1 /* 2 * Copyright 2023 Google LLC 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #ifndef skgpu_graphite_compute_ComputeStep_DEFINED 9 #define skgpu_graphite_compute_ComputeStep_DEFINED 10 11 #include "include/core/SkColorType.h" 12 #include "include/core/SkSize.h" 13 #include "include/core/SkSpan.h" 14 #include "include/private/base/SkTArray.h" 15 #include "include/private/base/SkTo.h" 16 #include "src/base/SkEnumBitMask.h" 17 #include "src/gpu/graphite/ComputeTypes.h" 18 19 #include <optional> 20 #include <string> 21 #include <string_view> 22 #include <tuple> 23 #include <vector> 24 25 namespace skgpu::graphite { 26 27 class UniformManager; 28 29 /** 30 * A `ComputeStep` represents a compute pass within a wider draw operation. A `ComputeStep` 31 * implementation describes an invocation of a compute program and its data binding layout. 32 * 33 * A `ComputeStep` can perform arbitrary operations on the GPU over various types of data, including 34 * geometry and image processing. The data processed by a `ComputeStep` can be inputs (textures or 35 * buffers) populated on the CPU, data forwarded to and from other `ComputeStep` invocations (via 36 * "slots"), transient storage buffers/textures that are only used within an individual dispatch, 37 * geometry attribute (vertex/index/instance) and indirect draw parameters of a subsequent raster 38 * pipeline stage, as well as texture outputs. 39 * 40 * The data flow between sequential `ComputeStep` invocations within a DispatchGroup is achieved by 41 * operating over a shared "resource table". `ComputeStep`s can declare a resource with a slot 42 * number. Multiple `ComputeStep`s in a group that declare a resource with the same slot number will 43 * have access to the same backing resource object through that slot: 44 * 45 * _______________ _______________ 46 * | | | | 47 * | ---[Slot 0]--- | 48 * | | | | 49 * | ---[Slot 1]--- | 50 * | ComputeStep 1 | | ComputeStep 2 | 51 * | ---[Slot 2] | | 52 * | | | | 53 * | | [Slot 3]--- | 54 * | | | | 55 * --------------- --------------- 56 * 57 * In the example above, slots 0 and 1 are accessed by both ComputeSteps, while slots 2 and 3 are 58 * exclusively accessed by ComputeStep 1 and 2 respectively. Alternately, slots 2 and 3 could be 59 * declared as "private" resources which are visible to a single ComputeStep. 60 * 61 * Similarly, raster stage geometry buffers that are specified as the output of a ComputeStep can be 62 * used to assign the draw buffers of a RenderStep. 63 * 64 * It is the responsibility of the owning entity (e.g. a RendererProvider) to ensure that a chain of 65 * ComputeStep and RenderStep invocations have a compatible resource and data-flow layout. 66 */ 67 class ComputeStep { 68 public: 69 enum class DataFlow { 70 // A private binding is a resource that is only visible to a single ComputeStep invocation. 71 kPrivate, 72 73 // Bindings with a slot number that can be used to forward data between a series of 74 // `ComputeStep`s. This DataFlow type is accompanied with a "slot number" that can be 75 // shared by multiple `ComputeStep`s in a group. 76 kShared, 77 }; 78 79 enum class ResourceType { 80 kUniformBuffer, 81 kStorageBuffer, 82 kReadOnlyStorageBuffer, 83 84 // An indirect buffer is a storage buffer populated by this ComputeStep to determine the 85 // global dispatch size of a subsequent ComputeStep within the same DispatchGroup. The 86 // contents of the buffer must be laid out according to the `IndirectDispatchArgs` struct 87 // definition declared in ComputeTypes.h. 88 kIndirectBuffer, 89 90 kWriteOnlyStorageTexture, 91 kReadOnlyTexture, 92 kSampledTexture, 93 }; 94 95 enum class ResourcePolicy { 96 kNone, 97 98 // The memory of the resource will be initialized to 0 99 kClear, 100 101 // The ComputeStep will be asked to initialize the memory on the CPU via 102 // `ComputeStep::prepareStorageBuffer` or `ComputeStep::prepareUniformBuffer` prior to 103 // pipeline execution. This may incur a transfer cost on platforms that do not allow buffers 104 // to be mapped in shared memory. 105 // 106 // If multiple ComputeSteps in a DispatchGroup declare a mapped resource with the same 107 // shared slot number, only the first ComputeStep in the group will receive a call to 108 // prepare the buffer. 109 // 110 // This only has meaning for buffer resources. A resource with the `kUniformBuffer` resource 111 // type must specify the `kMapped` resource policy. 112 kMapped, 113 }; 114 115 struct ResourceDesc final { 116 ResourceType fType; 117 DataFlow fFlow; 118 ResourcePolicy fPolicy; 119 120 // This field only has meaning (and must have a non-negative value) if `fFlow` is 121 // `DataFlow::kShared`. 122 int fSlot; 123 124 // The SkSL variable declaration code excluding the layout and type definitions. This field 125 // is ignored for a ComputeStep that supports native shader source. 126 const char* fSkSL = ""; 127 128 constexpr ResourceDesc(ResourceType type, 129 DataFlow flow, 130 ResourcePolicy policy, 131 int slot = -1) fTypefinal132 : fType(type), fFlow(flow), fPolicy(policy), fSlot(slot) {} 133 ResourceDescfinal134 constexpr ResourceDesc(ResourceType type, 135 DataFlow flow, 136 ResourcePolicy policy, 137 int slot, 138 const char* sksl) 139 : fType(type), fFlow(flow), fPolicy(policy), fSlot(slot), fSkSL(sksl) {} 140 ResourceDescfinal141 constexpr ResourceDesc(ResourceType type, 142 DataFlow flow, 143 ResourcePolicy policy, 144 const char* sksl) 145 : fType(type), fFlow(flow), fPolicy(policy), fSlot(-1), fSkSL(sksl) {} 146 }; 147 148 // On platforms that support late bound workgroup shared resources (e.g. Metal) a ComputeStep 149 // can optionally provide a list of memory sizes and binding indices. 150 struct WorkgroupBufferDesc { 151 // The buffer size in bytes. 152 size_t size; 153 size_t index; 154 }; 155 156 virtual ~ComputeStep() = default; 157 158 // Returns a complete SkSL compute program. The returned SkSL must constitute a complete compute 159 // program and declare all resource bindings starting at `nextBindingIndex` in the order in 160 // which they are enumerated by `ComputeStep::resources()`. 161 // 162 // If this ComputeStep supports native shader source then it must override 163 // `nativeShaderSource()` instead. 164 virtual std::string computeSkSL() const; 165 166 // A ComputeStep that supports native shader source then then it must implement 167 // `nativeShaderSource()` and return the shader source in the requested format. This is intended 168 // to instantiate a compute pipeline from a pre-compiled shader module. The returned source must 169 // constitute a shader module that contains at least one compute entry-point function that 170 // matches the specified name. 171 enum class NativeShaderFormat { 172 kWGSL, 173 kMSL, 174 }; 175 struct NativeShaderSource { 176 std::string_view fSource; 177 std::string fEntryPoint; 178 }; 179 virtual NativeShaderSource nativeShaderSource(NativeShaderFormat) const; 180 181 // This method will be called for buffer entries in the ComputeStep's resource list to 182 // determine the required allocation size. The ComputeStep must return a non-zero value. 183 // 184 // TODO(b/279955342): Provide a context object, e.g. a type a associated with 185 // DispatchGroup::Builder, to aid the ComputeStep in its buffer size calculations. 186 virtual size_t calculateBufferSize(int resourceIndex, const ResourceDesc&) const; 187 188 // This method will be called for storage texture entries in the ComputeStep's resource list to 189 // determine the required dimensions and color type. The ComputeStep must return a non-zero 190 // value for the size and a valid color type. 191 virtual std::tuple<SkISize, SkColorType> calculateTextureParameters(int resourceIndex, 192 const ResourceDesc&) const; 193 194 // This method will be called for sampler entries in the ComputeStep's resource list to 195 // determine the sampling and tile mode options. 196 virtual SamplerDesc calculateSamplerParameters(int resourceIndex, const ResourceDesc&) const; 197 198 // Return the global dispatch size (aka "workgroup count") for this step based on the draw 199 // parameters. The default value is a workgroup count of (1, 1, 1) 200 // 201 // TODO(b/279955342): Provide a context object, e.g. a type a associated with 202 // DispatchGroup::Builder, to aid the ComputeStep in its buffer size calculations. 203 virtual WorkgroupSize calculateGlobalDispatchSize() const; 204 205 // Populates a storage buffer resource which was specified as "mapped". This method will only be 206 // called once for a resource right after its allocation and before pipeline execution. For 207 // shared resources, only the first ComputeStep in a DispatchGroup will be asked to prepare the 208 // buffer. 209 // 210 // `resourceIndex` matches the order in which `resource` was enumerated by 211 // `ComputeStep::resources()`. 212 virtual void prepareStorageBuffer(int resourceIndex, 213 const ResourceDesc& resource, 214 void* buffer, 215 size_t bufferSize) const; 216 217 // Populates a uniform buffer resource. This method will be called once for a resource right 218 // after its allocation and before pipeline execution. For shared resources, only the first 219 // ComputeStep in a DispatchGroup will be asked to prepare the buffer. 220 // 221 // `resourceIndex` matches the order in which `resource` was enumerated by 222 // `ComputeStep::resources()`. 223 // 224 // The implementation must use the provided `UniformManager` to populate the buffer. On debug 225 // builds, the implementation must validate the buffer layout by setting up an expectation, for 226 // example: 227 // 228 // SkDEBUGCODE(mgr->setExpectedUniforms({{"foo", SkSLType::kFloat}})); 229 // 230 // TODO(b/279955342): Provide a context object, e.g. a type a associated with 231 // DispatchGroup::Builder, to aid the ComputeStep in its buffer size calculations. 232 virtual void prepareUniformBuffer(int resourceIndex, 233 const ResourceDesc&, 234 UniformManager*) const; 235 resources()236 SkSpan<const ResourceDesc> resources() const { return SkSpan(fResources); } workgroupBuffers()237 SkSpan<const WorkgroupBufferDesc> workgroupBuffers() const { return SkSpan(fWorkgroupBuffers); } 238 239 // Identifier that can be used as part of a unique key for a compute pipeline state object 240 // associated with this `ComputeStep`. uniqueID()241 uint32_t uniqueID() const { return fUniqueID; } 242 243 // Returns a debug name for the subclass implementation. name()244 const char* name() const { return fName.c_str(); } 245 246 // The size of the workgroup for this ComputeStep's entry point function. This value is hardware 247 // dependent. On Metal, this value should be used when invoking the dispatch API call. On all 248 // other backends, this value will be baked into the pipeline. localDispatchSize()249 WorkgroupSize localDispatchSize() const { return fLocalDispatchSize; } 250 supportsNativeShader()251 bool supportsNativeShader() const { return SkToBool(fFlags & Flags::kSupportsNativeShader); } 252 253 protected: 254 enum class Flags : uint8_t { 255 kNone = 0b00000, 256 kSupportsNativeShader = 0b00010, 257 }; 258 SK_DECL_BITMASK_OPS_FRIENDS(Flags) 259 260 ComputeStep(std::string_view name, 261 WorkgroupSize localDispatchSize, 262 SkSpan<const ResourceDesc> resources, 263 SkSpan<const WorkgroupBufferDesc> workgroupBuffers = {}, 264 Flags baseFlags = Flags::kNone); 265 266 private: 267 // Disallow copy and move 268 ComputeStep(const ComputeStep&) = delete; 269 ComputeStep(ComputeStep&&) = delete; 270 271 uint32_t fUniqueID; 272 SkEnumBitMask<Flags> fFlags; 273 std::string fName; 274 skia_private::TArray<ResourceDesc> fResources; 275 skia_private::TArray<WorkgroupBufferDesc> fWorkgroupBuffers; 276 277 // TODO(b/240615224): Subclasses should simply specify the workgroup size that they need. 278 // The ComputeStep constructor should check and reduce that number based on the maximum 279 // supported workgroup size stored in Caps. In Metal, we'll pass this number directly to the 280 // dispatch API call. On other backends, we'll use this value to generate the right SkSL 281 // workgroup size declaration to avoid any validation failures. 282 WorkgroupSize fLocalDispatchSize; 283 }; 284 SK_MAKE_BITMASK_OPS(ComputeStep::Flags) 285 286 } // namespace skgpu::graphite 287 288 #endif // skgpu_graphite_compute_ComputeStep_DEFINED 289