1 /*
2 * Copyright 2020 Google LLC
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/sksl/SkSLInliner.h"
9
10 #ifndef SK_ENABLE_OPTIMIZE_SIZE
11
12 #include "include/core/SkSpan.h"
13 #include "include/core/SkTypes.h"
14 #include "include/private/base/SkTArray.h"
15 #include "src/base/SkEnumBitMask.h"
16 #include "src/sksl/SkSLAnalysis.h"
17 #include "src/sksl/SkSLDefines.h"
18 #include "src/sksl/SkSLErrorReporter.h"
19 #include "src/sksl/SkSLOperator.h"
20 #include "src/sksl/SkSLPosition.h"
21 #include "src/sksl/analysis/SkSLProgramUsage.h"
22 #include "src/sksl/ir/SkSLBinaryExpression.h"
23 #include "src/sksl/ir/SkSLBreakStatement.h"
24 #include "src/sksl/ir/SkSLChildCall.h"
25 #include "src/sksl/ir/SkSLConstructor.h"
26 #include "src/sksl/ir/SkSLConstructorArray.h"
27 #include "src/sksl/ir/SkSLConstructorArrayCast.h"
28 #include "src/sksl/ir/SkSLConstructorCompound.h"
29 #include "src/sksl/ir/SkSLConstructorCompoundCast.h"
30 #include "src/sksl/ir/SkSLConstructorDiagonalMatrix.h"
31 #include "src/sksl/ir/SkSLConstructorMatrixResize.h"
32 #include "src/sksl/ir/SkSLConstructorScalarCast.h"
33 #include "src/sksl/ir/SkSLConstructorSplat.h"
34 #include "src/sksl/ir/SkSLConstructorStruct.h"
35 #include "src/sksl/ir/SkSLContinueStatement.h"
36 #include "src/sksl/ir/SkSLDiscardStatement.h"
37 #include "src/sksl/ir/SkSLDoStatement.h"
38 #include "src/sksl/ir/SkSLEmptyExpression.h"
39 #include "src/sksl/ir/SkSLExpressionStatement.h"
40 #include "src/sksl/ir/SkSLFieldAccess.h"
41 #include "src/sksl/ir/SkSLForStatement.h"
42 #include "src/sksl/ir/SkSLFunctionCall.h"
43 #include "src/sksl/ir/SkSLFunctionDeclaration.h"
44 #include "src/sksl/ir/SkSLFunctionDefinition.h"
45 #include "src/sksl/ir/SkSLIRNode.h"
46 #include "src/sksl/ir/SkSLIfStatement.h"
47 #include "src/sksl/ir/SkSLIndexExpression.h"
48 #include "src/sksl/ir/SkSLModifierFlags.h"
49 #include "src/sksl/ir/SkSLNop.h"
50 #include "src/sksl/ir/SkSLPostfixExpression.h"
51 #include "src/sksl/ir/SkSLPrefixExpression.h"
52 #include "src/sksl/ir/SkSLProgramElement.h"
53 #include "src/sksl/ir/SkSLReturnStatement.h"
54 #include "src/sksl/ir/SkSLSetting.h"
55 #include "src/sksl/ir/SkSLStatement.h"
56 #include "src/sksl/ir/SkSLSwitchCase.h"
57 #include "src/sksl/ir/SkSLSwitchStatement.h"
58 #include "src/sksl/ir/SkSLSwizzle.h"
59 #include "src/sksl/ir/SkSLSymbolTable.h"
60 #include "src/sksl/ir/SkSLTernaryExpression.h"
61 #include "src/sksl/ir/SkSLType.h"
62 #include "src/sksl/ir/SkSLVarDeclarations.h"
63 #include "src/sksl/ir/SkSLVariable.h"
64 #include "src/sksl/ir/SkSLVariableReference.h"
65 #include "src/sksl/transform/SkSLTransform.h"
66
67 #include <algorithm>
68 #include <climits>
69 #include <cstddef>
70 #include <memory>
71 #include <string>
72 #include <string_view>
73 #include <utility>
74
75 using namespace skia_private;
76
77 namespace SkSL {
78 namespace {
79
80 static constexpr int kInlinedStatementLimit = 2500;
81
is_scopeless_block(Statement * stmt)82 static bool is_scopeless_block(Statement* stmt) {
83 return stmt->is<Block>() && !stmt->as<Block>().isScope();
84 }
85
find_parent_statement(const std::vector<std::unique_ptr<Statement> * > & stmtStack)86 static std::unique_ptr<Statement>* find_parent_statement(
87 const std::vector<std::unique_ptr<Statement>*>& stmtStack) {
88 SkASSERT(!stmtStack.empty());
89
90 // Walk the statement stack from back to front, ignoring the last element (which is the
91 // enclosing statement).
92 auto iter = stmtStack.rbegin();
93 ++iter;
94
95 // Anything counts as a parent statement other than a scopeless Block.
96 for (; iter != stmtStack.rend(); ++iter) {
97 std::unique_ptr<Statement>* stmt = *iter;
98 if (!is_scopeless_block(stmt->get())) {
99 return stmt;
100 }
101 }
102
103 // There wasn't any parent statement to be found.
104 return nullptr;
105 }
106
clone_with_ref_kind(const Expression & expr,VariableReference::RefKind refKind,Position pos)107 std::unique_ptr<Expression> clone_with_ref_kind(const Expression& expr,
108 VariableReference::RefKind refKind,
109 Position pos) {
110 std::unique_ptr<Expression> clone = expr.clone(pos);
111 Analysis::UpdateVariableRefKind(clone.get(), refKind);
112 return clone;
113 }
114
115 } // namespace
116
RemapVariable(const Variable * variable,const VariableRewriteMap * varMap)117 const Variable* Inliner::RemapVariable(const Variable* variable,
118 const VariableRewriteMap* varMap) {
119 std::unique_ptr<Expression>* remap = varMap->find(variable);
120 if (!remap) {
121 SkDEBUGFAILF("rewrite map does not contain variable '%.*s'",
122 (int)variable->name().size(), variable->name().data());
123 return variable;
124 }
125 Expression* expr = remap->get();
126 SkASSERT(expr);
127 if (!expr->is<VariableReference>()) {
128 SkDEBUGFAILF("rewrite map contains non-variable replacement for '%.*s'",
129 (int)variable->name().size(), variable->name().data());
130 return variable;
131 }
132 return expr->as<VariableReference>().variable();
133 }
134
ensureScopedBlocks(Statement * inlinedBody,Statement * parentStmt)135 void Inliner::ensureScopedBlocks(Statement* inlinedBody, Statement* parentStmt) {
136 // No changes necessary if this statement isn't actually a block.
137 if (!inlinedBody || !inlinedBody->is<Block>()) {
138 return;
139 }
140
141 // No changes necessary if the parent statement doesn't require a scope.
142 if (!parentStmt || !(parentStmt->is<IfStatement>() || parentStmt->is<ForStatement>() ||
143 parentStmt->is<DoStatement>() || is_scopeless_block(parentStmt))) {
144 return;
145 }
146
147 Block& block = inlinedBody->as<Block>();
148
149 // The inliner will create inlined function bodies as a Block containing multiple statements,
150 // but no scope. Normally, this is fine, but if this block is used as the statement for a
151 // do/for/if/while, the block needs to be scoped for the generated code to match the intent.
152 // In the case of Blocks nested inside other Blocks, we add the scope to the outermost block if
153 // needed.
154 for (Block* nestedBlock = █; ) {
155 if (nestedBlock->isScope()) {
156 // We found an explicit scope; all is well.
157 return;
158 }
159 if (nestedBlock->children().size() == 1 && nestedBlock->children()[0]->is<Block>()) {
160 // This block wraps another unscoped block; we need to go deeper.
161 nestedBlock = &nestedBlock->children()[0]->as<Block>();
162 continue;
163 }
164 // We found a block containing real statements (not just more blocks), but no scope.
165 // Let's add a scope to the outermost block.
166 block.setBlockKind(Block::Kind::kBracedScope);
167 return;
168 }
169 }
170
inlineExpression(Position pos,VariableRewriteMap * varMap,SymbolTable * symbolTableForExpression,const Expression & expression)171 std::unique_ptr<Expression> Inliner::inlineExpression(Position pos,
172 VariableRewriteMap* varMap,
173 SymbolTable* symbolTableForExpression,
174 const Expression& expression) {
175 auto expr = [&](const std::unique_ptr<Expression>& e) -> std::unique_ptr<Expression> {
176 if (e) {
177 return this->inlineExpression(pos, varMap, symbolTableForExpression, *e);
178 }
179 return nullptr;
180 };
181 auto argList = [&](const ExpressionArray& originalArgs) -> ExpressionArray {
182 ExpressionArray args;
183 args.reserve_exact(originalArgs.size());
184 for (const std::unique_ptr<Expression>& arg : originalArgs) {
185 args.push_back(expr(arg));
186 }
187 return args;
188 };
189
190 switch (expression.kind()) {
191 case Expression::Kind::kBinary: {
192 const BinaryExpression& binaryExpr = expression.as<BinaryExpression>();
193 return BinaryExpression::Make(*fContext,
194 pos,
195 expr(binaryExpr.left()),
196 binaryExpr.getOperator(),
197 expr(binaryExpr.right()));
198 }
199 case Expression::Kind::kEmpty:
200 return expression.clone(pos);
201 case Expression::Kind::kLiteral:
202 return expression.clone(pos);
203 case Expression::Kind::kChildCall: {
204 const ChildCall& childCall = expression.as<ChildCall>();
205 return ChildCall::Make(*fContext,
206 pos,
207 childCall.type().clone(*fContext, symbolTableForExpression),
208 childCall.child(),
209 argList(childCall.arguments()));
210 }
211 case Expression::Kind::kConstructorArray: {
212 const ConstructorArray& ctor = expression.as<ConstructorArray>();
213 return ConstructorArray::Make(*fContext,
214 pos,
215 *ctor.type().clone(*fContext, symbolTableForExpression),
216 argList(ctor.arguments()));
217 }
218 case Expression::Kind::kConstructorArrayCast: {
219 const ConstructorArrayCast& ctor = expression.as<ConstructorArrayCast>();
220 return ConstructorArrayCast::Make(
221 *fContext,
222 pos,
223 *ctor.type().clone(*fContext, symbolTableForExpression),
224 expr(ctor.argument()));
225 }
226 case Expression::Kind::kConstructorCompound: {
227 const ConstructorCompound& ctor = expression.as<ConstructorCompound>();
228 return ConstructorCompound::Make(
229 *fContext,
230 pos,
231 *ctor.type().clone(*fContext, symbolTableForExpression),
232 argList(ctor.arguments()));
233 }
234 case Expression::Kind::kConstructorCompoundCast: {
235 const ConstructorCompoundCast& ctor = expression.as<ConstructorCompoundCast>();
236 return ConstructorCompoundCast::Make(
237 *fContext,
238 pos,
239 *ctor.type().clone(*fContext, symbolTableForExpression),
240 expr(ctor.argument()));
241 }
242 case Expression::Kind::kConstructorDiagonalMatrix: {
243 const ConstructorDiagonalMatrix& ctor = expression.as<ConstructorDiagonalMatrix>();
244 return ConstructorDiagonalMatrix::Make(
245 *fContext,
246 pos,
247 *ctor.type().clone(*fContext, symbolTableForExpression),
248 expr(ctor.argument()));
249 }
250 case Expression::Kind::kConstructorMatrixResize: {
251 const ConstructorMatrixResize& ctor = expression.as<ConstructorMatrixResize>();
252 return ConstructorMatrixResize::Make(
253 *fContext,
254 pos,
255 *ctor.type().clone(*fContext, symbolTableForExpression),
256 expr(ctor.argument()));
257 }
258 case Expression::Kind::kConstructorScalarCast: {
259 const ConstructorScalarCast& ctor = expression.as<ConstructorScalarCast>();
260 return ConstructorScalarCast::Make(
261 *fContext,
262 pos,
263 *ctor.type().clone(*fContext, symbolTableForExpression),
264 expr(ctor.argument()));
265 }
266 case Expression::Kind::kConstructorSplat: {
267 const ConstructorSplat& ctor = expression.as<ConstructorSplat>();
268 return ConstructorSplat::Make(*fContext,
269 pos,
270 *ctor.type().clone(*fContext, symbolTableForExpression),
271 expr(ctor.argument()));
272 }
273 case Expression::Kind::kConstructorStruct: {
274 const ConstructorStruct& ctor = expression.as<ConstructorStruct>();
275 return ConstructorStruct::Make(*fContext,
276 pos,
277 *ctor.type().clone(*fContext, symbolTableForExpression),
278 argList(ctor.arguments()));
279 }
280 case Expression::Kind::kFieldAccess: {
281 const FieldAccess& f = expression.as<FieldAccess>();
282 return FieldAccess::Make(*fContext, pos, expr(f.base()), f.fieldIndex(), f.ownerKind());
283 }
284 case Expression::Kind::kFunctionCall: {
285 const FunctionCall& funcCall = expression.as<FunctionCall>();
286 return FunctionCall::Make(*fContext,
287 pos,
288 funcCall.type().clone(*fContext, symbolTableForExpression),
289 funcCall.function(),
290 argList(funcCall.arguments()));
291 }
292 case Expression::Kind::kFunctionReference:
293 return expression.clone(pos);
294 case Expression::Kind::kIndex: {
295 const IndexExpression& idx = expression.as<IndexExpression>();
296 return IndexExpression::Make(*fContext, pos, expr(idx.base()), expr(idx.index()));
297 }
298 case Expression::Kind::kMethodReference:
299 return expression.clone(pos);
300 case Expression::Kind::kPrefix: {
301 const PrefixExpression& p = expression.as<PrefixExpression>();
302 return PrefixExpression::Make(*fContext, pos, p.getOperator(), expr(p.operand()));
303 }
304 case Expression::Kind::kPostfix: {
305 const PostfixExpression& p = expression.as<PostfixExpression>();
306 return PostfixExpression::Make(*fContext, pos, expr(p.operand()), p.getOperator());
307 }
308 case Expression::Kind::kSetting: {
309 const Setting& s = expression.as<Setting>();
310 return Setting::Make(*fContext, pos, s.capsPtr());
311 }
312 case Expression::Kind::kSwizzle: {
313 const Swizzle& s = expression.as<Swizzle>();
314 return Swizzle::Make(*fContext, pos, expr(s.base()), s.components());
315 }
316 case Expression::Kind::kTernary: {
317 const TernaryExpression& t = expression.as<TernaryExpression>();
318 return TernaryExpression::Make(*fContext, pos, expr(t.test()),
319 expr(t.ifTrue()), expr(t.ifFalse()));
320 }
321 case Expression::Kind::kTypeReference:
322 return expression.clone(pos);
323 case Expression::Kind::kVariableReference: {
324 const VariableReference& v = expression.as<VariableReference>();
325 std::unique_ptr<Expression>* remap = varMap->find(v.variable());
326 if (remap) {
327 return clone_with_ref_kind(**remap, v.refKind(), pos);
328 }
329 return expression.clone(pos);
330 }
331 default:
332 SkDEBUGFAILF("unsupported expression: %s", expression.description().c_str());
333 return nullptr;
334 }
335 }
336
inlineStatement(Position pos,VariableRewriteMap * varMap,SymbolTable * symbolTableForStatement,std::unique_ptr<Expression> * resultExpr,Analysis::ReturnComplexity returnComplexity,const Statement & statement,const ProgramUsage & usage,bool isBuiltinCode)337 std::unique_ptr<Statement> Inliner::inlineStatement(Position pos,
338 VariableRewriteMap* varMap,
339 SymbolTable* symbolTableForStatement,
340 std::unique_ptr<Expression>* resultExpr,
341 Analysis::ReturnComplexity returnComplexity,
342 const Statement& statement,
343 const ProgramUsage& usage,
344 bool isBuiltinCode) {
345 auto stmt = [&](const std::unique_ptr<Statement>& s) -> std::unique_ptr<Statement> {
346 if (s) {
347 return this->inlineStatement(pos, varMap, symbolTableForStatement, resultExpr,
348 returnComplexity, *s, usage, isBuiltinCode);
349 }
350 return nullptr;
351 };
352 auto expr = [&](const std::unique_ptr<Expression>& e) -> std::unique_ptr<Expression> {
353 if (e) {
354 return this->inlineExpression(pos, varMap, symbolTableForStatement, *e);
355 }
356 return nullptr;
357 };
358 auto variableModifiers = [&](const Variable& variable,
359 const Expression* initialValue) -> ModifierFlags {
360 return Transform::AddConstToVarModifiers(variable, initialValue, &usage);
361 };
362 auto makeWithChildSymbolTable = [&](auto callback) -> std::unique_ptr<Statement> {
363 SymbolTable* origSymbolTable = symbolTableForStatement;
364 auto childSymbols = std::make_unique<SymbolTable>(origSymbolTable, isBuiltinCode);
365 symbolTableForStatement = childSymbols.get();
366
367 std::unique_ptr<Statement> stmt = callback(std::move(childSymbols));
368
369 symbolTableForStatement = origSymbolTable;
370 return stmt;
371 };
372
373 ++fInlinedStatementCounter;
374
375 switch (statement.kind()) {
376 case Statement::Kind::kBlock:
377 return makeWithChildSymbolTable([&](std::unique_ptr<SymbolTable> symbolTable) {
378 const Block& block = statement.as<Block>();
379 StatementArray statements;
380 statements.reserve_exact(block.children().size());
381 for (const std::unique_ptr<Statement>& child : block.children()) {
382 statements.push_back(stmt(child));
383 }
384 return Block::Make(pos,
385 std::move(statements),
386 block.blockKind(),
387 std::move(symbolTable));
388 });
389
390 case Statement::Kind::kBreak:
391 return BreakStatement::Make(pos);
392
393 case Statement::Kind::kContinue:
394 return ContinueStatement::Make(pos);
395
396 case Statement::Kind::kDiscard:
397 return DiscardStatement::Make(*fContext, pos);
398
399 case Statement::Kind::kDo: {
400 const DoStatement& d = statement.as<DoStatement>();
401 return DoStatement::Make(*fContext, pos, stmt(d.statement()), expr(d.test()));
402 }
403 case Statement::Kind::kExpression: {
404 const ExpressionStatement& e = statement.as<ExpressionStatement>();
405 return ExpressionStatement::Make(*fContext, expr(e.expression()));
406 }
407 case Statement::Kind::kFor:
408 return makeWithChildSymbolTable([&](std::unique_ptr<SymbolTable> symbolTable) {
409 const ForStatement& f = statement.as<ForStatement>();
410 // We need to ensure `initializer` is evaluated first, so that we've already
411 // remapped its declaration by the time we evaluate `test` and `next`.
412 std::unique_ptr<Statement> initializerStmt = stmt(f.initializer());
413 std::unique_ptr<Expression> testExpr = expr(f.test());
414 std::unique_ptr<Expression> nextExpr = expr(f.next());
415 std::unique_ptr<Statement> bodyStmt = stmt(f.statement());
416
417 std::unique_ptr<LoopUnrollInfo> unrollInfo;
418 if (f.unrollInfo()) {
419 // The for loop's unroll-info points to the Variable in the initializer as the
420 // index. This variable has been rewritten into a clone by the inliner, so we
421 // need to update the loop-unroll info to point to the clone.
422 unrollInfo = std::make_unique<LoopUnrollInfo>(*f.unrollInfo());
423 unrollInfo->fIndex = RemapVariable(unrollInfo->fIndex, varMap);
424 }
425
426 return ForStatement::Make(*fContext, pos, ForLoopPositions{},
427 std::move(initializerStmt),
428 std::move(testExpr),
429 std::move(nextExpr),
430 std::move(bodyStmt),
431 std::move(unrollInfo),
432 std::move(symbolTable));
433 });
434
435 case Statement::Kind::kIf: {
436 const IfStatement& i = statement.as<IfStatement>();
437 return IfStatement::Make(*fContext, pos, expr(i.test()),
438 stmt(i.ifTrue()), stmt(i.ifFalse()));
439 }
440 case Statement::Kind::kNop:
441 return Nop::Make();
442
443 case Statement::Kind::kReturn: {
444 const ReturnStatement& r = statement.as<ReturnStatement>();
445 if (!r.expression()) {
446 // This function doesn't return a value. We won't inline functions with early
447 // returns, so a return statement is a no-op and can be treated as such.
448 return Nop::Make();
449 }
450
451 // If a function only contains a single return, and it doesn't reference variables from
452 // inside an Block's scope, we don't need to store the result in a variable at all. Just
453 // replace the function-call expression with the function's return expression.
454 SkASSERT(resultExpr);
455 if (returnComplexity <= Analysis::ReturnComplexity::kSingleSafeReturn) {
456 *resultExpr = expr(r.expression());
457 return Nop::Make();
458 }
459
460 // For more complex functions, we assign their result into a variable. We refuse to
461 // inline anything with early returns, so this should be safe to do; that is, on this
462 // control path, this is the last statement that will occur.
463 SkASSERT(*resultExpr);
464 return ExpressionStatement::Make(
465 *fContext,
466 BinaryExpression::Make(
467 *fContext,
468 pos,
469 clone_with_ref_kind(**resultExpr, VariableRefKind::kWrite, pos),
470 Operator::Kind::EQ,
471 expr(r.expression())));
472 }
473 case Statement::Kind::kSwitch: {
474 const SwitchStatement& ss = statement.as<SwitchStatement>();
475 return SwitchStatement::Make(*fContext, pos, expr(ss.value()), stmt(ss.caseBlock()));
476 }
477 case Statement::Kind::kSwitchCase: {
478 const SwitchCase& sc = statement.as<SwitchCase>();
479 return sc.isDefault() ? SwitchCase::MakeDefault(pos, stmt(sc.statement()))
480 : SwitchCase::Make(pos, sc.value(), stmt(sc.statement()));
481 }
482 case Statement::Kind::kVarDeclaration: {
483 const VarDeclaration& decl = statement.as<VarDeclaration>();
484 std::unique_ptr<Expression> initialValue = expr(decl.value());
485 const Variable* variable = decl.var();
486
487 // We assign unique names to inlined variables--scopes hide most of the problems in this
488 // regard, but see `InlinerAvoidsVariableNameOverlap` for a counterexample where unique
489 // names are important.
490 const std::string* name = symbolTableForStatement->takeOwnershipOfString(
491 fMangler.uniqueName(variable->name(), symbolTableForStatement));
492 auto clonedVar =
493 Variable::Make(pos,
494 variable->modifiersPosition(),
495 variable->layout(),
496 variableModifiers(*variable, initialValue.get()),
497 variable->type().clone(*fContext, symbolTableForStatement),
498 name->c_str(),
499 /*mangledName=*/"",
500 isBuiltinCode,
501 variable->storage());
502 varMap->set(variable, VariableReference::Make(pos, clonedVar.get()));
503 std::unique_ptr<Statement> result =
504 VarDeclaration::Make(*fContext,
505 clonedVar.get(),
506 decl.baseType().clone(*fContext, symbolTableForStatement),
507 decl.arraySize(),
508 std::move(initialValue));
509 symbolTableForStatement->add(*fContext, std::move(clonedVar));
510 return result;
511 }
512 default:
513 SkASSERT(false);
514 return nullptr;
515 }
516 }
517
argument_needs_scratch_variable(const Expression * arg,const Variable * param,const ProgramUsage & usage)518 static bool argument_needs_scratch_variable(const Expression* arg,
519 const Variable* param,
520 const ProgramUsage& usage) {
521 // If the parameter isn't written to within the inline function ...
522 const ProgramUsage::VariableCounts& paramUsage = usage.get(*param);
523 if (!paramUsage.fWrite) {
524 // ... and can be inlined trivially (e.g. a swizzle, or a constant array index),
525 // or any expression without side effects that is only accessed at most once...
526 if ((paramUsage.fRead > 1) ? Analysis::IsTrivialExpression(*arg)
527 : !Analysis::HasSideEffects(*arg)) {
528 // ... we don't need to copy it at all! We can just use the existing expression.
529 return false;
530 }
531 }
532 // We need a scratch variable.
533 return true;
534 }
535
inlineCall(const FunctionCall & call,SymbolTable * symbolTable,const ProgramUsage & usage,const FunctionDeclaration * caller)536 Inliner::InlinedCall Inliner::inlineCall(const FunctionCall& call,
537 SymbolTable* symbolTable,
538 const ProgramUsage& usage,
539 const FunctionDeclaration* caller) {
540 using ScratchVariable = Variable::ScratchVariable;
541
542 // Inlining is more complicated here than in a typical compiler, because we have to have a
543 // high-level IR and can't just drop statements into the middle of an expression or even use
544 // gotos.
545 //
546 // Since we can't insert statements into an expression, we run the inline function as extra
547 // statements before the statement we're currently processing, relying on a lack of execution
548 // order guarantees.
549 SkASSERT(fContext);
550 SkASSERT(this->isSafeToInline(call.function().definition(), usage));
551
552 const ExpressionArray& arguments = call.arguments();
553 const Position pos = call.fPosition;
554 const FunctionDefinition& function = *call.function().definition();
555 const Block& body = function.body()->as<Block>();
556 const Analysis::ReturnComplexity returnComplexity = Analysis::GetReturnComplexity(function);
557
558 StatementArray inlineStatements;
559 int expectedStmtCount = 1 + // Result variable
560 arguments.size() + // Function argument temp-vars
561 body.children().size(); // Inlined code
562
563 inlineStatements.reserve_exact(expectedStmtCount);
564
565 std::unique_ptr<Expression> resultExpr;
566 if (returnComplexity > Analysis::ReturnComplexity::kSingleSafeReturn &&
567 !function.declaration().returnType().isVoid()) {
568 // Create a variable to hold the result in the extra statements. We don't need to do this
569 // for void-return functions, or in cases that are simple enough that we can just replace
570 // the function-call node with the result expression.
571 ScratchVariable var = Variable::MakeScratchVariable(*fContext,
572 fMangler,
573 function.declaration().name(),
574 &function.declaration().returnType(),
575 symbolTable,
576 /*initialValue=*/nullptr);
577 inlineStatements.push_back(std::move(var.fVarDecl));
578 resultExpr = VariableReference::Make(Position(), var.fVarSymbol);
579 }
580
581 // Create variables in the extra statements to hold the arguments, and assign the arguments to
582 // them.
583 VariableRewriteMap varMap;
584 for (int i = 0; i < arguments.size(); ++i) {
585 const Expression* arg = arguments[i].get();
586 const Variable* param = function.declaration().parameters()[i];
587 if (!argument_needs_scratch_variable(arg, param, usage)) {
588 varMap.set(param, arg->clone());
589 continue;
590 }
591 ScratchVariable var = Variable::MakeScratchVariable(*fContext,
592 fMangler,
593 param->name(),
594 &arg->type(),
595 symbolTable,
596 arg->clone());
597 inlineStatements.push_back(std::move(var.fVarDecl));
598 varMap.set(param, VariableReference::Make(Position(), var.fVarSymbol));
599 }
600
601 for (const std::unique_ptr<Statement>& stmt : body.children()) {
602 inlineStatements.push_back(this->inlineStatement(pos, &varMap, symbolTable,
603 &resultExpr, returnComplexity, *stmt,
604 usage, caller->isBuiltin()));
605 }
606
607 SkASSERT(inlineStatements.size() <= expectedStmtCount);
608
609 // Wrap all of the generated statements in a block. We need a real Block here, because we need
610 // to add another child statement to the Block later.
611 InlinedCall inlinedCall;
612 inlinedCall.fInlinedBody = Block::MakeBlock(pos, std::move(inlineStatements),
613 Block::Kind::kUnbracedBlock);
614 if (resultExpr) {
615 // Return our result expression as-is.
616 inlinedCall.fReplacementExpr = std::move(resultExpr);
617 } else if (function.declaration().returnType().isVoid()) {
618 // It's a void function, so its result is the empty expression.
619 inlinedCall.fReplacementExpr = EmptyExpression::Make(pos, *fContext);
620 } else {
621 // It's a non-void function, but it never created a result expression--that is, it never
622 // returned anything on any path! This should have been detected in the function finalizer.
623 // Still, discard our output and generate an error.
624 SkDEBUGFAIL("inliner found non-void function that fails to return a value on any path");
625 fContext->fErrors->error(function.fPosition, "inliner found non-void function '" +
626 std::string(function.declaration().name()) +
627 "' that fails to return a value on any path");
628 inlinedCall = {};
629 }
630
631 return inlinedCall;
632 }
633
isSafeToInline(const FunctionDefinition * functionDef,const ProgramUsage & usage)634 bool Inliner::isSafeToInline(const FunctionDefinition* functionDef, const ProgramUsage& usage) {
635 // A threshold of zero indicates that the inliner is completely disabled, so we can just return.
636 if (this->settings().fInlineThreshold <= 0) {
637 return false;
638 }
639
640 // Enforce a limit on inlining to avoid pathological cases. (inliner/ExponentialGrowth.sksl)
641 if (fInlinedStatementCounter >= kInlinedStatementLimit) {
642 return false;
643 }
644
645 if (functionDef == nullptr) {
646 // Can't inline something if we don't actually have its definition.
647 return false;
648 }
649
650 if (functionDef->declaration().modifierFlags().isNoInline()) {
651 // Refuse to inline functions decorated with `noinline`.
652 return false;
653 }
654
655 for (const Variable* param : functionDef->declaration().parameters()) {
656 // We don't allow inlining functions with parameters that are written-to, if they...
657 // - are `out` parameters (see skia:11326 for rationale.)
658 // - are arrays or structures (introducing temporary copies is non-trivial)
659 if ((param->modifierFlags() & ModifierFlag::kOut) ||
660 param->type().isArray() ||
661 param->type().isStruct()) {
662 ProgramUsage::VariableCounts counts = usage.get(*param);
663 if (counts.fWrite > 0) {
664 return false;
665 }
666 }
667 }
668
669 // We don't have a mechanism to simulate early returns, so we can't inline if there is one.
670 return Analysis::GetReturnComplexity(*functionDef) < Analysis::ReturnComplexity::kEarlyReturns;
671 }
672
673 // A candidate function for inlining, containing everything that `inlineCall` needs.
674 struct InlineCandidate {
675 SymbolTable* fSymbols; // the SymbolTable of the candidate
676 std::unique_ptr<Statement>* fParentStmt; // the parent Statement of the enclosing stmt
677 std::unique_ptr<Statement>* fEnclosingStmt; // the Statement containing the candidate
678 std::unique_ptr<Expression>* fCandidateExpr; // the candidate FunctionCall to be inlined
679 FunctionDefinition* fEnclosingFunction; // the Function containing the candidate
680 };
681
682 struct InlineCandidateList {
683 std::vector<InlineCandidate> fCandidates;
684 };
685
686 class InlineCandidateAnalyzer {
687 public:
688 // A list of all the inlining candidates we found during analysis.
689 InlineCandidateList* fCandidateList;
690
691 // A stack of the symbol tables; since most nodes don't have one, expected to be shallower than
692 // the enclosing-statement stack.
693 std::vector<SymbolTable*> fSymbolTableStack;
694 // A stack of "enclosing" statements--these would be suitable for the inliner to use for adding
695 // new instructions. Not all statements are suitable (e.g. a for-loop's initializer). The
696 // inliner might replace a statement with a block containing the statement.
697 std::vector<std::unique_ptr<Statement>*> fEnclosingStmtStack;
698 // The function that we're currently processing (i.e. inlining into).
699 FunctionDefinition* fEnclosingFunction = nullptr;
700
visit(const std::vector<std::unique_ptr<ProgramElement>> & elements,SymbolTable * symbols,InlineCandidateList * candidateList)701 void visit(const std::vector<std::unique_ptr<ProgramElement>>& elements,
702 SymbolTable* symbols,
703 InlineCandidateList* candidateList) {
704 fCandidateList = candidateList;
705 fSymbolTableStack.push_back(symbols);
706
707 for (const std::unique_ptr<ProgramElement>& pe : elements) {
708 this->visitProgramElement(pe.get());
709 }
710
711 fSymbolTableStack.pop_back();
712 fCandidateList = nullptr;
713 }
714
visitProgramElement(ProgramElement * pe)715 void visitProgramElement(ProgramElement* pe) {
716 switch (pe->kind()) {
717 case ProgramElement::Kind::kFunction: {
718 FunctionDefinition& funcDef = pe->as<FunctionDefinition>();
719
720 // If this function has parameter names that would shadow globally-scoped names, we
721 // don't scan it for inline candidates, because it's too late to mangle the names.
722 bool foundShadowingParameterName = false;
723 for (const Variable* param : funcDef.declaration().parameters()) {
724 if (fSymbolTableStack.front()->find(param->name())) {
725 foundShadowingParameterName = true;
726 break;
727 }
728 }
729
730 if (!foundShadowingParameterName) {
731 fEnclosingFunction = &funcDef;
732 this->visitStatement(&funcDef.body());
733 }
734 break;
735 }
736 default:
737 // The inliner can't operate outside of a function's scope.
738 break;
739 }
740 }
741
visitStatement(std::unique_ptr<Statement> * stmt,bool isViableAsEnclosingStatement=true)742 void visitStatement(std::unique_ptr<Statement>* stmt,
743 bool isViableAsEnclosingStatement = true) {
744 if (!*stmt) {
745 return;
746 }
747
748 Analysis::SymbolTableStackBuilder scopedStackBuilder(stmt->get(), &fSymbolTableStack);
749 // If this statement contains symbols that would shadow globally-scoped names, we don't look
750 // for any inline candidates, because it's too late to mangle the names.
751 if (scopedStackBuilder.foundSymbolTable() &&
752 fSymbolTableStack.back()->wouldShadowSymbolsFrom(fSymbolTableStack.front())) {
753 return;
754 }
755
756 size_t oldEnclosingStmtStackSize = fEnclosingStmtStack.size();
757
758 if (isViableAsEnclosingStatement) {
759 fEnclosingStmtStack.push_back(stmt);
760 }
761
762 switch ((*stmt)->kind()) {
763 case Statement::Kind::kBreak:
764 case Statement::Kind::kContinue:
765 case Statement::Kind::kDiscard:
766 case Statement::Kind::kNop:
767 break;
768
769 case Statement::Kind::kBlock: {
770 Block& block = (*stmt)->as<Block>();
771 for (std::unique_ptr<Statement>& blockStmt : block.children()) {
772 this->visitStatement(&blockStmt);
773 }
774 break;
775 }
776 case Statement::Kind::kDo: {
777 DoStatement& doStmt = (*stmt)->as<DoStatement>();
778 // The loop body is a candidate for inlining.
779 this->visitStatement(&doStmt.statement());
780 // The inliner isn't smart enough to inline the test-expression for a do-while
781 // loop at this time. There are two limitations:
782 // - We would need to insert the inlined-body block at the very end of the do-
783 // statement's inner fStatement. We don't support that today, but it's doable.
784 // - We cannot inline the test expression if the loop uses `continue` anywhere; that
785 // would skip over the inlined block that evaluates the test expression. There
786 // isn't a good fix for this--any workaround would be more complex than the cost
787 // of a function call. However, loops that don't use `continue` would still be
788 // viable candidates for inlining.
789 break;
790 }
791 case Statement::Kind::kExpression: {
792 ExpressionStatement& expr = (*stmt)->as<ExpressionStatement>();
793 this->visitExpression(&expr.expression());
794 break;
795 }
796 case Statement::Kind::kFor: {
797 ForStatement& forStmt = (*stmt)->as<ForStatement>();
798 // The initializer and loop body are candidates for inlining.
799 this->visitStatement(&forStmt.initializer(),
800 /*isViableAsEnclosingStatement=*/false);
801 this->visitStatement(&forStmt.statement());
802
803 // The inliner isn't smart enough to inline the test- or increment-expressions
804 // of a for loop loop at this time. There are a handful of limitations:
805 // - We would need to insert the test-expression block at the very beginning of the
806 // for-loop's inner fStatement, and the increment-expression block at the very
807 // end. We don't support that today, but it's doable.
808 // - The for-loop's built-in test-expression would need to be dropped entirely,
809 // and the loop would be halted via a break statement at the end of the inlined
810 // test-expression. This is again something we don't support today, but it could
811 // be implemented.
812 // - We cannot inline the increment-expression if the loop uses `continue` anywhere;
813 // that would skip over the inlined block that evaluates the increment expression.
814 // There isn't a good fix for this--any workaround would be more complex than the
815 // cost of a function call. However, loops that don't use `continue` would still
816 // be viable candidates for increment-expression inlining.
817 break;
818 }
819 case Statement::Kind::kIf: {
820 IfStatement& ifStmt = (*stmt)->as<IfStatement>();
821 this->visitExpression(&ifStmt.test());
822 this->visitStatement(&ifStmt.ifTrue());
823 this->visitStatement(&ifStmt.ifFalse());
824 break;
825 }
826 case Statement::Kind::kReturn: {
827 ReturnStatement& returnStmt = (*stmt)->as<ReturnStatement>();
828 this->visitExpression(&returnStmt.expression());
829 break;
830 }
831 case Statement::Kind::kSwitch: {
832 SwitchStatement& switchStmt = (*stmt)->as<SwitchStatement>();
833 this->visitExpression(&switchStmt.value());
834 for (const std::unique_ptr<Statement>& switchCase : switchStmt.cases()) {
835 // The switch-case's fValue cannot be a FunctionCall; skip it.
836 this->visitStatement(&switchCase->as<SwitchCase>().statement());
837 }
838 break;
839 }
840 case Statement::Kind::kVarDeclaration: {
841 VarDeclaration& varDeclStmt = (*stmt)->as<VarDeclaration>();
842 // Don't need to scan the declaration's sizes; those are always literals.
843 this->visitExpression(&varDeclStmt.value());
844 break;
845 }
846 default:
847 SkUNREACHABLE;
848 }
849
850 // Pop our symbol and enclosing-statement stacks.
851 fEnclosingStmtStack.resize(oldEnclosingStmtStackSize);
852 }
853
visitExpression(std::unique_ptr<Expression> * expr)854 void visitExpression(std::unique_ptr<Expression>* expr) {
855 if (!*expr) {
856 return;
857 }
858
859 switch ((*expr)->kind()) {
860 case Expression::Kind::kFieldAccess:
861 case Expression::Kind::kFunctionReference:
862 case Expression::Kind::kLiteral:
863 case Expression::Kind::kMethodReference:
864 case Expression::Kind::kSetting:
865 case Expression::Kind::kTypeReference:
866 case Expression::Kind::kVariableReference:
867 // Nothing to scan here.
868 break;
869
870 case Expression::Kind::kBinary: {
871 BinaryExpression& binaryExpr = (*expr)->as<BinaryExpression>();
872 this->visitExpression(&binaryExpr.left());
873
874 // Logical-and and logical-or binary expressions do not inline the right side,
875 // because that would invalidate short-circuiting. That is, when evaluating
876 // expressions like these:
877 // (false && x()) // always false
878 // (true || y()) // always true
879 // It is illegal for side-effects from x() or y() to occur. The simplest way to
880 // enforce that rule is to avoid inlining the right side entirely. However, it is
881 // safe for other types of binary expression to inline both sides.
882 Operator op = binaryExpr.getOperator();
883 bool shortCircuitable = (op.kind() == Operator::Kind::LOGICALAND ||
884 op.kind() == Operator::Kind::LOGICALOR);
885 if (!shortCircuitable) {
886 this->visitExpression(&binaryExpr.right());
887 }
888 break;
889 }
890 case Expression::Kind::kChildCall: {
891 ChildCall& childCallExpr = (*expr)->as<ChildCall>();
892 for (std::unique_ptr<Expression>& arg : childCallExpr.arguments()) {
893 this->visitExpression(&arg);
894 }
895 break;
896 }
897 case Expression::Kind::kConstructorArray:
898 case Expression::Kind::kConstructorArrayCast:
899 case Expression::Kind::kConstructorCompound:
900 case Expression::Kind::kConstructorCompoundCast:
901 case Expression::Kind::kConstructorDiagonalMatrix:
902 case Expression::Kind::kConstructorMatrixResize:
903 case Expression::Kind::kConstructorScalarCast:
904 case Expression::Kind::kConstructorSplat:
905 case Expression::Kind::kConstructorStruct: {
906 AnyConstructor& constructorExpr = (*expr)->asAnyConstructor();
907 for (std::unique_ptr<Expression>& arg : constructorExpr.argumentSpan()) {
908 this->visitExpression(&arg);
909 }
910 break;
911 }
912 case Expression::Kind::kFunctionCall: {
913 FunctionCall& funcCallExpr = (*expr)->as<FunctionCall>();
914 for (std::unique_ptr<Expression>& arg : funcCallExpr.arguments()) {
915 this->visitExpression(&arg);
916 }
917 this->addInlineCandidate(expr);
918 break;
919 }
920 case Expression::Kind::kIndex: {
921 IndexExpression& indexExpr = (*expr)->as<IndexExpression>();
922 this->visitExpression(&indexExpr.base());
923 this->visitExpression(&indexExpr.index());
924 break;
925 }
926 case Expression::Kind::kPostfix: {
927 PostfixExpression& postfixExpr = (*expr)->as<PostfixExpression>();
928 this->visitExpression(&postfixExpr.operand());
929 break;
930 }
931 case Expression::Kind::kPrefix: {
932 PrefixExpression& prefixExpr = (*expr)->as<PrefixExpression>();
933 this->visitExpression(&prefixExpr.operand());
934 break;
935 }
936 case Expression::Kind::kSwizzle: {
937 Swizzle& swizzleExpr = (*expr)->as<Swizzle>();
938 this->visitExpression(&swizzleExpr.base());
939 break;
940 }
941 case Expression::Kind::kTernary: {
942 TernaryExpression& ternaryExpr = (*expr)->as<TernaryExpression>();
943 // The test expression is a candidate for inlining.
944 this->visitExpression(&ternaryExpr.test());
945 // The true- and false-expressions cannot be inlined, because we are only allowed to
946 // evaluate one side.
947 break;
948 }
949 default:
950 SkUNREACHABLE;
951 }
952 }
953
addInlineCandidate(std::unique_ptr<Expression> * candidate)954 void addInlineCandidate(std::unique_ptr<Expression>* candidate) {
955 fCandidateList->fCandidates.push_back(
956 InlineCandidate{fSymbolTableStack.back(),
957 find_parent_statement(fEnclosingStmtStack),
958 fEnclosingStmtStack.back(),
959 candidate,
960 fEnclosingFunction});
961 }
962 };
963
candidate_func(const InlineCandidate & candidate)964 static const FunctionDeclaration& candidate_func(const InlineCandidate& candidate) {
965 return (*candidate.fCandidateExpr)->as<FunctionCall>().function();
966 }
967
functionCanBeInlined(const FunctionDeclaration & funcDecl,const ProgramUsage & usage,InlinabilityCache * cache)968 bool Inliner::functionCanBeInlined(const FunctionDeclaration& funcDecl,
969 const ProgramUsage& usage,
970 InlinabilityCache* cache) {
971 if (const bool* cachedInlinability = cache->find(&funcDecl)) {
972 return *cachedInlinability;
973 }
974 bool inlinability = this->isSafeToInline(funcDecl.definition(), usage);
975 cache->set(&funcDecl, inlinability);
976 return inlinability;
977 }
978
candidateCanBeInlined(const InlineCandidate & candidate,const ProgramUsage & usage,InlinabilityCache * cache)979 bool Inliner::candidateCanBeInlined(const InlineCandidate& candidate,
980 const ProgramUsage& usage,
981 InlinabilityCache* cache) {
982 // Check the cache to see if this function is safe to inline.
983 const FunctionDeclaration& funcDecl = candidate_func(candidate);
984 if (!this->functionCanBeInlined(funcDecl, usage, cache)) {
985 return false;
986 }
987
988 // Even if the function is safe, the arguments we are passing may not be. In particular, we
989 // can't make copies of opaque values, so we need to reject inline candidates that would need to
990 // do this. Every call has different arguments, so this part is not cacheable. (skia:13824)
991 const FunctionCall& call = candidate.fCandidateExpr->get()->as<FunctionCall>();
992 const ExpressionArray& arguments = call.arguments();
993 for (int i = 0; i < arguments.size(); ++i) {
994 const Expression* arg = arguments[i].get();
995 if (arg->type().isOpaque()) {
996 const Variable* param = funcDecl.parameters()[i];
997 if (argument_needs_scratch_variable(arg, param, usage)) {
998 return false;
999 }
1000 }
1001 }
1002
1003 return true;
1004 }
1005
getFunctionSize(const FunctionDeclaration & funcDecl,FunctionSizeCache * cache)1006 int Inliner::getFunctionSize(const FunctionDeclaration& funcDecl, FunctionSizeCache* cache) {
1007 if (const int* cachedSize = cache->find(&funcDecl)) {
1008 return *cachedSize;
1009 }
1010 int size = Analysis::NodeCountUpToLimit(*funcDecl.definition(),
1011 this->settings().fInlineThreshold);
1012 cache->set(&funcDecl, size);
1013 return size;
1014 }
1015
buildCandidateList(const std::vector<std::unique_ptr<ProgramElement>> & elements,SymbolTable * symbols,ProgramUsage * usage,InlineCandidateList * candidateList)1016 void Inliner::buildCandidateList(const std::vector<std::unique_ptr<ProgramElement>>& elements,
1017 SymbolTable* symbols,
1018 ProgramUsage* usage,
1019 InlineCandidateList* candidateList) {
1020 // This is structured much like a ProgramVisitor, but does not actually use ProgramVisitor.
1021 // The analyzer needs to keep track of the `unique_ptr<T>*` of statements and expressions so
1022 // that they can later be replaced, and ProgramVisitor does not provide this; it only provides a
1023 // `const T&`.
1024 InlineCandidateAnalyzer analyzer;
1025 analyzer.visit(elements, symbols, candidateList);
1026
1027 // Early out if there are no inlining candidates.
1028 std::vector<InlineCandidate>& candidates = candidateList->fCandidates;
1029 if (candidates.empty()) {
1030 return;
1031 }
1032
1033 // Remove candidates that are not safe to inline.
1034 InlinabilityCache cache;
1035 candidates.erase(std::remove_if(candidates.begin(),
1036 candidates.end(),
1037 [&](const InlineCandidate& candidate) {
1038 return !this->candidateCanBeInlined(
1039 candidate, *usage, &cache);
1040 }),
1041 candidates.end());
1042
1043 // If the inline threshold is unlimited, or if we have no candidates left, our candidate list is
1044 // complete.
1045 if (this->settings().fInlineThreshold == INT_MAX || candidates.empty()) {
1046 return;
1047 }
1048
1049 // Remove candidates on a per-function basis if the effect of inlining would be to make more
1050 // than `inlineThreshold` nodes. (i.e. if Func() would be inlined six times and its size is
1051 // 10 nodes, it should be inlined if the inlineThreshold is 60 or higher.)
1052 FunctionSizeCache functionSizeCache;
1053 FunctionSizeCache candidateTotalCost;
1054 for (InlineCandidate& candidate : candidates) {
1055 const FunctionDeclaration& fnDecl = candidate_func(candidate);
1056 candidateTotalCost[&fnDecl] += this->getFunctionSize(fnDecl, &functionSizeCache);
1057 }
1058
1059 candidates.erase(std::remove_if(candidates.begin(), candidates.end(),
1060 [&](const InlineCandidate& candidate) {
1061 const FunctionDeclaration& fnDecl = candidate_func(candidate);
1062 if (fnDecl.modifierFlags().isInline()) {
1063 // Functions marked `inline` ignore size limitations.
1064 return false;
1065 }
1066 if (usage->get(fnDecl) == 1) {
1067 // If a function is only used once, it's cost-free to inline.
1068 return false;
1069 }
1070 if (candidateTotalCost[&fnDecl] <= this->settings().fInlineThreshold) {
1071 // We won't exceed the inline threshold by inlining this.
1072 return false;
1073 }
1074 // Inlining this function will add too many IRNodes.
1075 return true;
1076 }),
1077 candidates.end());
1078 }
1079
analyze(const std::vector<std::unique_ptr<ProgramElement>> & elements,SymbolTable * symbols,ProgramUsage * usage)1080 bool Inliner::analyze(const std::vector<std::unique_ptr<ProgramElement>>& elements,
1081 SymbolTable* symbols,
1082 ProgramUsage* usage) {
1083 // A threshold of zero indicates that the inliner is completely disabled, so we can just return.
1084 if (this->settings().fInlineThreshold <= 0) {
1085 return false;
1086 }
1087
1088 // Enforce a limit on inlining to avoid pathological cases. (inliner/ExponentialGrowth.sksl)
1089 if (fInlinedStatementCounter >= kInlinedStatementLimit) {
1090 return false;
1091 }
1092
1093 InlineCandidateList candidateList;
1094 this->buildCandidateList(elements, symbols, usage, &candidateList);
1095
1096 // Inline the candidates where we've determined that it's safe to do so.
1097 using StatementRemappingTable = THashMap<std::unique_ptr<Statement>*,
1098 std::unique_ptr<Statement>*>;
1099 StatementRemappingTable statementRemappingTable;
1100
1101 bool madeChanges = false;
1102 for (const InlineCandidate& candidate : candidateList.fCandidates) {
1103 const FunctionCall& funcCall = (*candidate.fCandidateExpr)->as<FunctionCall>();
1104
1105 // Convert the function call to its inlined equivalent.
1106 InlinedCall inlinedCall = this->inlineCall(funcCall, candidate.fSymbols, *usage,
1107 &candidate.fEnclosingFunction->declaration());
1108
1109 // Stop if an error was detected during the inlining process.
1110 if (!inlinedCall.fInlinedBody && !inlinedCall.fReplacementExpr) {
1111 break;
1112 }
1113
1114 // Ensure that the inlined body has a scope if it needs one.
1115 this->ensureScopedBlocks(inlinedCall.fInlinedBody.get(), candidate.fParentStmt->get());
1116
1117 // Add references within the inlined body
1118 usage->add(inlinedCall.fInlinedBody.get());
1119
1120 // Look up the enclosing statement; remap it if necessary.
1121 std::unique_ptr<Statement>* enclosingStmt = candidate.fEnclosingStmt;
1122 for (;;) {
1123 std::unique_ptr<Statement>** remappedStmt = statementRemappingTable.find(enclosingStmt);
1124 if (!remappedStmt) {
1125 break;
1126 }
1127 enclosingStmt = *remappedStmt;
1128 }
1129
1130 // Move the enclosing statement to the end of the unscoped Block containing the inlined
1131 // function, then replace the enclosing statement with that Block.
1132 // Before:
1133 // fInlinedBody = Block{ stmt1, stmt2, stmt3 }
1134 // fEnclosingStmt = stmt4
1135 // After:
1136 // fInlinedBody = null
1137 // fEnclosingStmt = Block{ stmt1, stmt2, stmt3, stmt4 }
1138 inlinedCall.fInlinedBody->children().push_back(std::move(*enclosingStmt));
1139 *enclosingStmt = std::move(inlinedCall.fInlinedBody);
1140
1141 // Replace the candidate function call with our replacement expression.
1142 usage->remove(candidate.fCandidateExpr->get());
1143 usage->add(inlinedCall.fReplacementExpr.get());
1144 *candidate.fCandidateExpr = std::move(inlinedCall.fReplacementExpr);
1145 madeChanges = true;
1146
1147 // If anything else pointed at our enclosing statement, it's now pointing at a Block
1148 // containing many other statements as well. Maintain a fix-up table to account for this.
1149 statementRemappingTable.set(enclosingStmt,&(*enclosingStmt)->as<Block>().children().back());
1150
1151 // Stop inlining if we've reached our hard cap on new statements.
1152 if (fInlinedStatementCounter >= kInlinedStatementLimit) {
1153 break;
1154 }
1155
1156 // Note that nothing was destroyed except for the FunctionCall. All other nodes should
1157 // remain valid.
1158 }
1159
1160 return madeChanges;
1161 }
1162
1163 } // namespace SkSL
1164
1165 #endif // SK_ENABLE_OPTIMIZE_SIZE
1166