1 /*
2 * Copyright 2023 Google LLC
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/text/gpu/VertexFiller.h"
9
10 #include "include/core/SkMatrix.h"
11 #include "include/core/SkPoint.h"
12 #include "include/core/SkPoint3.h"
13 #include "include/core/SkRect.h"
14 #include "include/core/SkScalar.h"
15 #include "include/core/SkTypes.h"
16 #include "include/private/base/SkTLogic.h"
17 #include "src/base/SkZip.h"
18 #include "src/core/SkReadBuffer.h"
19 #include "src/core/SkWriteBuffer.h"
20 #include "src/gpu/AtlasTypes.h"
21 #include "src/text/gpu/Glyph.h"
22 #include "src/text/gpu/SubRunAllocator.h"
23 #include "src/text/gpu/SubRunContainer.h"
24
25 #if defined(SK_GANESH) || defined(SK_USE_LEGACY_GANESH_TEXT_APIS)
26 #include "src/gpu/ganesh/ops/AtlasTextOp.h"
27 #endif
28
29 #include <cstdint>
30 #include <initializer_list>
31 #include <optional>
32
33 using MaskFormat = skgpu::MaskFormat;
34
35 namespace sktext::gpu {
36
VertexFiller(MaskFormat maskFormat,const SkMatrix & creationMatrix,SkRect creationBounds,SkSpan<const SkPoint> leftTop,bool canDrawDirect)37 VertexFiller::VertexFiller(MaskFormat maskFormat,
38 const SkMatrix &creationMatrix,
39 SkRect creationBounds,
40 SkSpan<const SkPoint> leftTop,
41 bool canDrawDirect)
42 : fMaskType{maskFormat}, fCanDrawDirect{canDrawDirect},
43 fCreationMatrix{creationMatrix}, fCreationBounds{creationBounds},
44 fLeftTop{leftTop} {}
45
Make(MaskFormat maskType,const SkMatrix & creationMatrix,SkRect creationBounds,SkSpan<const SkPoint> positions,SubRunAllocator * alloc,FillerType fillerType)46 VertexFiller VertexFiller::Make(MaskFormat maskType,
47 const SkMatrix &creationMatrix,
48 SkRect creationBounds,
49 SkSpan<const SkPoint> positions,
50 SubRunAllocator *alloc,
51 FillerType fillerType) {
52 SkSpan<SkPoint> leftTop = alloc->makePODSpan<SkPoint>(positions);
53 return VertexFiller{
54 maskType, creationMatrix, creationBounds, leftTop, fillerType == kIsDirect};
55 }
56
MakeFromBuffer(SkReadBuffer & buffer,SubRunAllocator * alloc)57 std::optional<VertexFiller> VertexFiller::MakeFromBuffer(SkReadBuffer &buffer,
58 SubRunAllocator *alloc) {
59 int checkingMaskType = buffer.readInt();
60 if (!buffer.validate(
61 0 <= checkingMaskType && checkingMaskType < skgpu::kMaskFormatCount)) {
62 return std::nullopt;
63 }
64 MaskFormat maskType = (MaskFormat) checkingMaskType;
65
66 const bool canDrawDirect = buffer.readBool();
67
68 SkMatrix creationMatrix;
69 buffer.readMatrix(&creationMatrix);
70
71 SkRect creationBounds = buffer.readRect();
72
73 SkSpan<SkPoint> leftTop = MakePointsFromBuffer(buffer, alloc);
74 if (leftTop.empty()) { return std::nullopt; }
75
76 SkASSERT(buffer.isValid());
77 return VertexFiller{maskType, creationMatrix, creationBounds, leftTop, canDrawDirect};
78 }
79
flatten(SkWriteBuffer & buffer) const80 void VertexFiller::flatten(SkWriteBuffer &buffer) const {
81 buffer.writeInt(static_cast<int>(fMaskType));
82 buffer.writeBool(fCanDrawDirect);
83 buffer.writeMatrix(fCreationMatrix);
84 buffer.writeRect(fCreationBounds);
85 buffer.writePointArray(fLeftTop.data(), SkCount(fLeftTop));
86 }
87
viewDifference(const SkMatrix & positionMatrix) const88 SkMatrix VertexFiller::viewDifference(const SkMatrix &positionMatrix) const {
89 if (SkMatrix inverse; fCreationMatrix.invert(&inverse)) {
90 return SkMatrix::Concat(positionMatrix, inverse);
91 }
92 return SkMatrix::I();
93 }
94
95 // Check for integer translate with the same 2x2 matrix.
96 // Returns the translation, and true if the change from creation matrix to the position matrix
97 // supports using direct glyph masks.
can_use_direct(const SkMatrix & creationMatrix,const SkMatrix & positionMatrix)98 static std::tuple<bool, SkVector> can_use_direct(
99 const SkMatrix& creationMatrix, const SkMatrix& positionMatrix) {
100 // The existing direct glyph info can be used if the creationMatrix, and the
101 // positionMatrix have the same 2x2, the translation between them is integer, and no
102 // perspective is involved. Calculate the translation in source space to a translation in
103 // device space by mapping (0, 0) through both the creationMatrix and the positionMatrix;
104 // take the difference.
105 SkVector translation = positionMatrix.mapOrigin() - creationMatrix.mapOrigin();
106 return {creationMatrix.getScaleX() == positionMatrix.getScaleX() &&
107 creationMatrix.getScaleY() == positionMatrix.getScaleY() &&
108 creationMatrix.getSkewX() == positionMatrix.getSkewX() &&
109 creationMatrix.getSkewY() == positionMatrix.getSkewY() &&
110 !positionMatrix.hasPerspective() && !creationMatrix.hasPerspective() &&
111 SkScalarIsInt(translation.x()) && SkScalarIsInt(translation.y()),
112 translation};
113 }
114
115 struct AtlasPt {
116 uint16_t u;
117 uint16_t v;
118 };
119
120 #if defined(SK_GANESH) || defined(SK_USE_LEGACY_GANESH_TEXT_APIS)
121
122 // Normal text mask, SDFT, or color.
123 struct Mask2DVertex {
124 SkPoint devicePos;
125 GrColor color;
126 AtlasPt atlasPos;
127 };
128
129 struct ARGB2DVertex {
ARGB2DVertexsktext::gpu::ARGB2DVertex130 ARGB2DVertex(SkPoint d, GrColor, AtlasPt a) : devicePos{d}, atlasPos{a} {}
131
132 SkPoint devicePos;
133 AtlasPt atlasPos;
134 };
135
136 // Perspective SDFT or SDFT forced to 3D or perspective color.
137 struct Mask3DVertex {
138 SkPoint3 devicePos;
139 GrColor color;
140 AtlasPt atlasPos;
141 };
142
143 struct ARGB3DVertex {
ARGB3DVertexsktext::gpu::ARGB3DVertex144 ARGB3DVertex(SkPoint3 d, GrColor, AtlasPt a) : devicePos{d}, atlasPos{a} {}
145
146 SkPoint3 devicePos;
147 AtlasPt atlasPos;
148 };
149
vertexStride(const SkMatrix & matrix) const150 size_t VertexFiller::vertexStride(const SkMatrix &matrix) const {
151 if (fMaskType != MaskFormat::kARGB) {
152 // For formats MaskFormat::kA565 and MaskFormat::kA8 where A8 include SDF.
153 return matrix.hasPerspective() ? sizeof(Mask3DVertex) : sizeof(Mask2DVertex);
154 } else {
155 // For format MaskFormat::kARGB
156 return matrix.hasPerspective() ? sizeof(ARGB3DVertex) : sizeof(ARGB2DVertex);
157 }
158 }
159
160 // The 99% case. Direct Mask, No clip, No RGB.
fillDirectNoClipping(SkZip<Mask2DVertex[4],const Glyph *,const SkPoint> quadData,GrColor color,SkPoint originOffset)161 void fillDirectNoClipping(SkZip<Mask2DVertex[4], const Glyph*, const SkPoint> quadData,
162 GrColor color,
163 SkPoint originOffset) {
164 for (auto[quad, glyph, leftTop] : quadData) {
165 auto[al, at, ar, ab] = glyph->fAtlasLocator.getUVs();
166 SkScalar dl = leftTop.x() + originOffset.x(),
167 dt = leftTop.y() + originOffset.y(),
168 dr = dl + (ar - al),
169 db = dt + (ab - at);
170
171 quad[0] = {{dl, dt}, color, {al, at}}; // L,T
172 quad[1] = {{dl, db}, color, {al, ab}}; // L,B
173 quad[2] = {{dr, dt}, color, {ar, at}}; // R,T
174 quad[3] = {{dr, db}, color, {ar, ab}}; // R,B
175 }
176 }
177
178 template <typename Rect>
LTBR(const Rect & r)179 static auto LTBR(const Rect& r) {
180 return std::make_tuple(r.left(), r.top(), r.right(), r.bottom());
181 }
182
183 // Handle any combination of BW or color and clip or no clip.
184 template<typename Quad, typename VertexData>
fillDirectClipped(SkZip<Quad,const Glyph *,const VertexData> quadData,GrColor color,SkPoint originOffset,SkIRect * clip=nullptr)185 static void fillDirectClipped(SkZip<Quad, const Glyph*, const VertexData> quadData,
186 GrColor color,
187 SkPoint originOffset,
188 SkIRect* clip = nullptr) {
189 for (auto[quad, glyph, leftTop] : quadData) {
190 auto[al, at, ar, ab] = glyph->fAtlasLocator.getUVs();
191 uint16_t w = ar - al,
192 h = ab - at;
193 SkScalar l = leftTop.x() + originOffset.x(),
194 t = leftTop.y() + originOffset.y();
195 if (clip == nullptr) {
196 auto[dl, dt, dr, db] = SkRect::MakeLTRB(l, t, l + w, t + h);
197 quad[0] = {{dl, dt}, color, {al, at}}; // L,T
198 quad[1] = {{dl, db}, color, {al, ab}}; // L,B
199 quad[2] = {{dr, dt}, color, {ar, at}}; // R,T
200 quad[3] = {{dr, db}, color, {ar, ab}}; // R,B
201 } else {
202 SkIRect devIRect = SkIRect::MakeLTRB(l, t, l + w, t + h);
203 SkScalar dl, dt, dr, db;
204 if (!clip->containsNoEmptyCheck(devIRect)) {
205 if (SkIRect clipped; clipped.intersect(devIRect, *clip)) {
206 al += clipped.left() - devIRect.left();
207 at += clipped.top() - devIRect.top();
208 ar += clipped.right() - devIRect.right();
209 ab += clipped.bottom() - devIRect.bottom();
210 std::tie(dl, dt, dr, db) = LTBR(clipped);
211 } else {
212 // TODO: omit generating any vertex data for fully clipped glyphs ?
213 std::tie(dl, dt, dr, db) = std::make_tuple(0, 0, 0, 0);
214 std::tie(al, at, ar, ab) = std::make_tuple(0, 0, 0, 0);
215 }
216 } else {
217 std::tie(dl, dt, dr, db) = LTBR(devIRect);
218 }
219 quad[0] = {{dl, dt}, color, {al, at}}; // L,T
220 quad[1] = {{dl, db}, color, {al, ab}}; // L,B
221 quad[2] = {{dr, dt}, color, {ar, at}}; // R,T
222 quad[3] = {{dr, db}, color, {ar, ab}}; // R,B
223 }
224 }
225 }
226
227 template<typename Quad, typename VertexData>
fill2D(SkZip<Quad,const Glyph *,const VertexData> quadData,GrColor color,const SkMatrix & viewDifference)228 static void fill2D(SkZip<Quad, const Glyph*, const VertexData> quadData,
229 GrColor color,
230 const SkMatrix& viewDifference) {
231 for (auto [quad, glyph, leftTop] : quadData) {
232 auto [l, t] = leftTop;
233 auto [r, b] = leftTop + glyph->fAtlasLocator.widthHeight();
234 SkPoint lt = viewDifference.mapXY(l, t),
235 lb = viewDifference.mapXY(l, b),
236 rt = viewDifference.mapXY(r, t),
237 rb = viewDifference.mapXY(r, b);
238 auto [al, at, ar, ab] = glyph->fAtlasLocator.getUVs();
239 quad[0] = {lt, color, {al, at}}; // L,T
240 quad[1] = {lb, color, {al, ab}}; // L,B
241 quad[2] = {rt, color, {ar, at}}; // R,T
242 quad[3] = {rb, color, {ar, ab}}; // R,B
243 }
244 }
245
246 template<typename Quad, typename VertexData>
fill3D(SkZip<Quad,const Glyph *,const VertexData> quadData,GrColor color,const SkMatrix & viewDifference)247 static void fill3D(SkZip<Quad, const Glyph*, const VertexData> quadData,
248 GrColor color,
249 const SkMatrix& viewDifference) {
250 auto mapXYZ = [&](SkScalar x, SkScalar y) {
251 SkPoint pt{x, y};
252 SkPoint3 result;
253 viewDifference.mapHomogeneousPoints(&result, &pt, 1);
254 return result;
255 };
256 for (auto [quad, glyph, leftTop] : quadData) {
257 auto [l, t] = leftTop;
258 auto [r, b] = leftTop + glyph->fAtlasLocator.widthHeight();
259 SkPoint3 lt = mapXYZ(l, t),
260 lb = mapXYZ(l, b),
261 rt = mapXYZ(r, t),
262 rb = mapXYZ(r, b);
263 auto [al, at, ar, ab] = glyph->fAtlasLocator.getUVs();
264 quad[0] = {lt, color, {al, at}}; // L,T
265 quad[1] = {lb, color, {al, ab}}; // L,B
266 quad[2] = {rt, color, {ar, at}}; // R,T
267 quad[3] = {rb, color, {ar, ab}}; // R,B
268 }
269 }
270
fillVertexData(int offset,int count,SkSpan<const Glyph * > glyphs,GrColor color,const SkMatrix & positionMatrix,SkIRect clip,void * vertexBuffer) const271 void VertexFiller::fillVertexData(int offset, int count,
272 SkSpan<const Glyph*> glyphs,
273 GrColor color,
274 const SkMatrix& positionMatrix,
275 SkIRect clip,
276 void* vertexBuffer) const {
277 auto quadData = [&](auto dst) {
278 return SkMakeZip(dst,
279 glyphs.subspan(offset, count),
280 fLeftTop.subspan(offset, count));
281 };
282
283 // Handle direct mask drawing specifically.
284 if (fCanDrawDirect) {
285 auto [noTransformNeeded, originOffset] =
286 can_use_direct(fCreationMatrix, positionMatrix);
287
288 if (noTransformNeeded) {
289 if (clip.isEmpty()) {
290 if (fMaskType != MaskFormat::kARGB) {
291 using Quad = Mask2DVertex[4];
292 SkASSERT(sizeof(Mask2DVertex) == this->vertexStride(SkMatrix::I()));
293 fillDirectNoClipping(quadData((Quad*)vertexBuffer), color, originOffset);
294 } else {
295 using Quad = ARGB2DVertex[4];
296 SkASSERT(sizeof(ARGB2DVertex) == this->vertexStride(SkMatrix::I()));
297 fillDirectClipped(quadData((Quad*)vertexBuffer), color, originOffset);
298 }
299 } else {
300 if (fMaskType != MaskFormat::kARGB) {
301 using Quad = Mask2DVertex[4];
302 SkASSERT(sizeof(Mask2DVertex) == this->vertexStride(SkMatrix::I()));
303 fillDirectClipped(quadData((Quad*)vertexBuffer), color, originOffset, &clip);
304 } else {
305 using Quad = ARGB2DVertex[4];
306 SkASSERT(sizeof(ARGB2DVertex) == this->vertexStride(SkMatrix::I()));
307 fillDirectClipped(quadData((Quad*)vertexBuffer), color, originOffset, &clip);
308 }
309 }
310 return;
311 }
312 }
313
314 // Handle the general transformed case.
315 SkMatrix viewDifference = this->viewDifference(positionMatrix);
316 if (!positionMatrix.hasPerspective()) {
317 if (fMaskType == MaskFormat::kARGB) {
318 using Quad = ARGB2DVertex[4];
319 SkASSERT(sizeof(ARGB2DVertex) == this->vertexStride(positionMatrix));
320 fill2D(quadData((Quad*)vertexBuffer), color, viewDifference);
321 } else {
322 using Quad = Mask2DVertex[4];
323 SkASSERT(sizeof(Mask2DVertex) == this->vertexStride(positionMatrix));
324 fill2D(quadData((Quad*)vertexBuffer), color, viewDifference);
325 }
326 } else {
327 if (fMaskType == MaskFormat::kARGB) {
328 using Quad = ARGB3DVertex[4];
329 SkASSERT(sizeof(ARGB3DVertex) == this->vertexStride(positionMatrix));
330 fill3D(quadData((Quad*)vertexBuffer), color, viewDifference);
331 } else {
332 using Quad = Mask3DVertex[4];
333 SkASSERT(sizeof(Mask3DVertex) == this->vertexStride(positionMatrix));
334 fill3D(quadData((Quad*)vertexBuffer), color, viewDifference);
335 }
336 }
337 }
338
339 using AtlasTextOp = skgpu::ganesh::AtlasTextOp;
opMaskType() const340 AtlasTextOp::MaskType VertexFiller::opMaskType() const {
341 switch (fMaskType) {
342 case MaskFormat::kA8: return AtlasTextOp::MaskType::kGrayscaleCoverage;
343 case MaskFormat::kA565: return AtlasTextOp::MaskType::kLCDCoverage;
344 case MaskFormat::kARGB: return AtlasTextOp::MaskType::kColorBitmap;
345 }
346 SkUNREACHABLE;
347 }
348 #endif // defined(SK_GANESH) || defined(SK_USE_LEGACY_GANESH_TEXT_APIS)
349
isLCD() const350 bool VertexFiller::isLCD() const { return fMaskType == MaskFormat::kA565; }
351
352 // Return true if the positionMatrix represents an integer translation. Return the device
353 // bounding box of all the glyphs. If the bounding box is empty, then something went singular
354 // and this operation should be dropped.
deviceRectAndCheckTransform(const SkMatrix & positionMatrix) const355 std::tuple<bool, SkRect> VertexFiller::deviceRectAndCheckTransform(
356 const SkMatrix &positionMatrix) const {
357 if (fCanDrawDirect) {
358 const auto [directDrawCompatible, offset] =
359 can_use_direct(fCreationMatrix, positionMatrix);
360
361 if (directDrawCompatible) {
362 return {true, fCreationBounds.makeOffset(offset)};
363 }
364 }
365
366 if (SkMatrix inverse; fCreationMatrix.invert(&inverse)) {
367 SkMatrix viewDifference = SkMatrix::Concat(positionMatrix, inverse);
368 return {false, viewDifference.mapRect(fCreationBounds)};
369 }
370
371 // initialPositionMatrix is singular. Do nothing.
372 return {false, SkRect::MakeEmpty()};
373 }
374
375 } // namespace sktext::gpu
376