtn_fail("Unsupported builtin: %s (%u)",
1299 spirv_builtin_to_string(builtin), builtin);
1300 }
1301 }
1302
1303 static void
apply_var_decoration(struct vtn_builder * b,struct nir_variable_data * var_data,const struct vtn_decoration * dec)1304 apply_var_decoration(struct vtn_builder *b,
1305 struct nir_variable_data *var_data,
1306 const struct vtn_decoration *dec)
1307 {
1308 switch (dec->decoration) {
1309 case SpvDecorationRelaxedPrecision:
1310 var_data->precision = GLSL_PRECISION_MEDIUM;
1311 break;
1312 case SpvDecorationNoPerspective:
1313 var_data->interpolation = INTERP_MODE_NOPERSPECTIVE;
1314 break;
1315 case SpvDecorationFlat:
1316 var_data->interpolation = INTERP_MODE_FLAT;
1317 break;
1318 case SpvDecorationExplicitInterpAMD:
1319 var_data->interpolation = INTERP_MODE_EXPLICIT;
1320 break;
1321 case SpvDecorationCentroid:
1322 var_data->centroid = true;
1323 break;
1324 case SpvDecorationSample:
1325 var_data->sample = true;
1326 break;
1327 case SpvDecorationInvariant:
1328 var_data->invariant = true;
1329 break;
1330 case SpvDecorationConstant:
1331 var_data->read_only = true;
1332 break;
1333 case SpvDecorationNonReadable:
1334 var_data->access |= ACCESS_NON_READABLE;
1335 break;
1336 case SpvDecorationNonWritable:
1337 var_data->read_only = true;
1338 var_data->access |= ACCESS_NON_WRITEABLE;
1339 break;
1340 case SpvDecorationRestrict:
1341 var_data->access |= ACCESS_RESTRICT;
1342 break;
1343 case SpvDecorationAliased:
1344 var_data->access &= ~ACCESS_RESTRICT;
1345 break;
1346 case SpvDecorationVolatile:
1347 var_data->access |= ACCESS_VOLATILE;
1348 break;
1349 case SpvDecorationCoherent:
1350 var_data->access |= ACCESS_COHERENT;
1351 break;
1352 case SpvDecorationComponent:
1353 var_data->location_frac = dec->operands[0];
1354 break;
1355 case SpvDecorationIndex:
1356 var_data->index = dec->operands[0];
1357 break;
1358 case SpvDecorationBuiltIn: {
1359 SpvBuiltIn builtin = dec->operands[0];
1360
1361 nir_variable_mode mode = var_data->mode;
1362 vtn_get_builtin_location(b, builtin, &var_data->location, &mode);
1363 var_data->mode = mode;
1364
1365 switch (builtin) {
1366 case SpvBuiltInTessLevelOuter:
1367 case SpvBuiltInTessLevelInner:
1368 case SpvBuiltInClipDistance:
1369 case SpvBuiltInClipDistancePerViewNV:
1370 case SpvBuiltInCullDistance:
1371 case SpvBuiltInCullDistancePerViewNV:
1372 var_data->compact = true;
1373 break;
1374 case SpvBuiltInPrimitivePointIndicesEXT:
1375 case SpvBuiltInPrimitiveLineIndicesEXT:
1376 case SpvBuiltInPrimitiveTriangleIndicesEXT:
1377 /* Not defined as per-primitive in the EXT, but they behave
1378 * like per-primitive outputs so it's easier to treat them like that.
1379 * They may still require special treatment in the backend in order to
1380 * control where and how they are stored.
1381 *
1382 * EXT_mesh_shader: write-only array of vectors indexed by the primitive index
1383 * NV_mesh_shader: read/write flat array
1384 */
1385 var_data->per_primitive = true;
1386 break;
1387 default:
1388 break;
1389 }
1390
1391 break;
1392 }
1393
1394 case SpvDecorationSpecId:
1395 case SpvDecorationRowMajor:
1396 case SpvDecorationColMajor:
1397 case SpvDecorationMatrixStride:
1398 case SpvDecorationUniform:
1399 case SpvDecorationUniformId:
1400 case SpvDecorationLinkageAttributes:
1401 break; /* Do nothing with these here */
1402
1403 case SpvDecorationPatch:
1404 var_data->patch = true;
1405 break;
1406
1407 case SpvDecorationLocation:
1408 vtn_fail("Should be handled earlier by var_decoration_cb()");
1409
1410 case SpvDecorationBlock:
1411 case SpvDecorationBufferBlock:
1412 case SpvDecorationArrayStride:
1413 case SpvDecorationGLSLShared:
1414 case SpvDecorationGLSLPacked:
1415 break; /* These can apply to a type but we don't care about them */
1416
1417 case SpvDecorationBinding:
1418 case SpvDecorationDescriptorSet:
1419 case SpvDecorationNoContraction:
1420 case SpvDecorationInputAttachmentIndex:
1421 vtn_warn("Decoration not allowed for variable or structure member: %s",
1422 spirv_decoration_to_string(dec->decoration));
1423 break;
1424
1425 case SpvDecorationXfbBuffer:
1426 var_data->explicit_xfb_buffer = true;
1427 var_data->xfb.buffer = dec->operands[0];
1428 var_data->always_active_io = true;
1429 break;
1430 case SpvDecorationXfbStride:
1431 var_data->explicit_xfb_stride = true;
1432 var_data->xfb.stride = dec->operands[0];
1433 break;
1434 case SpvDecorationOffset:
1435 var_data->explicit_offset = true;
1436 var_data->offset = dec->operands[0];
1437 break;
1438
1439 case SpvDecorationStream:
1440 var_data->stream = dec->operands[0];
1441 break;
1442
1443 case SpvDecorationCPacked:
1444 case SpvDecorationSaturatedConversion:
1445 case SpvDecorationFuncParamAttr:
1446 case SpvDecorationFPRoundingMode:
1447 case SpvDecorationFPFastMathMode:
1448 case SpvDecorationAlignment:
1449 if (b->shader->info.stage != MESA_SHADER_KERNEL) {
1450 vtn_warn("Decoration only allowed for CL-style kernels: %s",
1451 spirv_decoration_to_string(dec->decoration));
1452 }
1453 break;
1454
1455 case SpvDecorationUserSemantic:
1456 case SpvDecorationUserTypeGOOGLE:
1457 /* User semantic decorations can safely be ignored by the driver. */
1458 break;
1459
1460 case SpvDecorationRestrictPointerEXT:
1461 case SpvDecorationAliasedPointerEXT:
1462 /* TODO: We should actually plumb alias information through NIR. */
1463 break;
1464
1465 case SpvDecorationPerPrimitiveNV:
1466 vtn_fail_if(
1467 !(b->shader->info.stage == MESA_SHADER_MESH && var_data->mode == nir_var_shader_out) &&
1468 !(b->shader->info.stage == MESA_SHADER_FRAGMENT && var_data->mode == nir_var_shader_in),
1469 "PerPrimitiveNV decoration only allowed for Mesh shader outputs or Fragment shader inputs");
1470 var_data->per_primitive = true;
1471 break;
1472
1473 case SpvDecorationPerTaskNV:
1474 vtn_fail_if(
1475 (b->shader->info.stage != MESA_SHADER_MESH &&
1476 b->shader->info.stage != MESA_SHADER_TASK) ||
1477 var_data->mode != nir_var_mem_task_payload,
1478 "PerTaskNV decoration only allowed on Task/Mesh payload variables.");
1479 break;
1480
1481 case SpvDecorationPerViewNV:
1482 vtn_fail_if(b->shader->info.stage != MESA_SHADER_MESH,
1483 "PerViewNV decoration only allowed in Mesh shaders");
1484 var_data->per_view = true;
1485 break;
1486
1487 case SpvDecorationPerVertexKHR:
1488 vtn_fail_if(b->shader->info.stage != MESA_SHADER_FRAGMENT,
1489 "PerVertexKHR decoration only allowed in Fragment shaders");
1490 var_data->per_vertex = true;
1491 break;
1492
1493 case SpvDecorationNodeMaxPayloadsAMDX:
1494 vtn_fail_if(b->shader->info.stage != MESA_SHADER_COMPUTE,
1495 "NodeMaxPayloadsAMDX decoration only allowed in compute shaders");
1496 break;
1497
1498 case SpvDecorationNodeSharesPayloadLimitsWithAMDX:
1499 vtn_fail_if(b->shader->info.stage != MESA_SHADER_COMPUTE,
1500 "NodeMaxPayloadsAMDX decoration only allowed in compute shaders");
1501 break;
1502
1503 case SpvDecorationPayloadNodeNameAMDX:
1504 vtn_fail_if(b->shader->info.stage != MESA_SHADER_COMPUTE,
1505 "NodeMaxPayloadsAMDX decoration only allowed in compute shaders");
1506 var_data->node_name = vtn_string_literal(b, dec->operands, dec->num_operands, NULL);
1507 break;
1508
1509 case SpvDecorationTrackFinishWritingAMDX:
1510 vtn_fail_if(b->shader->info.stage != MESA_SHADER_COMPUTE,
1511 "NodeMaxPayloadsAMDX decoration only allowed in compute shaders");
1512 break;
1513
1514 default:
1515 vtn_fail_with_decoration("Unhandled decoration", dec->decoration);
1516 }
1517 }
1518
1519 static void
gather_var_kind_cb(struct vtn_builder * b,struct vtn_value * val,int member,const struct vtn_decoration * dec,void * void_var)1520 gather_var_kind_cb(struct vtn_builder *b, struct vtn_value *val, int member,
1521 const struct vtn_decoration *dec, void *void_var)
1522 {
1523 struct vtn_variable *vtn_var = void_var;
1524 switch (dec->decoration) {
1525 case SpvDecorationPatch:
1526 vtn_var->var->data.patch = true;
1527 break;
1528 case SpvDecorationPerPrimitiveNV:
1529 vtn_var->var->data.per_primitive = true;
1530 break;
1531 case SpvDecorationPerViewNV:
1532 vtn_var->var->data.per_view = true;
1533 break;
1534 default:
1535 /* Nothing to do. */
1536 break;
1537 }
1538 }
1539
1540 static void
var_set_alignment(struct vtn_builder * b,struct vtn_variable * vtn_var,uint32_t alignment)1541 var_set_alignment(struct vtn_builder *b, struct vtn_variable *vtn_var,
1542 uint32_t alignment)
1543 {
1544 if (alignment == 0) {
1545 vtn_warn("Specified alignment is zero, ignoring");
1546 return;
1547 }
1548
1549 if (!util_is_power_of_two_or_zero(alignment)) {
1550 /* This isn't actually a requirement anywhere in any spec but it seems
1551 * reasonable to enforce.
1552 */
1553 unsigned real_align = 1 << (ffs(alignment) - 1);
1554 vtn_warn("Alignment of %u specified, which not a power of two, "
1555 "using %u instead", alignment, real_align);
1556 alignment = real_align;
1557 }
1558
1559 vtn_var->var->data.alignment = alignment;
1560 }
1561
1562 static void
var_decoration_cb(struct vtn_builder * b,struct vtn_value * val,int member,const struct vtn_decoration * dec,void * void_var)1563 var_decoration_cb(struct vtn_builder *b, struct vtn_value *val, int member,
1564 const struct vtn_decoration *dec, void *void_var)
1565 {
1566 struct vtn_variable *vtn_var = void_var;
1567
1568 /* Handle decorations that apply to a vtn_variable as a whole */
1569 switch (dec->decoration) {
1570 case SpvDecorationBinding:
1571 vtn_var->binding = dec->operands[0];
1572 vtn_var->explicit_binding = true;
1573 return;
1574 case SpvDecorationDescriptorSet:
1575 vtn_var->descriptor_set = dec->operands[0];
1576 return;
1577 case SpvDecorationInputAttachmentIndex:
1578 vtn_var->input_attachment_index = dec->operands[0];
1579 vtn_var->access |= ACCESS_NON_WRITEABLE;
1580 return;
1581 case SpvDecorationAlignment:
1582 var_set_alignment(b, vtn_var, dec->operands[0]);
1583 break;
1584 case SpvDecorationAlignmentId:
1585 var_set_alignment(b, vtn_var, vtn_constant_uint(b, dec->operands[0]));
1586 break;
1587 case SpvDecorationPatch:
1588 vtn_var->var->data.patch = true;
1589 break;
1590 case SpvDecorationOffset:
1591 vtn_var->offset = dec->operands[0];
1592 break;
1593 case SpvDecorationNonWritable:
1594 vtn_var->access |= ACCESS_NON_WRITEABLE;
1595 break;
1596 case SpvDecorationNonReadable:
1597 vtn_var->access |= ACCESS_NON_READABLE;
1598 break;
1599 case SpvDecorationVolatile:
1600 vtn_var->access |= ACCESS_VOLATILE;
1601 break;
1602 case SpvDecorationCoherent:
1603 vtn_var->access |= ACCESS_COHERENT;
1604 break;
1605 case SpvDecorationCounterBuffer:
1606 /* Counter buffer decorations can safely be ignored by the driver. */
1607 return;
1608 default:
1609 break;
1610 }
1611
1612 if (val->value_type == vtn_value_type_pointer) {
1613 assert(val->pointer->var == void_var);
1614 assert(member == -1);
1615 } else {
1616 assert(val->value_type == vtn_value_type_type);
1617 }
1618
1619 /* Location is odd. If applied to a split structure, we have to walk the
1620 * whole thing and accumulate the location. It's easier to handle as a
1621 * special case.
1622 */
1623 if (dec->decoration == SpvDecorationLocation) {
1624 unsigned location = dec->operands[0];
1625 if (b->shader->info.stage == MESA_SHADER_FRAGMENT &&
1626 vtn_var->mode == vtn_variable_mode_output) {
1627 location += FRAG_RESULT_DATA0;
1628 } else if (b->shader->info.stage == MESA_SHADER_VERTEX &&
1629 vtn_var->mode == vtn_variable_mode_input) {
1630 location += VERT_ATTRIB_GENERIC0;
1631 } else if (vtn_var->mode == vtn_variable_mode_input ||
1632 vtn_var->mode == vtn_variable_mode_output) {
1633 location += VARYING_SLOT_VAR0;
1634 } else if (vtn_var->mode == vtn_variable_mode_call_data ||
1635 vtn_var->mode == vtn_variable_mode_ray_payload) {
1636 /* This location is fine as-is */
1637 } else if (vtn_var->mode != vtn_variable_mode_uniform &&
1638 vtn_var->mode != vtn_variable_mode_image) {
1639 vtn_warn("Location must be on input, output, uniform, sampler or "
1640 "image variable");
1641 return;
1642 }
1643
1644 if (vtn_var->var->num_members == 0) {
1645 /* This handles the member and lone variable cases */
1646 vtn_var->var->data.location = location;
1647 } else {
1648 /* This handles the structure member case */
1649 assert(vtn_var->var->members);
1650
1651 if (member == -1)
1652 vtn_var->base_location = location;
1653 else
1654 vtn_var->var->members[member].location = location;
1655 }
1656
1657 return;
1658 } else {
1659 if (vtn_var->var) {
1660 if (vtn_var->var->num_members == 0) {
1661 /* We call this function on types as well as variables and not all
1662 * struct types get split so we can end up having stray member
1663 * decorations; just ignore them.
1664 */
1665 if (member == -1)
1666 apply_var_decoration(b, &vtn_var->var->data, dec);
1667 } else if (member >= 0) {
1668 /* Member decorations must come from a type */
1669 assert(val->value_type == vtn_value_type_type);
1670 apply_var_decoration(b, &vtn_var->var->members[member], dec);
1671 } else {
1672 unsigned length =
1673 glsl_get_length(glsl_without_array(vtn_var->type->type));
1674 for (unsigned i = 0; i < length; i++)
1675 apply_var_decoration(b, &vtn_var->var->members[i], dec);
1676 }
1677 } else {
1678 /* A few variables, those with external storage, have no actual
1679 * nir_variables associated with them. Fortunately, all decorations
1680 * we care about for those variables are on the type only.
1681 */
1682 vtn_assert(vtn_var->mode == vtn_variable_mode_ubo ||
1683 vtn_var->mode == vtn_variable_mode_ssbo ||
1684 vtn_var->mode == vtn_variable_mode_push_constant);
1685 }
1686 }
1687 }
1688
1689 enum vtn_variable_mode
vtn_storage_class_to_mode(struct vtn_builder * b,SpvStorageClass class,struct vtn_type * interface_type,nir_variable_mode * nir_mode_out)1690 vtn_storage_class_to_mode(struct vtn_builder *b,
1691 SpvStorageClass class,
1692 struct vtn_type *interface_type,
1693 nir_variable_mode *nir_mode_out)
1694 {
1695 enum vtn_variable_mode mode;
1696 nir_variable_mode nir_mode;
1697 switch (class) {
1698 case SpvStorageClassUniform:
1699 /* Assume it's an UBO if we lack the interface_type. */
1700 if (!interface_type || interface_type->block) {
1701 mode = vtn_variable_mode_ubo;
1702 nir_mode = nir_var_mem_ubo;
1703 } else if (interface_type->buffer_block) {
1704 mode = vtn_variable_mode_ssbo;
1705 nir_mode = nir_var_mem_ssbo;
1706 } else {
1707 /* Default-block uniforms, coming from gl_spirv */
1708 mode = vtn_variable_mode_uniform;
1709 nir_mode = nir_var_uniform;
1710 }
1711 break;
1712 case SpvStorageClassStorageBuffer:
1713 mode = vtn_variable_mode_ssbo;
1714 nir_mode = nir_var_mem_ssbo;
1715 break;
1716 case SpvStorageClassPhysicalStorageBuffer:
1717 mode = vtn_variable_mode_phys_ssbo;
1718 nir_mode = nir_var_mem_global;
1719 break;
1720 case SpvStorageClassUniformConstant:
1721 /* interface_type is only NULL when OpTypeForwardPointer is used and
1722 * OpTypeForwardPointer can only be used for struct types, not images or
1723 * acceleration structures.
1724 */
1725 if (interface_type)
1726 interface_type = vtn_type_without_array(interface_type);
1727
1728 if (interface_type &&
1729 interface_type->base_type == vtn_base_type_image &&
1730 glsl_type_is_image(interface_type->glsl_image)) {
1731 mode = vtn_variable_mode_image;
1732 nir_mode = nir_var_image;
1733 } else if (b->shader->info.stage == MESA_SHADER_KERNEL) {
1734 mode = vtn_variable_mode_constant;
1735 nir_mode = nir_var_mem_constant;
1736 } else {
1737 /* interface_type is only NULL when OpTypeForwardPointer is used and
1738 * OpTypeForwardPointer cannot be used with the UniformConstant
1739 * storage class.
1740 */
1741 assert(interface_type != NULL);
1742 if (interface_type->base_type == vtn_base_type_accel_struct) {
1743 mode = vtn_variable_mode_accel_struct;
1744 nir_mode = nir_var_uniform;
1745 } else {
1746 mode = vtn_variable_mode_uniform;
1747 nir_mode = nir_var_uniform;
1748 }
1749 }
1750 break;
1751 case SpvStorageClassPushConstant:
1752 mode = vtn_variable_mode_push_constant;
1753 nir_mode = nir_var_mem_push_const;
1754 break;
1755 case SpvStorageClassInput:
1756 mode = vtn_variable_mode_input;
1757 nir_mode = nir_var_shader_in;
1758
1759 /* NV_mesh_shader: fixup due to lack of dedicated storage class */
1760 if (b->shader->info.stage == MESA_SHADER_MESH) {
1761 mode = vtn_variable_mode_task_payload;
1762 nir_mode = nir_var_mem_task_payload;
1763 }
1764 break;
1765 case SpvStorageClassOutput:
1766 mode = vtn_variable_mode_output;
1767 nir_mode = nir_var_shader_out;
1768
1769 /* NV_mesh_shader: fixup due to lack of dedicated storage class */
1770 if (b->shader->info.stage == MESA_SHADER_TASK) {
1771 mode = vtn_variable_mode_task_payload;
1772 nir_mode = nir_var_mem_task_payload;
1773 }
1774 break;
1775 case SpvStorageClassPrivate:
1776 mode = vtn_variable_mode_private;
1777 nir_mode = nir_var_shader_temp;
1778 break;
1779 case SpvStorageClassFunction:
1780 mode = vtn_variable_mode_function;
1781 nir_mode = nir_var_function_temp;
1782 break;
1783 case SpvStorageClassWorkgroup:
1784 mode = vtn_variable_mode_workgroup;
1785 nir_mode = nir_var_mem_shared;
1786 break;
1787 case SpvStorageClassTaskPayloadWorkgroupEXT:
1788 mode = vtn_variable_mode_task_payload;
1789 nir_mode = nir_var_mem_task_payload;
1790 break;
1791 case SpvStorageClassAtomicCounter:
1792 mode = vtn_variable_mode_atomic_counter;
1793 nir_mode = nir_var_uniform;
1794 break;
1795 case SpvStorageClassCrossWorkgroup:
1796 mode = vtn_variable_mode_cross_workgroup;
1797 nir_mode = nir_var_mem_global;
1798 break;
1799 case SpvStorageClassImage:
1800 mode = vtn_variable_mode_image;
1801 nir_mode = nir_var_image;
1802 break;
1803 case SpvStorageClassCallableDataKHR:
1804 mode = vtn_variable_mode_call_data;
1805 nir_mode = nir_var_shader_temp;
1806 break;
1807 case SpvStorageClassIncomingCallableDataKHR:
1808 mode = vtn_variable_mode_call_data_in;
1809 nir_mode = nir_var_shader_call_data;
1810 break;
1811 case SpvStorageClassRayPayloadKHR:
1812 mode = vtn_variable_mode_ray_payload;
1813 nir_mode = nir_var_shader_temp;
1814 break;
1815 case SpvStorageClassIncomingRayPayloadKHR:
1816 mode = vtn_variable_mode_ray_payload_in;
1817 nir_mode = nir_var_shader_call_data;
1818 break;
1819 case SpvStorageClassHitAttributeKHR:
1820 mode = vtn_variable_mode_hit_attrib;
1821 nir_mode = nir_var_ray_hit_attrib;
1822 break;
1823 case SpvStorageClassShaderRecordBufferKHR:
1824 mode = vtn_variable_mode_shader_record;
1825 nir_mode = nir_var_mem_constant;
1826 break;
1827 case SpvStorageClassNodePayloadAMDX:
1828 mode = vtn_variable_mode_node_payload;
1829 nir_mode = nir_var_mem_node_payload_in;
1830 break;
1831 case SpvStorageClassNodeOutputPayloadAMDX:
1832 mode = vtn_variable_mode_node_payload;
1833 nir_mode = nir_var_mem_node_payload;
1834 break;
1835
1836 case SpvStorageClassGeneric:
1837 mode = vtn_variable_mode_generic;
1838 nir_mode = nir_var_mem_generic;
1839 break;
1840 default:
1841 vtn_fail("Unhandled variable storage class: %s (%u)",
1842 spirv_storageclass_to_string(class), class);
1843 }
1844
1845 if (nir_mode_out)
1846 *nir_mode_out = nir_mode;
1847
1848 return mode;
1849 }
1850
1851 nir_address_format
vtn_mode_to_address_format(struct vtn_builder * b,enum vtn_variable_mode mode)1852 vtn_mode_to_address_format(struct vtn_builder *b, enum vtn_variable_mode mode)
1853 {
1854 switch (mode) {
1855 case vtn_variable_mode_ubo:
1856 return b->options->ubo_addr_format;
1857
1858 case vtn_variable_mode_ssbo:
1859 return b->options->ssbo_addr_format;
1860
1861 case vtn_variable_mode_phys_ssbo:
1862 return b->options->phys_ssbo_addr_format;
1863
1864 case vtn_variable_mode_push_constant:
1865 return b->options->push_const_addr_format;
1866
1867 case vtn_variable_mode_workgroup:
1868 return b->options->shared_addr_format;
1869
1870 case vtn_variable_mode_generic:
1871 case vtn_variable_mode_cross_workgroup:
1872 return b->options->global_addr_format;
1873
1874 case vtn_variable_mode_shader_record:
1875 case vtn_variable_mode_constant:
1876 return b->options->constant_addr_format;
1877
1878 case vtn_variable_mode_accel_struct:
1879 case vtn_variable_mode_node_payload:
1880 return nir_address_format_64bit_global;
1881
1882 case vtn_variable_mode_task_payload:
1883 return b->options->task_payload_addr_format;
1884
1885 case vtn_variable_mode_function:
1886 if (b->physical_ptrs)
1887 return b->options->temp_addr_format;
1888 FALLTHROUGH;
1889
1890 case vtn_variable_mode_private:
1891 case vtn_variable_mode_uniform:
1892 case vtn_variable_mode_atomic_counter:
1893 case vtn_variable_mode_input:
1894 case vtn_variable_mode_output:
1895 case vtn_variable_mode_image:
1896 case vtn_variable_mode_call_data:
1897 case vtn_variable_mode_call_data_in:
1898 case vtn_variable_mode_ray_payload:
1899 case vtn_variable_mode_ray_payload_in:
1900 case vtn_variable_mode_hit_attrib:
1901 return nir_address_format_logical;
1902 }
1903
1904 unreachable("Invalid variable mode");
1905 }
1906
1907 nir_def *
vtn_pointer_to_ssa(struct vtn_builder * b,struct vtn_pointer * ptr)1908 vtn_pointer_to_ssa(struct vtn_builder *b, struct vtn_pointer *ptr)
1909 {
1910 if ((vtn_pointer_is_external_block(b, ptr) &&
1911 vtn_type_contains_block(b, ptr->type) &&
1912 ptr->mode != vtn_variable_mode_phys_ssbo) ||
1913 ptr->mode == vtn_variable_mode_accel_struct) {
1914 /* In this case, we're looking for a block index and not an actual
1915 * deref.
1916 *
1917 * For PhysicalStorageBuffer pointers, we don't have a block index
1918 * at all because we get the pointer directly from the client. This
1919 * assumes that there will never be a SSBO binding variable using the
1920 * PhysicalStorageBuffer storage class. This assumption appears
1921 * to be correct according to the Vulkan spec because the table,
1922 * "Shader Resource and Storage Class Correspondence," the only the
1923 * Uniform storage class with BufferBlock or the StorageBuffer
1924 * storage class with Block can be used.
1925 */
1926 if (!ptr->block_index) {
1927 /* If we don't have a block_index then we must be a pointer to the
1928 * variable itself.
1929 */
1930 vtn_assert(!ptr->deref);
1931
1932 struct vtn_access_chain chain = {
1933 .length = 0,
1934 };
1935 ptr = vtn_pointer_dereference(b, ptr, &chain);
1936 }
1937
1938 return ptr->block_index;
1939 } else {
1940 return &vtn_pointer_to_deref(b, ptr)->def;
1941 }
1942 }
1943
1944 struct vtn_pointer *
vtn_pointer_from_ssa(struct vtn_builder * b,nir_def * ssa,struct vtn_type * ptr_type)1945 vtn_pointer_from_ssa(struct vtn_builder *b, nir_def *ssa,
1946 struct vtn_type *ptr_type)
1947 {
1948 vtn_assert(ptr_type->base_type == vtn_base_type_pointer);
1949
1950 struct vtn_pointer *ptr = vtn_zalloc(b, struct vtn_pointer);
1951 struct vtn_type *without_array =
1952 vtn_type_without_array(ptr_type->deref);
1953
1954 nir_variable_mode nir_mode;
1955 ptr->mode = vtn_storage_class_to_mode(b, ptr_type->storage_class,
1956 without_array, &nir_mode);
1957 ptr->type = ptr_type->deref;
1958 ptr->ptr_type = ptr_type;
1959
1960 const struct glsl_type *deref_type =
1961 vtn_type_get_nir_type(b, ptr_type->deref, ptr->mode);
1962 if (!vtn_pointer_is_external_block(b, ptr) &&
1963 ptr->mode != vtn_variable_mode_accel_struct) {
1964 ptr->deref = nir_build_deref_cast(&b->nb, ssa, nir_mode,
1965 deref_type, ptr_type->stride);
1966 } else if ((vtn_type_contains_block(b, ptr->type) &&
1967 ptr->mode != vtn_variable_mode_phys_ssbo) ||
1968 ptr->mode == vtn_variable_mode_accel_struct) {
1969 /* This is a pointer to somewhere in an array of blocks, not a
1970 * pointer to somewhere inside the block. Set the block index
1971 * instead of making a cast.
1972 */
1973 ptr->block_index = ssa;
1974 } else {
1975 /* This is a pointer to something internal or a pointer inside a
1976 * block. It's just a regular cast.
1977 *
1978 * For PhysicalStorageBuffer pointers, we don't have a block index
1979 * at all because we get the pointer directly from the client. This
1980 * assumes that there will never be a SSBO binding variable using the
1981 * PhysicalStorageBuffer storage class. This assumption appears
1982 * to be correct according to the Vulkan spec because the table,
1983 * "Shader Resource and Storage Class Correspondence," the only the
1984 * Uniform storage class with BufferBlock or the StorageBuffer
1985 * storage class with Block can be used.
1986 */
1987 ptr->deref = nir_build_deref_cast(&b->nb, ssa, nir_mode,
1988 deref_type, ptr_type->stride);
1989 ptr->deref->def.num_components =
1990 glsl_get_vector_elements(ptr_type->type);
1991 ptr->deref->def.bit_size = glsl_get_bit_size(ptr_type->type);
1992 }
1993
1994 return ptr;
1995 }
1996
1997 static void
assign_missing_member_locations(struct vtn_variable * var)1998 assign_missing_member_locations(struct vtn_variable *var)
1999 {
2000 unsigned length =
2001 glsl_get_length(glsl_without_array(var->type->type));
2002 int location = var->base_location;
2003
2004 for (unsigned i = 0; i < length; i++) {
2005 /* From the Vulkan spec:
2006 *
2007 * “If the structure type is a Block but without a Location, then each
2008 * of its members must have a Location decoration.”
2009 *
2010 */
2011 if (var->type->block) {
2012 assert(var->base_location != -1 ||
2013 var->var->members[i].location != -1);
2014 }
2015
2016 /* From the Vulkan spec:
2017 *
2018 * “Any member with its own Location decoration is assigned that
2019 * location. Each remaining member is assigned the location after the
2020 * immediately preceding member in declaration order.”
2021 */
2022 if (var->var->members[i].location != -1)
2023 location = var->var->members[i].location;
2024 else
2025 var->var->members[i].location = location;
2026
2027 /* Below we use type instead of interface_type, because interface_type
2028 * is only available when it is a Block. This code also supports
2029 * input/outputs that are just structs
2030 */
2031 const struct glsl_type *member_type =
2032 glsl_get_struct_field(glsl_without_array(var->type->type), i);
2033
2034 location +=
2035 glsl_count_attribute_slots(member_type,
2036 false /* is_gl_vertex_input */);
2037 }
2038 }
2039
2040 static void
adjust_patch_locations(struct vtn_builder * b,struct vtn_variable * var)2041 adjust_patch_locations(struct vtn_builder *b, struct vtn_variable *var)
2042 {
2043 uint16_t num_data = 1;
2044 struct nir_variable_data *data = &var->var->data;
2045 if (var->var->members) {
2046 num_data = var->var->num_members;
2047 data = var->var->members;
2048 }
2049
2050 for (uint16_t i = 0; i < num_data; i++) {
2051 vtn_assert(data[i].location < VARYING_SLOT_PATCH0);
2052 if (data[i].patch &&
2053 (data[i].mode == nir_var_shader_in || data[i].mode == nir_var_shader_out) &&
2054 data[i].location >= VARYING_SLOT_VAR0)
2055 data[i].location += VARYING_SLOT_PATCH0 - VARYING_SLOT_VAR0;
2056 }
2057 }
2058
2059 nir_deref_instr *
vtn_get_call_payload_for_location(struct vtn_builder * b,uint32_t location_id)2060 vtn_get_call_payload_for_location(struct vtn_builder *b, uint32_t location_id)
2061 {
2062 uint32_t location = vtn_constant_uint(b, location_id);
2063 nir_foreach_variable_with_modes(var, b->nb.shader, nir_var_shader_temp) {
2064 if (var->data.explicit_location &&
2065 var->data.location == location)
2066 return nir_build_deref_var(&b->nb, var);
2067 }
2068 vtn_fail("Couldn't find variable with a storage class of CallableDataKHR "
2069 "or RayPayloadKHR and location %d", location);
2070 }
2071
2072 static bool
vtn_type_is_ray_query(struct vtn_type * type)2073 vtn_type_is_ray_query(struct vtn_type *type)
2074 {
2075 return vtn_type_without_array(type)->base_type == vtn_base_type_ray_query;
2076 }
2077
2078 static void
vtn_create_variable(struct vtn_builder * b,struct vtn_value * val,struct vtn_type * ptr_type,SpvStorageClass storage_class,struct vtn_value * initializer)2079 vtn_create_variable(struct vtn_builder *b, struct vtn_value *val,
2080 struct vtn_type *ptr_type, SpvStorageClass storage_class,
2081 struct vtn_value *initializer)
2082 {
2083 vtn_assert(ptr_type->base_type == vtn_base_type_pointer);
2084 struct vtn_type *type = ptr_type->deref;
2085
2086 struct vtn_type *without_array = vtn_type_without_array(ptr_type->deref);
2087
2088 enum vtn_variable_mode mode;
2089 nir_variable_mode nir_mode;
2090 mode = vtn_storage_class_to_mode(b, storage_class, without_array, &nir_mode);
2091
2092 switch (mode) {
2093 case vtn_variable_mode_ubo:
2094 /* There's no other way to get vtn_variable_mode_ubo */
2095 vtn_assert(without_array->block);
2096 break;
2097 case vtn_variable_mode_ssbo:
2098 if (storage_class == SpvStorageClassStorageBuffer &&
2099 !without_array->block) {
2100 if (b->variable_pointers) {
2101 vtn_fail("Variables in the StorageBuffer storage class must "
2102 "have a struct type with the Block decoration");
2103 } else {
2104 /* If variable pointers are not present, it's still malformed
2105 * SPIR-V but we can parse it and do the right thing anyway.
2106 * Since some of the 8-bit storage tests have bugs in this are,
2107 * just make it a warning for now.
2108 */
2109 vtn_warn("Variables in the StorageBuffer storage class must "
2110 "have a struct type with the Block decoration");
2111 }
2112 }
2113 break;
2114
2115 case vtn_variable_mode_generic:
2116 vtn_fail("Cannot create a variable with the Generic storage class");
2117 break;
2118
2119 case vtn_variable_mode_image:
2120 if (storage_class == SpvStorageClassImage)
2121 vtn_fail("Cannot create a variable with the Image storage class");
2122 else
2123 vtn_assert(storage_class == SpvStorageClassUniformConstant);
2124 break;
2125
2126 case vtn_variable_mode_phys_ssbo:
2127 vtn_fail("Cannot create a variable with the "
2128 "PhysicalStorageBuffer storage class");
2129 break;
2130
2131 default:
2132 /* No tallying is needed */
2133 break;
2134 }
2135
2136 struct vtn_variable *var = vtn_zalloc(b, struct vtn_variable);
2137 var->type = type;
2138 var->mode = mode;
2139 var->base_location = -1;
2140
2141 val->pointer = vtn_zalloc(b, struct vtn_pointer);
2142 val->pointer->mode = var->mode;
2143 val->pointer->type = var->type;
2144 val->pointer->ptr_type = ptr_type;
2145 val->pointer->var = var;
2146 val->pointer->access = var->type->access;
2147
2148 switch (var->mode) {
2149 case vtn_variable_mode_function:
2150 case vtn_variable_mode_private:
2151 case vtn_variable_mode_uniform:
2152 case vtn_variable_mode_atomic_counter:
2153 case vtn_variable_mode_constant:
2154 case vtn_variable_mode_call_data:
2155 case vtn_variable_mode_call_data_in:
2156 case vtn_variable_mode_image:
2157 case vtn_variable_mode_ray_payload:
2158 case vtn_variable_mode_ray_payload_in:
2159 case vtn_variable_mode_hit_attrib:
2160 case vtn_variable_mode_node_payload:
2161 /* For these, we create the variable normally */
2162 var->var = rzalloc(b->shader, nir_variable);
2163 var->var->name = ralloc_strdup(var->var, val->name);
2164 var->var->type = vtn_type_get_nir_type(b, var->type, var->mode);
2165
2166 /* This is a total hack but we need some way to flag variables which are
2167 * going to be call payloads. See get_call_payload_deref.
2168 */
2169 if (storage_class == SpvStorageClassCallableDataKHR ||
2170 storage_class == SpvStorageClassRayPayloadKHR)
2171 var->var->data.explicit_location = true;
2172
2173 var->var->data.mode = nir_mode;
2174 var->var->data.location = -1;
2175 var->var->data.ray_query = vtn_type_is_ray_query(var->type);
2176 var->var->interface_type = NULL;
2177 break;
2178
2179 case vtn_variable_mode_ubo:
2180 case vtn_variable_mode_ssbo:
2181 case vtn_variable_mode_push_constant:
2182 case vtn_variable_mode_accel_struct:
2183 case vtn_variable_mode_shader_record:
2184 var->var = rzalloc(b->shader, nir_variable);
2185 var->var->name = ralloc_strdup(var->var, val->name);
2186
2187 var->var->type = vtn_type_get_nir_type(b, var->type, var->mode);
2188 var->var->interface_type = var->var->type;
2189
2190 var->var->data.mode = nir_mode;
2191 var->var->data.location = -1;
2192 var->var->data.driver_location = 0;
2193 var->var->data.access = var->type->access;
2194 break;
2195
2196 case vtn_variable_mode_workgroup:
2197 case vtn_variable_mode_cross_workgroup:
2198 case vtn_variable_mode_task_payload:
2199 /* Create the variable normally */
2200 var->var = rzalloc(b->shader, nir_variable);
2201 var->var->name = ralloc_strdup(var->var, val->name);
2202 var->var->type = vtn_type_get_nir_type(b, var->type, var->mode);
2203 var->var->data.mode = nir_mode;
2204 break;
2205
2206 case vtn_variable_mode_input:
2207 case vtn_variable_mode_output: {
2208 var->var = rzalloc(b->shader, nir_variable);
2209 var->var->name = ralloc_strdup(var->var, val->name);
2210 var->var->type = vtn_type_get_nir_type(b, var->type, var->mode);
2211 var->var->data.mode = nir_mode;
2212
2213 /* In order to know whether or not we're a per-vertex inout, we need
2214 * the patch qualifier. This means walking the variable decorations
2215 * early before we actually create any variables. Not a big deal.
2216 *
2217 * GLSLang really likes to place decorations in the most interior
2218 * thing it possibly can. In particular, if you have a struct, it
2219 * will place the patch decorations on the struct members. This
2220 * should be handled by the variable splitting below just fine.
2221 *
2222 * If you have an array-of-struct, things get even more weird as it
2223 * will place the patch decorations on the struct even though it's
2224 * inside an array and some of the members being patch and others not
2225 * makes no sense whatsoever. Since the only sensible thing is for
2226 * it to be all or nothing, we'll call it patch if any of the members
2227 * are declared patch.
2228 */
2229 vtn_foreach_decoration(b, val, gather_var_kind_cb, var);
2230 if (glsl_type_is_array(var->type->type) &&
2231 glsl_type_is_struct_or_ifc(without_array->type)) {
2232 vtn_foreach_decoration(b, vtn_value(b, without_array->id,
2233 vtn_value_type_type),
2234 gather_var_kind_cb, var);
2235 }
2236
2237 struct vtn_type *per_vertex_type = var->type;
2238 if (nir_is_arrayed_io(var->var, b->shader->info.stage))
2239 per_vertex_type = var->type->array_element;
2240
2241 /* Figure out the interface block type. */
2242 struct vtn_type *iface_type = per_vertex_type;
2243 if (var->mode == vtn_variable_mode_output &&
2244 (b->shader->info.stage == MESA_SHADER_VERTEX ||
2245 b->shader->info.stage == MESA_SHADER_TESS_EVAL ||
2246 b->shader->info.stage == MESA_SHADER_GEOMETRY)) {
2247 /* For vertex data outputs, we can end up with arrays of blocks for
2248 * transform feedback where each array element corresponds to a
2249 * different XFB output buffer.
2250 */
2251 while (iface_type->base_type == vtn_base_type_array)
2252 iface_type = iface_type->array_element;
2253 }
2254 if (iface_type->base_type == vtn_base_type_struct && iface_type->block)
2255 var->var->interface_type = vtn_type_get_nir_type(b, iface_type,
2256 var->mode);
2257
2258 /* If it's a block, set it up as per-member so can be splitted later by
2259 * nir_split_per_member_structs.
2260 *
2261 * This is for a couple of reasons. For one, builtins may all come in a
2262 * block and we really want those split out into separate variables.
2263 * For another, interpolation qualifiers can be applied to members of
2264 * the top-level struct and we need to be able to preserve that
2265 * information.
2266 */
2267 if (per_vertex_type->base_type == vtn_base_type_struct &&
2268 per_vertex_type->block) {
2269 var->var->num_members = glsl_get_length(per_vertex_type->type);
2270 var->var->members = rzalloc_array(var->var, struct nir_variable_data,
2271 var->var->num_members);
2272
2273 for (unsigned i = 0; i < var->var->num_members; i++) {
2274 var->var->members[i].mode = nir_mode;
2275 var->var->members[i].patch = var->var->data.patch;
2276 var->var->members[i].location = -1;
2277 }
2278 }
2279
2280 /* For inputs and outputs, we need to grab locations and builtin
2281 * information from the per-vertex type.
2282 */
2283 vtn_foreach_decoration(b, vtn_value(b, per_vertex_type->id,
2284 vtn_value_type_type),
2285 var_decoration_cb, var);
2286
2287 break;
2288 }
2289
2290 case vtn_variable_mode_phys_ssbo:
2291 case vtn_variable_mode_generic:
2292 unreachable("Should have been caught before");
2293 }
2294
2295 /* Ignore incorrectly generated Undef initializers. */
2296 if (b->wa_llvm_spirv_ignore_workgroup_initializer &&
2297 initializer &&
2298 storage_class == SpvStorageClassWorkgroup)
2299 initializer = NULL;
2300
2301 /* Only initialize variable when there is an initializer and it's not
2302 * undef.
2303 */
2304 if (initializer && !initializer->is_undef_constant) {
2305 switch (storage_class) {
2306 case SpvStorageClassWorkgroup:
2307 /* VK_KHR_zero_initialize_workgroup_memory. */
2308 vtn_fail_if(b->options->environment != NIR_SPIRV_VULKAN,
2309 "Only Vulkan supports variable initializer "
2310 "for Workgroup variable %u",
2311 vtn_id_for_value(b, val));
2312 vtn_fail_if(initializer->value_type != vtn_value_type_constant ||
2313 !initializer->is_null_constant,
2314 "Workgroup variable %u can only have OpConstantNull "
2315 "as initializer, but have %u instead",
2316 vtn_id_for_value(b, val),
2317 vtn_id_for_value(b, initializer));
2318 b->shader->info.zero_initialize_shared_memory = true;
2319 break;
2320
2321 case SpvStorageClassUniformConstant:
2322 vtn_fail_if(b->options->environment != NIR_SPIRV_OPENGL &&
2323 b->options->environment != NIR_SPIRV_OPENCL,
2324 "Only OpenGL and OpenCL support variable initializer "
2325 "for UniformConstant variable %u\n",
2326 vtn_id_for_value(b, val));
2327 vtn_fail_if(initializer->value_type != vtn_value_type_constant,
2328 "UniformConstant variable %u can only have a constant "
2329 "initializer, but have %u instead",
2330 vtn_id_for_value(b, val),
2331 vtn_id_for_value(b, initializer));
2332 break;
2333
2334 case SpvStorageClassOutput:
2335 case SpvStorageClassPrivate:
2336 vtn_assert(b->options->environment != NIR_SPIRV_OPENCL);
2337 /* These can have any initializer. */
2338 break;
2339
2340 case SpvStorageClassFunction:
2341 /* These can have any initializer. */
2342 break;
2343
2344 case SpvStorageClassCrossWorkgroup:
2345 vtn_assert(b->options->environment == NIR_SPIRV_OPENCL);
2346 vtn_fail("Initializer for CrossWorkgroup variable %u "
2347 "not yet supported in Mesa.",
2348 vtn_id_for_value(b, val));
2349 break;
2350
2351 default: {
2352 const enum nir_spirv_execution_environment env =
2353 b->options->environment;
2354 const char *env_name =
2355 env == NIR_SPIRV_VULKAN ? "Vulkan" :
2356 env == NIR_SPIRV_OPENCL ? "OpenCL" :
2357 env == NIR_SPIRV_OPENGL ? "OpenGL" :
2358 NULL;
2359 vtn_assert(env_name);
2360 vtn_fail("In %s, any OpVariable with an Initializer operand "
2361 "must have %s%s%s, or Function as "
2362 "its Storage Class operand. Variable %u has an "
2363 "Initializer but its Storage Class is %s.",
2364 env_name,
2365 env == NIR_SPIRV_VULKAN ? "Private, Output, Workgroup" : "",
2366 env == NIR_SPIRV_OPENCL ? "CrossWorkgroup, UniformConstant" : "",
2367 env == NIR_SPIRV_OPENGL ? "Private, Output, UniformConstant" : "",
2368 vtn_id_for_value(b, val),
2369 spirv_storageclass_to_string(storage_class));
2370 }
2371 }
2372
2373 switch (initializer->value_type) {
2374 case vtn_value_type_constant:
2375 var->var->constant_initializer =
2376 nir_constant_clone(initializer->constant, var->var);
2377 break;
2378 case vtn_value_type_pointer:
2379 var->var->pointer_initializer = initializer->pointer->var->var;
2380 break;
2381 default:
2382 vtn_fail("SPIR-V variable initializer %u must be constant or pointer",
2383 vtn_id_for_value(b, initializer));
2384 }
2385 }
2386
2387 if (var->mode == vtn_variable_mode_uniform ||
2388 var->mode == vtn_variable_mode_image ||
2389 var->mode == vtn_variable_mode_ssbo) {
2390 /* SSBOs and images are assumed to not alias in the Simple, GLSL and Vulkan memory models */
2391 var->var->data.access |= b->mem_model != SpvMemoryModelOpenCL ? ACCESS_RESTRICT : 0;
2392 }
2393
2394 vtn_foreach_decoration(b, val, var_decoration_cb, var);
2395 vtn_foreach_decoration(b, val, ptr_decoration_cb, val->pointer);
2396
2397 /* Propagate access flags from the OpVariable decorations. */
2398 val->pointer->access |= var->access;
2399
2400 if ((var->mode == vtn_variable_mode_input ||
2401 var->mode == vtn_variable_mode_output) &&
2402 var->var->members) {
2403 assign_missing_member_locations(var);
2404 }
2405
2406 if ((b->shader->info.stage == MESA_SHADER_TESS_CTRL &&
2407 var->mode == vtn_variable_mode_output) ||
2408 (b->shader->info.stage == MESA_SHADER_TESS_EVAL &&
2409 var->mode == vtn_variable_mode_input))
2410 adjust_patch_locations(b, var);
2411
2412 if (var->mode == vtn_variable_mode_uniform ||
2413 var->mode == vtn_variable_mode_image ||
2414 var->mode == vtn_variable_mode_ubo ||
2415 var->mode == vtn_variable_mode_ssbo ||
2416 var->mode == vtn_variable_mode_atomic_counter) {
2417 /* XXX: We still need the binding information in the nir_variable
2418 * for these. We should fix that.
2419 */
2420 var->var->data.binding = var->binding;
2421 var->var->data.explicit_binding = var->explicit_binding;
2422 var->var->data.descriptor_set = var->descriptor_set;
2423 var->var->data.index = var->input_attachment_index;
2424 var->var->data.offset = var->offset;
2425
2426 if (glsl_type_is_image(glsl_without_array(var->var->type)))
2427 var->var->data.image.format = without_array->image_format;
2428 }
2429
2430 if (var->mode == vtn_variable_mode_function) {
2431 vtn_assert(var->var != NULL && var->var->members == NULL);
2432 nir_function_impl_add_variable(b->nb.impl, var->var);
2433 } else if (var->var) {
2434 nir_shader_add_variable(b->shader, var->var);
2435 } else {
2436 vtn_assert(vtn_pointer_is_external_block(b, val->pointer) ||
2437 var->mode == vtn_variable_mode_accel_struct ||
2438 var->mode == vtn_variable_mode_shader_record);
2439 }
2440 }
2441
2442 static void
vtn_assert_types_equal(struct vtn_builder * b,SpvOp opcode,struct vtn_type * dst_type,struct vtn_type * src_type)2443 vtn_assert_types_equal(struct vtn_builder *b, SpvOp opcode,
2444 struct vtn_type *dst_type,
2445 struct vtn_type *src_type)
2446 {
2447 if (dst_type->id == src_type->id)
2448 return;
2449
2450 if (vtn_types_compatible(b, dst_type, src_type)) {
2451 /* Early versions of GLSLang would re-emit types unnecessarily and you
2452 * would end up with OpLoad, OpStore, or OpCopyMemory opcodes which have
2453 * mismatched source and destination types.
2454 *
2455 * https://github.com/KhronosGroup/glslang/issues/304
2456 * https://github.com/KhronosGroup/glslang/issues/307
2457 * https://bugs.freedesktop.org/show_bug.cgi?id=104338
2458 * https://bugs.freedesktop.org/show_bug.cgi?id=104424
2459 */
2460 vtn_warn("Source and destination types of %s do not have the same "
2461 "ID (but are compatible): %u vs %u",
2462 spirv_op_to_string(opcode), dst_type->id, src_type->id);
2463 return;
2464 }
2465
2466 vtn_fail("Source and destination types of %s do not match: %s (%%%u) vs. %s (%%%u)",
2467 spirv_op_to_string(opcode),
2468 glsl_get_type_name(dst_type->type), dst_type->id,
2469 glsl_get_type_name(src_type->type), src_type->id);
2470 }
2471
2472 static nir_def *
nir_shrink_zero_pad_vec(nir_builder * b,nir_def * val,unsigned num_components)2473 nir_shrink_zero_pad_vec(nir_builder *b, nir_def *val,
2474 unsigned num_components)
2475 {
2476 if (val->num_components == num_components)
2477 return val;
2478
2479 nir_def *comps[NIR_MAX_VEC_COMPONENTS];
2480 for (unsigned i = 0; i < num_components; i++) {
2481 if (i < val->num_components)
2482 comps[i] = nir_channel(b, val, i);
2483 else
2484 comps[i] = nir_imm_intN_t(b, 0, val->bit_size);
2485 }
2486 return nir_vec(b, comps, num_components);
2487 }
2488
2489 static nir_def *
nir_sloppy_bitcast(nir_builder * b,nir_def * val,const struct glsl_type * type)2490 nir_sloppy_bitcast(nir_builder *b, nir_def *val,
2491 const struct glsl_type *type)
2492 {
2493 const unsigned num_components = glsl_get_vector_elements(type);
2494 const unsigned bit_size = glsl_get_bit_size(type);
2495
2496 /* First, zero-pad to ensure that the value is big enough that when we
2497 * bit-cast it, we don't loose anything.
2498 */
2499 if (val->bit_size < bit_size) {
2500 const unsigned src_num_components_needed =
2501 vtn_align_u32(val->num_components, bit_size / val->bit_size);
2502 val = nir_shrink_zero_pad_vec(b, val, src_num_components_needed);
2503 }
2504
2505 val = nir_bitcast_vector(b, val, bit_size);
2506
2507 return nir_shrink_zero_pad_vec(b, val, num_components);
2508 }
2509
2510 bool
vtn_get_mem_operands(struct vtn_builder * b,const uint32_t * w,unsigned count,unsigned * idx,SpvMemoryAccessMask * access,unsigned * alignment,SpvScope * dest_scope,SpvScope * src_scope)2511 vtn_get_mem_operands(struct vtn_builder *b, const uint32_t *w, unsigned count,
2512 unsigned *idx, SpvMemoryAccessMask *access, unsigned *alignment,
2513 SpvScope *dest_scope, SpvScope *src_scope)
2514 {
2515 *access = 0;
2516 *alignment = 0;
2517 if (*idx >= count)
2518 return false;
2519
2520 *access = w[(*idx)++];
2521 if (*access & SpvMemoryAccessAlignedMask) {
2522 vtn_assert(*idx < count);
2523 *alignment = w[(*idx)++];
2524 }
2525
2526 if (*access & SpvMemoryAccessMakePointerAvailableMask) {
2527 vtn_assert(*idx < count);
2528 vtn_assert(dest_scope);
2529 *dest_scope = vtn_constant_uint(b, w[(*idx)++]);
2530 }
2531
2532 if (*access & SpvMemoryAccessMakePointerVisibleMask) {
2533 vtn_assert(*idx < count);
2534 vtn_assert(src_scope);
2535 *src_scope = vtn_constant_uint(b, w[(*idx)++]);
2536 }
2537
2538 return true;
2539 }
2540
2541 static enum gl_access_qualifier
spv_access_to_gl_access(SpvMemoryAccessMask access)2542 spv_access_to_gl_access(SpvMemoryAccessMask access)
2543 {
2544 unsigned result = 0;
2545
2546 if (access & SpvMemoryAccessVolatileMask)
2547 result |= ACCESS_VOLATILE;
2548 if (access & SpvMemoryAccessNontemporalMask)
2549 result |= ACCESS_NON_TEMPORAL;
2550
2551 return result;
2552 }
2553
2554
2555 SpvMemorySemanticsMask
vtn_mode_to_memory_semantics(enum vtn_variable_mode mode)2556 vtn_mode_to_memory_semantics(enum vtn_variable_mode mode)
2557 {
2558 switch (mode) {
2559 case vtn_variable_mode_ssbo:
2560 case vtn_variable_mode_phys_ssbo:
2561 return SpvMemorySemanticsUniformMemoryMask;
2562 case vtn_variable_mode_workgroup:
2563 return SpvMemorySemanticsWorkgroupMemoryMask;
2564 case vtn_variable_mode_cross_workgroup:
2565 return SpvMemorySemanticsCrossWorkgroupMemoryMask;
2566 case vtn_variable_mode_atomic_counter:
2567 return SpvMemorySemanticsAtomicCounterMemoryMask;
2568 case vtn_variable_mode_image:
2569 return SpvMemorySemanticsImageMemoryMask;
2570 case vtn_variable_mode_output:
2571 return SpvMemorySemanticsOutputMemoryMask;
2572 default:
2573 return SpvMemorySemanticsMaskNone;
2574 }
2575 }
2576
2577 void
vtn_emit_make_visible_barrier(struct vtn_builder * b,SpvMemoryAccessMask access,SpvScope scope,enum vtn_variable_mode mode)2578 vtn_emit_make_visible_barrier(struct vtn_builder *b, SpvMemoryAccessMask access,
2579 SpvScope scope, enum vtn_variable_mode mode)
2580 {
2581 if (!(access & SpvMemoryAccessMakePointerVisibleMask))
2582 return;
2583
2584 vtn_emit_memory_barrier(b, scope, SpvMemorySemanticsMakeVisibleMask |
2585 SpvMemorySemanticsAcquireMask |
2586 vtn_mode_to_memory_semantics(mode));
2587 }
2588
2589 void
vtn_emit_make_available_barrier(struct vtn_builder * b,SpvMemoryAccessMask access,SpvScope scope,enum vtn_variable_mode mode)2590 vtn_emit_make_available_barrier(struct vtn_builder *b, SpvMemoryAccessMask access,
2591 SpvScope scope, enum vtn_variable_mode mode)
2592 {
2593 if (!(access & SpvMemoryAccessMakePointerAvailableMask))
2594 return;
2595
2596 vtn_emit_memory_barrier(b, scope, SpvMemorySemanticsMakeAvailableMask |
2597 SpvMemorySemanticsReleaseMask |
2598 vtn_mode_to_memory_semantics(mode));
2599 }
2600
2601 static void
ptr_nonuniform_workaround_cb(struct vtn_builder * b,struct vtn_value * val,int member,const struct vtn_decoration * dec,void * void_ptr)2602 ptr_nonuniform_workaround_cb(struct vtn_builder *b, struct vtn_value *val,
2603 int member, const struct vtn_decoration *dec, void *void_ptr)
2604 {
2605 enum gl_access_qualifier *access = void_ptr;
2606
2607 switch (dec->decoration) {
2608 case SpvDecorationNonUniformEXT:
2609 *access |= ACCESS_NON_UNIFORM;
2610 break;
2611
2612 default:
2613 break;
2614 }
2615 }
2616
2617 void
vtn_handle_variables(struct vtn_builder * b,SpvOp opcode,const uint32_t * w,unsigned count)2618 vtn_handle_variables(struct vtn_builder *b, SpvOp opcode,
2619 const uint32_t *w, unsigned count)
2620 {
2621 switch (opcode) {
2622 case SpvOpUndef: {
2623 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_undef);
2624 val->type = vtn_get_type(b, w[1]);
2625 val->is_undef_constant = true;
2626 break;
2627 }
2628
2629 case SpvOpVariable: {
2630 struct vtn_type *ptr_type = vtn_get_type(b, w[1]);
2631
2632 SpvStorageClass storage_class = w[3];
2633
2634 const bool is_global = storage_class != SpvStorageClassFunction;
2635 const bool is_io = storage_class == SpvStorageClassInput ||
2636 storage_class == SpvStorageClassOutput;
2637
2638 /* Skip global variables that are not used by the entrypoint. Before
2639 * SPIR-V 1.4 the interface is only used for I/O variables, so extra
2640 * variables will still need to be removed later.
2641 */
2642 if (!b->options->create_library &&
2643 (is_io || (b->version >= 0x10400 && is_global))) {
2644 if (!bsearch(&w[2], b->interface_ids, b->interface_ids_count, 4, cmp_uint32_t))
2645 break;
2646 }
2647
2648 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_pointer);
2649 struct vtn_value *initializer = count > 4 ? vtn_untyped_value(b, w[4]) : NULL;
2650
2651 vtn_create_variable(b, val, ptr_type, storage_class, initializer);
2652
2653 break;
2654 }
2655
2656 case SpvOpConstantSampler: {
2657 /* Synthesize a pointer-to-sampler type, create a variable of that type,
2658 * and give the variable a constant initializer with the sampler params */
2659 struct vtn_type *sampler_type = vtn_value(b, w[1], vtn_value_type_type)->type;
2660 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_pointer);
2661
2662 struct vtn_type *ptr_type = vtn_zalloc(b, struct vtn_type);
2663 ptr_type->base_type = vtn_base_type_pointer;
2664 ptr_type->deref = sampler_type;
2665 ptr_type->storage_class = SpvStorageClassUniform;
2666
2667 ptr_type->type = nir_address_format_to_glsl_type(
2668 vtn_mode_to_address_format(b, vtn_variable_mode_function));
2669
2670 vtn_create_variable(b, val, ptr_type, ptr_type->storage_class, NULL);
2671
2672 nir_variable *nir_var = val->pointer->var->var;
2673 nir_var->data.sampler.is_inline_sampler = true;
2674 nir_var->data.sampler.addressing_mode = w[3];
2675 nir_var->data.sampler.normalized_coordinates = w[4];
2676 nir_var->data.sampler.filter_mode = w[5];
2677
2678 break;
2679 }
2680
2681 case SpvOpAccessChain:
2682 case SpvOpPtrAccessChain:
2683 case SpvOpInBoundsAccessChain:
2684 case SpvOpInBoundsPtrAccessChain: {
2685 struct vtn_access_chain *chain = vtn_access_chain_create(b, count - 4);
2686 enum gl_access_qualifier access = 0;
2687 chain->ptr_as_array = (opcode == SpvOpPtrAccessChain || opcode == SpvOpInBoundsPtrAccessChain);
2688
2689 unsigned idx = 0;
2690 for (int i = 4; i < count; i++) {
2691 struct vtn_value *link_val = vtn_untyped_value(b, w[i]);
2692 if (link_val->value_type == vtn_value_type_constant) {
2693 chain->link[idx].mode = vtn_access_mode_literal;
2694 chain->link[idx].id = vtn_constant_int(b, w[i]);
2695 } else {
2696 chain->link[idx].mode = vtn_access_mode_id;
2697 chain->link[idx].id = w[i];
2698 }
2699
2700 /* Workaround for https://gitlab.freedesktop.org/mesa/mesa/-/issues/3406 */
2701 vtn_foreach_decoration(b, link_val, ptr_nonuniform_workaround_cb, &access);
2702
2703 idx++;
2704 }
2705
2706 struct vtn_type *ptr_type = vtn_get_type(b, w[1]);
2707
2708 struct vtn_pointer *base = vtn_pointer(b, w[3]);
2709
2710 chain->in_bounds = (opcode == SpvOpInBoundsAccessChain || opcode == SpvOpInBoundsPtrAccessChain);
2711
2712 /* Workaround for https://gitlab.freedesktop.org/mesa/mesa/-/issues/3406 */
2713 access |= base->access & ACCESS_NON_UNIFORM;
2714
2715 if (base->mode == vtn_variable_mode_ssbo && b->options->force_ssbo_non_uniform)
2716 access |= ACCESS_NON_UNIFORM;
2717
2718 struct vtn_pointer *ptr = vtn_pointer_dereference(b, base, chain);
2719 ptr->ptr_type = ptr_type;
2720 ptr->access |= access;
2721 vtn_push_pointer(b, w[2], ptr);
2722 break;
2723 }
2724
2725 case SpvOpCopyMemory: {
2726 struct vtn_value *dest_val = vtn_pointer_value(b, w[1]);
2727 struct vtn_value *src_val = vtn_pointer_value(b, w[2]);
2728 struct vtn_pointer *dest = vtn_value_to_pointer(b, dest_val);
2729 struct vtn_pointer *src = vtn_value_to_pointer(b, src_val);
2730
2731 vtn_assert_types_equal(b, opcode, dest_val->type->deref,
2732 src_val->type->deref);
2733
2734 unsigned idx = 3, dest_alignment, src_alignment;
2735 SpvMemoryAccessMask dest_access, src_access;
2736 SpvScope dest_scope, src_scope;
2737 vtn_get_mem_operands(b, w, count, &idx, &dest_access, &dest_alignment,
2738 &dest_scope, &src_scope);
2739 if (!vtn_get_mem_operands(b, w, count, &idx, &src_access, &src_alignment,
2740 NULL, &src_scope)) {
2741 src_alignment = dest_alignment;
2742 src_access = dest_access;
2743 }
2744 src = vtn_align_pointer(b, src, src_alignment);
2745 dest = vtn_align_pointer(b, dest, dest_alignment);
2746
2747 vtn_emit_make_visible_barrier(b, src_access, src_scope, src->mode);
2748
2749 vtn_variable_copy(b, dest, src,
2750 spv_access_to_gl_access(dest_access),
2751 spv_access_to_gl_access(src_access));
2752
2753 vtn_emit_make_available_barrier(b, dest_access, dest_scope, dest->mode);
2754 break;
2755 }
2756
2757 case SpvOpCopyMemorySized: {
2758 struct vtn_value *dest_val = vtn_pointer_value(b, w[1]);
2759 struct vtn_value *src_val = vtn_pointer_value(b, w[2]);
2760 nir_def *size = vtn_get_nir_ssa(b, w[3]);
2761 struct vtn_pointer *dest = vtn_value_to_pointer(b, dest_val);
2762 struct vtn_pointer *src = vtn_value_to_pointer(b, src_val);
2763
2764 unsigned idx = 4, dest_alignment, src_alignment;
2765 SpvMemoryAccessMask dest_access, src_access;
2766 SpvScope dest_scope, src_scope;
2767 vtn_get_mem_operands(b, w, count, &idx, &dest_access, &dest_alignment,
2768 &dest_scope, &src_scope);
2769 if (!vtn_get_mem_operands(b, w, count, &idx, &src_access, &src_alignment,
2770 NULL, &src_scope)) {
2771 src_alignment = dest_alignment;
2772 src_access = dest_access;
2773 }
2774 src = vtn_align_pointer(b, src, src_alignment);
2775 dest = vtn_align_pointer(b, dest, dest_alignment);
2776
2777 vtn_emit_make_visible_barrier(b, src_access, src_scope, src->mode);
2778
2779 nir_memcpy_deref_with_access(&b->nb,
2780 vtn_pointer_to_deref(b, dest),
2781 vtn_pointer_to_deref(b, src),
2782 size,
2783 spv_access_to_gl_access(dest_access),
2784 spv_access_to_gl_access(src_access));
2785
2786 vtn_emit_make_available_barrier(b, dest_access, dest_scope, dest->mode);
2787 break;
2788 }
2789
2790 case SpvOpLoad: {
2791 struct vtn_type *res_type = vtn_get_type(b, w[1]);
2792 struct vtn_value *src_val = vtn_value(b, w[3], vtn_value_type_pointer);
2793 struct vtn_pointer *src = vtn_value_to_pointer(b, src_val);
2794
2795 vtn_assert_types_equal(b, opcode, res_type, src_val->type->deref);
2796
2797 unsigned idx = 4, alignment;
2798 SpvMemoryAccessMask access;
2799 SpvScope scope;
2800 vtn_get_mem_operands(b, w, count, &idx, &access, &alignment, NULL, &scope);
2801 src = vtn_align_pointer(b, src, alignment);
2802
2803 vtn_emit_make_visible_barrier(b, access, scope, src->mode);
2804
2805 vtn_push_ssa_value(b, w[2], vtn_variable_load(b, src, spv_access_to_gl_access(access)));
2806 break;
2807 }
2808
2809 case SpvOpStore: {
2810 struct vtn_value *dest_val = vtn_pointer_value(b, w[1]);
2811 struct vtn_pointer *dest = vtn_value_to_pointer(b, dest_val);
2812 struct vtn_value *src_val = vtn_untyped_value(b, w[2]);
2813
2814 /* OpStore requires us to actually have a storage type */
2815 vtn_fail_if(dest->type->type == NULL,
2816 "Invalid destination type for OpStore");
2817
2818 if (glsl_get_base_type(dest->type->type) == GLSL_TYPE_BOOL &&
2819 glsl_get_base_type(src_val->type->type) == GLSL_TYPE_UINT) {
2820 /* Early versions of GLSLang would use uint types for UBOs/SSBOs but
2821 * would then store them to a local variable as bool. Work around
2822 * the issue by doing an implicit conversion.
2823 *
2824 * https://github.com/KhronosGroup/glslang/issues/170
2825 * https://bugs.freedesktop.org/show_bug.cgi?id=104424
2826 */
2827 vtn_warn("OpStore of value of type OpTypeInt to a pointer to type "
2828 "OpTypeBool. Doing an implicit conversion to work around "
2829 "the problem.");
2830 struct vtn_ssa_value *bool_ssa =
2831 vtn_create_ssa_value(b, dest->type->type);
2832 bool_ssa->def = nir_i2b(&b->nb, vtn_ssa_value(b, w[2])->def);
2833 vtn_variable_store(b, bool_ssa, dest, 0);
2834 break;
2835 }
2836
2837 vtn_assert_types_equal(b, opcode, dest_val->type->deref, src_val->type);
2838
2839 unsigned idx = 3, alignment;
2840 SpvMemoryAccessMask access;
2841 SpvScope scope;
2842 vtn_get_mem_operands(b, w, count, &idx, &access, &alignment, &scope, NULL);
2843 dest = vtn_align_pointer(b, dest, alignment);
2844
2845 struct vtn_ssa_value *src = vtn_ssa_value(b, w[2]);
2846 vtn_variable_store(b, src, dest, spv_access_to_gl_access(access));
2847
2848 vtn_emit_make_available_barrier(b, access, scope, dest->mode);
2849 break;
2850 }
2851
2852 case SpvOpArrayLength: {
2853 struct vtn_pointer *ptr = vtn_pointer(b, w[3]);
2854 const uint32_t field = w[4];
2855
2856 vtn_fail_if(ptr->type->base_type != vtn_base_type_struct,
2857 "OpArrayLength must take a pointer to a structure type");
2858 vtn_fail_if(field != ptr->type->length - 1 ||
2859 ptr->type->members[field]->base_type != vtn_base_type_array,
2860 "OpArrayLength must reference the last member of the "
2861 "structure and that must be an array");
2862
2863 struct vtn_access_chain chain = {
2864 .length = 1,
2865 .link = {
2866 { .mode = vtn_access_mode_literal, .id = field },
2867 }
2868 };
2869 struct vtn_pointer *array = vtn_pointer_dereference(b, ptr, &chain);
2870
2871 nir_def *array_length =
2872 nir_deref_buffer_array_length(&b->nb, 32,
2873 vtn_pointer_to_ssa(b, array),
2874 .access=ptr->access | ptr->type->access);
2875
2876 vtn_push_nir_ssa(b, w[2], array_length);
2877 break;
2878 }
2879
2880 case SpvOpConvertPtrToU: {
2881 struct vtn_type *u_type = vtn_get_type(b, w[1]);
2882 struct vtn_type *ptr_type = vtn_get_value_type(b, w[3]);
2883
2884 vtn_fail_if(ptr_type->base_type != vtn_base_type_pointer ||
2885 ptr_type->type == NULL,
2886 "OpConvertPtrToU can only be used on physical pointers");
2887
2888 vtn_fail_if(u_type->base_type != vtn_base_type_vector &&
2889 u_type->base_type != vtn_base_type_scalar,
2890 "OpConvertPtrToU can only be used to cast to a vector or "
2891 "scalar type");
2892
2893 /* The pointer will be converted to an SSA value automatically */
2894 nir_def *ptr = vtn_get_nir_ssa(b, w[3]);
2895 nir_def *u = nir_sloppy_bitcast(&b->nb, ptr, u_type->type);
2896 vtn_push_nir_ssa(b, w[2], u);
2897 break;
2898 }
2899
2900 case SpvOpConvertUToPtr: {
2901 struct vtn_type *ptr_type = vtn_get_type(b, w[1]);
2902 struct vtn_type *u_type = vtn_get_value_type(b, w[3]);
2903
2904 vtn_fail_if(ptr_type->base_type != vtn_base_type_pointer ||
2905 ptr_type->type == NULL,
2906 "OpConvertUToPtr can only be used on physical pointers");
2907
2908 vtn_fail_if(u_type->base_type != vtn_base_type_vector &&
2909 u_type->base_type != vtn_base_type_scalar,
2910 "OpConvertUToPtr can only be used to cast from a vector or "
2911 "scalar type");
2912
2913 nir_def *u = vtn_get_nir_ssa(b, w[3]);
2914 nir_def *ptr = nir_sloppy_bitcast(&b->nb, u, ptr_type->type);
2915 vtn_push_pointer(b, w[2], vtn_pointer_from_ssa(b, ptr, ptr_type));
2916 break;
2917 }
2918
2919 case SpvOpGenericCastToPtrExplicit: {
2920 struct vtn_type *dst_type = vtn_get_type(b, w[1]);
2921 struct vtn_type *src_type = vtn_get_value_type(b, w[3]);
2922 SpvStorageClass storage_class = w[4];
2923
2924 vtn_fail_if(dst_type->base_type != vtn_base_type_pointer ||
2925 dst_type->storage_class != storage_class,
2926 "Result type of an SpvOpGenericCastToPtrExplicit must be "
2927 "an OpTypePointer. Its Storage Class must match the "
2928 "storage class specified in the instruction");
2929
2930 vtn_fail_if(src_type->base_type != vtn_base_type_pointer ||
2931 src_type->deref->id != dst_type->deref->id,
2932 "Source pointer of an SpvOpGenericCastToPtrExplicit must "
2933 "have a type of OpTypePointer whose Type is the same as "
2934 "the Type of Result Type");
2935
2936 vtn_fail_if(src_type->storage_class != SpvStorageClassGeneric,
2937 "Source pointer of an SpvOpGenericCastToPtrExplicit must "
2938 "point to the Generic Storage Class.");
2939
2940 vtn_fail_if(storage_class != SpvStorageClassWorkgroup &&
2941 storage_class != SpvStorageClassCrossWorkgroup &&
2942 storage_class != SpvStorageClassFunction,
2943 "Storage must be one of the following literal values from "
2944 "Storage Class: Workgroup, CrossWorkgroup, or Function.");
2945
2946 nir_deref_instr *src_deref = vtn_nir_deref(b, w[3]);
2947
2948 nir_variable_mode nir_mode;
2949 enum vtn_variable_mode mode =
2950 vtn_storage_class_to_mode(b, storage_class, dst_type->deref, &nir_mode);
2951 nir_address_format addr_format = vtn_mode_to_address_format(b, mode);
2952
2953 nir_def *null_value =
2954 nir_build_imm(&b->nb, nir_address_format_num_components(addr_format),
2955 nir_address_format_bit_size(addr_format),
2956 nir_address_format_null_value(addr_format));
2957
2958 nir_def *valid = nir_build_deref_mode_is(&b->nb, 1, &src_deref->def, nir_mode);
2959 vtn_push_nir_ssa(b, w[2], nir_bcsel(&b->nb, valid,
2960 &src_deref->def,
2961 null_value));
2962 break;
2963 }
2964
2965 case SpvOpGenericPtrMemSemantics: {
2966 struct vtn_type *dst_type = vtn_get_type(b, w[1]);
2967 struct vtn_type *src_type = vtn_get_value_type(b, w[3]);
2968
2969 vtn_fail_if(dst_type->base_type != vtn_base_type_scalar ||
2970 dst_type->type != glsl_uint_type(),
2971 "Result type of an SpvOpGenericPtrMemSemantics must be "
2972 "an OpTypeInt with 32-bit Width and 0 Signedness.");
2973
2974 vtn_fail_if(src_type->base_type != vtn_base_type_pointer ||
2975 src_type->storage_class != SpvStorageClassGeneric,
2976 "Source pointer of an SpvOpGenericPtrMemSemantics must "
2977 "point to the Generic Storage Class");
2978
2979 nir_deref_instr *src_deref = vtn_nir_deref(b, w[3]);
2980
2981 nir_def *global_bit =
2982 nir_bcsel(&b->nb, nir_build_deref_mode_is(&b->nb, 1, &src_deref->def,
2983 nir_var_mem_global),
2984 nir_imm_int(&b->nb, SpvMemorySemanticsCrossWorkgroupMemoryMask),
2985 nir_imm_int(&b->nb, 0));
2986
2987 nir_def *shared_bit =
2988 nir_bcsel(&b->nb, nir_build_deref_mode_is(&b->nb, 1, &src_deref->def,
2989 nir_var_mem_shared),
2990 nir_imm_int(&b->nb, SpvMemorySemanticsWorkgroupMemoryMask),
2991 nir_imm_int(&b->nb, 0));
2992
2993 vtn_push_nir_ssa(b, w[2], nir_iand(&b->nb, global_bit, shared_bit));
2994 break;
2995 }
2996
2997 case SpvOpSubgroupBlockReadINTEL: {
2998 struct vtn_type *res_type = vtn_get_type(b, w[1]);
2999 nir_deref_instr *src = vtn_nir_deref(b, w[3]);
3000
3001 nir_intrinsic_instr *load =
3002 nir_intrinsic_instr_create(b->nb.shader,
3003 nir_intrinsic_load_deref_block_intel);
3004 load->src[0] = nir_src_for_ssa(&src->def);
3005 nir_def_init_for_type(&load->instr, &load->def, res_type->type);
3006 load->num_components = load->def.num_components;
3007 nir_builder_instr_insert(&b->nb, &load->instr);
3008
3009 vtn_push_nir_ssa(b, w[2], &load->def);
3010 break;
3011 }
3012
3013 case SpvOpSubgroupBlockWriteINTEL: {
3014 nir_deref_instr *dest = vtn_nir_deref(b, w[1]);
3015 nir_def *data = vtn_ssa_value(b, w[2])->def;
3016
3017 nir_intrinsic_instr *store =
3018 nir_intrinsic_instr_create(b->nb.shader,
3019 nir_intrinsic_store_deref_block_intel);
3020 store->src[0] = nir_src_for_ssa(&dest->def);
3021 store->src[1] = nir_src_for_ssa(data);
3022 store->num_components = data->num_components;
3023 nir_builder_instr_insert(&b->nb, &store->instr);
3024 break;
3025 }
3026
3027 case SpvOpConvertUToAccelerationStructureKHR: {
3028 struct vtn_type *as_type = vtn_get_type(b, w[1]);
3029 struct vtn_type *u_type = vtn_get_value_type(b, w[3]);
3030 vtn_fail_if(!((u_type->base_type == vtn_base_type_vector &&
3031 u_type->type == glsl_vector_type(GLSL_TYPE_UINT, 2)) ||
3032 (u_type->base_type == vtn_base_type_scalar &&
3033 u_type->type == glsl_uint64_t_type())),
3034 "OpConvertUToAccelerationStructure may only be used to "
3035 "cast from a 64-bit scalar integer or a 2-component vector "
3036 "of 32-bit integers");
3037 vtn_fail_if(as_type->base_type != vtn_base_type_accel_struct,
3038 "The result type of an OpConvertUToAccelerationStructure "
3039 "must be OpTypeAccelerationStructure");
3040
3041 nir_def *u = vtn_get_nir_ssa(b, w[3]);
3042 vtn_push_nir_ssa(b, w[2], nir_sloppy_bitcast(&b->nb, u, as_type->type));
3043 break;
3044 }
3045
3046 default:
3047 vtn_fail_with_opcode("Unhandled opcode", opcode);
3048 }
3049 }
3050