1 /* 2 * Copyright (C) 2019 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef SRC_TRACE_PROCESSOR_CONTAINERS_BIT_VECTOR_H_ 18 #define SRC_TRACE_PROCESSOR_CONTAINERS_BIT_VECTOR_H_ 19 20 #include <algorithm> 21 #include <cstdint> 22 #include <initializer_list> 23 #include <iterator> 24 #include <utility> 25 #include <vector> 26 27 #include "perfetto/base/compiler.h" 28 #include "perfetto/base/logging.h" 29 #include "perfetto/public/compiler.h" 30 31 namespace perfetto { 32 namespace protos::pbzero { 33 class SerializedColumn_BitVector; 34 class SerializedColumn_BitVector_Decoder; 35 } // namespace protos::pbzero 36 37 namespace trace_processor { 38 namespace internal { 39 40 class BaseIterator; 41 class SetBitsIterator; 42 43 } // namespace internal 44 45 // A BitVector which compactly stores a vector of bools using a single bit 46 // for each bool. 47 class BitVector { 48 public: 49 static constexpr uint32_t kBitsInWord = 64; 50 51 // Builder class which allows efficiently creating a BitVector by appending 52 // words. Using this class is generally far more efficient than trying to set 53 // bits directly in a BitVector or even appending one bit at a time. 54 class Builder { 55 public: 56 // Creates a Builder for building a BitVector of |size| bits. 57 explicit Builder(uint32_t size, uint32_t skip = 0) words_(BlockCount (size)* Block::kWords)58 : words_(BlockCount(size) * Block::kWords), 59 global_bit_offset_(skip), 60 size_(size), 61 skipped_blocks_(skip / Block::kBits) { 62 PERFETTO_CHECK(global_bit_offset_ <= size_); 63 } 64 65 // Appends a single bit to the builder. 66 // Note: |AppendWord| is far more efficient than this method so should be 67 // preferred. Append(bool value)68 void Append(bool value) { 69 PERFETTO_DCHECK(global_bit_offset_ < size_); 70 71 words_[global_bit_offset_ / BitWord::kBits] |= 72 static_cast<uint64_t>(value) << global_bit_offset_ % BitWord::kBits; 73 global_bit_offset_++; 74 } 75 76 // Appends a whole word to the Builder. Builder has to end on a word 77 // boundary before calling this function. AppendWord(uint64_t word)78 void AppendWord(uint64_t word) { 79 PERFETTO_DCHECK(global_bit_offset_ % BitWord::kBits == 0); 80 PERFETTO_DCHECK(global_bit_offset_ + BitWord::kBits <= size_); 81 82 words_[global_bit_offset_ / BitWord::kBits] = word; 83 global_bit_offset_ += BitWord::kBits; 84 } 85 86 // Creates a BitVector from this Builder. Build()87 BitVector Build() && { 88 if (size_ == 0) 89 return {}; 90 91 std::vector<uint32_t> counts(BlockCount(size_)); 92 PERFETTO_CHECK(skipped_blocks_ <= counts.size()); 93 for (uint32_t i = skipped_blocks_ + 1; i < counts.size(); ++i) { 94 counts[i] = counts[i - 1] + 95 ConstBlock(&words_[Block::kWords * (i - 1)]).CountSetBits(); 96 } 97 return {std::move(words_), std::move(counts), size_}; 98 } 99 100 // Returns the number of bits which are in complete words which can be 101 // appended to this builder before having to fallback to |Append| due to 102 // being close to the end. BitsInCompleteWordsUntilFull()103 uint32_t BitsInCompleteWordsUntilFull() const { 104 uint32_t next_word = WordCount(global_bit_offset_); 105 uint32_t end_word = WordFloor(size_); 106 uint32_t complete_words = next_word < end_word ? end_word - next_word : 0; 107 return complete_words * BitWord::kBits; 108 } 109 110 // Returns the number of bits which should be appended using |Append| either 111 // hitting a word boundary (and thus able to use |AppendWord|) or until the 112 // BitVector is full (i.e. no more Appends should happen), whichever would 113 // happen first. BitsUntilWordBoundaryOrFull()114 uint32_t BitsUntilWordBoundaryOrFull() const { 115 if (global_bit_offset_ == 0 && size_ < BitWord::kBits) { 116 return size_; 117 } 118 uint8_t word_bit_offset = global_bit_offset_ % BitWord::kBits; 119 return std::min(BitsUntilFull(), 120 (BitWord::kBits - word_bit_offset) % BitWord::kBits); 121 } 122 123 // Returns the number of bits which should be appended using |Append| before 124 // hitting a word boundary (and thus able to use |AppendWord|) or until the 125 // BitVector is full (i.e. no more Appends should happen). BitsUntilFull()126 uint32_t BitsUntilFull() const { return size_ - global_bit_offset_; } 127 128 private: 129 std::vector<uint64_t> words_; 130 uint32_t global_bit_offset_ = 0; 131 uint32_t size_ = 0; 132 uint32_t skipped_blocks_ = 0; 133 }; 134 135 // Creates an empty BitVector. 136 BitVector(); 137 138 BitVector(std::initializer_list<bool> init); 139 140 // Creates a BitVector of |count| size filled with |value|. 141 explicit BitVector(uint32_t count, bool value = false); 142 143 BitVector(const BitVector&) = delete; 144 BitVector& operator=(const BitVector&) = delete; 145 146 // Enable moving BitVectors as they have no unmovable state. 147 BitVector(BitVector&&) noexcept = default; 148 BitVector& operator=(BitVector&&) = default; 149 150 // Create a copy of the BitVector. 151 BitVector Copy() const; 152 153 // Bitwise Not of the BitVector. 154 void Not(); 155 156 // Bitwise Or of the BitVector. 157 void Or(const BitVector&); 158 159 // Bitwise And of the BitVector. 160 void And(const BitVector&); 161 162 // Returns the size of the BitVector. size()163 uint32_t size() const { return static_cast<uint32_t>(size_); } 164 165 // Returns whether the bit at |idx| is set. IsSet(uint32_t idx)166 bool IsSet(uint32_t idx) const { 167 PERFETTO_DCHECK(idx < size()); 168 169 Address addr = IndexToAddress(idx); 170 return ConstBlockFromIndex(addr.block_idx).IsSet(addr.block_offset); 171 } 172 173 // Returns the number of set bits in the BitVector. CountSetBits()174 uint32_t CountSetBits() const { return CountSetBits(size()); } 175 176 // Returns the number of set bits between the start of the BitVector 177 // (inclusive) and the index |end| (exclusive). CountSetBits(uint32_t end)178 uint32_t CountSetBits(uint32_t end) const { 179 if (end == 0) 180 return 0; 181 182 // Although the external interface we present uses an exclusive |end|, 183 // internally it's a lot nicer to work with an inclusive |end| (mainly 184 // because we get block rollovers on exclusive ends which means we need 185 // to have if checks to ensure we don't overflow the number of blocks). 186 Address addr = IndexToAddress(end - 1); 187 188 // Add the number of set bits until the start of the block to the number 189 // of set bits until the end address inside the block. 190 return counts_[addr.block_idx] + 191 ConstBlockFromIndex(addr.block_idx).CountSetBits(addr.block_offset); 192 } 193 194 // Returns the index of the |n|th set bit. Should only be called with |n| < 195 // CountSetBits(). IndexOfNthSet(uint32_t n)196 uint32_t IndexOfNthSet(uint32_t n) const { 197 PERFETTO_DCHECK(n < CountSetBits()); 198 199 // First search for the block which, up until the start of it, has more than 200 // n bits set. Note that this should never return |counts.begin()| as 201 // that should always be 0. 202 // TODO(lalitm): investigate whether we can make this faster with small 203 // binary search followed by a linear search instead of binary searching the 204 // full way. 205 auto it = std::upper_bound(counts_.begin(), counts_.end(), n); 206 PERFETTO_DCHECK(it != counts_.begin()); 207 208 // Go back one block to find the block which has the bit we are looking for. 209 uint32_t block_idx = 210 static_cast<uint32_t>(std::distance(counts_.begin(), it) - 1); 211 212 // Figure out how many set bits forward we are looking inside the block 213 // by taking away the number of bits at the start of the block from n. 214 uint32_t set_in_block = n - counts_[block_idx]; 215 216 // Compute the address of the bit in the block then convert the full 217 // address back to an index. 218 BlockOffset block_offset = 219 ConstBlockFromIndex(block_idx).IndexOfNthSet(set_in_block); 220 return AddressToIndex(Address{block_idx, block_offset}); 221 } 222 223 // Sets the bit at index |idx| to true and returns the previous value. Set(uint32_t idx)224 bool Set(uint32_t idx) { 225 // Set the bit to the correct value inside the block but store the old 226 // bit to help fix the counts. 227 auto addr = IndexToAddress(idx); 228 bool old_value = 229 ConstBlockFromIndex(addr.block_idx).IsSet(addr.block_offset); 230 231 // If the old value was unset, set the bit and add one to the count. 232 if (PERFETTO_LIKELY(!old_value)) { 233 BlockFromIndex(addr.block_idx).Set(addr.block_offset); 234 235 auto size = static_cast<uint32_t>(counts_.size()); 236 for (uint32_t i = addr.block_idx + 1; i < size; ++i) { 237 counts_[i]++; 238 } 239 } 240 return old_value; 241 } 242 243 // Sets the bit at index |idx| to false. Clear(uint32_t idx)244 void Clear(uint32_t idx) { 245 // Set the bit to the correct value inside the block but store the old 246 // bit to help fix the counts. 247 auto addr = IndexToAddress(idx); 248 bool old_value = 249 ConstBlockFromIndex(addr.block_idx).IsSet(addr.block_offset); 250 251 // If the old value was set, clear the bit and subtract one from all the 252 // counts. 253 if (PERFETTO_LIKELY(old_value)) { 254 BlockFromIndex(addr.block_idx).Clear(addr.block_offset); 255 256 auto size = static_cast<uint32_t>(counts_.size()); 257 for (uint32_t i = addr.block_idx + 1; i < size; ++i) { 258 counts_[i]--; 259 } 260 } 261 } 262 263 // Appends true to the BitVector. AppendTrue()264 void AppendTrue() { 265 AppendFalse(); 266 Address addr = IndexToAddress(size() - 1); 267 BlockFromIndex(addr.block_idx).Set(addr.block_offset); 268 } 269 270 // Appends false to the BitVector. AppendFalse()271 void AppendFalse() { 272 Address addr = IndexToAddress(size_); 273 uint32_t old_blocks_size = BlockCount(); 274 uint32_t new_blocks_size = addr.block_idx + 1; 275 276 if (PERFETTO_UNLIKELY(new_blocks_size > old_blocks_size)) { 277 uint32_t t = CountSetBits(); 278 words_.resize(words_.size() + Block::kWords); 279 counts_.emplace_back(t); 280 } 281 282 size_++; 283 // We don't need to clear the bit as we ensure that anything after 284 // size_ is always set to false. 285 } 286 287 // Resizes the BitVector to the given |size|. 288 // Truncates the BitVector if |size| < |size()| or fills the new space with 289 // |filler| if |size| > |size()|. Calling this method is a noop if |size| == 290 // |size()|. 291 void Resize(uint32_t new_size, bool filler = false); 292 293 // Creates a BitVector of size |end| with the bits between |start| and |end| 294 // filled by calling the filler function |f(index of bit)|. 295 // 296 // As an example, suppose RangeForTesting(3, 7, [](x) { return x < 5 }). This 297 // would result in the following BitVector: [0 0 0 1 1 0 0] 298 template <typename Filler = bool(uint32_t)> RangeForTesting(uint32_t start,uint32_t end,Filler f)299 PERFETTO_WARN_UNUSED_RESULT static BitVector RangeForTesting(uint32_t start, 300 uint32_t end, 301 Filler f) { 302 // Compute the block index and BitVector index where we start and end 303 // working one block at a time. 304 uint32_t start_fast_block = BlockCount(start); 305 uint32_t start_fast_idx = BlockToIndex(start_fast_block); 306 BitVector bv(start, false); 307 308 // Minimum value of start_fast_idx is numer of bits in block, so we need to 309 // seperate calculation for shorter ranges. 310 if (start_fast_idx > end) { 311 for (uint32_t i = start; i < end; ++i) { 312 bv.Append(f(i)); 313 } 314 return bv; 315 } 316 317 uint32_t end_fast_block = BlockFloor(end); 318 uint32_t end_fast_idx = BlockToIndex(end_fast_block); 319 320 // Fill up to |start_fast_index| with values from the filler. 321 for (uint32_t i = start; i < start_fast_idx; ++i) { 322 bv.Append(f(i)); 323 } 324 325 // Assert words_ vector is full and size_ is properly calculated. 326 PERFETTO_DCHECK(bv.words_.size() % Block::kWords == 0); 327 PERFETTO_DCHECK(bv.words_.size() * BitWord::kBits == bv.size_); 328 329 // At this point we can work one block at a time. 330 bv.words_.resize(bv.words_.size() + 331 Block::kWords * (end_fast_block - start_fast_block)); 332 for (uint32_t i = start_fast_block; i < end_fast_block; ++i) { 333 uint64_t* block_start_word = &bv.words_[i * Block::kWords]; 334 Block(block_start_word).FromFiller(bv.size_, f); 335 bv.counts_.emplace_back(bv.CountSetBits()); 336 bv.size_ += Block::kBits; 337 } 338 339 // Add the last few elements to finish up to |end|. 340 for (uint32_t i = end_fast_idx; i < end; ++i) { 341 bv.Append(f(i)); 342 } 343 344 return bv; 345 } 346 347 // Creates BitVector from a vector of sorted indices. Set bits in the 348 // resulting BitVector are values from the index vector. 349 // Note for callers - the passed index vector has to: 350 // - be sorted 351 // - have first element >= 0 352 // - last value smaller than numeric limit of uint32_t. 353 PERFETTO_WARN_UNUSED_RESULT static BitVector FromSortedIndexVector( 354 const std::vector<int64_t>&); 355 356 // Creates a BitVector of size `min(range_end, size())` with bits between 357 // |start| and |end| filled with corresponding bits from |this| BitVector. 358 PERFETTO_WARN_UNUSED_RESULT BitVector 359 IntersectRange(uint32_t range_start, uint32_t range_end) const; 360 361 // Requests the removal of unused capacity. 362 // Matches the semantics of std::vector::shrink_to_fit. ShrinkToFit()363 void ShrinkToFit() { 364 words_.shrink_to_fit(); 365 counts_.shrink_to_fit(); 366 } 367 368 // Updates the ith set bit of this BitVector with the value of 369 // |other.IsSet(i)|. 370 // 371 // This is the best way to batch update all the bits which are set; for 372 // example when filtering rows, we want to filter all rows which are currently 373 // included but ignore rows which have already been excluded. 374 // 375 // For example suppose the following: 376 // this: 1 1 0 0 1 0 1 377 // other: 0 1 1 0 378 // This will change this to the following: 379 // this: 0 1 0 0 1 0 0 380 void UpdateSetBits(const BitVector& other); 381 382 // For each set bit position in |other|, Selects the value of each bit in 383 // |this| and stores them contiguously in |this|. 384 // 385 // Precondition: |this.size()| <= |other.size()|. 386 // 387 // For example suppose the following: 388 // this: 1 1 0 0 1 0 1 389 // other: 0 1 0 1 0 1 0 0 1 0 390 // |this| will change this to the following: 391 // this: 1 0 0 392 void SelectBits(const BitVector& other); 393 394 // Returns the approximate cost (in bytes) of storing a BitVector with size 395 // |n|. This can be used to make decisions about whether using a BitVector is 396 // worthwhile. 397 // This cost should not be treated as exact - it just gives an indication of 398 // the memory needed. ApproxBytesCost(uint32_t n)399 static constexpr uint32_t ApproxBytesCost(uint32_t n) { 400 // The two main things making up a BitVector is the cost of the blocks of 401 // bits and the cost of the counts vector. 402 return BlockCount(n) * Block::kBits + BlockCount(n) * sizeof(uint32_t); 403 } 404 405 // Returns a vector<uint32_t> containing the indices of all the set bits 406 // in the BitVector. 407 std::vector<uint32_t> GetSetBitIndices() const; 408 409 // Serialize internals of BitVector to proto. 410 void Serialize(protos::pbzero::SerializedColumn_BitVector* msg) const; 411 412 // Deserialize BitVector from proto. 413 void Deserialize( 414 const protos::pbzero::SerializedColumn_BitVector_Decoder& bv_msg); 415 416 private: 417 using SetBitsIterator = internal::SetBitsIterator; 418 friend class internal::BaseIterator; 419 friend class internal::SetBitsIterator; 420 421 // Represents the offset of a bit within a block. 422 struct BlockOffset { 423 uint16_t word_idx; 424 uint16_t bit_idx; 425 }; 426 427 // Represents the address of a bit within the BitVector. 428 struct Address { 429 uint32_t block_idx; 430 BlockOffset block_offset; 431 }; 432 433 // Represents the smallest collection of bits we can refer to as 434 // one unit. 435 // 436 // Currently, this is implemented as a 64 bit integer as this is the 437 // largest type which we can assume to be present on all platforms. 438 class BitWord { 439 public: 440 static constexpr uint32_t kBits = 64; 441 BitWord(uint64_t * word)442 explicit BitWord(uint64_t* word) : word_(word) {} 443 444 // Bitwise ors the given |mask| to the current value. Or(uint64_t mask)445 void Or(uint64_t mask) { *word_ |= mask; } 446 447 // Bitwise ands the given |mask| to the current value. And(uint64_t mask)448 void And(uint64_t mask) { *word_ &= mask; } 449 450 // Bitwise not. Not()451 void Not() { *word_ = ~(*word_); } 452 453 // Sets the bit at the given index to true. Set(uint32_t idx)454 void Set(uint32_t idx) { 455 PERFETTO_DCHECK(idx < kBits); 456 457 // Or the value for the true shifted up to |idx| with the word. 458 Or(1ull << idx); 459 } 460 461 // Sets the bit at the given index to false. Clear(uint32_t idx)462 void Clear(uint32_t idx) { 463 PERFETTO_DCHECK(idx < kBits); 464 465 // And the integer of all bits set apart from |idx| with the word. 466 *word_ &= ~(1ull << idx); 467 } 468 469 // Clears all the bits (i.e. sets the atom to zero). ClearAll()470 void ClearAll() { *word_ = 0; } 471 472 // Retains all bits up to and including the bit at |idx| and clears 473 // all bits after this point. ClearAfter(uint32_t idx)474 void ClearAfter(uint32_t idx) { 475 PERFETTO_DCHECK(idx < kBits); 476 *word_ = WordUntil(idx); 477 } 478 479 // Sets all bits between the bit at |start| and |end| (inclusive). Set(uint32_t start,uint32_t end)480 void Set(uint32_t start, uint32_t end) { 481 uint32_t diff = end - start; 482 *word_ |= (MaskAllBitsSetUntil(diff) << static_cast<uint64_t>(start)); 483 } 484 485 // Return a mask of all the bits up to and including bit at |idx|. MaskAllBitsSetUntil(uint32_t idx)486 static uint64_t MaskAllBitsSetUntil(uint32_t idx) { 487 // Start with 1 and shift it up (idx + 1) bits we get: 488 // top : 00000000010000000 489 uint64_t top = 1ull << ((idx + 1ull) % kBits); 490 491 // We need to handle the case where idx == 63. In this case |top| will be 492 // zero because 1 << ((idx + 1) % 64) == 1 << (64 % 64) == 1. 493 // In this case, we actually want top == 0. We can do this by shifting 494 // down by (idx + 1) / kBits - this will be a noop for every index other 495 // than idx == 63. This should also be free on x86 because of the mod 496 // instruction above. 497 top = top >> ((idx + 1) / kBits); 498 499 // Then if we take away 1, we get precisely the mask we want. 500 return top - 1u; 501 } 502 503 private: 504 // Returns the bits up to and including the bit at |idx|. WordUntil(uint32_t idx)505 uint64_t WordUntil(uint32_t idx) const { 506 PERFETTO_DCHECK(idx < kBits); 507 508 // To understand what is happeninng here, consider an example. 509 // Suppose we want to all the bits up to the 7th bit in the atom 510 // 7th 511 // | 512 // v 513 // atom: 01010101011111000 514 // 515 // The easiest way to do this would be if we had a mask with only 516 // the bottom 7 bits set: 517 // mask: 00000000001111111 518 uint64_t mask = MaskAllBitsSetUntil(idx); 519 520 // Finish up by and'ing the atom with the computed mask. 521 return *word_ & mask; 522 } 523 524 uint64_t* word_; 525 }; 526 527 class ConstBitWord { 528 public: 529 static constexpr uint32_t kBits = 64; 530 ConstBitWord(const uint64_t * word)531 explicit ConstBitWord(const uint64_t* word) : word_(word) {} 532 533 // Returns whether the bit at the given index is set. IsSet(uint32_t idx)534 bool IsSet(uint32_t idx) const { 535 PERFETTO_DCHECK(idx < kBits); 536 return (*word_ >> idx) & 1ull; 537 } 538 539 // Returns the index of the nth set bit. 540 // Undefined if |n| >= |CountSetBits()|. IndexOfNthSet(uint32_t n)541 uint16_t IndexOfNthSet(uint32_t n) const { 542 PERFETTO_DCHECK(n < kBits); 543 544 // The below code is very dense but essentially computes the nth set 545 // bit inside |atom| in the "broadword" style of programming (sometimes 546 // referred to as "SIMD within a register"). 547 // 548 // Instead of treating a uint64 as an individual unit, broadword 549 // algorithms treat them as a packed vector of uint8. By doing this, they 550 // allow branchless algorithms when considering bits of a uint64. 551 // 552 // In benchmarks, this algorithm has found to be the fastest, portable 553 // way of computing the nth set bit (if we were only targetting new 554 // versions of x64, we could also use pdep + ctz but unfortunately 555 // this would fail on WASM - this about 2.5-3x faster on x64). 556 // 557 // The code below was taken from the paper 558 // http://vigna.di.unimi.it/ftp/papers/Broadword.pdf 559 uint64_t s = *word_ - ((*word_ & 0xAAAAAAAAAAAAAAAA) >> 1); 560 s = (s & 0x3333333333333333) + ((s >> 2) & 0x3333333333333333); 561 s = ((s + (s >> 4)) & 0x0F0F0F0F0F0F0F0F) * L8; 562 563 uint64_t b = (BwLessThan(s, n * L8) >> 7) * L8 >> 53 & ~7ull; 564 uint64_t l = n - ((s << 8) >> b & 0xFF); 565 s = (BwGtZero(((*word_ >> b & 0xFF) * L8) & 0x8040201008040201) >> 7) * 566 L8; 567 568 uint64_t ret = b + ((BwLessThan(s, l * L8) >> 7) * L8 >> 56); 569 570 return static_cast<uint16_t>(ret); 571 } 572 573 // Returns the number of set bits. CountSetBits()574 uint32_t CountSetBits() const { 575 return static_cast<uint32_t>(PERFETTO_POPCOUNT(*word_)); 576 } 577 578 // Returns the number of set bits up to and including the bit at |idx|. CountSetBits(uint32_t idx)579 uint32_t CountSetBits(uint32_t idx) const { 580 PERFETTO_DCHECK(idx < kBits); 581 return static_cast<uint32_t>(PERFETTO_POPCOUNT(WordUntil(idx))); 582 } 583 584 private: 585 // Constant with all the low bit of every byte set. 586 static constexpr uint64_t L8 = 0x0101010101010101; 587 588 // Constant with all the high bit of every byte set. 589 static constexpr uint64_t H8 = 0x8080808080808080; 590 591 // Returns a packed uint64 encoding whether each byte of x is less 592 // than each corresponding byte of y. 593 // This is computed in the "broadword" style of programming; see 594 // IndexOfNthSet for details on this. BwLessThan(uint64_t x,uint64_t y)595 static uint64_t BwLessThan(uint64_t x, uint64_t y) { 596 return (((y | H8) - (x & ~H8)) ^ x ^ y) & H8; 597 } 598 599 // Returns a packed uint64 encoding whether each byte of x is greater 600 // than or equal zero. 601 // This is computed in the "broadword" style of programming; see 602 // IndexOfNthSet for details on this. BwGtZero(uint64_t x)603 static uint64_t BwGtZero(uint64_t x) { return (((x | H8) - L8) | x) & H8; } 604 605 // Returns the bits up to and including the bit at |idx|. WordUntil(uint32_t idx)606 uint64_t WordUntil(uint32_t idx) const { 607 PERFETTO_DCHECK(idx < kBits); 608 609 // To understand what is happeninng here, consider an example. 610 // Suppose we want to all the bits up to the 7th bit in the atom 611 // 7th 612 // | 613 // v 614 // atom: 01010101011111000 615 // 616 // The easiest way to do this would be if we had a mask with only 617 // the bottom 7 bits set: 618 // mask: 00000000001111111 619 uint64_t mask = BitWord::MaskAllBitsSetUntil(idx); 620 621 // Finish up by and'ing the atom with the computed mask. 622 return *word_ & mask; 623 } 624 625 const uint64_t* word_; 626 }; 627 628 // Represents a group of bits with a bitcount such that it is 629 // efficient to work on these bits. 630 // 631 // On x86 architectures we generally target for trace processor, the 632 // size of a cache line is 64 bytes (or 512 bits). For this reason, 633 // we make the size of the block contain 8 atoms as 8 * 64 == 512. 634 class Block { 635 public: 636 // See class documentation for how these constants are chosen. 637 static constexpr uint16_t kWords = 8; 638 static constexpr uint32_t kBits = kWords * BitWord::kBits; 639 Block(uint64_t * start_word)640 explicit Block(uint64_t* start_word) : start_word_(start_word) {} 641 642 // Sets the bit at the given address to true. Set(const BlockOffset & addr)643 void Set(const BlockOffset& addr) { 644 PERFETTO_DCHECK(addr.word_idx < kWords); 645 BitWord(&start_word_[addr.word_idx]).Set(addr.bit_idx); 646 } 647 648 // Sets the bit at the given address to false. Clear(const BlockOffset & addr)649 void Clear(const BlockOffset& addr) { 650 PERFETTO_DCHECK(addr.word_idx < kWords); 651 652 BitWord(&start_word_[addr.word_idx]).Clear(addr.bit_idx); 653 } 654 655 // Retains all bits up to and including the bit at |addr| and clears 656 // all bits after this point. ClearAfter(const BlockOffset & offset)657 void ClearAfter(const BlockOffset& offset) { 658 PERFETTO_DCHECK(offset.word_idx < kWords); 659 660 // In the first atom, keep the bits until the address specified. 661 BitWord(&start_word_[offset.word_idx]).ClearAfter(offset.bit_idx); 662 663 // For all subsequent atoms, we just clear the whole atom. 664 for (uint32_t i = offset.word_idx + 1; i < kWords; ++i) { 665 BitWord(&start_word_[i]).ClearAll(); 666 } 667 } 668 669 // Set all the bits between the offsets given by |start| and |end| 670 // (inclusive). Set(const BlockOffset & start,const BlockOffset & end)671 void Set(const BlockOffset& start, const BlockOffset& end) { 672 if (start.word_idx == end.word_idx) { 673 // If there is only one word we will change, just set the range within 674 // the word. 675 BitWord(&start_word_[start.word_idx]).Set(start.bit_idx, end.bit_idx); 676 return; 677 } 678 679 // Otherwise, we have more than one word to set. To do this, we will 680 // do this in three steps. 681 682 // First, we set the first word from the start to the end of the word. 683 BitWord(&start_word_[start.word_idx]) 684 .Set(start.bit_idx, BitWord::kBits - 1); 685 686 // Next, we set all words (except the last). 687 for (uint32_t i = start.word_idx + 1; i < end.word_idx; ++i) { 688 BitWord(&start_word_[i]).Set(0, BitWord::kBits - 1); 689 } 690 691 // Finally, we set the word block from the start to the end offset. 692 BitWord(&start_word_[end.word_idx]).Set(0, end.bit_idx); 693 } 694 Or(Block & sec)695 void Or(Block& sec) { 696 for (uint32_t i = 0; i < kWords; ++i) { 697 BitWord(&start_word_[i]).Or(sec.start_word_[i]); 698 } 699 } 700 701 template <typename Filler> FromFiller(uint32_t offset,Filler f)702 void FromFiller(uint32_t offset, Filler f) { 703 // We choose to iterate the bits as the outer loop as this allows us 704 // to reuse the mask and the bit offset between iterations of the loop. 705 // This makes a small (but noticable) impact in the performance of this 706 // function. 707 for (uint32_t i = 0; i < BitWord::kBits; ++i) { 708 uint64_t mask = 1ull << i; 709 uint32_t offset_with_bit = offset + i; 710 for (uint32_t j = 0; j < Block::kWords; ++j) { 711 bool res = f(offset_with_bit + j * BitWord::kBits); 712 BitWord(&start_word_[j]).Or(res ? mask : 0); 713 } 714 } 715 } 716 ReplaceWith(Block block)717 void ReplaceWith(Block block) { 718 for (uint32_t i = 0; i < BitWord::kBits; ++i) { 719 start_word_[i] = block.start_word()[i]; 720 } 721 } 722 start_word()723 uint64_t* start_word() { return start_word_; } 724 725 private: 726 uint64_t* start_word_; 727 }; 728 729 class ConstBlock { 730 public: 731 // See class documentation for how these constants are chosen. 732 static constexpr uint16_t kWords = Block::kWords; 733 static constexpr uint32_t kBits = kWords * BitWord::kBits; 734 ConstBlock(const uint64_t * start_word)735 explicit ConstBlock(const uint64_t* start_word) : start_word_(start_word) {} ConstBlock(Block block)736 explicit ConstBlock(Block block) : start_word_(block.start_word()) {} 737 738 // Returns whether the bit at the given address is set. IsSet(const BlockOffset & addr)739 bool IsSet(const BlockOffset& addr) const { 740 PERFETTO_DCHECK(addr.word_idx < kWords); 741 return ConstBitWord(start_word_ + addr.word_idx).IsSet(addr.bit_idx); 742 } 743 744 // Gets the offset of the nth set bit in this block. IndexOfNthSet(uint32_t n)745 BlockOffset IndexOfNthSet(uint32_t n) const { 746 uint32_t count = 0; 747 for (uint16_t i = 0; i < kWords; ++i) { 748 // Keep a running count of all the set bits in the atom. 749 uint32_t value = count + ConstBitWord(start_word_ + i).CountSetBits(); 750 if (value <= n) { 751 count = value; 752 continue; 753 } 754 755 // The running count of set bits is more than |n|. That means this 756 // atom contains the bit we are looking for. 757 758 // Take away the number of set bits to the start of this atom from 759 // |n|. 760 uint32_t set_in_atom = n - count; 761 762 // Figure out the index of the set bit inside the atom and create the 763 // address of this bit from that. 764 uint16_t bit_idx = 765 ConstBitWord(start_word_ + i).IndexOfNthSet(set_in_atom); 766 PERFETTO_DCHECK(bit_idx < 64); 767 return BlockOffset{i, bit_idx}; 768 } 769 PERFETTO_FATAL("Index out of bounds"); 770 } 771 772 // Gets the number of set bits within a block up to and including the bit 773 // at the given address. CountSetBits(const BlockOffset & addr)774 uint32_t CountSetBits(const BlockOffset& addr) const { 775 PERFETTO_DCHECK(addr.word_idx < kWords); 776 777 // Count all the set bits in the atom until we reach the last atom 778 // index. 779 uint32_t count = 0; 780 for (uint32_t i = 0; i < addr.word_idx; ++i) { 781 count += ConstBitWord(&start_word_[i]).CountSetBits(); 782 } 783 784 // For the last atom, only count the bits upto and including the bit 785 // index. 786 return count + ConstBitWord(&start_word_[addr.word_idx]) 787 .CountSetBits(addr.bit_idx); 788 } 789 790 // Gets the number of set bits within a block up. CountSetBits()791 uint32_t CountSetBits() const { 792 uint32_t count = 0; 793 for (uint32_t i = 0; i < kWords; ++i) { 794 count += ConstBitWord(&start_word_[i]).CountSetBits(); 795 } 796 return count; 797 } 798 799 private: 800 const uint64_t* start_word_; 801 }; 802 803 BitVector(std::vector<uint64_t> words, 804 std::vector<uint32_t> counts, 805 uint32_t size); 806 807 // Returns the number of 8 elements blocks in the BitVector. BlockCount()808 uint32_t BlockCount() { 809 return static_cast<uint32_t>(words_.size()) / Block::kWords; 810 } 811 BlockFromIndex(uint32_t idx)812 Block BlockFromIndex(uint32_t idx) { 813 PERFETTO_DCHECK(Block::kWords * (idx + 1) <= words_.size()); 814 815 uint64_t* start_word = &words_[Block::kWords * idx]; 816 return Block(start_word); 817 } 818 ConstBlockFromIndex(uint32_t idx)819 ConstBlock ConstBlockFromIndex(uint32_t idx) const { 820 PERFETTO_DCHECK(Block::kWords * (idx + 1) <= words_.size()); 821 822 return ConstBlock(&words_[Block::kWords * idx]); 823 } 824 825 // Set all the bits between the addresses given by |start| and |end| 826 // (inclusive). 827 // Note: this method does not update the counts vector - that is the 828 // responsibility of the caller. Set(const Address & start,const Address & end)829 void Set(const Address& start, const Address& end) { 830 static constexpr BlockOffset kFirstBlockOffset = BlockOffset{0, 0}; 831 static constexpr BlockOffset kLastBlockOffset = 832 BlockOffset{Block::kWords - 1, BitWord::kBits - 1}; 833 834 if (start.block_idx == end.block_idx) { 835 // If there is only one block we will change, just set the range within 836 // the block. 837 BlockFromIndex(start.block_idx).Set(start.block_offset, end.block_offset); 838 return; 839 } 840 841 // Otherwise, we have more than one block to set. To do this, we will 842 // do this in three steps. 843 844 // First, we set the first block from the start to the end of the block. 845 BlockFromIndex(start.block_idx).Set(start.block_offset, kLastBlockOffset); 846 847 // Next, we set all blocks (except the last). 848 for (uint32_t cur_block_idx = start.block_idx + 1; 849 cur_block_idx < end.block_idx; ++cur_block_idx) { 850 BlockFromIndex(cur_block_idx).Set(kFirstBlockOffset, kLastBlockOffset); 851 } 852 853 // Finally, we set the last block from the start to the end offset. 854 BlockFromIndex(end.block_idx).Set(kFirstBlockOffset, end.block_offset); 855 } 856 857 // Helper function to append a bit. Generally, prefer to call AppendTrue 858 // or AppendFalse instead of this function if you know the type - they will 859 // be faster. Append(bool value)860 void Append(bool value) { 861 if (value) { 862 AppendTrue(); 863 } else { 864 AppendFalse(); 865 } 866 } 867 868 // Iterate all the set bits in the BitVector. 869 // 870 // Usage: 871 // for (auto it = bv.IterateSetBits(); it; it.Next()) { 872 // ... 873 // } 874 SetBitsIterator IterateSetBits() const; 875 876 // Returns the index of the word which would store |idx|. WordFloor(uint32_t idx)877 static constexpr uint32_t WordFloor(uint32_t idx) { 878 return idx / BitWord::kBits; 879 } 880 881 // Returns number of words (int64_t) required to store |bit_count| bits. WordCount(uint32_t bit_count)882 static uint32_t WordCount(uint32_t bit_count) { 883 // See |BlockCount| for an explanation of this trick. 884 return (bit_count + BitWord::kBits - 1) / BitWord::kBits; 885 } 886 IndexToAddress(uint32_t idx)887 static Address IndexToAddress(uint32_t idx) { 888 Address a; 889 a.block_idx = idx / Block::kBits; 890 891 uint16_t bit_idx_inside_block = idx % Block::kBits; 892 a.block_offset.word_idx = bit_idx_inside_block / BitWord::kBits; 893 a.block_offset.bit_idx = bit_idx_inside_block % BitWord::kBits; 894 return a; 895 } 896 AddressToIndex(Address addr)897 static uint32_t AddressToIndex(Address addr) { 898 return addr.block_idx * Block::kBits + 899 addr.block_offset.word_idx * BitWord::kBits + 900 addr.block_offset.bit_idx; 901 } 902 903 // Returns number of blocks (arrays of 8 int64_t) required to store 904 // |bit_count| bits. 905 // 906 // This is useful to be able to find indices where "fast" algorithms can 907 // start which work on entire blocks. BlockCount(uint32_t bit_count)908 static constexpr uint32_t BlockCount(uint32_t bit_count) { 909 // Adding |Block::kBits - 1| gives us a quick way to get the count. We 910 // do this instead of adding 1 at the end because that gives incorrect 911 // answers for bit_count % Block::kBits == 0. 912 return (bit_count + Block::kBits - 1) / Block::kBits; 913 } 914 915 // Returns the index of the block which would store |idx|. BlockFloor(uint32_t idx)916 static constexpr uint32_t BlockFloor(uint32_t idx) { 917 return idx / Block::kBits; 918 } 919 920 // Converts a block index to a index in the BitVector. BlockToIndex(uint32_t block_idx)921 static constexpr uint32_t BlockToIndex(uint32_t block_idx) { 922 return block_idx * Block::kBits; 923 } 924 925 // Updates the counts in |counts| by counting the set bits in |words|. UpdateCounts(const std::vector<uint64_t> & words,std::vector<uint32_t> & counts)926 static void UpdateCounts(const std::vector<uint64_t>& words, 927 std::vector<uint32_t>& counts) { 928 PERFETTO_CHECK(words.size() == counts.size() * Block::kWords); 929 for (uint32_t i = 1; i < counts.size(); ++i) { 930 counts[i] = counts[i - 1] + 931 ConstBlock(&words[Block::kWords * (i - 1)]).CountSetBits(); 932 } 933 } 934 935 uint32_t size_ = 0; 936 // See class documentation for how these constants are chosen. 937 static constexpr uint16_t kWordsInBlock = Block::kWords; 938 static constexpr uint32_t kBitsInBlock = kWordsInBlock * BitWord::kBits; 939 std::vector<uint32_t> counts_; 940 std::vector<uint64_t> words_; 941 }; 942 943 } // namespace trace_processor 944 } // namespace perfetto 945 946 #endif // SRC_TRACE_PROCESSOR_CONTAINERS_BIT_VECTOR_H_ 947