• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.] */
56 
57 #include <openssl/base.h>
58 
59 #include <limits.h>
60 
61 #include <openssl/err.h>
62 #include <openssl/rsa.h>
63 #include <openssl/bn.h>
64 #include <openssl/rand.h>
65 #include <openssl/mem.h>
66 #include <openssl/evp.h>
67 
68 #include "../fipsmodule/bn/internal.h"
69 #include "../fipsmodule/rsa/internal.h"
70 #include "../internal.h"
71 #include "internal.h"
72 
73 
rand_nonzero(uint8_t * out,size_t len)74 static void rand_nonzero(uint8_t *out, size_t len) {
75   RAND_bytes(out, len);
76 
77   for (size_t i = 0; i < len; i++) {
78     while (out[i] == 0) {
79       RAND_bytes(out + i, 1);
80     }
81   }
82 }
83 
RSA_padding_add_PKCS1_OAEP_mgf1(uint8_t * to,size_t to_len,const uint8_t * from,size_t from_len,const uint8_t * param,size_t param_len,const EVP_MD * md,const EVP_MD * mgf1md)84 int RSA_padding_add_PKCS1_OAEP_mgf1(uint8_t *to, size_t to_len,
85                                     const uint8_t *from, size_t from_len,
86                                     const uint8_t *param, size_t param_len,
87                                     const EVP_MD *md, const EVP_MD *mgf1md) {
88   if (md == NULL) {
89     md = EVP_sha1();
90   }
91   if (mgf1md == NULL) {
92     mgf1md = md;
93   }
94 
95   size_t mdlen = EVP_MD_size(md);
96 
97   if (to_len < 2 * mdlen + 2) {
98     OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL);
99     return 0;
100   }
101 
102   size_t emlen = to_len - 1;
103   if (from_len > emlen - 2 * mdlen - 1) {
104     OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
105     return 0;
106   }
107 
108   if (emlen < 2 * mdlen + 1) {
109     OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL);
110     return 0;
111   }
112 
113   to[0] = 0;
114   uint8_t *seed = to + 1;
115   uint8_t *db = to + mdlen + 1;
116 
117   uint8_t *dbmask = NULL;
118   int ret = 0;
119   if (!EVP_Digest(param, param_len, db, NULL, md, NULL)) {
120     goto out;
121   }
122   OPENSSL_memset(db + mdlen, 0, emlen - from_len - 2 * mdlen - 1);
123   db[emlen - from_len - mdlen - 1] = 0x01;
124   OPENSSL_memcpy(db + emlen - from_len - mdlen, from, from_len);
125   if (!RAND_bytes(seed, mdlen)) {
126     goto out;
127   }
128 
129   dbmask = OPENSSL_malloc(emlen - mdlen);
130   if (dbmask == NULL) {
131     goto out;
132   }
133 
134   if (!PKCS1_MGF1(dbmask, emlen - mdlen, seed, mdlen, mgf1md)) {
135     goto out;
136   }
137   for (size_t i = 0; i < emlen - mdlen; i++) {
138     db[i] ^= dbmask[i];
139   }
140 
141   uint8_t seedmask[EVP_MAX_MD_SIZE];
142   if (!PKCS1_MGF1(seedmask, mdlen, db, emlen - mdlen, mgf1md)) {
143     goto out;
144   }
145   for (size_t i = 0; i < mdlen; i++) {
146     seed[i] ^= seedmask[i];
147   }
148   ret = 1;
149 
150 out:
151   OPENSSL_free(dbmask);
152   return ret;
153 }
154 
RSA_padding_check_PKCS1_OAEP_mgf1(uint8_t * out,size_t * out_len,size_t max_out,const uint8_t * from,size_t from_len,const uint8_t * param,size_t param_len,const EVP_MD * md,const EVP_MD * mgf1md)155 int RSA_padding_check_PKCS1_OAEP_mgf1(uint8_t *out, size_t *out_len,
156                                       size_t max_out, const uint8_t *from,
157                                       size_t from_len, const uint8_t *param,
158                                       size_t param_len, const EVP_MD *md,
159                                       const EVP_MD *mgf1md) {
160   uint8_t *db = NULL;
161 
162   if (md == NULL) {
163     md = EVP_sha1();
164   }
165   if (mgf1md == NULL) {
166     mgf1md = md;
167   }
168 
169   size_t mdlen = EVP_MD_size(md);
170 
171   // The encoded message is one byte smaller than the modulus to ensure that it
172   // doesn't end up greater than the modulus. Thus there's an extra "+1" here
173   // compared to https://tools.ietf.org/html/rfc2437#section-9.1.1.2.
174   if (from_len < 1 + 2 * mdlen + 1) {
175     // 'from_len' is the length of the modulus, i.e. does not depend on the
176     // particular ciphertext.
177     goto decoding_err;
178   }
179 
180   size_t dblen = from_len - mdlen - 1;
181   db = OPENSSL_malloc(dblen);
182   if (db == NULL) {
183     goto err;
184   }
185 
186   const uint8_t *maskedseed = from + 1;
187   const uint8_t *maskeddb = from + 1 + mdlen;
188 
189   uint8_t seed[EVP_MAX_MD_SIZE];
190   if (!PKCS1_MGF1(seed, mdlen, maskeddb, dblen, mgf1md)) {
191     goto err;
192   }
193   for (size_t i = 0; i < mdlen; i++) {
194     seed[i] ^= maskedseed[i];
195   }
196 
197   if (!PKCS1_MGF1(db, dblen, seed, mdlen, mgf1md)) {
198     goto err;
199   }
200   for (size_t i = 0; i < dblen; i++) {
201     db[i] ^= maskeddb[i];
202   }
203 
204   uint8_t phash[EVP_MAX_MD_SIZE];
205   if (!EVP_Digest(param, param_len, phash, NULL, md, NULL)) {
206     goto err;
207   }
208 
209   crypto_word_t bad = ~constant_time_is_zero_w(CRYPTO_memcmp(db, phash, mdlen));
210   bad |= ~constant_time_is_zero_w(from[0]);
211 
212   crypto_word_t looking_for_one_byte = CONSTTIME_TRUE_W;
213   size_t one_index = 0;
214   for (size_t i = mdlen; i < dblen; i++) {
215     crypto_word_t equals1 = constant_time_eq_w(db[i], 1);
216     crypto_word_t equals0 = constant_time_eq_w(db[i], 0);
217     one_index =
218         constant_time_select_w(looking_for_one_byte & equals1, i, one_index);
219     looking_for_one_byte =
220         constant_time_select_w(equals1, 0, looking_for_one_byte);
221     bad |= looking_for_one_byte & ~equals0;
222   }
223 
224   bad |= looking_for_one_byte;
225 
226   // Whether the overall padding was valid or not in OAEP is public.
227   if (constant_time_declassify_w(bad)) {
228     goto decoding_err;
229   }
230 
231   // Once the padding is known to be valid, the output length is also public.
232   static_assert(sizeof(size_t) <= sizeof(crypto_word_t),
233                 "size_t does not fit in crypto_word_t");
234   one_index = constant_time_declassify_w(one_index);
235 
236   one_index++;
237   size_t mlen = dblen - one_index;
238   if (max_out < mlen) {
239     OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE);
240     goto err;
241   }
242 
243   OPENSSL_memcpy(out, db + one_index, mlen);
244   *out_len = mlen;
245   OPENSSL_free(db);
246   return 1;
247 
248 decoding_err:
249   // To avoid chosen ciphertext attacks, the error message should not reveal
250   // which kind of decoding error happened.
251   OPENSSL_PUT_ERROR(RSA, RSA_R_OAEP_DECODING_ERROR);
252 err:
253   OPENSSL_free(db);
254   return 0;
255 }
256 
rsa_padding_add_PKCS1_type_2(uint8_t * to,size_t to_len,const uint8_t * from,size_t from_len)257 static int rsa_padding_add_PKCS1_type_2(uint8_t *to, size_t to_len,
258                                         const uint8_t *from, size_t from_len) {
259   // See RFC 8017, section 7.2.1.
260   if (to_len < RSA_PKCS1_PADDING_SIZE) {
261     OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL);
262     return 0;
263   }
264 
265   if (from_len > to_len - RSA_PKCS1_PADDING_SIZE) {
266     OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
267     return 0;
268   }
269 
270   to[0] = 0;
271   to[1] = 2;
272 
273   size_t padding_len = to_len - 3 - from_len;
274   rand_nonzero(to + 2, padding_len);
275   to[2 + padding_len] = 0;
276   OPENSSL_memcpy(to + to_len - from_len, from, from_len);
277   return 1;
278 }
279 
rsa_padding_check_PKCS1_type_2(uint8_t * out,size_t * out_len,size_t max_out,const uint8_t * from,size_t from_len)280 static int rsa_padding_check_PKCS1_type_2(uint8_t *out, size_t *out_len,
281                                           size_t max_out, const uint8_t *from,
282                                           size_t from_len) {
283   if (from_len == 0) {
284     OPENSSL_PUT_ERROR(RSA, RSA_R_EMPTY_PUBLIC_KEY);
285     return 0;
286   }
287 
288   // PKCS#1 v1.5 decryption. See "PKCS #1 v2.2: RSA Cryptography
289   // Standard", section 7.2.2.
290   if (from_len < RSA_PKCS1_PADDING_SIZE) {
291     // |from| is zero-padded to the size of the RSA modulus, a public value, so
292     // this can be rejected in non-constant time.
293     OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL);
294     return 0;
295   }
296 
297   crypto_word_t first_byte_is_zero = constant_time_eq_w(from[0], 0);
298   crypto_word_t second_byte_is_two = constant_time_eq_w(from[1], 2);
299 
300   crypto_word_t zero_index = 0, looking_for_index = CONSTTIME_TRUE_W;
301   for (size_t i = 2; i < from_len; i++) {
302     crypto_word_t equals0 = constant_time_is_zero_w(from[i]);
303     zero_index =
304         constant_time_select_w(looking_for_index & equals0, i, zero_index);
305     looking_for_index = constant_time_select_w(equals0, 0, looking_for_index);
306   }
307 
308   // The input must begin with 00 02.
309   crypto_word_t valid_index = first_byte_is_zero;
310   valid_index &= second_byte_is_two;
311 
312   // We must have found the end of PS.
313   valid_index &= ~looking_for_index;
314 
315   // PS must be at least 8 bytes long, and it starts two bytes into |from|.
316   valid_index &= constant_time_ge_w(zero_index, 2 + 8);
317 
318   // Skip the zero byte.
319   zero_index++;
320 
321   // NOTE: Although this logic attempts to be constant time, the API contracts
322   // of this function and |RSA_decrypt| with |RSA_PKCS1_PADDING| make it
323   // impossible to completely avoid Bleichenbacher's attack. Consumers should
324   // use |RSA_PADDING_NONE| and perform the padding check in constant-time
325   // combined with a swap to a random session key or other mitigation.
326   CONSTTIME_DECLASSIFY(&valid_index, sizeof(valid_index));
327   CONSTTIME_DECLASSIFY(&zero_index, sizeof(zero_index));
328 
329   if (!valid_index) {
330     OPENSSL_PUT_ERROR(RSA, RSA_R_PKCS_DECODING_ERROR);
331     return 0;
332   }
333 
334   const size_t msg_len = from_len - zero_index;
335   if (msg_len > max_out) {
336     // This shouldn't happen because this function is always called with
337     // |max_out| as the key size and |from_len| is bounded by the key size.
338     OPENSSL_PUT_ERROR(RSA, RSA_R_PKCS_DECODING_ERROR);
339     return 0;
340   }
341 
342   OPENSSL_memcpy(out, &from[zero_index], msg_len);
343   *out_len = msg_len;
344   return 1;
345 }
346 
RSA_public_encrypt(size_t flen,const uint8_t * from,uint8_t * to,RSA * rsa,int padding)347 int RSA_public_encrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa,
348                        int padding) {
349   size_t out_len;
350 
351   if (!RSA_encrypt(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) {
352     return -1;
353   }
354 
355   if (out_len > INT_MAX) {
356     OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW);
357     return -1;
358   }
359   return (int)out_len;
360 }
361 
RSA_private_encrypt(size_t flen,const uint8_t * from,uint8_t * to,RSA * rsa,int padding)362 int RSA_private_encrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa,
363                         int padding) {
364   size_t out_len;
365 
366   if (!RSA_sign_raw(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) {
367     return -1;
368   }
369 
370   if (out_len > INT_MAX) {
371     OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW);
372     return -1;
373   }
374   return (int)out_len;
375 }
376 
RSA_encrypt(RSA * rsa,size_t * out_len,uint8_t * out,size_t max_out,const uint8_t * in,size_t in_len,int padding)377 int RSA_encrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
378                 const uint8_t *in, size_t in_len, int padding) {
379   if (rsa->n == NULL || rsa->e == NULL) {
380     OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
381     return 0;
382   }
383 
384   if (!rsa_check_public_key(rsa)) {
385     return 0;
386   }
387 
388   const unsigned rsa_size = RSA_size(rsa);
389   BIGNUM *f, *result;
390   uint8_t *buf = NULL;
391   BN_CTX *ctx = NULL;
392   int i, ret = 0;
393 
394   if (max_out < rsa_size) {
395     OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL);
396     return 0;
397   }
398 
399   ctx = BN_CTX_new();
400   if (ctx == NULL) {
401     goto err;
402   }
403 
404   BN_CTX_start(ctx);
405   f = BN_CTX_get(ctx);
406   result = BN_CTX_get(ctx);
407   buf = OPENSSL_malloc(rsa_size);
408   if (!f || !result || !buf) {
409     goto err;
410   }
411 
412   switch (padding) {
413     case RSA_PKCS1_PADDING:
414       i = rsa_padding_add_PKCS1_type_2(buf, rsa_size, in, in_len);
415       break;
416     case RSA_PKCS1_OAEP_PADDING:
417       // Use the default parameters: SHA-1 for both hashes and no label.
418       i = RSA_padding_add_PKCS1_OAEP_mgf1(buf, rsa_size, in, in_len, NULL, 0,
419                                           NULL, NULL);
420       break;
421     case RSA_NO_PADDING:
422       i = RSA_padding_add_none(buf, rsa_size, in, in_len);
423       break;
424     default:
425       OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE);
426       goto err;
427   }
428 
429   if (i <= 0) {
430     goto err;
431   }
432 
433   if (BN_bin2bn(buf, rsa_size, f) == NULL) {
434     goto err;
435   }
436 
437   if (BN_ucmp(f, rsa->n) >= 0) {
438     // usually the padding functions would catch this
439     OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS);
440     goto err;
441   }
442 
443   if (!BN_MONT_CTX_set_locked(&rsa->mont_n, &rsa->lock, rsa->n, ctx) ||
444       !BN_mod_exp_mont(result, f, rsa->e, &rsa->mont_n->N, ctx, rsa->mont_n)) {
445     goto err;
446   }
447 
448   // put in leading 0 bytes if the number is less than the length of the
449   // modulus
450   if (!BN_bn2bin_padded(out, rsa_size, result)) {
451     OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
452     goto err;
453   }
454 
455   *out_len = rsa_size;
456   ret = 1;
457 
458 err:
459   if (ctx != NULL) {
460     BN_CTX_end(ctx);
461     BN_CTX_free(ctx);
462   }
463   OPENSSL_free(buf);
464 
465   return ret;
466 }
467 
rsa_default_decrypt(RSA * rsa,size_t * out_len,uint8_t * out,size_t max_out,const uint8_t * in,size_t in_len,int padding)468 static int rsa_default_decrypt(RSA *rsa, size_t *out_len, uint8_t *out,
469                                size_t max_out, const uint8_t *in, size_t in_len,
470                                int padding) {
471   const unsigned rsa_size = RSA_size(rsa);
472   uint8_t *buf = NULL;
473   int ret = 0;
474 
475   if (max_out < rsa_size) {
476     OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL);
477     return 0;
478   }
479 
480   if (padding == RSA_NO_PADDING) {
481     buf = out;
482   } else {
483     // Allocate a temporary buffer to hold the padded plaintext.
484     buf = OPENSSL_malloc(rsa_size);
485     if (buf == NULL) {
486       goto err;
487     }
488   }
489 
490   if (in_len != rsa_size) {
491     OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_LEN_NOT_EQUAL_TO_MOD_LEN);
492     goto err;
493   }
494 
495   if (!rsa_private_transform(rsa, buf, in, rsa_size)) {
496     goto err;
497   }
498 
499   switch (padding) {
500     case RSA_PKCS1_PADDING:
501       ret =
502           rsa_padding_check_PKCS1_type_2(out, out_len, rsa_size, buf, rsa_size);
503       break;
504     case RSA_PKCS1_OAEP_PADDING:
505       // Use the default parameters: SHA-1 for both hashes and no label.
506       ret = RSA_padding_check_PKCS1_OAEP_mgf1(out, out_len, rsa_size, buf,
507                                               rsa_size, NULL, 0, NULL, NULL);
508       break;
509     case RSA_NO_PADDING:
510       *out_len = rsa_size;
511       ret = 1;
512       break;
513     default:
514       OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE);
515       goto err;
516   }
517 
518   CONSTTIME_DECLASSIFY(&ret, sizeof(ret));
519   if (!ret) {
520     OPENSSL_PUT_ERROR(RSA, RSA_R_PADDING_CHECK_FAILED);
521   } else {
522     CONSTTIME_DECLASSIFY(out, *out_len);
523   }
524 
525 err:
526   if (padding != RSA_NO_PADDING) {
527     OPENSSL_free(buf);
528   }
529 
530   return ret;
531 }
532 
RSA_decrypt(RSA * rsa,size_t * out_len,uint8_t * out,size_t max_out,const uint8_t * in,size_t in_len,int padding)533 int RSA_decrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
534                 const uint8_t *in, size_t in_len, int padding) {
535   if (rsa->meth->decrypt) {
536     return rsa->meth->decrypt(rsa, out_len, out, max_out, in, in_len, padding);
537   }
538 
539   return rsa_default_decrypt(rsa, out_len, out, max_out, in, in_len, padding);
540 }
541 
RSA_private_decrypt(size_t flen,const uint8_t * from,uint8_t * to,RSA * rsa,int padding)542 int RSA_private_decrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa,
543                         int padding) {
544   size_t out_len;
545   if (!RSA_decrypt(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) {
546     return -1;
547   }
548 
549   if (out_len > INT_MAX) {
550     OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW);
551     return -1;
552   }
553   return (int)out_len;
554 }
555 
RSA_public_decrypt(size_t flen,const uint8_t * from,uint8_t * to,RSA * rsa,int padding)556 int RSA_public_decrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa,
557                        int padding) {
558   size_t out_len;
559   if (!RSA_verify_raw(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) {
560     return -1;
561   }
562 
563   if (out_len > INT_MAX) {
564     OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW);
565     return -1;
566   }
567   return (int)out_len;
568 }
569