1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.] */
56
57 #include <openssl/base.h>
58
59 #include <limits.h>
60
61 #include <openssl/err.h>
62 #include <openssl/rsa.h>
63 #include <openssl/bn.h>
64 #include <openssl/rand.h>
65 #include <openssl/mem.h>
66 #include <openssl/evp.h>
67
68 #include "../fipsmodule/bn/internal.h"
69 #include "../fipsmodule/rsa/internal.h"
70 #include "../internal.h"
71 #include "internal.h"
72
73
rand_nonzero(uint8_t * out,size_t len)74 static void rand_nonzero(uint8_t *out, size_t len) {
75 RAND_bytes(out, len);
76
77 for (size_t i = 0; i < len; i++) {
78 while (out[i] == 0) {
79 RAND_bytes(out + i, 1);
80 }
81 }
82 }
83
RSA_padding_add_PKCS1_OAEP_mgf1(uint8_t * to,size_t to_len,const uint8_t * from,size_t from_len,const uint8_t * param,size_t param_len,const EVP_MD * md,const EVP_MD * mgf1md)84 int RSA_padding_add_PKCS1_OAEP_mgf1(uint8_t *to, size_t to_len,
85 const uint8_t *from, size_t from_len,
86 const uint8_t *param, size_t param_len,
87 const EVP_MD *md, const EVP_MD *mgf1md) {
88 if (md == NULL) {
89 md = EVP_sha1();
90 }
91 if (mgf1md == NULL) {
92 mgf1md = md;
93 }
94
95 size_t mdlen = EVP_MD_size(md);
96
97 if (to_len < 2 * mdlen + 2) {
98 OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL);
99 return 0;
100 }
101
102 size_t emlen = to_len - 1;
103 if (from_len > emlen - 2 * mdlen - 1) {
104 OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
105 return 0;
106 }
107
108 if (emlen < 2 * mdlen + 1) {
109 OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL);
110 return 0;
111 }
112
113 to[0] = 0;
114 uint8_t *seed = to + 1;
115 uint8_t *db = to + mdlen + 1;
116
117 uint8_t *dbmask = NULL;
118 int ret = 0;
119 if (!EVP_Digest(param, param_len, db, NULL, md, NULL)) {
120 goto out;
121 }
122 OPENSSL_memset(db + mdlen, 0, emlen - from_len - 2 * mdlen - 1);
123 db[emlen - from_len - mdlen - 1] = 0x01;
124 OPENSSL_memcpy(db + emlen - from_len - mdlen, from, from_len);
125 if (!RAND_bytes(seed, mdlen)) {
126 goto out;
127 }
128
129 dbmask = OPENSSL_malloc(emlen - mdlen);
130 if (dbmask == NULL) {
131 goto out;
132 }
133
134 if (!PKCS1_MGF1(dbmask, emlen - mdlen, seed, mdlen, mgf1md)) {
135 goto out;
136 }
137 for (size_t i = 0; i < emlen - mdlen; i++) {
138 db[i] ^= dbmask[i];
139 }
140
141 uint8_t seedmask[EVP_MAX_MD_SIZE];
142 if (!PKCS1_MGF1(seedmask, mdlen, db, emlen - mdlen, mgf1md)) {
143 goto out;
144 }
145 for (size_t i = 0; i < mdlen; i++) {
146 seed[i] ^= seedmask[i];
147 }
148 ret = 1;
149
150 out:
151 OPENSSL_free(dbmask);
152 return ret;
153 }
154
RSA_padding_check_PKCS1_OAEP_mgf1(uint8_t * out,size_t * out_len,size_t max_out,const uint8_t * from,size_t from_len,const uint8_t * param,size_t param_len,const EVP_MD * md,const EVP_MD * mgf1md)155 int RSA_padding_check_PKCS1_OAEP_mgf1(uint8_t *out, size_t *out_len,
156 size_t max_out, const uint8_t *from,
157 size_t from_len, const uint8_t *param,
158 size_t param_len, const EVP_MD *md,
159 const EVP_MD *mgf1md) {
160 uint8_t *db = NULL;
161
162 if (md == NULL) {
163 md = EVP_sha1();
164 }
165 if (mgf1md == NULL) {
166 mgf1md = md;
167 }
168
169 size_t mdlen = EVP_MD_size(md);
170
171 // The encoded message is one byte smaller than the modulus to ensure that it
172 // doesn't end up greater than the modulus. Thus there's an extra "+1" here
173 // compared to https://tools.ietf.org/html/rfc2437#section-9.1.1.2.
174 if (from_len < 1 + 2 * mdlen + 1) {
175 // 'from_len' is the length of the modulus, i.e. does not depend on the
176 // particular ciphertext.
177 goto decoding_err;
178 }
179
180 size_t dblen = from_len - mdlen - 1;
181 db = OPENSSL_malloc(dblen);
182 if (db == NULL) {
183 goto err;
184 }
185
186 const uint8_t *maskedseed = from + 1;
187 const uint8_t *maskeddb = from + 1 + mdlen;
188
189 uint8_t seed[EVP_MAX_MD_SIZE];
190 if (!PKCS1_MGF1(seed, mdlen, maskeddb, dblen, mgf1md)) {
191 goto err;
192 }
193 for (size_t i = 0; i < mdlen; i++) {
194 seed[i] ^= maskedseed[i];
195 }
196
197 if (!PKCS1_MGF1(db, dblen, seed, mdlen, mgf1md)) {
198 goto err;
199 }
200 for (size_t i = 0; i < dblen; i++) {
201 db[i] ^= maskeddb[i];
202 }
203
204 uint8_t phash[EVP_MAX_MD_SIZE];
205 if (!EVP_Digest(param, param_len, phash, NULL, md, NULL)) {
206 goto err;
207 }
208
209 crypto_word_t bad = ~constant_time_is_zero_w(CRYPTO_memcmp(db, phash, mdlen));
210 bad |= ~constant_time_is_zero_w(from[0]);
211
212 crypto_word_t looking_for_one_byte = CONSTTIME_TRUE_W;
213 size_t one_index = 0;
214 for (size_t i = mdlen; i < dblen; i++) {
215 crypto_word_t equals1 = constant_time_eq_w(db[i], 1);
216 crypto_word_t equals0 = constant_time_eq_w(db[i], 0);
217 one_index =
218 constant_time_select_w(looking_for_one_byte & equals1, i, one_index);
219 looking_for_one_byte =
220 constant_time_select_w(equals1, 0, looking_for_one_byte);
221 bad |= looking_for_one_byte & ~equals0;
222 }
223
224 bad |= looking_for_one_byte;
225
226 // Whether the overall padding was valid or not in OAEP is public.
227 if (constant_time_declassify_w(bad)) {
228 goto decoding_err;
229 }
230
231 // Once the padding is known to be valid, the output length is also public.
232 static_assert(sizeof(size_t) <= sizeof(crypto_word_t),
233 "size_t does not fit in crypto_word_t");
234 one_index = constant_time_declassify_w(one_index);
235
236 one_index++;
237 size_t mlen = dblen - one_index;
238 if (max_out < mlen) {
239 OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE);
240 goto err;
241 }
242
243 OPENSSL_memcpy(out, db + one_index, mlen);
244 *out_len = mlen;
245 OPENSSL_free(db);
246 return 1;
247
248 decoding_err:
249 // To avoid chosen ciphertext attacks, the error message should not reveal
250 // which kind of decoding error happened.
251 OPENSSL_PUT_ERROR(RSA, RSA_R_OAEP_DECODING_ERROR);
252 err:
253 OPENSSL_free(db);
254 return 0;
255 }
256
rsa_padding_add_PKCS1_type_2(uint8_t * to,size_t to_len,const uint8_t * from,size_t from_len)257 static int rsa_padding_add_PKCS1_type_2(uint8_t *to, size_t to_len,
258 const uint8_t *from, size_t from_len) {
259 // See RFC 8017, section 7.2.1.
260 if (to_len < RSA_PKCS1_PADDING_SIZE) {
261 OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL);
262 return 0;
263 }
264
265 if (from_len > to_len - RSA_PKCS1_PADDING_SIZE) {
266 OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
267 return 0;
268 }
269
270 to[0] = 0;
271 to[1] = 2;
272
273 size_t padding_len = to_len - 3 - from_len;
274 rand_nonzero(to + 2, padding_len);
275 to[2 + padding_len] = 0;
276 OPENSSL_memcpy(to + to_len - from_len, from, from_len);
277 return 1;
278 }
279
rsa_padding_check_PKCS1_type_2(uint8_t * out,size_t * out_len,size_t max_out,const uint8_t * from,size_t from_len)280 static int rsa_padding_check_PKCS1_type_2(uint8_t *out, size_t *out_len,
281 size_t max_out, const uint8_t *from,
282 size_t from_len) {
283 if (from_len == 0) {
284 OPENSSL_PUT_ERROR(RSA, RSA_R_EMPTY_PUBLIC_KEY);
285 return 0;
286 }
287
288 // PKCS#1 v1.5 decryption. See "PKCS #1 v2.2: RSA Cryptography
289 // Standard", section 7.2.2.
290 if (from_len < RSA_PKCS1_PADDING_SIZE) {
291 // |from| is zero-padded to the size of the RSA modulus, a public value, so
292 // this can be rejected in non-constant time.
293 OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL);
294 return 0;
295 }
296
297 crypto_word_t first_byte_is_zero = constant_time_eq_w(from[0], 0);
298 crypto_word_t second_byte_is_two = constant_time_eq_w(from[1], 2);
299
300 crypto_word_t zero_index = 0, looking_for_index = CONSTTIME_TRUE_W;
301 for (size_t i = 2; i < from_len; i++) {
302 crypto_word_t equals0 = constant_time_is_zero_w(from[i]);
303 zero_index =
304 constant_time_select_w(looking_for_index & equals0, i, zero_index);
305 looking_for_index = constant_time_select_w(equals0, 0, looking_for_index);
306 }
307
308 // The input must begin with 00 02.
309 crypto_word_t valid_index = first_byte_is_zero;
310 valid_index &= second_byte_is_two;
311
312 // We must have found the end of PS.
313 valid_index &= ~looking_for_index;
314
315 // PS must be at least 8 bytes long, and it starts two bytes into |from|.
316 valid_index &= constant_time_ge_w(zero_index, 2 + 8);
317
318 // Skip the zero byte.
319 zero_index++;
320
321 // NOTE: Although this logic attempts to be constant time, the API contracts
322 // of this function and |RSA_decrypt| with |RSA_PKCS1_PADDING| make it
323 // impossible to completely avoid Bleichenbacher's attack. Consumers should
324 // use |RSA_PADDING_NONE| and perform the padding check in constant-time
325 // combined with a swap to a random session key or other mitigation.
326 CONSTTIME_DECLASSIFY(&valid_index, sizeof(valid_index));
327 CONSTTIME_DECLASSIFY(&zero_index, sizeof(zero_index));
328
329 if (!valid_index) {
330 OPENSSL_PUT_ERROR(RSA, RSA_R_PKCS_DECODING_ERROR);
331 return 0;
332 }
333
334 const size_t msg_len = from_len - zero_index;
335 if (msg_len > max_out) {
336 // This shouldn't happen because this function is always called with
337 // |max_out| as the key size and |from_len| is bounded by the key size.
338 OPENSSL_PUT_ERROR(RSA, RSA_R_PKCS_DECODING_ERROR);
339 return 0;
340 }
341
342 OPENSSL_memcpy(out, &from[zero_index], msg_len);
343 *out_len = msg_len;
344 return 1;
345 }
346
RSA_public_encrypt(size_t flen,const uint8_t * from,uint8_t * to,RSA * rsa,int padding)347 int RSA_public_encrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa,
348 int padding) {
349 size_t out_len;
350
351 if (!RSA_encrypt(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) {
352 return -1;
353 }
354
355 if (out_len > INT_MAX) {
356 OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW);
357 return -1;
358 }
359 return (int)out_len;
360 }
361
RSA_private_encrypt(size_t flen,const uint8_t * from,uint8_t * to,RSA * rsa,int padding)362 int RSA_private_encrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa,
363 int padding) {
364 size_t out_len;
365
366 if (!RSA_sign_raw(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) {
367 return -1;
368 }
369
370 if (out_len > INT_MAX) {
371 OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW);
372 return -1;
373 }
374 return (int)out_len;
375 }
376
RSA_encrypt(RSA * rsa,size_t * out_len,uint8_t * out,size_t max_out,const uint8_t * in,size_t in_len,int padding)377 int RSA_encrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
378 const uint8_t *in, size_t in_len, int padding) {
379 if (rsa->n == NULL || rsa->e == NULL) {
380 OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
381 return 0;
382 }
383
384 if (!rsa_check_public_key(rsa)) {
385 return 0;
386 }
387
388 const unsigned rsa_size = RSA_size(rsa);
389 BIGNUM *f, *result;
390 uint8_t *buf = NULL;
391 BN_CTX *ctx = NULL;
392 int i, ret = 0;
393
394 if (max_out < rsa_size) {
395 OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL);
396 return 0;
397 }
398
399 ctx = BN_CTX_new();
400 if (ctx == NULL) {
401 goto err;
402 }
403
404 BN_CTX_start(ctx);
405 f = BN_CTX_get(ctx);
406 result = BN_CTX_get(ctx);
407 buf = OPENSSL_malloc(rsa_size);
408 if (!f || !result || !buf) {
409 goto err;
410 }
411
412 switch (padding) {
413 case RSA_PKCS1_PADDING:
414 i = rsa_padding_add_PKCS1_type_2(buf, rsa_size, in, in_len);
415 break;
416 case RSA_PKCS1_OAEP_PADDING:
417 // Use the default parameters: SHA-1 for both hashes and no label.
418 i = RSA_padding_add_PKCS1_OAEP_mgf1(buf, rsa_size, in, in_len, NULL, 0,
419 NULL, NULL);
420 break;
421 case RSA_NO_PADDING:
422 i = RSA_padding_add_none(buf, rsa_size, in, in_len);
423 break;
424 default:
425 OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE);
426 goto err;
427 }
428
429 if (i <= 0) {
430 goto err;
431 }
432
433 if (BN_bin2bn(buf, rsa_size, f) == NULL) {
434 goto err;
435 }
436
437 if (BN_ucmp(f, rsa->n) >= 0) {
438 // usually the padding functions would catch this
439 OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS);
440 goto err;
441 }
442
443 if (!BN_MONT_CTX_set_locked(&rsa->mont_n, &rsa->lock, rsa->n, ctx) ||
444 !BN_mod_exp_mont(result, f, rsa->e, &rsa->mont_n->N, ctx, rsa->mont_n)) {
445 goto err;
446 }
447
448 // put in leading 0 bytes if the number is less than the length of the
449 // modulus
450 if (!BN_bn2bin_padded(out, rsa_size, result)) {
451 OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
452 goto err;
453 }
454
455 *out_len = rsa_size;
456 ret = 1;
457
458 err:
459 if (ctx != NULL) {
460 BN_CTX_end(ctx);
461 BN_CTX_free(ctx);
462 }
463 OPENSSL_free(buf);
464
465 return ret;
466 }
467
rsa_default_decrypt(RSA * rsa,size_t * out_len,uint8_t * out,size_t max_out,const uint8_t * in,size_t in_len,int padding)468 static int rsa_default_decrypt(RSA *rsa, size_t *out_len, uint8_t *out,
469 size_t max_out, const uint8_t *in, size_t in_len,
470 int padding) {
471 const unsigned rsa_size = RSA_size(rsa);
472 uint8_t *buf = NULL;
473 int ret = 0;
474
475 if (max_out < rsa_size) {
476 OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL);
477 return 0;
478 }
479
480 if (padding == RSA_NO_PADDING) {
481 buf = out;
482 } else {
483 // Allocate a temporary buffer to hold the padded plaintext.
484 buf = OPENSSL_malloc(rsa_size);
485 if (buf == NULL) {
486 goto err;
487 }
488 }
489
490 if (in_len != rsa_size) {
491 OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_LEN_NOT_EQUAL_TO_MOD_LEN);
492 goto err;
493 }
494
495 if (!rsa_private_transform(rsa, buf, in, rsa_size)) {
496 goto err;
497 }
498
499 switch (padding) {
500 case RSA_PKCS1_PADDING:
501 ret =
502 rsa_padding_check_PKCS1_type_2(out, out_len, rsa_size, buf, rsa_size);
503 break;
504 case RSA_PKCS1_OAEP_PADDING:
505 // Use the default parameters: SHA-1 for both hashes and no label.
506 ret = RSA_padding_check_PKCS1_OAEP_mgf1(out, out_len, rsa_size, buf,
507 rsa_size, NULL, 0, NULL, NULL);
508 break;
509 case RSA_NO_PADDING:
510 *out_len = rsa_size;
511 ret = 1;
512 break;
513 default:
514 OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE);
515 goto err;
516 }
517
518 CONSTTIME_DECLASSIFY(&ret, sizeof(ret));
519 if (!ret) {
520 OPENSSL_PUT_ERROR(RSA, RSA_R_PADDING_CHECK_FAILED);
521 } else {
522 CONSTTIME_DECLASSIFY(out, *out_len);
523 }
524
525 err:
526 if (padding != RSA_NO_PADDING) {
527 OPENSSL_free(buf);
528 }
529
530 return ret;
531 }
532
RSA_decrypt(RSA * rsa,size_t * out_len,uint8_t * out,size_t max_out,const uint8_t * in,size_t in_len,int padding)533 int RSA_decrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
534 const uint8_t *in, size_t in_len, int padding) {
535 if (rsa->meth->decrypt) {
536 return rsa->meth->decrypt(rsa, out_len, out, max_out, in, in_len, padding);
537 }
538
539 return rsa_default_decrypt(rsa, out_len, out, max_out, in, in_len, padding);
540 }
541
RSA_private_decrypt(size_t flen,const uint8_t * from,uint8_t * to,RSA * rsa,int padding)542 int RSA_private_decrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa,
543 int padding) {
544 size_t out_len;
545 if (!RSA_decrypt(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) {
546 return -1;
547 }
548
549 if (out_len > INT_MAX) {
550 OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW);
551 return -1;
552 }
553 return (int)out_len;
554 }
555
RSA_public_decrypt(size_t flen,const uint8_t * from,uint8_t * to,RSA * rsa,int padding)556 int RSA_public_decrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa,
557 int padding) {
558 size_t out_len;
559 if (!RSA_verify_raw(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) {
560 return -1;
561 }
562
563 if (out_len > INT_MAX) {
564 OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW);
565 return -1;
566 }
567 return (int)out_len;
568 }
569