1 /*
2 * Copyright 2018 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #ifndef SkRasterPipeline_opts_DEFINED
9 #define SkRasterPipeline_opts_DEFINED
10
11 #include "include/core/SkTypes.h"
12 #include "include/private/base/SkMalloc.h"
13 #include "include/private/base/SkSpan_impl.h"
14 #include "include/private/base/SkTemplates.h"
15 #include "modules/skcms/skcms.h"
16 #include "src/base/SkUtils.h" // unaligned_{load,store}
17 #include "src/core/SkRasterPipeline.h"
18 #include "src/core/SkRasterPipelineContextUtils.h"
19 #include "src/shaders/SkPerlinNoiseShaderType.h"
20 #include "src/sksl/tracing/SkSLTraceHook.h"
21
22 #include <cstdint>
23 #include <type_traits>
24
25 // Every function in this file should be marked static and inline using SI.
26 #if defined(__clang__) || defined(__GNUC__)
27 #define SI __attribute__((always_inline)) static inline
28 #else
29 #define SI static inline
30 #endif
31
32 #if defined(__clang__)
33 #define SK_UNROLL _Pragma("unroll")
34 #else
35 #define SK_UNROLL
36 #endif
37
38 #if defined(__clang__)
39 template <int N, typename T> using Vec = T __attribute__((ext_vector_type(N)));
40 #elif defined(__GNUC__)
41 // Unfortunately, GCC does not allow us to omit the struct. This will not compile:
42 // template <int N, typename T> using Vec = T __attribute__((vector_size(N*sizeof(T))));
43 template <int N, typename T> struct VecHelper {
44 typedef T __attribute__((vector_size(N * sizeof(T)))) V;
45 };
46 template <int N, typename T> using Vec = typename VecHelper<N, T>::V;
47 #endif
48
49 template <typename Dst, typename Src>
widen_cast(const Src & src)50 SI Dst widen_cast(const Src& src) {
51 static_assert(sizeof(Dst) > sizeof(Src));
52 static_assert(std::is_trivially_copyable<Dst>::value);
53 static_assert(std::is_trivially_copyable<Src>::value);
54 Dst dst;
55 memcpy(&dst, &src, sizeof(Src));
56 return dst;
57 }
58
59 struct Ctx {
60 SkRasterPipelineStage* fStage;
61
62 template <typename T>
63 operator T*() {
64 return (T*)fStage->ctx;
65 }
66 };
67
68 using NoCtx = const void*;
69
70 #if defined(JUMPER_IS_SCALAR) || defined(JUMPER_IS_NEON) || defined(JUMPER_IS_HSW) || \
71 defined(JUMPER_IS_SKX) || defined(JUMPER_IS_AVX) || defined(JUMPER_IS_SSE41) || \
72 defined(JUMPER_IS_SSE2)
73 // Honor the existing setting
74 #elif !defined(__clang__) && !defined(__GNUC__)
75 #define JUMPER_IS_SCALAR
76 #elif defined(SK_ARM_HAS_NEON)
77 #define JUMPER_IS_NEON
78 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SKX
79 #define JUMPER_IS_SKX
80 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2
81 #define JUMPER_IS_HSW
82 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX
83 #define JUMPER_IS_AVX
84 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41
85 #define JUMPER_IS_SSE41
86 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
87 #define JUMPER_IS_SSE2
88 #elif SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LASX
89 #define JUMPER_IS_LASX
90 #elif SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LSX
91 #define JUMPER_IS_LSX
92 #else
93 #define JUMPER_IS_SCALAR
94 #endif
95
96 // Older Clangs seem to crash when generating non-optimized NEON code for ARMv7.
97 #if defined(__clang__) && !defined(__OPTIMIZE__) && defined(SK_CPU_ARM32)
98 // Apple Clang 9 and vanilla Clang 5 are fine, and may even be conservative.
99 #if defined(__apple_build_version__) && __clang_major__ < 9
100 #define JUMPER_IS_SCALAR
101 #elif __clang_major__ < 5
102 #define JUMPER_IS_SCALAR
103 #endif
104
105 #if defined(JUMPER_IS_NEON) && defined(JUMPER_IS_SCALAR)
106 #undef JUMPER_IS_NEON
107 #endif
108 #endif
109
110 #if defined(JUMPER_IS_SCALAR)
111 #include <math.h>
112 #elif defined(JUMPER_IS_NEON)
113 #include <arm_neon.h>
114 #elif defined(JUMPER_IS_LASX)
115 #include <lasxintrin.h>
116 #include <lsxintrin.h>
117 #elif defined(JUMPER_IS_LSX)
118 #include <lsxintrin.h>
119 #else
120 #include <immintrin.h>
121 #endif
122
123 // Notes:
124 // * rcp_fast and rcp_precise both produce a reciprocal, but rcp_fast is an estimate with at least
125 // 12 bits of precision while rcp_precise should be accurate for float size. For ARM rcp_precise
126 // requires 2 Newton-Raphson refinement steps because its estimate has 8 bit precision, and for
127 // Intel this requires one additional step because its estimate has 12 bit precision.
128 //
129 // * Don't call rcp_approx or rsqrt_approx directly; only use rcp_fast and rsqrt.
130
131 namespace SK_OPTS_NS {
132 #if defined(JUMPER_IS_SCALAR)
133 // This path should lead to portable scalar code.
134 using F = float ;
135 using I32 = int32_t;
136 using U64 = uint64_t;
137 using U32 = uint32_t;
138 using U16 = uint16_t;
139 using U8 = uint8_t ;
140
min(F a,F b)141 SI F min(F a, F b) { return fminf(a,b); }
min(I32 a,I32 b)142 SI I32 min(I32 a, I32 b) { return a < b ? a : b; }
min(U32 a,U32 b)143 SI U32 min(U32 a, U32 b) { return a < b ? a : b; }
max(F a,F b)144 SI F max(F a, F b) { return fmaxf(a,b); }
max(I32 a,I32 b)145 SI I32 max(I32 a, I32 b) { return a > b ? a : b; }
max(U32 a,U32 b)146 SI U32 max(U32 a, U32 b) { return a > b ? a : b; }
147
mad(F f,F m,F a)148 SI F mad(F f, F m, F a) { return a+f*m; }
nmad(F f,F m,F a)149 SI F nmad(F f, F m, F a) { return a-f*m; }
abs_(F v)150 SI F abs_ (F v) { return fabsf(v); }
abs_(I32 v)151 SI I32 abs_ (I32 v) { return v < 0 ? -v : v; }
floor_(F v)152 SI F floor_(F v) { return floorf(v); }
ceil_(F v)153 SI F ceil_(F v) { return ceilf(v); }
rcp_approx(F v)154 SI F rcp_approx(F v) { return 1.0f / v; } // use rcp_fast instead
rsqrt_approx(F v)155 SI F rsqrt_approx(F v) { return 1.0f / sqrtf(v); }
sqrt_(F v)156 SI F sqrt_ (F v) { return sqrtf(v); }
rcp_precise(F v)157 SI F rcp_precise (F v) { return 1.0f / v; }
158
iround(F v)159 SI I32 iround(F v) { return (I32)(v + 0.5f); }
round(F v)160 SI U32 round(F v) { return (U32)(v + 0.5f); }
round(F v,F scale)161 SI U32 round(F v, F scale) { return (U32)(v*scale + 0.5f); }
pack(U32 v)162 SI U16 pack(U32 v) { return (U16)v; }
pack(U16 v)163 SI U8 pack(U16 v) { return (U8)v; }
164
if_then_else(I32 c,F t,F e)165 SI F if_then_else(I32 c, F t, F e) { return c ? t : e; }
if_then_else(I32 c,I32 t,I32 e)166 SI I32 if_then_else(I32 c, I32 t, I32 e) { return c ? t : e; }
167
any(I32 c)168 SI bool any(I32 c) { return c != 0; }
all(I32 c)169 SI bool all(I32 c) { return c != 0; }
170
171 template <typename T>
gather(const T * p,U32 ix)172 SI T gather(const T* p, U32 ix) { return p[ix]; }
173
scatter_masked(I32 src,int * dst,U32 ix,I32 mask)174 SI void scatter_masked(I32 src, int* dst, U32 ix, I32 mask) {
175 dst[ix] = mask ? src : dst[ix];
176 }
177
load2(const uint16_t * ptr,U16 * r,U16 * g)178 SI void load2(const uint16_t* ptr, U16* r, U16* g) {
179 *r = ptr[0];
180 *g = ptr[1];
181 }
store2(uint16_t * ptr,U16 r,U16 g)182 SI void store2(uint16_t* ptr, U16 r, U16 g) {
183 ptr[0] = r;
184 ptr[1] = g;
185 }
load4(const uint16_t * ptr,U16 * r,U16 * g,U16 * b,U16 * a)186 SI void load4(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) {
187 *r = ptr[0];
188 *g = ptr[1];
189 *b = ptr[2];
190 *a = ptr[3];
191 }
store4(uint16_t * ptr,U16 r,U16 g,U16 b,U16 a)192 SI void store4(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) {
193 ptr[0] = r;
194 ptr[1] = g;
195 ptr[2] = b;
196 ptr[3] = a;
197 }
198
load4(const float * ptr,F * r,F * g,F * b,F * a)199 SI void load4(const float* ptr, F* r, F* g, F* b, F* a) {
200 *r = ptr[0];
201 *g = ptr[1];
202 *b = ptr[2];
203 *a = ptr[3];
204 }
store4(float * ptr,F r,F g,F b,F a)205 SI void store4(float* ptr, F r, F g, F b, F a) {
206 ptr[0] = r;
207 ptr[1] = g;
208 ptr[2] = b;
209 ptr[3] = a;
210 }
211
212 #elif defined(JUMPER_IS_NEON)
213 template <typename T> using V = Vec<4, T>;
214 using F = V<float >;
215 using I32 = V< int32_t>;
216 using U64 = V<uint64_t>;
217 using U32 = V<uint32_t>;
218 using U16 = V<uint16_t>;
219 using U8 = V<uint8_t >;
220
221 // We polyfill a few routines that Clang doesn't build into ext_vector_types.
222 SI F min(F a, F b) { return vminq_f32(a,b); }
223 SI I32 min(I32 a, I32 b) { return vminq_s32(a,b); }
224 SI U32 min(U32 a, U32 b) { return vminq_u32(a,b); }
225 SI F max(F a, F b) { return vmaxq_f32(a,b); }
226 SI I32 max(I32 a, I32 b) { return vmaxq_s32(a,b); }
227 SI U32 max(U32 a, U32 b) { return vmaxq_u32(a,b); }
228
229 SI F abs_ (F v) { return vabsq_f32(v); }
230 SI I32 abs_ (I32 v) { return vabsq_s32(v); }
231 SI F rcp_approx(F v) { auto e = vrecpeq_f32(v); return vrecpsq_f32 (v,e ) * e; }
232 SI F rcp_precise(F v) { auto e = rcp_approx(v); return vrecpsq_f32 (v,e ) * e; }
233 SI F rsqrt_approx(F v) { auto e = vrsqrteq_f32(v); return vrsqrtsq_f32(v,e*e) * e; }
234
235 SI U16 pack(U32 v) { return __builtin_convertvector(v, U16); }
236 SI U8 pack(U16 v) { return __builtin_convertvector(v, U8); }
237
238 SI F if_then_else(I32 c, F t, F e) { return vbslq_f32((U32)c,t,e); }
239 SI I32 if_then_else(I32 c, I32 t, I32 e) { return vbslq_s32((U32)c,t,e); }
240
241 #if defined(SK_CPU_ARM64)
242 SI bool any(I32 c) { return vmaxvq_u32((U32)c) != 0; }
243 SI bool all(I32 c) { return vminvq_u32((U32)c) != 0; }
244
245 SI F mad(F f, F m, F a) { return vfmaq_f32(a,f,m); }
246 SI F nmad(F f, F m, F a) { return vfmsq_f32(a,f,m); }
247 SI F floor_(F v) { return vrndmq_f32(v); }
248 SI F ceil_(F v) { return vrndpq_f32(v); }
249 SI F sqrt_(F v) { return vsqrtq_f32(v); }
250 SI I32 iround(F v) { return vcvtnq_s32_f32(v); }
251 SI U32 round(F v) { return vcvtnq_u32_f32(v); }
252 SI U32 round(F v, F scale) { return vcvtnq_u32_f32(v*scale); }
253 #else
254 SI bool any(I32 c) { return c[0] | c[1] | c[2] | c[3]; }
255 SI bool all(I32 c) { return c[0] & c[1] & c[2] & c[3]; }
256
257 SI F mad(F f, F m, F a) { return vmlaq_f32(a,f,m); }
258 SI F nmad(F f, F m, F a) { return vmlsq_f32(a,f,m); }
259
260 SI F floor_(F v) {
261 F roundtrip = vcvtq_f32_s32(vcvtq_s32_f32(v));
262 return roundtrip - if_then_else(roundtrip > v, F() + 1, F());
263 }
264
265 SI F ceil_(F v) {
266 F roundtrip = vcvtq_f32_s32(vcvtq_s32_f32(v));
267 return roundtrip + if_then_else(roundtrip < v, F() + 1, F());
268 }
269
270 SI F sqrt_(F v) {
271 auto e = vrsqrteq_f32(v); // Estimate and two refinement steps for e = rsqrt(v).
272 e *= vrsqrtsq_f32(v,e*e);
273 e *= vrsqrtsq_f32(v,e*e);
274 return v*e; // sqrt(v) == v*rsqrt(v).
275 }
276
277 SI I32 iround(F v) {
278 return vcvtq_s32_f32(v + 0.5f);
279 }
280
281 SI U32 round(F v) {
282 return vcvtq_u32_f32(v + 0.5f);
283 }
284
285 SI U32 round(F v, F scale) {
286 return vcvtq_u32_f32(mad(v, scale, F() + 0.5f));
287 }
288 #endif
289
290 template <typename T>
291 SI V<T> gather(const T* p, U32 ix) {
292 return V<T>{p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]};
293 }
294 SI void scatter_masked(I32 src, int* dst, U32 ix, I32 mask) {
295 I32 before = gather(dst, ix);
296 I32 after = if_then_else(mask, src, before);
297 dst[ix[0]] = after[0];
298 dst[ix[1]] = after[1];
299 dst[ix[2]] = after[2];
300 dst[ix[3]] = after[3];
301 }
302 SI void load2(const uint16_t* ptr, U16* r, U16* g) {
303 uint16x4x2_t rg = vld2_u16(ptr);
304 *r = rg.val[0];
305 *g = rg.val[1];
306 }
307 SI void store2(uint16_t* ptr, U16 r, U16 g) {
308 vst2_u16(ptr, (uint16x4x2_t{{r,g}}));
309 }
310 SI void load4(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) {
311 uint16x4x4_t rgba = vld4_u16(ptr);
312 *r = rgba.val[0];
313 *g = rgba.val[1];
314 *b = rgba.val[2];
315 *a = rgba.val[3];
316 }
317
318 SI void store4(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) {
319 vst4_u16(ptr, (uint16x4x4_t{{r,g,b,a}}));
320 }
321 SI void load4(const float* ptr, F* r, F* g, F* b, F* a) {
322 float32x4x4_t rgba = vld4q_f32(ptr);
323 *r = rgba.val[0];
324 *g = rgba.val[1];
325 *b = rgba.val[2];
326 *a = rgba.val[3];
327 }
328 SI void store4(float* ptr, F r, F g, F b, F a) {
329 vst4q_f32(ptr, (float32x4x4_t{{r,g,b,a}}));
330 }
331
332 #elif defined(JUMPER_IS_SKX)
333 template <typename T> using V = Vec<16, T>;
334 using F = V<float >;
335 using I32 = V< int32_t>;
336 using U64 = V<uint64_t>;
337 using U32 = V<uint32_t>;
338 using U16 = V<uint16_t>;
339 using U8 = V<uint8_t >;
340
341 SI F mad(F f, F m, F a) { return _mm512_fmadd_ps(f, m, a); }
342 SI F nmad(F f, F m, F a) { return _mm512_fnmadd_ps(f, m, a); }
343 SI F min(F a, F b) { return _mm512_min_ps(a,b); }
344 SI I32 min(I32 a, I32 b) { return (I32)_mm512_min_epi32((__m512i)a,(__m512i)b); }
345 SI U32 min(U32 a, U32 b) { return (U32)_mm512_min_epu32((__m512i)a,(__m512i)b); }
346 SI F max(F a, F b) { return _mm512_max_ps(a,b); }
347 SI I32 max(I32 a, I32 b) { return (I32)_mm512_max_epi32((__m512i)a,(__m512i)b); }
348 SI U32 max(U32 a, U32 b) { return (U32)_mm512_max_epu32((__m512i)a,(__m512i)b); }
349 SI F abs_ (F v) { return _mm512_and_ps(v, _mm512_sub_ps(_mm512_setzero(), v)); }
350 SI I32 abs_ (I32 v) { return (I32)_mm512_abs_epi32((__m512i)v); }
351 SI F floor_(F v) { return _mm512_floor_ps(v); }
352 SI F ceil_(F v) { return _mm512_ceil_ps(v); }
353 SI F rcp_approx(F v) { return _mm512_rcp14_ps (v); }
354 SI F rsqrt_approx (F v) { return _mm512_rsqrt14_ps(v); }
355 SI F sqrt_ (F v) { return _mm512_sqrt_ps (v); }
356 SI F rcp_precise (F v) {
357 F e = rcp_approx(v);
358 return _mm512_fnmadd_ps(v, e, _mm512_set1_ps(2.0f)) * e;
359 }
360 SI I32 iround(F v) { return (I32)_mm512_cvtps_epi32(v); }
361 SI U32 round(F v) { return (U32)_mm512_cvtps_epi32(v); }
362 SI U32 round(F v, F scale) { return (U32)_mm512_cvtps_epi32(v*scale); }
363 SI U16 pack(U32 v) {
364 __m256i rst = _mm256_packus_epi32(_mm512_castsi512_si256((__m512i)v),
365 _mm512_extracti64x4_epi64((__m512i)v, 1));
366 return (U16)_mm256_permutex_epi64(rst, 216);
367 }
368 SI U8 pack(U16 v) {
369 __m256i rst = _mm256_packus_epi16((__m256i)v, (__m256i)v);
370 return (U8)_mm256_castsi256_si128(_mm256_permute4x64_epi64(rst, 8));
371 }
372 SI F if_then_else(I32 c, F t, F e) {
373 __m512i mask = _mm512_set1_epi32(0x80000000);
374 __m512i aa = _mm512_and_si512((__m512i)c, mask);
375 return _mm512_mask_blend_ps(_mm512_test_epi32_mask(aa, aa),e,t);
376 }
377 SI I32 if_then_else(I32 c, I32 t, I32 e) {
378 __m512i mask = _mm512_set1_epi32(0x80000000);
379 __m512i aa = _mm512_and_si512((__m512i)c, mask);
380 return (I32)_mm512_mask_blend_epi32(_mm512_test_epi32_mask(aa, aa),(__m512i)e,(__m512i)t);
381 }
382 SI bool any(I32 c) {
383 __mmask16 mask32 = _mm512_test_epi32_mask((__m512i)c, (__m512i)c);
384 return mask32 != 0;
385 }
386 SI bool all(I32 c) {
387 __mmask16 mask32 = _mm512_test_epi32_mask((__m512i)c, (__m512i)c);
388 return mask32 == 0xffff;
389 }
390 template <typename T>
391 SI V<T> gather(const T* p, U32 ix) {
392 return V<T>{ p[ix[ 0]], p[ix[ 1]], p[ix[ 2]], p[ix[ 3]],
393 p[ix[ 4]], p[ix[ 5]], p[ix[ 6]], p[ix[ 7]],
394 p[ix[ 8]], p[ix[ 9]], p[ix[10]], p[ix[11]],
395 p[ix[12]], p[ix[13]], p[ix[14]], p[ix[15]] };
396 }
397 SI F gather(const float* p, U32 ix) { return _mm512_i32gather_ps((__m512i)ix, p, 4); }
398 SI U32 gather(const uint32_t* p, U32 ix) {
399 return (U32)_mm512_i32gather_epi32((__m512i)ix, p, 4); }
400 SI U64 gather(const uint64_t* p, U32 ix) {
401 __m512i parts[] = {
402 _mm512_i32gather_epi64(_mm512_castsi512_si256((__m512i)ix), p, 8),
403 _mm512_i32gather_epi64(_mm512_extracti32x8_epi32((__m512i)ix, 1), p, 8),
404 };
405 return sk_bit_cast<U64>(parts);
406 }
407 template <typename V, typename S>
408 SI void scatter_masked(V src, S* dst, U32 ix, I32 mask) {
409 V before = gather(dst, ix);
410 V after = if_then_else(mask, src, before);
411 dst[ix[0]] = after[0];
412 dst[ix[1]] = after[1];
413 dst[ix[2]] = after[2];
414 dst[ix[3]] = after[3];
415 dst[ix[4]] = after[4];
416 dst[ix[5]] = after[5];
417 dst[ix[6]] = after[6];
418 dst[ix[7]] = after[7];
419 dst[ix[8]] = after[8];
420 dst[ix[9]] = after[9];
421 dst[ix[10]] = after[10];
422 dst[ix[11]] = after[11];
423 dst[ix[12]] = after[12];
424 dst[ix[13]] = after[13];
425 dst[ix[14]] = after[14];
426 dst[ix[15]] = after[15];
427 }
428
429 SI void load2(const uint16_t* ptr, U16* r, U16* g) {
430 __m256i _01234567 = _mm256_loadu_si256(((const __m256i*)ptr) + 0);
431 __m256i _89abcdef = _mm256_loadu_si256(((const __m256i*)ptr) + 1);
432
433 *r = (U16)_mm256_permute4x64_epi64(_mm256_packs_epi32(_mm256_srai_epi32(_mm256_slli_epi32
434 (_01234567, 16), 16), _mm256_srai_epi32(_mm256_slli_epi32(_89abcdef, 16), 16)), 216);
435 *g = (U16)_mm256_permute4x64_epi64(_mm256_packs_epi32(_mm256_srai_epi32(_01234567, 16),
436 _mm256_srai_epi32(_89abcdef, 16)), 216);
437 }
438 SI void store2(uint16_t* ptr, U16 r, U16 g) {
439 __m256i _01234567 = _mm256_unpacklo_epi16((__m256i)r, (__m256i)g);
440 __m256i _89abcdef = _mm256_unpackhi_epi16((__m256i)r, (__m256i)g);
441 __m512i combinedVector = _mm512_inserti64x4(_mm512_castsi256_si512(_01234567),
442 _89abcdef, 1);
443 __m512i aa = _mm512_permutexvar_epi64(_mm512_setr_epi64(0,1,4,5,2,3,6,7), combinedVector);
444 _01234567 = _mm512_castsi512_si256(aa);
445 _89abcdef = _mm512_extracti64x4_epi64(aa, 1);
446
447 _mm256_storeu_si256((__m256i*)ptr + 0, _01234567);
448 _mm256_storeu_si256((__m256i*)ptr + 1, _89abcdef);
449 }
450
451 SI void load4(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) {
452 __m256i _0123 = _mm256_loadu_si256((const __m256i*)ptr),
453 _4567 = _mm256_loadu_si256(((const __m256i*)ptr) + 1),
454 _89ab = _mm256_loadu_si256(((const __m256i*)ptr) + 2),
455 _cdef = _mm256_loadu_si256(((const __m256i*)ptr) + 3);
456
457 auto a0 = _mm256_unpacklo_epi16(_0123, _4567),
458 a1 = _mm256_unpackhi_epi16(_0123, _4567),
459 b0 = _mm256_unpacklo_epi16(a0, a1),
460 b1 = _mm256_unpackhi_epi16(a0, a1),
461 a2 = _mm256_unpacklo_epi16(_89ab, _cdef),
462 a3 = _mm256_unpackhi_epi16(_89ab, _cdef),
463 b2 = _mm256_unpacklo_epi16(a2, a3),
464 b3 = _mm256_unpackhi_epi16(a2, a3),
465 rr = _mm256_unpacklo_epi64(b0, b2),
466 gg = _mm256_unpackhi_epi64(b0, b2),
467 bb = _mm256_unpacklo_epi64(b1, b3),
468 aa = _mm256_unpackhi_epi64(b1, b3);
469
470 *r = (U16)_mm256_permutexvar_epi32(_mm256_setr_epi32(0,4,1,5,2,6,3,7), rr);
471 *g = (U16)_mm256_permutexvar_epi32(_mm256_setr_epi32(0,4,1,5,2,6,3,7), gg);
472 *b = (U16)_mm256_permutexvar_epi32(_mm256_setr_epi32(0,4,1,5,2,6,3,7), bb);
473 *a = (U16)_mm256_permutexvar_epi32(_mm256_setr_epi32(0,4,1,5,2,6,3,7), aa);
474 }
475 SI void store4(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) {
476 auto rg012389ab = _mm256_unpacklo_epi16((__m256i)r, (__m256i)g),
477 rg4567cdef = _mm256_unpackhi_epi16((__m256i)r, (__m256i)g),
478 ba012389ab = _mm256_unpacklo_epi16((__m256i)b, (__m256i)a),
479 ba4567cdef = _mm256_unpackhi_epi16((__m256i)b, (__m256i)a);
480
481 auto _0189 = _mm256_unpacklo_epi32(rg012389ab, ba012389ab),
482 _23ab = _mm256_unpackhi_epi32(rg012389ab, ba012389ab),
483 _45cd = _mm256_unpacklo_epi32(rg4567cdef, ba4567cdef),
484 _67ef = _mm256_unpackhi_epi32(rg4567cdef, ba4567cdef);
485
486 auto _ab23 = _mm256_permutex_epi64(_23ab, 78),
487 _0123 = _mm256_blend_epi32(_0189, _ab23, 0xf0),
488 _89ab = _mm256_permutex_epi64(_mm256_blend_epi32(_0189, _ab23, 0x0f), 78),
489 _ef67 = _mm256_permutex_epi64(_67ef, 78),
490 _4567 = _mm256_blend_epi32(_45cd, _ef67, 0xf0),
491 _cdef = _mm256_permutex_epi64(_mm256_blend_epi32(_45cd, _ef67, 0x0f), 78);
492
493 _mm256_storeu_si256((__m256i*)ptr, _0123);
494 _mm256_storeu_si256((__m256i*)ptr + 1, _4567);
495 _mm256_storeu_si256((__m256i*)ptr + 2, _89ab);
496 _mm256_storeu_si256((__m256i*)ptr + 3, _cdef);
497 }
498
499 SI void load4(const float* ptr, F* r, F* g, F* b, F* a) {
500 F _048c, _159d, _26ae, _37bf;
501
502 _048c = _mm512_castps128_ps512(_mm_loadu_ps(ptr) );
503 _048c = _mm512_insertf32x4(_048c, _mm_loadu_ps(ptr+16), 1);
504 _048c = _mm512_insertf32x4(_048c, _mm_loadu_ps(ptr+32), 2);
505 _048c = _mm512_insertf32x4(_048c, _mm_loadu_ps(ptr+48), 3);
506 _159d = _mm512_castps128_ps512(_mm_loadu_ps(ptr+4) );
507 _159d = _mm512_insertf32x4(_159d, _mm_loadu_ps(ptr+20), 1);
508 _159d = _mm512_insertf32x4(_159d, _mm_loadu_ps(ptr+36), 2);
509 _159d = _mm512_insertf32x4(_159d, _mm_loadu_ps(ptr+52), 3);
510 _26ae = _mm512_castps128_ps512(_mm_loadu_ps(ptr+8) );
511 _26ae = _mm512_insertf32x4(_26ae, _mm_loadu_ps(ptr+24), 1);
512 _26ae = _mm512_insertf32x4(_26ae, _mm_loadu_ps(ptr+40), 2);
513 _26ae = _mm512_insertf32x4(_26ae, _mm_loadu_ps(ptr+56), 3);
514 _37bf = _mm512_castps128_ps512(_mm_loadu_ps(ptr+12) );
515 _37bf = _mm512_insertf32x4(_37bf, _mm_loadu_ps(ptr+28), 1);
516 _37bf = _mm512_insertf32x4(_37bf, _mm_loadu_ps(ptr+44), 2);
517 _37bf = _mm512_insertf32x4(_37bf, _mm_loadu_ps(ptr+60), 3);
518
519 F rg02468acf = _mm512_unpacklo_ps(_048c, _26ae),
520 ba02468acf = _mm512_unpackhi_ps(_048c, _26ae),
521 rg13579bde = _mm512_unpacklo_ps(_159d, _37bf),
522 ba13579bde = _mm512_unpackhi_ps(_159d, _37bf);
523
524 *r = (F)_mm512_unpacklo_ps(rg02468acf, rg13579bde);
525 *g = (F)_mm512_unpackhi_ps(rg02468acf, rg13579bde);
526 *b = (F)_mm512_unpacklo_ps(ba02468acf, ba13579bde);
527 *a = (F)_mm512_unpackhi_ps(ba02468acf, ba13579bde);
528 }
529
530 SI void store4(float* ptr, F r, F g, F b, F a) {
531 F rg014589cd = _mm512_unpacklo_ps(r, g),
532 rg2367abef = _mm512_unpackhi_ps(r, g),
533 ba014589cd = _mm512_unpacklo_ps(b, a),
534 ba2367abef = _mm512_unpackhi_ps(b, a);
535
536 F _048c = (F)_mm512_unpacklo_pd((__m512d)rg014589cd, (__m512d)ba014589cd),
537 _26ae = (F)_mm512_unpacklo_pd((__m512d)rg2367abef, (__m512d)ba2367abef),
538 _159d = (F)_mm512_unpackhi_pd((__m512d)rg014589cd, (__m512d)ba014589cd),
539 _37bf = (F)_mm512_unpackhi_pd((__m512d)rg2367abef, (__m512d)ba2367abef);
540
541 F _ae26 = (F)_mm512_permutexvar_pd(_mm512_setr_epi64(4,5,6,7,0,1,2,3), (__m512d)_26ae),
542 _bf37 = (F)_mm512_permutexvar_pd(_mm512_setr_epi64(4,5,6,7,0,1,2,3), (__m512d)_37bf),
543 _8c04 = (F)_mm512_permutexvar_pd(_mm512_setr_epi64(4,5,6,7,0,1,2,3), (__m512d)_048c),
544 _9d15 = (F)_mm512_permutexvar_pd(_mm512_setr_epi64(4,5,6,7,0,1,2,3), (__m512d)_159d);
545
546 __m512i index = _mm512_setr_epi32(4,5,6,7,0,1,2,3,12,13,14,15,8,9,10,11);
547 F _0426 = (F)_mm512_permutex2var_pd((__m512d)_048c, _mm512_setr_epi64(0,1,2,3,12,13,14,15),
548 (__m512d)_ae26),
549 _1537 = (F)_mm512_permutex2var_pd((__m512d)_159d, _mm512_setr_epi64(0,1,2,3,12,13,14,15),
550 (__m512d)_bf37),
551 _5173 = _mm512_permutexvar_ps(index, _1537),
552 _0123 = (F)_mm512_permutex2var_pd((__m512d)_0426, _mm512_setr_epi64(0,1,10,11,4,5,14,15),
553 (__m512d)_5173);
554
555 F _5476 = (F)_mm512_permutex2var_pd((__m512d)_5173, _mm512_setr_epi64(0,1,10,11,4,5,14,15),
556 (__m512d)_0426),
557 _4567 = _mm512_permutexvar_ps(index, _5476),
558 _8cae = (F)_mm512_permutex2var_pd((__m512d)_8c04, _mm512_setr_epi64(0,1,2,3,12,13,14,15),
559 (__m512d)_26ae),
560 _9dbf = (F)_mm512_permutex2var_pd((__m512d)_9d15, _mm512_setr_epi64(0,1,2,3,12,13,14,15),
561 (__m512d)_37bf),
562 _d9fb = _mm512_permutexvar_ps(index, _9dbf),
563 _89ab = (F)_mm512_permutex2var_pd((__m512d)_8cae, _mm512_setr_epi64(0,1,10,11,4,5,14,15),
564 (__m512d)_d9fb),
565 _dcfe = (F)_mm512_permutex2var_pd((__m512d)_d9fb, _mm512_setr_epi64(0,1,10,11,4,5,14,15),
566 (__m512d)_8cae),
567 _cdef = _mm512_permutexvar_ps(index, _dcfe);
568
569 _mm512_storeu_ps(ptr+0, _0123);
570 _mm512_storeu_ps(ptr+16, _4567);
571 _mm512_storeu_ps(ptr+32, _89ab);
572 _mm512_storeu_ps(ptr+48, _cdef);
573 }
574
575 #elif defined(JUMPER_IS_HSW)
576 // These are __m256 and __m256i, but friendlier and strongly-typed.
577 template <typename T> using V = Vec<8, T>;
578 using F = V<float >;
579 using I32 = V< int32_t>;
580 using U64 = V<uint64_t>;
581 using U32 = V<uint32_t>;
582 using U16 = V<uint16_t>;
583 using U8 = V<uint8_t >;
584
585 SI F mad(F f, F m, F a) { return _mm256_fmadd_ps(f, m, a); }
586 SI F nmad(F f, F m, F a) { return _mm256_fnmadd_ps(f, m, a); }
587
588 SI F min(F a, F b) { return _mm256_min_ps(a,b); }
589 SI I32 min(I32 a, I32 b) { return (I32)_mm256_min_epi32((__m256i)a,(__m256i)b); }
590 SI U32 min(U32 a, U32 b) { return (U32)_mm256_min_epu32((__m256i)a,(__m256i)b); }
591 SI F max(F a, F b) { return _mm256_max_ps(a,b); }
592 SI I32 max(I32 a, I32 b) { return (I32)_mm256_max_epi32((__m256i)a,(__m256i)b); }
593 SI U32 max(U32 a, U32 b) { return (U32)_mm256_max_epu32((__m256i)a,(__m256i)b); }
594
595 SI F abs_ (F v) { return _mm256_and_ps(v, 0-v); }
596 SI I32 abs_ (I32 v) { return (I32)_mm256_abs_epi32((__m256i)v); }
597 SI F floor_(F v) { return _mm256_floor_ps(v); }
598 SI F ceil_(F v) { return _mm256_ceil_ps(v); }
599 SI F rcp_approx(F v) { return _mm256_rcp_ps (v); } // use rcp_fast instead
600 SI F rsqrt_approx(F v) { return _mm256_rsqrt_ps(v); }
601 SI F sqrt_ (F v) { return _mm256_sqrt_ps (v); }
602 SI F rcp_precise (F v) {
603 F e = rcp_approx(v);
604 return _mm256_fnmadd_ps(v, e, _mm256_set1_ps(2.0f)) * e;
605 }
606
607 SI I32 iround(F v) { return (I32)_mm256_cvtps_epi32(v); }
608 SI U32 round(F v) { return (U32)_mm256_cvtps_epi32(v); }
609 SI U32 round(F v, F scale) { return (U32)_mm256_cvtps_epi32(v*scale); }
610 SI U16 pack(U32 v) {
611 return (U16)_mm_packus_epi32(_mm256_extractf128_si256((__m256i)v, 0),
612 _mm256_extractf128_si256((__m256i)v, 1));
613 }
614 SI U8 pack(U16 v) {
615 auto r = _mm_packus_epi16((__m128i)v,(__m128i)v);
616 return sk_unaligned_load<U8>(&r);
617 }
618
619 SI F if_then_else(I32 c, F t, F e) { return _mm256_blendv_ps(e, t, (__m256)c); }
620 SI I32 if_then_else(I32 c, I32 t, I32 e) {
621 return (I32)_mm256_blendv_ps((__m256)e, (__m256)t, (__m256)c);
622 }
623
624 // NOTE: This version of 'all' only works with mask values (true == all bits set)
625 SI bool any(I32 c) { return !_mm256_testz_si256((__m256i)c, _mm256_set1_epi32(-1)); }
626 SI bool all(I32 c) { return _mm256_testc_si256((__m256i)c, _mm256_set1_epi32(-1)); }
627
628 template <typename T>
629 SI V<T> gather(const T* p, U32 ix) {
630 return V<T>{ p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]],
631 p[ix[4]], p[ix[5]], p[ix[6]], p[ix[7]], };
632 }
633 SI F gather(const float* p, U32 ix) { return _mm256_i32gather_ps(p, (__m256i)ix, 4); }
634 SI U32 gather(const uint32_t* p, U32 ix) {
635 return (U32)_mm256_i32gather_epi32((const int*)p, (__m256i)ix, 4);
636 }
637 SI U64 gather(const uint64_t* p, U32 ix) {
638 __m256i parts[] = {
639 _mm256_i32gather_epi64(
640 (const long long int*)p, _mm256_extracti128_si256((__m256i)ix, 0), 8),
641 _mm256_i32gather_epi64(
642 (const long long int*)p, _mm256_extracti128_si256((__m256i)ix, 1), 8),
643 };
644 return sk_bit_cast<U64>(parts);
645 }
646 SI void scatter_masked(I32 src, int* dst, U32 ix, I32 mask) {
647 I32 before = gather(dst, ix);
648 I32 after = if_then_else(mask, src, before);
649 dst[ix[0]] = after[0];
650 dst[ix[1]] = after[1];
651 dst[ix[2]] = after[2];
652 dst[ix[3]] = after[3];
653 dst[ix[4]] = after[4];
654 dst[ix[5]] = after[5];
655 dst[ix[6]] = after[6];
656 dst[ix[7]] = after[7];
657 }
658
659 SI void load2(const uint16_t* ptr, U16* r, U16* g) {
660 __m128i _0123 = _mm_loadu_si128(((const __m128i*)ptr) + 0),
661 _4567 = _mm_loadu_si128(((const __m128i*)ptr) + 1);
662 *r = (U16)_mm_packs_epi32(_mm_srai_epi32(_mm_slli_epi32(_0123, 16), 16),
663 _mm_srai_epi32(_mm_slli_epi32(_4567, 16), 16));
664 *g = (U16)_mm_packs_epi32(_mm_srai_epi32(_0123, 16),
665 _mm_srai_epi32(_4567, 16));
666 }
667 SI void store2(uint16_t* ptr, U16 r, U16 g) {
668 auto _0123 = _mm_unpacklo_epi16((__m128i)r, (__m128i)g),
669 _4567 = _mm_unpackhi_epi16((__m128i)r, (__m128i)g);
670 _mm_storeu_si128((__m128i*)ptr + 0, _0123);
671 _mm_storeu_si128((__m128i*)ptr + 1, _4567);
672 }
673
674 SI void load4(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) {
675 __m128i _01 = _mm_loadu_si128(((const __m128i*)ptr) + 0),
676 _23 = _mm_loadu_si128(((const __m128i*)ptr) + 1),
677 _45 = _mm_loadu_si128(((const __m128i*)ptr) + 2),
678 _67 = _mm_loadu_si128(((const __m128i*)ptr) + 3);
679
680 auto _02 = _mm_unpacklo_epi16(_01, _23), // r0 r2 g0 g2 b0 b2 a0 a2
681 _13 = _mm_unpackhi_epi16(_01, _23), // r1 r3 g1 g3 b1 b3 a1 a3
682 _46 = _mm_unpacklo_epi16(_45, _67),
683 _57 = _mm_unpackhi_epi16(_45, _67);
684
685 auto rg0123 = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3
686 ba0123 = _mm_unpackhi_epi16(_02, _13), // b0 b1 b2 b3 a0 a1 a2 a3
687 rg4567 = _mm_unpacklo_epi16(_46, _57),
688 ba4567 = _mm_unpackhi_epi16(_46, _57);
689
690 *r = (U16)_mm_unpacklo_epi64(rg0123, rg4567);
691 *g = (U16)_mm_unpackhi_epi64(rg0123, rg4567);
692 *b = (U16)_mm_unpacklo_epi64(ba0123, ba4567);
693 *a = (U16)_mm_unpackhi_epi64(ba0123, ba4567);
694 }
695 SI void store4(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) {
696 auto rg0123 = _mm_unpacklo_epi16((__m128i)r, (__m128i)g), // r0 g0 r1 g1 r2 g2 r3 g3
697 rg4567 = _mm_unpackhi_epi16((__m128i)r, (__m128i)g), // r4 g4 r5 g5 r6 g6 r7 g7
698 ba0123 = _mm_unpacklo_epi16((__m128i)b, (__m128i)a),
699 ba4567 = _mm_unpackhi_epi16((__m128i)b, (__m128i)a);
700
701 auto _01 = _mm_unpacklo_epi32(rg0123, ba0123),
702 _23 = _mm_unpackhi_epi32(rg0123, ba0123),
703 _45 = _mm_unpacklo_epi32(rg4567, ba4567),
704 _67 = _mm_unpackhi_epi32(rg4567, ba4567);
705
706 _mm_storeu_si128((__m128i*)ptr + 0, _01);
707 _mm_storeu_si128((__m128i*)ptr + 1, _23);
708 _mm_storeu_si128((__m128i*)ptr + 2, _45);
709 _mm_storeu_si128((__m128i*)ptr + 3, _67);
710 }
711
712 SI void load4(const float* ptr, F* r, F* g, F* b, F* a) {
713 F _04 = _mm256_castps128_ps256(_mm_loadu_ps(ptr+ 0)),
714 _15 = _mm256_castps128_ps256(_mm_loadu_ps(ptr+ 4)),
715 _26 = _mm256_castps128_ps256(_mm_loadu_ps(ptr+ 8)),
716 _37 = _mm256_castps128_ps256(_mm_loadu_ps(ptr+12));
717 _04 = _mm256_insertf128_ps(_04, _mm_loadu_ps(ptr+16), 1);
718 _15 = _mm256_insertf128_ps(_15, _mm_loadu_ps(ptr+20), 1);
719 _26 = _mm256_insertf128_ps(_26, _mm_loadu_ps(ptr+24), 1);
720 _37 = _mm256_insertf128_ps(_37, _mm_loadu_ps(ptr+28), 1);
721
722 F rg0145 = _mm256_unpacklo_ps(_04,_15), // r0 r1 g0 g1 | r4 r5 g4 g5
723 ba0145 = _mm256_unpackhi_ps(_04,_15),
724 rg2367 = _mm256_unpacklo_ps(_26,_37),
725 ba2367 = _mm256_unpackhi_ps(_26,_37);
726
727 *r = (F)_mm256_unpacklo_pd((__m256d)rg0145, (__m256d)rg2367);
728 *g = (F)_mm256_unpackhi_pd((__m256d)rg0145, (__m256d)rg2367);
729 *b = (F)_mm256_unpacklo_pd((__m256d)ba0145, (__m256d)ba2367);
730 *a = (F)_mm256_unpackhi_pd((__m256d)ba0145, (__m256d)ba2367);
731 }
732 SI void store4(float* ptr, F r, F g, F b, F a) {
733 F rg0145 = _mm256_unpacklo_ps(r, g), // r0 g0 r1 g1 | r4 g4 r5 g5
734 rg2367 = _mm256_unpackhi_ps(r, g), // r2 ... | r6 ...
735 ba0145 = _mm256_unpacklo_ps(b, a), // b0 a0 b1 a1 | b4 a4 b5 a5
736 ba2367 = _mm256_unpackhi_ps(b, a); // b2 ... | b6 ...
737
738 F _04 = (F)_mm256_unpacklo_pd((__m256d)rg0145, (__m256d)ba0145),// r0 g0 b0 a0 | r4 g4 b4 a4
739 _15 = (F)_mm256_unpackhi_pd((__m256d)rg0145, (__m256d)ba0145),// r1 ... | r5 ...
740 _26 = (F)_mm256_unpacklo_pd((__m256d)rg2367, (__m256d)ba2367),// r2 ... | r6 ...
741 _37 = (F)_mm256_unpackhi_pd((__m256d)rg2367, (__m256d)ba2367);// r3 ... | r7 ...
742
743 F _01 = _mm256_permute2f128_ps(_04, _15, 32), // 32 == 0010 0000 == lo, lo
744 _23 = _mm256_permute2f128_ps(_26, _37, 32),
745 _45 = _mm256_permute2f128_ps(_04, _15, 49), // 49 == 0011 0001 == hi, hi
746 _67 = _mm256_permute2f128_ps(_26, _37, 49);
747 _mm256_storeu_ps(ptr+ 0, _01);
748 _mm256_storeu_ps(ptr+ 8, _23);
749 _mm256_storeu_ps(ptr+16, _45);
750 _mm256_storeu_ps(ptr+24, _67);
751 }
752
753 #elif defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
754 template <typename T> using V = Vec<4, T>;
755 using F = V<float >;
756 using I32 = V< int32_t>;
757 using U64 = V<uint64_t>;
758 using U32 = V<uint32_t>;
759 using U16 = V<uint16_t>;
760 using U8 = V<uint8_t >;
761
762 SI F if_then_else(I32 c, F t, F e) {
763 return _mm_or_ps(_mm_and_ps((__m128)c, t), _mm_andnot_ps((__m128)c, e));
764 }
765 SI I32 if_then_else(I32 c, I32 t, I32 e) {
766 return (I32)_mm_or_ps(_mm_and_ps((__m128)c, (__m128)t),
767 _mm_andnot_ps((__m128)c, (__m128)e));
768 }
769
770 SI F min(F a, F b) { return _mm_min_ps(a,b); }
771 SI F max(F a, F b) { return _mm_max_ps(a,b); }
772 #if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
773 SI I32 min(I32 a, I32 b) { return (I32)_mm_min_epi32((__m128i)a,(__m128i)b); }
774 SI U32 min(U32 a, U32 b) { return (U32)_mm_min_epu32((__m128i)a,(__m128i)b); }
775 SI I32 max(I32 a, I32 b) { return (I32)_mm_max_epi32((__m128i)a,(__m128i)b); }
776 SI U32 max(U32 a, U32 b) { return (U32)_mm_max_epu32((__m128i)a,(__m128i)b); }
777 #else
778 SI I32 min(I32 a, I32 b) { return if_then_else(a < b, a, b); }
779 SI I32 max(I32 a, I32 b) { return if_then_else(a > b, a, b); }
780 SI U32 min(U32 a, U32 b) {
781 return sk_bit_cast<U32>(if_then_else(a < b, sk_bit_cast<I32>(a), sk_bit_cast<I32>(b)));
782 }
783 SI U32 max(U32 a, U32 b) {
784 return sk_bit_cast<U32>(if_then_else(a > b, sk_bit_cast<I32>(a), sk_bit_cast<I32>(b)));
785 }
786 #endif
787
788 SI F mad(F f, F m, F a) { return a+f*m; }
789 SI F nmad(F f, F m, F a) { return a-f*m; }
790 SI F abs_(F v) { return _mm_and_ps(v, 0-v); }
791 #if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
792 SI I32 abs_(I32 v) { return (I32)_mm_abs_epi32((__m128i)v); }
793 #else
794 SI I32 abs_(I32 v) { return max(v, -v); }
795 #endif
796 SI F rcp_approx(F v) { return _mm_rcp_ps (v); } // use rcp_fast instead
797 SI F rcp_precise (F v) { F e = rcp_approx(v); return e * (2.0f - v * e); }
798 SI F rsqrt_approx(F v) { return _mm_rsqrt_ps(v); }
799 SI F sqrt_(F v) { return _mm_sqrt_ps (v); }
800
801 SI I32 iround(F v) { return (I32)_mm_cvtps_epi32(v); }
802 SI U32 round(F v) { return (U32)_mm_cvtps_epi32(v); }
803 SI U32 round(F v, F scale) { return (U32)_mm_cvtps_epi32(v*scale); }
804
805 SI U16 pack(U32 v) {
806 #if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
807 auto p = _mm_packus_epi32((__m128i)v,(__m128i)v);
808 #else
809 // Sign extend so that _mm_packs_epi32() does the pack we want.
810 auto p = _mm_srai_epi32(_mm_slli_epi32((__m128i)v, 16), 16);
811 p = _mm_packs_epi32(p,p);
812 #endif
813 return sk_unaligned_load<U16>(&p); // We have two copies. Return (the lower) one.
814 }
815 SI U8 pack(U16 v) {
816 auto r = widen_cast<__m128i>(v);
817 r = _mm_packus_epi16(r,r);
818 return sk_unaligned_load<U8>(&r);
819 }
820
821 // NOTE: This only checks the top bit of each lane, and is incorrect with non-mask values.
822 SI bool any(I32 c) { return _mm_movemask_ps(sk_bit_cast<F>(c)) != 0b0000; }
823 SI bool all(I32 c) { return _mm_movemask_ps(sk_bit_cast<F>(c)) == 0b1111; }
824
825 SI F floor_(F v) {
826 #if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
827 return _mm_floor_ps(v);
828 #else
829 F roundtrip = _mm_cvtepi32_ps(_mm_cvttps_epi32(v));
830 return roundtrip - if_then_else(roundtrip > v, F() + 1, F() + 0);
831 #endif
832 }
833
834 SI F ceil_(F v) {
835 #if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
836 return _mm_ceil_ps(v);
837 #else
838 F roundtrip = _mm_cvtepi32_ps(_mm_cvttps_epi32(v));
839 return roundtrip + if_then_else(roundtrip < v, F() + 1, F() + 0);
840 #endif
841 }
842
843 template <typename T>
844 SI V<T> gather(const T* p, U32 ix) {
845 return V<T>{p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]};
846 }
847 SI void scatter_masked(I32 src, int* dst, U32 ix, I32 mask) {
848 I32 before = gather(dst, ix);
849 I32 after = if_then_else(mask, src, before);
850 dst[ix[0]] = after[0];
851 dst[ix[1]] = after[1];
852 dst[ix[2]] = after[2];
853 dst[ix[3]] = after[3];
854 }
855 SI void load2(const uint16_t* ptr, U16* r, U16* g) {
856 __m128i _01 = _mm_loadu_si128(((const __m128i*)ptr) + 0); // r0 g0 r1 g1 r2 g2 r3 g3
857 auto rg01_23 = _mm_shufflelo_epi16(_01, 0xD8); // r0 r1 g0 g1 r2 g2 r3 g3
858 auto rg = _mm_shufflehi_epi16(rg01_23, 0xD8); // r0 r1 g0 g1 r2 r3 g2 g3
859
860 auto R = _mm_shuffle_epi32(rg, 0x88); // r0 r1 r2 r3 r0 r1 r2 r3
861 auto G = _mm_shuffle_epi32(rg, 0xDD); // g0 g1 g2 g3 g0 g1 g2 g3
862 *r = sk_unaligned_load<U16>(&R);
863 *g = sk_unaligned_load<U16>(&G);
864 }
865 SI void store2(uint16_t* ptr, U16 r, U16 g) {
866 __m128i rg = _mm_unpacklo_epi16(widen_cast<__m128i>(r), widen_cast<__m128i>(g));
867 _mm_storeu_si128((__m128i*)ptr + 0, rg);
868 }
869
870 SI void load4(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) {
871 __m128i _01 = _mm_loadu_si128(((const __m128i*)ptr) + 0), // r0 g0 b0 a0 r1 g1 b1 a1
872 _23 = _mm_loadu_si128(((const __m128i*)ptr) + 1); // r2 g2 b2 a2 r3 g3 b3 a3
873
874 auto _02 = _mm_unpacklo_epi16(_01, _23), // r0 r2 g0 g2 b0 b2 a0 a2
875 _13 = _mm_unpackhi_epi16(_01, _23); // r1 r3 g1 g3 b1 b3 a1 a3
876
877 auto rg = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3
878 ba = _mm_unpackhi_epi16(_02, _13); // b0 b1 b2 b3 a0 a1 a2 a3
879
880 *r = sk_unaligned_load<U16>((uint16_t*)&rg + 0);
881 *g = sk_unaligned_load<U16>((uint16_t*)&rg + 4);
882 *b = sk_unaligned_load<U16>((uint16_t*)&ba + 0);
883 *a = sk_unaligned_load<U16>((uint16_t*)&ba + 4);
884 }
885
886 SI void store4(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) {
887 auto rg = _mm_unpacklo_epi16(widen_cast<__m128i>(r), widen_cast<__m128i>(g)),
888 ba = _mm_unpacklo_epi16(widen_cast<__m128i>(b), widen_cast<__m128i>(a));
889
890 _mm_storeu_si128((__m128i*)ptr + 0, _mm_unpacklo_epi32(rg, ba));
891 _mm_storeu_si128((__m128i*)ptr + 1, _mm_unpackhi_epi32(rg, ba));
892 }
893
894 SI void load4(const float* ptr, F* r, F* g, F* b, F* a) {
895 F _0 = _mm_loadu_ps(ptr + 0),
896 _1 = _mm_loadu_ps(ptr + 4),
897 _2 = _mm_loadu_ps(ptr + 8),
898 _3 = _mm_loadu_ps(ptr +12);
899 _MM_TRANSPOSE4_PS(_0,_1,_2,_3);
900 *r = _0;
901 *g = _1;
902 *b = _2;
903 *a = _3;
904 }
905
906 SI void store4(float* ptr, F r, F g, F b, F a) {
907 _MM_TRANSPOSE4_PS(r,g,b,a);
908 _mm_storeu_ps(ptr + 0, r);
909 _mm_storeu_ps(ptr + 4, g);
910 _mm_storeu_ps(ptr + 8, b);
911 _mm_storeu_ps(ptr +12, a);
912 }
913
914 #elif defined(JUMPER_IS_LASX)
915 // These are __m256 and __m256i, but friendlier and strongly-typed.
916 template <typename T> using V = Vec<8, T>;
917 using F = V<float >;
918 using I32 = V<int32_t>;
919 using U64 = V<uint64_t>;
920 using U32 = V<uint32_t>;
921 using U16 = V<uint16_t>;
922 using U8 = V<uint8_t >;
923
924 SI __m128i emulate_lasx_d_xr2vr_l(__m256i a) {
925 v4i64 tmp = a;
926 v2i64 al = {tmp[0], tmp[1]};
927 return (__m128i)al;
928 }
929
930 SI __m128i emulate_lasx_d_xr2vr_h(__m256i a) {
931 v4i64 tmp = a;
932 v2i64 ah = {tmp[2], tmp[3]};
933 return (__m128i)ah;
934 }
935
936 SI F if_then_else(I32 c, F t, F e) {
937 return sk_bit_cast<Vec<8,float>>(__lasx_xvbitsel_v(sk_bit_cast<__m256i>(e),
938 sk_bit_cast<__m256i>(t),
939 sk_bit_cast<__m256i>(c)));
940 }
941
942 SI I32 if_then_else(I32 c, I32 t, I32 e) {
943 return sk_bit_cast<Vec<8,int32_t>>(__lasx_xvbitsel_v(sk_bit_cast<__m256i>(e),
944 sk_bit_cast<__m256i>(t),
945 sk_bit_cast<__m256i>(c)));
946 }
947
948 SI F min(F a, F b) { return __lasx_xvfmin_s(a,b); }
949 SI F max(F a, F b) { return __lasx_xvfmax_s(a,b); }
950 SI I32 min(I32 a, I32 b) { return __lasx_xvmin_w(a,b); }
951 SI U32 min(U32 a, U32 b) { return __lasx_xvmin_wu(a,b); }
952 SI I32 max(I32 a, I32 b) { return __lasx_xvmax_w(a,b); }
953 SI U32 max(U32 a, U32 b) { return __lasx_xvmax_wu(a,b); }
954
955 SI F mad(F f, F m, F a) { return __lasx_xvfmadd_s(f, m, a); }
956 SI F nmad(F f, F m, F a) { return __lasx_xvfmadd_s(-f, m, a); }
957 SI F abs_ (F v) { return (F)__lasx_xvand_v((I32)v, (I32)(0-v)); }
958 SI I32 abs_(I32 v) { return max(v, -v); }
959 SI F rcp_approx(F v) { return __lasx_xvfrecip_s(v); }
960 SI F rcp_precise (F v) { F e = rcp_approx(v); return e * nmad(v, e, 2.0f); }
961 SI F rsqrt_approx (F v) { return __lasx_xvfrsqrt_s(v); }
962 SI F sqrt_(F v) { return __lasx_xvfsqrt_s(v); }
963
964 SI U32 iround(F v) {
965 F t = F(0.5);
966 return __lasx_xvftintrz_w_s(v + t);
967 }
968
969 SI U32 round(F v) {
970 F t = F(0.5);
971 return __lasx_xvftintrz_w_s(v + t);
972 }
973
974 SI U32 round(F v, F scale) {
975 F t = F(0.5);
976 return __lasx_xvftintrz_w_s(mad(v, scale, t));
977 }
978
979 SI U16 pack(U32 v) {
980 return __lsx_vpickev_h(__lsx_vsat_wu(emulate_lasx_d_xr2vr_h(v), 15),
981 __lsx_vsat_wu(emulate_lasx_d_xr2vr_l(v), 15));
982 }
983
984 SI U8 pack(U16 v) {
985 __m128i tmp = __lsx_vsat_hu(v, 7);
986 auto r = __lsx_vpickev_b(tmp, tmp);
987 return sk_unaligned_load<U8>(&r);
988 }
989
990 SI bool any(I32 c){
991 v8i32 retv = (v8i32)__lasx_xvmskltz_w(__lasx_xvslt_wu(__lasx_xvldi(0), c));
992 return (retv[0] | retv[4]) != 0b0000;
993 }
994
995 SI bool all(I32 c){
996 v8i32 retv = (v8i32)__lasx_xvmskltz_w(__lasx_xvslt_wu(__lasx_xvldi(0), c));
997 return (retv[0] & retv[4]) == 0b1111;
998 }
999
1000 SI F floor_(F v) {
1001 return __lasx_xvfrintrm_s(v);
1002 }
1003
1004 SI F ceil_(F v) {
1005 return __lasx_xvfrintrp_s(v);
1006 }
1007
1008 template <typename T>
1009 SI V<T> gather(const T* p, U32 ix) {
1010 return { p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]],
1011 p[ix[4]], p[ix[5]], p[ix[6]], p[ix[7]], };
1012 }
1013
1014 template <typename V, typename S>
1015 SI void scatter_masked(V src, S* dst, U32 ix, I32 mask) {
1016 V before = gather(dst, ix);
1017 V after = if_then_else(mask, src, before);
1018 dst[ix[0]] = after[0];
1019 dst[ix[1]] = after[1];
1020 dst[ix[2]] = after[2];
1021 dst[ix[3]] = after[3];
1022 dst[ix[4]] = after[4];
1023 dst[ix[5]] = after[5];
1024 dst[ix[6]] = after[6];
1025 dst[ix[7]] = after[7];
1026 }
1027
1028 SI void load2(const uint16_t* ptr, U16* r, U16* g) {
1029 U16 _0123 = __lsx_vld(ptr, 0),
1030 _4567 = __lsx_vld(ptr, 16);
1031 *r = __lsx_vpickev_h(__lsx_vsat_w(__lsx_vsrai_w(__lsx_vslli_w(_4567, 16), 16), 15),
1032 __lsx_vsat_w(__lsx_vsrai_w(__lsx_vslli_w(_0123, 16), 16), 15));
1033 *g = __lsx_vpickev_h(__lsx_vsat_w(__lsx_vsrai_w(_4567, 16), 15),
1034 __lsx_vsat_w(__lsx_vsrai_w(_0123, 16), 15));
1035 }
1036 SI void store2(uint16_t* ptr, U16 r, U16 g) {
1037 auto _0123 = __lsx_vilvl_h(g, r),
1038 _4567 = __lsx_vilvh_h(g, r);
1039 __lsx_vst(_0123, ptr, 0);
1040 __lsx_vst(_4567, ptr, 16);
1041 }
1042
1043 SI void load4(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) {
1044 __m128i _01 = __lsx_vld(ptr, 0),
1045 _23 = __lsx_vld(ptr, 16),
1046 _45 = __lsx_vld(ptr, 32),
1047 _67 = __lsx_vld(ptr, 48);
1048
1049 auto _02 = __lsx_vilvl_h(_23, _01), // r0 r2 g0 g2 b0 b2 a0 a2
1050 _13 = __lsx_vilvh_h(_23, _01), // r1 r3 g1 g3 b1 b3 a1 a3
1051 _46 = __lsx_vilvl_h(_67, _45),
1052 _57 = __lsx_vilvh_h(_67, _45);
1053
1054 auto rg0123 = __lsx_vilvl_h(_13, _02), // r0 r1 r2 r3 g0 g1 g2 g3
1055 ba0123 = __lsx_vilvh_h(_13, _02), // b0 b1 b2 b3 a0 a1 a2 a3
1056 rg4567 = __lsx_vilvl_h(_57, _46),
1057 ba4567 = __lsx_vilvh_h(_57, _46);
1058
1059 *r = __lsx_vilvl_d(rg4567, rg0123);
1060 *g = __lsx_vilvh_d(rg4567, rg0123);
1061 *b = __lsx_vilvl_d(ba4567, ba0123);
1062 *a = __lsx_vilvh_d(ba4567, ba0123);
1063 }
1064
1065 SI void store4(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) {
1066 auto rg0123 = __lsx_vilvl_h(g, r), // r0 g0 r1 g1 r2 g2 r3 g3
1067 rg4567 = __lsx_vilvh_h(g, r), // r4 g4 r5 g5 r6 g6 r7 g7
1068 ba0123 = __lsx_vilvl_h(a, b),
1069 ba4567 = __lsx_vilvh_h(a, b);
1070
1071 auto _01 =__lsx_vilvl_w(ba0123, rg0123),
1072 _23 =__lsx_vilvh_w(ba0123, rg0123),
1073 _45 =__lsx_vilvl_w(ba4567, rg4567),
1074 _67 =__lsx_vilvh_w(ba4567, rg4567);
1075
1076 __lsx_vst(_01, ptr, 0);
1077 __lsx_vst(_23, ptr, 16);
1078 __lsx_vst(_45, ptr, 32);
1079 __lsx_vst(_67, ptr, 48);
1080 }
1081
1082 SI void load4(const float* ptr, F* r, F* g, F* b, F* a) {
1083 F _04 = (F)__lasx_xvpermi_q(__lasx_xvld(ptr, 0), __lasx_xvld(ptr, 64), 0x02);
1084 F _15 = (F)__lasx_xvpermi_q(__lasx_xvld(ptr, 16), __lasx_xvld(ptr, 80), 0x02);
1085 F _26 = (F)__lasx_xvpermi_q(__lasx_xvld(ptr, 32), __lasx_xvld(ptr, 96), 0x02);
1086 F _37 = (F)__lasx_xvpermi_q(__lasx_xvld(ptr, 48), __lasx_xvld(ptr, 112), 0x02);
1087
1088 F rg0145 = (F)__lasx_xvilvl_w((__m256i)_15, (__m256i)_04), // r0 r1 g0 g1 | r4 r5 g4 g5
1089 ba0145 = (F)__lasx_xvilvh_w((__m256i)_15, (__m256i)_04),
1090 rg2367 = (F)__lasx_xvilvl_w((__m256i)_37, (__m256i)_26),
1091 ba2367 = (F)__lasx_xvilvh_w((__m256i)_37, (__m256i)_26);
1092
1093 *r = (F)__lasx_xvilvl_d((__m256i)rg2367, (__m256i)rg0145);
1094 *g = (F)__lasx_xvilvh_d((__m256i)rg2367, (__m256i)rg0145);
1095 *b = (F)__lasx_xvilvl_d((__m256i)ba2367, (__m256i)ba0145);
1096 *a = (F)__lasx_xvilvh_d((__m256i)ba2367, (__m256i)ba0145);
1097 }
1098 SI void store4(float* ptr, F r, F g, F b, F a) {
1099 F rg0145 = (F)__lasx_xvilvl_w((__m256i)g, (__m256i)r), // r0 g0 r1 g1 | r4 g4 r5 g5
1100 rg2367 = (F)__lasx_xvilvh_w((__m256i)g, (__m256i)r), // r2 ... | r6 ...
1101 ba0145 = (F)__lasx_xvilvl_w((__m256i)a, (__m256i)b), // b0 a0 b1 a1 | b4 a4 b5 a5
1102 ba2367 = (F)__lasx_xvilvh_w((__m256i)a, (__m256i)b); // b2 ... | b6 ...
1103
1104 F _04 = (F)__lasx_xvilvl_d((__m256i)ba0145, (__m256i)rg0145), // r0 g0 b0 a0 | r4 g4 b4 a4
1105 _15 = (F)__lasx_xvilvh_d((__m256i)ba0145, (__m256i)rg0145), // r1 ... | r5 ...
1106 _26 = (F)__lasx_xvilvl_d((__m256i)ba2367, (__m256i)rg2367), // r2 ... | r6 ...
1107 _37 = (F)__lasx_xvilvh_d((__m256i)ba2367, (__m256i)rg2367); // r3 ... | r7 ...
1108
1109 F _01 = (F)__lasx_xvpermi_q((__m256i)_04, (__m256i)_15, 0x02),
1110 _23 = (F)__lasx_xvpermi_q((__m256i)_26, (__m256i)_37, 0x02),
1111 _45 = (F)__lasx_xvpermi_q((__m256i)_04, (__m256i)_15, 0x13),
1112 _67 = (F)__lasx_xvpermi_q((__m256i)_26, (__m256i)_37, 0x13);
1113 __lasx_xvst(_01, ptr, 0);
1114 __lasx_xvst(_23, ptr, 32);
1115 __lasx_xvst(_45, ptr, 64);
1116 __lasx_xvst(_67, ptr, 96);
1117 }
1118
1119 #elif defined(JUMPER_IS_LSX)
1120 template <typename T> using V = Vec<4, T>;
1121 using F = V<float >;
1122 using I32 = V<int32_t >;
1123 using U64 = V<uint64_t>;
1124 using U32 = V<uint32_t>;
1125 using U16 = V<uint16_t>;
1126 using U8 = V<uint8_t >;
1127
1128 #define _LSX_TRANSPOSE4_S(row0, row1, row2, row3) \
1129 do { \
1130 __m128 __t0 = (__m128)__lsx_vilvl_w ((__m128i)row1, (__m128i)row0); \
1131 __m128 __t1 = (__m128)__lsx_vilvl_w ((__m128i)row3, (__m128i)row2); \
1132 __m128 __t2 = (__m128)__lsx_vilvh_w ((__m128i)row1, (__m128i)row0); \
1133 __m128 __t3 = (__m128)__lsx_vilvh_w ((__m128i)row3, (__m128i)row2); \
1134 (row0) = (__m128)__lsx_vilvl_d ((__m128i)__t1, (__m128i)__t0); \
1135 (row1) = (__m128)__lsx_vilvh_d ((__m128i)__t1, (__m128i)__t0); \
1136 (row2) = (__m128)__lsx_vilvl_d ((__m128i)__t3, (__m128i)__t2); \
1137 (row3) = (__m128)__lsx_vilvh_d ((__m128i)__t3, (__m128i)__t2); \
1138 } while (0)
1139
1140 SI F if_then_else(I32 c, F t, F e) {
1141 return sk_bit_cast<Vec<4,float>>(__lsx_vbitsel_v(sk_bit_cast<__m128i>(e),
1142 sk_bit_cast<__m128i>(t),
1143 sk_bit_cast<__m128i>(c)));
1144 }
1145
1146 SI I32 if_then_else(I32 c, I32 t, I32 e) {
1147 return sk_bit_cast<Vec<4,int32_t>>(__lsx_vbitsel_v(sk_bit_cast<__m128i>(e),
1148 sk_bit_cast<__m128i>(t),
1149 sk_bit_cast<__m128i>(c)));
1150 }
1151
1152 SI F min(F a, F b) { return __lsx_vfmin_s(a,b); }
1153 SI F max(F a, F b) { return __lsx_vfmax_s(a,b); }
1154 SI I32 min(I32 a, I32 b) { return __lsx_vmin_w(a,b); }
1155 SI U32 min(U32 a, U32 b) { return __lsx_vmin_wu(a,b); }
1156 SI I32 max(I32 a, I32 b) { return __lsx_vmax_w(a,b); }
1157 SI U32 max(U32 a, U32 b) { return __lsx_vmax_wu(a,b); }
1158
1159 SI F mad(F f, F m, F a) { return __lsx_vfmadd_s(f, m, a); }
1160 SI F nmad(F f, F m, F a) { return __lsx_vfmadd_s(-f, m, a); }
1161 SI F abs_(F v) { return (F)__lsx_vand_v((I32)v, (I32)(0-v)); }
1162 SI I32 abs_(I32 v) { return max(v, -v); }
1163 SI F rcp_approx (F v) { return __lsx_vfrecip_s(v); }
1164 SI F rcp_precise (F v) { F e = rcp_approx(v); return e * nmad(v, e, 2.0f); }
1165 SI F rsqrt_approx (F v) { return __lsx_vfrsqrt_s(v); }
1166 SI F sqrt_(F v) { return __lsx_vfsqrt_s (v); }
1167
1168 SI U32 iround(F v) {
1169 F t = F(0.5);
1170 return __lsx_vftintrz_w_s(v + t); }
1171
1172 SI U32 round(F v) {
1173 F t = F(0.5);
1174 return __lsx_vftintrz_w_s(v + t); }
1175
1176 SI U32 round(F v, F scale) {
1177 F t = F(0.5);
1178 return __lsx_vftintrz_w_s(mad(v, scale, t)); }
1179
1180 SI U16 pack(U32 v) {
1181 __m128i tmp = __lsx_vsat_wu(v, 15);
1182 auto p = __lsx_vpickev_h(tmp, tmp);
1183 return sk_unaligned_load<U16>(&p); // We have two copies. Return (the lower) one.
1184 }
1185
1186 SI U8 pack(U16 v) {
1187 auto r = widen_cast<__m128i>(v);
1188 __m128i tmp = __lsx_vsat_hu(r, 7);
1189 r = __lsx_vpickev_b(tmp, tmp);
1190 return sk_unaligned_load<U8>(&r);
1191 }
1192
1193 SI bool any(I32 c){
1194 v4i32 retv = (v4i32)__lsx_vmskltz_w(__lsx_vslt_wu(__lsx_vldi(0), c));
1195 return retv[0] != 0b0000;
1196 }
1197
1198 SI bool all(I32 c){
1199 v4i32 retv = (v4i32)__lsx_vmskltz_w(__lsx_vslt_wu(__lsx_vldi(0), c));
1200 return retv[0] == 0b1111;
1201 }
1202
1203 SI F floor_(F v) {
1204 return __lsx_vfrintrm_s(v);
1205 }
1206
1207 SI F ceil_(F v) {
1208 return __lsx_vfrintrp_s(v);
1209 }
1210
1211 template <typename T>
1212 SI V<T> gather(const T* p, U32 ix) {
1213 return {p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]};
1214 }
1215
1216 template <typename V, typename S>
1217 SI void scatter_masked(V src, S* dst, U32 ix, I32 mask) {
1218 V before = gather(dst, ix);
1219 V after = if_then_else(mask, src, before);
1220 dst[ix[0]] = after[0];
1221 dst[ix[1]] = after[1];
1222 dst[ix[2]] = after[2];
1223 dst[ix[3]] = after[3];
1224 }
1225
1226 SI void load2(const uint16_t* ptr, U16* r, U16* g) {
1227 __m128i _01 = __lsx_vld(ptr, 0); // r0 g0 r1 g1 r2 g2 r3 g3
1228 auto rg = __lsx_vshuf4i_h(_01, 0xD8); // r0 r1 g0 g1 r2 r3 g2 g3
1229
1230 auto R = __lsx_vshuf4i_w(rg, 0x88); // r0 r1 r2 r3 r0 r1 r2 r3
1231 auto G = __lsx_vshuf4i_w(rg, 0xDD); // g0 g1 g2 g3 g0 g1 g2 g3
1232 *r = sk_unaligned_load<U16>(&R);
1233 *g = sk_unaligned_load<U16>(&G);
1234 }
1235
1236 SI void store2(uint16_t* ptr, U16 r, U16 g) {
1237 U32 rg = __lsx_vilvl_h(widen_cast<__m128i>(g), widen_cast<__m128i>(r));
1238 __lsx_vst(rg, ptr, 0);
1239 }
1240
1241 SI void load4(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) {
1242 __m128i _01 = __lsx_vld(ptr, 0), // r0 g0 b0 a0 r1 g1 b1 a1
1243 _23 = __lsx_vld(ptr, 16); // r2 g2 b2 a2 r3 g3 b3 a3
1244
1245 auto _02 = __lsx_vilvl_h(_23, _01), // r0 r2 g0 g2 b0 b2 a0 a2
1246 _13 = __lsx_vilvh_h(_23, _01); // r1 r3 g1 g3 b1 b3 a1 a3
1247
1248 auto rg = __lsx_vilvl_h(_13, _02), // r0 r1 r2 r3 g0 g1 g2 g3
1249 ba = __lsx_vilvh_h(_13, _02); // b0 b1 b2 b3 a0 a1 a2 a3
1250
1251 *r = sk_unaligned_load<U16>((uint16_t*)&rg + 0);
1252 *g = sk_unaligned_load<U16>((uint16_t*)&rg + 4);
1253 *b = sk_unaligned_load<U16>((uint16_t*)&ba + 0);
1254 *a = sk_unaligned_load<U16>((uint16_t*)&ba + 4);
1255 }
1256
1257 SI void store4(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) {
1258 auto rg = __lsx_vilvl_h(widen_cast<__m128i>(g), widen_cast<__m128i>(r)),
1259 ba = __lsx_vilvl_h(widen_cast<__m128i>(a), widen_cast<__m128i>(b));
1260
1261 __lsx_vst(__lsx_vilvl_w(ba, rg), ptr, 0);
1262 __lsx_vst(__lsx_vilvh_w(ba, rg), ptr, 16);
1263 }
1264
1265 SI void load4(const float* ptr, F* r, F* g, F* b, F* a) {
1266 F _0 = (F)__lsx_vld(ptr, 0),
1267 _1 = (F)__lsx_vld(ptr, 16),
1268 _2 = (F)__lsx_vld(ptr, 32),
1269 _3 = (F)__lsx_vld(ptr, 48);
1270 _LSX_TRANSPOSE4_S(_0,_1,_2,_3);
1271 *r = _0;
1272 *g = _1;
1273 *b = _2;
1274 *a = _3;
1275 }
1276
1277 SI void store4(float* ptr, F r, F g, F b, F a) {
1278 _LSX_TRANSPOSE4_S(r,g,b,a);
1279 __lsx_vst(r, ptr, 0);
1280 __lsx_vst(g, ptr, 16);
1281 __lsx_vst(b, ptr, 32);
1282 __lsx_vst(a, ptr, 48);
1283 }
1284
1285 #endif
1286
1287 // Helpers to do scalar -> vector promotion on GCC (clang does this automatically)
1288 // We need to subtract (not add) zero to keep float conversion zero-cost. See:
1289 // https://stackoverflow.com/q/48255293
1290 //
1291 // The GCC implementation should be usable everywhere, but Mac clang (only) complains that the
1292 // expressions make these functions not constexpr.
1293 //
1294 // Further: We can't use the subtract-zero version in scalar mode. There, the subtraction will
1295 // really happen (at least at low optimization levels), which can alter the bit pattern of NaNs.
1296 // Because F_() is used when copying uniforms (even integer uniforms), this can corrupt values.
1297 // The vector subtraction of zero doesn't appear to ever alter NaN bit patterns.
1298 #if defined(__clang__) || defined(JUMPER_IS_SCALAR)
F_(float x)1299 SI constexpr F F_(float x) { return x; }
I32_(int32_t x)1300 SI constexpr I32 I32_(int32_t x) { return x; }
U32_(uint32_t x)1301 SI constexpr U32 U32_(uint32_t x) { return x; }
1302 #else
F_(float x)1303 SI constexpr F F_(float x) { return x - F(); }
I32_(int32_t x)1304 SI constexpr I32 I32_(int32_t x) { return x + I32(); }
U32_(uint32_t x)1305 SI constexpr U32 U32_(uint32_t x) { return x + U32(); }
1306 #endif
1307
1308 // Extremely helpful literals:
1309 static constexpr F F0 = F_(0.0f),
1310 F1 = F_(1.0f);
1311
1312 #if !defined(JUMPER_IS_SCALAR)
min(F a,float b)1313 SI F min(F a, float b) { return min(a, F_(b)); }
min(float a,F b)1314 SI F min(float a, F b) { return min(F_(a), b); }
max(F a,float b)1315 SI F max(F a, float b) { return max(a, F_(b)); }
max(float a,F b)1316 SI F max(float a, F b) { return max(F_(a), b); }
1317
mad(F f,F m,float a)1318 SI F mad(F f, F m, float a) { return mad(f, m, F_(a)); }
mad(F f,float m,F a)1319 SI F mad(F f, float m, F a) { return mad(f, F_(m), a); }
mad(F f,float m,float a)1320 SI F mad(F f, float m, float a) { return mad(f, F_(m), F_(a)); }
mad(float f,F m,F a)1321 SI F mad(float f, F m, F a) { return mad(F_(f), m, a); }
mad(float f,F m,float a)1322 SI F mad(float f, F m, float a) { return mad(F_(f), m, F_(a)); }
mad(float f,float m,F a)1323 SI F mad(float f, float m, F a) { return mad(F_(f), F_(m), a); }
1324
nmad(F f,F m,float a)1325 SI F nmad(F f, F m, float a) { return nmad(f, m, F_(a)); }
nmad(F f,float m,F a)1326 SI F nmad(F f, float m, F a) { return nmad(f, F_(m), a); }
nmad(F f,float m,float a)1327 SI F nmad(F f, float m, float a) { return nmad(f, F_(m), F_(a)); }
nmad(float f,F m,F a)1328 SI F nmad(float f, F m, F a) { return nmad(F_(f), m, a); }
nmad(float f,F m,float a)1329 SI F nmad(float f, F m, float a) { return nmad(F_(f), m, F_(a)); }
nmad(float f,float m,F a)1330 SI F nmad(float f, float m, F a) { return nmad(F_(f), F_(m), a); }
1331 #endif
1332
1333 // We need to be a careful with casts.
1334 // (F)x means cast x to float in the portable path, but bit_cast x to float in the others.
1335 // These named casts and bit_cast() are always what they seem to be.
1336 #if defined(JUMPER_IS_SCALAR)
cast(U32 v)1337 SI F cast (U32 v) { return (F)v; }
cast64(U64 v)1338 SI F cast64(U64 v) { return (F)v; }
trunc_(F v)1339 SI U32 trunc_(F v) { return (U32)v; }
expand(U16 v)1340 SI U32 expand(U16 v) { return (U32)v; }
expand(U8 v)1341 SI U32 expand(U8 v) { return (U32)v; }
1342 #else
cast(U32 v)1343 SI F cast (U32 v) { return __builtin_convertvector((I32)v, F); }
cast64(U64 v)1344 SI F cast64(U64 v) { return __builtin_convertvector( v, F); }
trunc_(F v)1345 SI U32 trunc_(F v) { return (U32)__builtin_convertvector( v, I32); }
expand(U16 v)1346 SI U32 expand(U16 v) { return __builtin_convertvector( v, U32); }
expand(U8 v)1347 SI U32 expand(U8 v) { return __builtin_convertvector( v, U32); }
1348 #endif
1349
1350 #if !defined(JUMPER_IS_SCALAR)
if_then_else(I32 c,F t,float e)1351 SI F if_then_else(I32 c, F t, float e) { return if_then_else(c, t , F_(e)); }
if_then_else(I32 c,float t,F e)1352 SI F if_then_else(I32 c, float t, F e) { return if_then_else(c, F_(t), e ); }
if_then_else(I32 c,float t,float e)1353 SI F if_then_else(I32 c, float t, float e) { return if_then_else(c, F_(t), F_(e)); }
1354 #endif
1355
fract(F v)1356 SI F fract(F v) { return v - floor_(v); }
1357
1358 // See http://www.machinedlearnings.com/2011/06/fast-approximate-logarithm-exponential.html
approx_log2(F x)1359 SI F approx_log2(F x) {
1360 // e - 127 is a fair approximation of log2(x) in its own right...
1361 F e = cast(sk_bit_cast<U32>(x)) * (1.0f / (1<<23));
1362
1363 // ... but using the mantissa to refine its error is _much_ better.
1364 F m = sk_bit_cast<F>((sk_bit_cast<U32>(x) & 0x007fffff) | 0x3f000000);
1365
1366 return nmad(m, 1.498030302f, e - 124.225514990f) - 1.725879990f / (0.3520887068f + m);
1367 }
1368
approx_log(F x)1369 SI F approx_log(F x) {
1370 const float ln2 = 0.69314718f;
1371 return ln2 * approx_log2(x);
1372 }
1373
approx_pow2(F x)1374 SI F approx_pow2(F x) {
1375 constexpr float kInfinityBits = 0x7f800000;
1376
1377 F f = fract(x);
1378 F approx = nmad(f, 1.490129070f, x + 121.274057500f);
1379 approx += 27.728023300f / (4.84252568f - f);
1380 approx *= 1.0f * (1<<23);
1381 approx = min(max(approx, F0), F_(kInfinityBits)); // guard against underflow/overflow
1382
1383 return sk_bit_cast<F>(round(approx));
1384 }
1385
approx_exp(F x)1386 SI F approx_exp(F x) {
1387 const float log2_e = 1.4426950408889634074f;
1388 return approx_pow2(log2_e * x);
1389 }
1390
approx_powf(F x,F y)1391 SI F approx_powf(F x, F y) {
1392 return if_then_else((x == 0)|(x == 1), x
1393 , approx_pow2(approx_log2(x) * y));
1394 }
1395 #if !defined(JUMPER_IS_SCALAR)
approx_powf(F x,float y)1396 SI F approx_powf(F x, float y) { return approx_powf(x, F_(y)); }
1397 #endif
1398
from_half(U16 h)1399 SI F from_half(U16 h) {
1400 #if defined(JUMPER_IS_NEON) && defined(SK_CPU_ARM64)
1401 return vcvt_f32_f16((float16x4_t)h);
1402
1403 #elif defined(JUMPER_IS_SKX)
1404 return _mm512_cvtph_ps((__m256i)h);
1405
1406 #elif defined(JUMPER_IS_HSW)
1407 return _mm256_cvtph_ps((__m128i)h);
1408
1409 #else
1410 // Remember, a half is 1-5-10 (sign-exponent-mantissa) with 15 exponent bias.
1411 U32 sem = expand(h),
1412 s = sem & 0x8000,
1413 em = sem ^ s;
1414
1415 // Convert to 1-8-23 float with 127 bias, flushing denorm halfs (including zero) to zero.
1416 auto denorm = (I32)em < 0x0400; // I32 comparison is often quicker, and always safe here.
1417 return if_then_else(denorm, F0
1418 , sk_bit_cast<F>( (s<<16) + (em<<13) + ((127-15)<<23) ));
1419 #endif
1420 }
1421
to_half(F f)1422 SI U16 to_half(F f) {
1423 #if defined(JUMPER_IS_NEON) && defined(SK_CPU_ARM64)
1424 return (U16)vcvt_f16_f32(f);
1425
1426 #elif defined(JUMPER_IS_SKX)
1427 return (U16)_mm512_cvtps_ph(f, _MM_FROUND_CUR_DIRECTION);
1428
1429 #elif defined(JUMPER_IS_HSW)
1430 return (U16)_mm256_cvtps_ph(f, _MM_FROUND_CUR_DIRECTION);
1431
1432 #else
1433 // Remember, a float is 1-8-23 (sign-exponent-mantissa) with 127 exponent bias.
1434 U32 sem = sk_bit_cast<U32>(f),
1435 s = sem & 0x80000000,
1436 em = sem ^ s;
1437
1438 // Convert to 1-5-10 half with 15 bias, flushing denorm halfs (including zero) to zero.
1439 auto denorm = (I32)em < 0x38800000; // I32 comparison is often quicker, and always safe here.
1440 return pack((U32)if_then_else(denorm, I32_(0)
1441 , (I32)((s>>16) + (em>>13) - ((127-15)<<10))));
1442 #endif
1443 }
1444
patch_memory_contexts(SkSpan<SkRasterPipeline_MemoryCtxPatch> memoryCtxPatches,size_t dx,size_t dy,size_t tail)1445 static void patch_memory_contexts(SkSpan<SkRasterPipeline_MemoryCtxPatch> memoryCtxPatches,
1446 size_t dx, size_t dy, size_t tail) {
1447 for (SkRasterPipeline_MemoryCtxPatch& patch : memoryCtxPatches) {
1448 SkRasterPipeline_MemoryCtx* ctx = patch.info.context;
1449
1450 const ptrdiff_t offset = patch.info.bytesPerPixel * (dy * ctx->stride + dx);
1451 if (patch.info.load) {
1452 void* ctxData = SkTAddOffset<void>(ctx->pixels, offset);
1453 memcpy(patch.scratch, ctxData, patch.info.bytesPerPixel * tail);
1454 }
1455
1456 SkASSERT(patch.backup == nullptr);
1457 void* scratchFakeBase = SkTAddOffset<void>(patch.scratch, -offset);
1458 patch.backup = ctx->pixels;
1459 ctx->pixels = scratchFakeBase;
1460 }
1461 }
1462
restore_memory_contexts(SkSpan<SkRasterPipeline_MemoryCtxPatch> memoryCtxPatches,size_t dx,size_t dy,size_t tail)1463 static void restore_memory_contexts(SkSpan<SkRasterPipeline_MemoryCtxPatch> memoryCtxPatches,
1464 size_t dx, size_t dy, size_t tail) {
1465 for (SkRasterPipeline_MemoryCtxPatch& patch : memoryCtxPatches) {
1466 SkRasterPipeline_MemoryCtx* ctx = patch.info.context;
1467
1468 SkASSERT(patch.backup != nullptr);
1469 ctx->pixels = patch.backup;
1470 patch.backup = nullptr;
1471
1472 const ptrdiff_t offset = patch.info.bytesPerPixel * (dy * ctx->stride + dx);
1473 if (patch.info.store) {
1474 void* ctxData = SkTAddOffset<void>(ctx->pixels, offset);
1475 memcpy(ctxData, patch.scratch, patch.info.bytesPerPixel * tail);
1476 }
1477 }
1478 }
1479
1480 #if defined(JUMPER_IS_SCALAR) || defined(JUMPER_IS_SSE2)
1481 // In scalar and SSE2 mode, we always use precise math so we can have more predictable results.
1482 // Chrome will use the SSE2 implementation when --disable-skia-runtime-opts is set. (b/40042946)
rcp_fast(F v)1483 SI F rcp_fast(F v) { return rcp_precise(v); }
rsqrt(F v)1484 SI F rsqrt(F v) { return rcp_precise(sqrt_(v)); }
1485 #else
rcp_fast(F v)1486 SI F rcp_fast(F v) { return rcp_approx(v); }
rsqrt(F v)1487 SI F rsqrt(F v) { return rsqrt_approx(v); }
1488 #endif
1489
1490 // Our fundamental vector depth is our pixel stride.
1491 static constexpr size_t N = sizeof(F) / sizeof(float);
1492
1493 // We're finally going to get to what a Stage function looks like!
1494
1495 // Any custom ABI to use for all (non-externally-facing) stage functions?
1496 // Also decide here whether to use narrow (compromise) or wide (ideal) stages.
1497 #if defined(SK_CPU_ARM32) && defined(JUMPER_IS_NEON)
1498 // This lets us pass vectors more efficiently on 32-bit ARM.
1499 // We can still only pass 16 floats, so best as 4x {r,g,b,a}.
1500 #define ABI __attribute__((pcs("aapcs-vfp")))
1501 #define JUMPER_NARROW_STAGES 1
1502 #elif defined(_MSC_VER)
1503 // Even if not vectorized, this lets us pass {r,g,b,a} as registers,
1504 // instead of {b,a} on the stack. Narrow stages work best for __vectorcall.
1505 #define ABI __vectorcall
1506 #define JUMPER_NARROW_STAGES 1
1507 #elif defined(__x86_64__) || defined(SK_CPU_ARM64) || defined(SK_CPU_LOONGARCH)
1508 // These platforms are ideal for wider stages, and their default ABI is ideal.
1509 #define ABI
1510 #define JUMPER_NARROW_STAGES 0
1511 #else
1512 // 32-bit or unknown... shunt them down the narrow path.
1513 // Odds are these have few registers and are better off there.
1514 #define ABI
1515 #define JUMPER_NARROW_STAGES 1
1516 #endif
1517
1518 #if JUMPER_NARROW_STAGES
1519 struct Params {
1520 size_t dx, dy;
1521 std::byte* base;
1522 F dr,dg,db,da;
1523 };
1524 using Stage = void(ABI*)(Params*, SkRasterPipelineStage* program, F r, F g, F b, F a);
1525 #else
1526 using Stage = void(ABI*)(SkRasterPipelineStage* program, size_t dx, size_t dy,
1527 std::byte* base, F,F,F,F, F,F,F,F);
1528 #endif
1529
start_pipeline(size_t dx,size_t dy,size_t xlimit,size_t ylimit,SkRasterPipelineStage * program,SkSpan<SkRasterPipeline_MemoryCtxPatch> memoryCtxPatches,uint8_t * tailPointer)1530 static void start_pipeline(size_t dx, size_t dy,
1531 size_t xlimit, size_t ylimit,
1532 SkRasterPipelineStage* program,
1533 SkSpan<SkRasterPipeline_MemoryCtxPatch> memoryCtxPatches,
1534 uint8_t* tailPointer) {
1535 uint8_t unreferencedTail;
1536 if (!tailPointer) {
1537 tailPointer = &unreferencedTail;
1538 }
1539 auto start = (Stage)program->fn;
1540 const size_t x0 = dx;
1541 std::byte* const base = nullptr;
1542 for (; dy < ylimit; dy++) {
1543 #if JUMPER_NARROW_STAGES
1544 Params params = { x0,dy,base, F0,F0,F0,F0 };
1545 while (params.dx + N <= xlimit) {
1546 start(¶ms,program, F0,F0,F0,F0);
1547 params.dx += N;
1548 }
1549 if (size_t tail = xlimit - params.dx) {
1550 *tailPointer = tail;
1551 patch_memory_contexts(memoryCtxPatches, params.dx, dy, tail);
1552 start(¶ms,program, F0,F0,F0,F0);
1553 restore_memory_contexts(memoryCtxPatches, params.dx, dy, tail);
1554 *tailPointer = 0xFF;
1555 }
1556 #else
1557 dx = x0;
1558 while (dx + N <= xlimit) {
1559 start(program,dx,dy,base, F0,F0,F0,F0, F0,F0,F0,F0);
1560 dx += N;
1561 }
1562 if (size_t tail = xlimit - dx) {
1563 *tailPointer = tail;
1564 patch_memory_contexts(memoryCtxPatches, dx, dy, tail);
1565 start(program,dx,dy,base, F0,F0,F0,F0, F0,F0,F0,F0);
1566 restore_memory_contexts(memoryCtxPatches, dx, dy, tail);
1567 *tailPointer = 0xFF;
1568 }
1569 #endif
1570 }
1571 }
1572
1573 #if SK_HAS_MUSTTAIL
1574 #define JUMPER_MUSTTAIL [[clang::musttail]]
1575 #else
1576 #define JUMPER_MUSTTAIL
1577 #endif
1578
1579 #if JUMPER_NARROW_STAGES
1580 #define DECLARE_STAGE(name, ARG, STAGE_RET, INC, OFFSET, MUSTTAIL) \
1581 SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, std::byte*& base, \
1582 F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da); \
1583 static void ABI name(Params* params, SkRasterPipelineStage* program, \
1584 F r, F g, F b, F a) { \
1585 OFFSET name##_k(Ctx{program}, params->dx,params->dy,params->base, \
1586 r,g,b,a, params->dr, params->dg, params->db, params->da); \
1587 INC; \
1588 auto fn = (Stage)program->fn; \
1589 MUSTTAIL return fn(params, program, r,g,b,a); \
1590 } \
1591 SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, std::byte*& base, \
1592 F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da)
1593 #else
1594 #define DECLARE_STAGE(name, ARG, STAGE_RET, INC, OFFSET, MUSTTAIL) \
1595 SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, std::byte*& base, \
1596 F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da); \
1597 static void ABI name(SkRasterPipelineStage* program, size_t dx, size_t dy, \
1598 std::byte* base, F r, F g, F b, F a, F dr, F dg, F db, F da) { \
1599 OFFSET name##_k(Ctx{program}, dx,dy,base, r,g,b,a, dr,dg,db,da); \
1600 INC; \
1601 auto fn = (Stage)program->fn; \
1602 MUSTTAIL return fn(program, dx,dy,base, r,g,b,a, dr,dg,db,da); \
1603 } \
1604 SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, std::byte*& base, \
1605 F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da)
1606 #endif
1607
1608 // A typical stage returns void, always increments the program counter by 1, and lets the optimizer
1609 // decide whether or not tail-calling is appropriate.
1610 #define STAGE(name, arg) \
1611 DECLARE_STAGE(name, arg, void, ++program, /*no offset*/, /*no musttail*/)
1612
1613 // A tail stage returns void, always increments the program counter by 1, and uses tail-calling.
1614 // Tail-calling is necessary in SkSL-generated programs, which can be thousands of ops long, and
1615 // could overflow the stack (particularly in debug).
1616 #define STAGE_TAIL(name, arg) \
1617 DECLARE_STAGE(name, arg, void, ++program, /*no offset*/, JUMPER_MUSTTAIL)
1618
1619 // A branch stage returns an integer, which is added directly to the program counter, and tailcalls.
1620 #define STAGE_BRANCH(name, arg) \
1621 DECLARE_STAGE(name, arg, int, /*no increment*/, program +=, JUMPER_MUSTTAIL)
1622
1623 // just_return() is a simple no-op stage that only exists to end the chain,
1624 // returning back up to start_pipeline(), and from there to the caller.
1625 #if JUMPER_NARROW_STAGES
just_return(Params *,SkRasterPipelineStage *,F,F,F,F)1626 static void ABI just_return(Params*, SkRasterPipelineStage*, F,F,F,F) {}
1627 #else
just_return(SkRasterPipelineStage *,size_t,size_t,std::byte *,F,F,F,F,F,F,F,F)1628 static void ABI just_return(SkRasterPipelineStage*, size_t,size_t, std::byte*,
1629 F,F,F,F, F,F,F,F) {}
1630 #endif
1631
1632 // Note that in release builds, most stages consume no stack (thanks to tail call optimization).
1633 // However: certain builds (especially with non-clang compilers) may fail to optimize tail
1634 // calls, resulting in actual stack frames being generated.
1635 //
1636 // stack_checkpoint() and stack_rewind() are special stages that can be used to manage stack growth.
1637 // If a pipeline contains a stack_checkpoint, followed by any number of stack_rewind (at any point),
1638 // the C++ stack will be reset to the state it was at when the stack_checkpoint was initially hit.
1639 //
1640 // All instances of stack_rewind (as well as the one instance of stack_checkpoint near the start of
1641 // a pipeline) share a single context (of type SkRasterPipeline_RewindCtx). That context holds the
1642 // full state of the mutable registers that are normally passed to the next stage in the program.
1643 //
1644 // stack_rewind is the only stage other than just_return that actually returns (rather than jumping
1645 // to the next stage in the program). Before it does so, it stashes all of the registers in the
1646 // context. This includes the updated `program` pointer. Unlike stages that tail call exactly once,
1647 // stack_checkpoint calls the next stage in the program repeatedly, as long as the `program` in the
1648 // context is overwritten (i.e., as long as a stack_rewind was the reason the pipeline returned,
1649 // rather than a just_return).
1650 //
1651 // Normally, just_return is the only stage that returns, and no other stage does anything after a
1652 // subsequent (called) stage returns, so the stack just unwinds all the way to start_pipeline.
1653 // With stack_checkpoint on the stack, any stack_rewind stages will return all the way up to the
1654 // stack_checkpoint. That grabs the values that would have been passed to the next stage (from the
1655 // context), and continues the linear execution of stages, but has reclaimed all of the stack frames
1656 // pushed before the stack_rewind before doing so.
1657 #if JUMPER_NARROW_STAGES
stack_checkpoint(Params * params,SkRasterPipelineStage * program,F r,F g,F b,F a)1658 static void ABI stack_checkpoint(Params* params, SkRasterPipelineStage* program,
1659 F r, F g, F b, F a) {
1660 SkRasterPipeline_RewindCtx* ctx = Ctx{program};
1661 while (program) {
1662 auto next = (Stage)(++program)->fn;
1663
1664 ctx->stage = nullptr;
1665 next(params, program, r, g, b, a);
1666 program = ctx->stage;
1667
1668 if (program) {
1669 r = sk_unaligned_load<F>(ctx->r );
1670 g = sk_unaligned_load<F>(ctx->g );
1671 b = sk_unaligned_load<F>(ctx->b );
1672 a = sk_unaligned_load<F>(ctx->a );
1673 params->dr = sk_unaligned_load<F>(ctx->dr);
1674 params->dg = sk_unaligned_load<F>(ctx->dg);
1675 params->db = sk_unaligned_load<F>(ctx->db);
1676 params->da = sk_unaligned_load<F>(ctx->da);
1677 params->base = ctx->base;
1678 }
1679 }
1680 }
stack_rewind(Params * params,SkRasterPipelineStage * program,F r,F g,F b,F a)1681 static void ABI stack_rewind(Params* params, SkRasterPipelineStage* program,
1682 F r, F g, F b, F a) {
1683 SkRasterPipeline_RewindCtx* ctx = Ctx{program};
1684 sk_unaligned_store(ctx->r , r );
1685 sk_unaligned_store(ctx->g , g );
1686 sk_unaligned_store(ctx->b , b );
1687 sk_unaligned_store(ctx->a , a );
1688 sk_unaligned_store(ctx->dr, params->dr);
1689 sk_unaligned_store(ctx->dg, params->dg);
1690 sk_unaligned_store(ctx->db, params->db);
1691 sk_unaligned_store(ctx->da, params->da);
1692 ctx->base = params->base;
1693 ctx->stage = program;
1694 }
1695 #else
stack_checkpoint(SkRasterPipelineStage * program,size_t dx,size_t dy,std::byte * base,F r,F g,F b,F a,F dr,F dg,F db,F da)1696 static void ABI stack_checkpoint(SkRasterPipelineStage* program,
1697 size_t dx, size_t dy, std::byte* base,
1698 F r, F g, F b, F a, F dr, F dg, F db, F da) {
1699 SkRasterPipeline_RewindCtx* ctx = Ctx{program};
1700 while (program) {
1701 auto next = (Stage)(++program)->fn;
1702
1703 ctx->stage = nullptr;
1704 next(program, dx, dy, base, r, g, b, a, dr, dg, db, da);
1705 program = ctx->stage;
1706
1707 if (program) {
1708 r = sk_unaligned_load<F>(ctx->r );
1709 g = sk_unaligned_load<F>(ctx->g );
1710 b = sk_unaligned_load<F>(ctx->b );
1711 a = sk_unaligned_load<F>(ctx->a );
1712 dr = sk_unaligned_load<F>(ctx->dr);
1713 dg = sk_unaligned_load<F>(ctx->dg);
1714 db = sk_unaligned_load<F>(ctx->db);
1715 da = sk_unaligned_load<F>(ctx->da);
1716 base = ctx->base;
1717 }
1718 }
1719 }
stack_rewind(SkRasterPipelineStage * program,size_t dx,size_t dy,std::byte * base,F r,F g,F b,F a,F dr,F dg,F db,F da)1720 static void ABI stack_rewind(SkRasterPipelineStage* program,
1721 size_t dx, size_t dy, std::byte* base,
1722 F r, F g, F b, F a, F dr, F dg, F db, F da) {
1723 SkRasterPipeline_RewindCtx* ctx = Ctx{program};
1724 sk_unaligned_store(ctx->r , r );
1725 sk_unaligned_store(ctx->g , g );
1726 sk_unaligned_store(ctx->b , b );
1727 sk_unaligned_store(ctx->a , a );
1728 sk_unaligned_store(ctx->dr, dr);
1729 sk_unaligned_store(ctx->dg, dg);
1730 sk_unaligned_store(ctx->db, db);
1731 sk_unaligned_store(ctx->da, da);
1732 ctx->base = base;
1733 ctx->stage = program;
1734 }
1735 #endif
1736
1737
1738 // We could start defining normal Stages now. But first, some helper functions.
1739
1740 template <typename V, typename T>
load(const T * src)1741 SI V load(const T* src) {
1742 return sk_unaligned_load<V>(src);
1743 }
1744
1745 template <typename V, typename T>
store(T * dst,V v)1746 SI void store(T* dst, V v) {
1747 sk_unaligned_store(dst, v);
1748 }
1749
from_byte(U8 b)1750 SI F from_byte(U8 b) {
1751 return cast(expand(b)) * (1/255.0f);
1752 }
from_short(U16 s)1753 SI F from_short(U16 s) {
1754 return cast(expand(s)) * (1/65535.0f);
1755 }
from_565(U16 _565,F * r,F * g,F * b)1756 SI void from_565(U16 _565, F* r, F* g, F* b) {
1757 U32 wide = expand(_565);
1758 *r = cast(wide & (31<<11)) * (1.0f / (31<<11));
1759 *g = cast(wide & (63<< 5)) * (1.0f / (63<< 5));
1760 *b = cast(wide & (31<< 0)) * (1.0f / (31<< 0));
1761 }
from_4444(U16 _4444,F * r,F * g,F * b,F * a)1762 SI void from_4444(U16 _4444, F* r, F* g, F* b, F* a) {
1763 U32 wide = expand(_4444);
1764 *r = cast(wide & (15<<12)) * (1.0f / (15<<12));
1765 *g = cast(wide & (15<< 8)) * (1.0f / (15<< 8));
1766 *b = cast(wide & (15<< 4)) * (1.0f / (15<< 4));
1767 *a = cast(wide & (15<< 0)) * (1.0f / (15<< 0));
1768 }
from_8888(U32 _8888,F * r,F * g,F * b,F * a)1769 SI void from_8888(U32 _8888, F* r, F* g, F* b, F* a) {
1770 *r = cast((_8888 ) & 0xff) * (1/255.0f);
1771 *g = cast((_8888 >> 8) & 0xff) * (1/255.0f);
1772 *b = cast((_8888 >> 16) & 0xff) * (1/255.0f);
1773 *a = cast((_8888 >> 24) ) * (1/255.0f);
1774 }
from_88(U16 _88,F * r,F * g)1775 SI void from_88(U16 _88, F* r, F* g) {
1776 U32 wide = expand(_88);
1777 *r = cast((wide ) & 0xff) * (1/255.0f);
1778 *g = cast((wide >> 8) & 0xff) * (1/255.0f);
1779 }
from_1010102(U32 rgba,F * r,F * g,F * b,F * a)1780 SI void from_1010102(U32 rgba, F* r, F* g, F* b, F* a) {
1781 *r = cast((rgba ) & 0x3ff) * (1/1023.0f);
1782 *g = cast((rgba >> 10) & 0x3ff) * (1/1023.0f);
1783 *b = cast((rgba >> 20) & 0x3ff) * (1/1023.0f);
1784 *a = cast((rgba >> 30) ) * (1/ 3.0f);
1785 }
from_1010102_xr(U32 rgba,F * r,F * g,F * b,F * a)1786 SI void from_1010102_xr(U32 rgba, F* r, F* g, F* b, F* a) {
1787 static constexpr float min = -0.752941f;
1788 static constexpr float max = 1.25098f;
1789 static constexpr float range = max - min;
1790 *r = cast((rgba ) & 0x3ff) * (1/1023.0f) * range + min;
1791 *g = cast((rgba >> 10) & 0x3ff) * (1/1023.0f) * range + min;
1792 *b = cast((rgba >> 20) & 0x3ff) * (1/1023.0f) * range + min;
1793 *a = cast((rgba >> 30) ) * (1/ 3.0f);
1794 }
from_10101010_xr(U64 _10x6,F * r,F * g,F * b,F * a)1795 SI void from_10101010_xr(U64 _10x6, F* r, F* g, F* b, F* a) {
1796 *r = (cast64((_10x6 >> 6) & 0x3ff) - 384.f) / 510.f;
1797 *g = (cast64((_10x6 >> 22) & 0x3ff) - 384.f) / 510.f;
1798 *b = (cast64((_10x6 >> 38) & 0x3ff) - 384.f) / 510.f;
1799 *a = (cast64((_10x6 >> 54) & 0x3ff) - 384.f) / 510.f;
1800 }
from_10x6(U64 _10x6,F * r,F * g,F * b,F * a)1801 SI void from_10x6(U64 _10x6, F* r, F* g, F* b, F* a) {
1802 *r = cast64((_10x6 >> 6) & 0x3ff) * (1/1023.0f);
1803 *g = cast64((_10x6 >> 22) & 0x3ff) * (1/1023.0f);
1804 *b = cast64((_10x6 >> 38) & 0x3ff) * (1/1023.0f);
1805 *a = cast64((_10x6 >> 54) & 0x3ff) * (1/1023.0f);
1806 }
from_1616(U32 _1616,F * r,F * g)1807 SI void from_1616(U32 _1616, F* r, F* g) {
1808 *r = cast((_1616 ) & 0xffff) * (1/65535.0f);
1809 *g = cast((_1616 >> 16) & 0xffff) * (1/65535.0f);
1810 }
from_16161616(U64 _16161616,F * r,F * g,F * b,F * a)1811 SI void from_16161616(U64 _16161616, F* r, F* g, F* b, F* a) {
1812 *r = cast64((_16161616 ) & 0xffff) * (1/65535.0f);
1813 *g = cast64((_16161616 >> 16) & 0xffff) * (1/65535.0f);
1814 *b = cast64((_16161616 >> 32) & 0xffff) * (1/65535.0f);
1815 *a = cast64((_16161616 >> 48) & 0xffff) * (1/65535.0f);
1816 }
1817
1818 // Used by load_ and store_ stages to get to the right (dx,dy) starting point of contiguous memory.
1819 template <typename T>
ptr_at_xy(const SkRasterPipeline_MemoryCtx * ctx,size_t dx,size_t dy)1820 SI T* ptr_at_xy(const SkRasterPipeline_MemoryCtx* ctx, size_t dx, size_t dy) {
1821 return (T*)ctx->pixels + dy*ctx->stride + dx;
1822 }
1823
1824 // clamp v to [0,limit).
clamp(F v,F limit)1825 SI F clamp(F v, F limit) {
1826 F inclusive = sk_bit_cast<F>(sk_bit_cast<U32>(limit) - 1); // Exclusive -> inclusive.
1827 return min(max(0.0f, v), inclusive);
1828 }
1829
1830 // clamp to (0,limit).
clamp_ex(F v,float limit)1831 SI F clamp_ex(F v, float limit) {
1832 const F inclusiveZ = F_(std::numeric_limits<float>::min()),
1833 inclusiveL = sk_bit_cast<F>( sk_bit_cast<U32>(F_(limit)) - 1 );
1834 return min(max(inclusiveZ, v), inclusiveL);
1835 }
1836
1837 // Polynomial approximation of degree 5 for sin(x * 2 * pi) in the range [-1/4, 1/4]
1838 // Adapted from https://github.com/google/swiftshader/blob/master/docs/Sin-Cos-Optimization.pdf
sin5q_(F x)1839 SI F sin5q_(F x) {
1840 // A * x + B * x^3 + C * x^5
1841 // Exact at x = 0, 1/12, 1/6, 1/4, and their negatives,
1842 // which correspond to x * 2 * pi = 0, pi/6, pi/3, pi/2
1843 constexpr float A = 6.28230858f;
1844 constexpr float B = -41.1693687f;
1845 constexpr float C = 74.4388885f;
1846 F x2 = x * x;
1847 return x * mad(mad(x2, C, B), x2, A);
1848 }
1849
sin_(F x)1850 SI F sin_(F x) {
1851 constexpr float one_over_pi2 = 1 / (2 * SK_FloatPI);
1852 x = mad(x, -one_over_pi2, 0.25f);
1853 x = 0.25f - abs_(x - floor_(x + 0.5f));
1854 return sin5q_(x);
1855 }
1856
cos_(F x)1857 SI F cos_(F x) {
1858 constexpr float one_over_pi2 = 1 / (2 * SK_FloatPI);
1859 x *= one_over_pi2;
1860 x = 0.25f - abs_(x - floor_(x + 0.5f));
1861 return sin5q_(x);
1862 }
1863
1864 /* "GENERATING ACCURATE VALUES FOR THE TANGENT FUNCTION"
1865 https://mae.ufl.edu/~uhk/ACCURATE-TANGENT.pdf
1866
1867 approx = x + (1/3)x^3 + (2/15)x^5 + (17/315)x^7 + (62/2835)x^9
1868
1869 Some simplifications:
1870 1. tan(x) is periodic, -PI/2 < x < PI/2
1871 2. tan(x) is odd, so tan(-x) = -tan(x)
1872 3. Our polynomial approximation is best near zero, so we use the following identity
1873 tan(x) + tan(y)
1874 tan(x + y) = -----------------
1875 1 - tan(x)*tan(y)
1876 tan(PI/4) = 1
1877
1878 So for x > PI/8, we do the following refactor:
1879 x' = x - PI/4
1880
1881 1 + tan(x')
1882 tan(x) = ------------
1883 1 - tan(x')
1884 */
tan_(F x)1885 SI F tan_(F x) {
1886 constexpr float Pi = SK_FloatPI;
1887 // periodic between -pi/2 ... pi/2
1888 // shift to 0...Pi, scale 1/Pi to get into 0...1, then fract, scale-up, shift-back
1889 x = mad(fract(mad(x, 1/Pi, 0.5f)), Pi, -Pi/2);
1890
1891 I32 neg = (x < 0.0f);
1892 x = if_then_else(neg, -x, x);
1893
1894 // minimize total error by shifting if x > pi/8
1895 I32 use_quotient = (x > (Pi/8));
1896 x = if_then_else(use_quotient, x - (Pi/4), x);
1897
1898 // 9th order poly = 4th order(x^2) * x
1899 const float c4 = 62 / 2835.0f;
1900 const float c3 = 17 / 315.0f;
1901 const float c2 = 2 / 15.0f;
1902 const float c1 = 1 / 3.0f;
1903 const float c0 = 1.0f;
1904 F x2 = x * x;
1905 x *= mad(x2, mad(x2, mad(x2, mad(x2, c4, c3), c2), c1), c0);
1906 x = if_then_else(use_quotient, (1+x)/(1-x), x);
1907 x = if_then_else(neg, -x, x);
1908 return x;
1909 }
1910
1911 /* Use 4th order polynomial approximation from https://arachnoid.com/polysolve/
1912 with 129 values of x,atan(x) for x:[0...1]
1913 This only works for 0 <= x <= 1
1914 */
approx_atan_unit(F x)1915 SI F approx_atan_unit(F x) {
1916 // y = 0.14130025741326729 x⁴
1917 // - 0.34312835980675116 x³
1918 // - 0.016172900528248768 x²
1919 // + 1.00376969762003850 x
1920 // - 0.00014758242182738969
1921 const float c4 = 0.14130025741326729f;
1922 const float c3 = -0.34312835980675116f;
1923 const float c2 = -0.016172900528248768f;
1924 const float c1 = 1.0037696976200385f;
1925 const float c0 = -0.00014758242182738969f;
1926 return mad(x, mad(x, mad(x, mad(x, c4, c3), c2), c1), c0);
1927 }
1928
1929 // Use identity atan(x) = pi/2 - atan(1/x) for x > 1
atan_(F x)1930 SI F atan_(F x) {
1931 I32 neg = (x < 0.0f);
1932 x = if_then_else(neg, -x, x);
1933 I32 flip = (x > 1.0f);
1934 x = if_then_else(flip, 1/x, x);
1935 x = approx_atan_unit(x);
1936 x = if_then_else(flip, SK_FloatPI/2 - x, x);
1937 x = if_then_else(neg, -x, x);
1938 return x;
1939 }
1940
1941 // Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun:
1942 // https://books.google.com/books/content?id=ZboM5tOFWtsC&pg=PA81&img=1&zoom=3&hl=en&bul=1&sig=ACfU3U2M75tG_iGVOS92eQspr14LTq02Nw&ci=0%2C15%2C999%2C1279&edge=0
1943 // http://screen/8YGJxUGFQ49bVX6
asin_(F x)1944 SI F asin_(F x) {
1945 I32 neg = (x < 0.0f);
1946 x = if_then_else(neg, -x, x);
1947 const float c3 = -0.0187293f;
1948 const float c2 = 0.0742610f;
1949 const float c1 = -0.2121144f;
1950 const float c0 = 1.5707288f;
1951 F poly = mad(x, mad(x, mad(x, c3, c2), c1), c0);
1952 x = nmad(sqrt_(1 - x), poly, SK_FloatPI/2);
1953 x = if_then_else(neg, -x, x);
1954 return x;
1955 }
1956
acos_(F x)1957 SI F acos_(F x) {
1958 return SK_FloatPI/2 - asin_(x);
1959 }
1960
1961 /* Use identity atan(x) = pi/2 - atan(1/x) for x > 1
1962 By swapping y,x to ensure the ratio is <= 1, we can safely call atan_unit()
1963 which avoids a 2nd divide instruction if we had instead called atan().
1964 */
atan2_(F y0,F x0)1965 SI F atan2_(F y0, F x0) {
1966 I32 flip = (abs_(y0) > abs_(x0));
1967 F y = if_then_else(flip, x0, y0);
1968 F x = if_then_else(flip, y0, x0);
1969 F arg = y/x;
1970
1971 I32 neg = (arg < 0.0f);
1972 arg = if_then_else(neg, -arg, arg);
1973
1974 F r = approx_atan_unit(arg);
1975 r = if_then_else(flip, SK_FloatPI/2 - r, r);
1976 r = if_then_else(neg, -r, r);
1977
1978 // handle quadrant distinctions
1979 r = if_then_else((y0 >= 0) & (x0 < 0), r + SK_FloatPI, r);
1980 r = if_then_else((y0 < 0) & (x0 <= 0), r - SK_FloatPI, r);
1981 // Note: we don't try to handle 0,0 or infinities
1982 return r;
1983 }
1984
1985 // Used by gather_ stages to calculate the base pointer and a vector of indices to load.
1986 template <typename T>
ix_and_ptr(T ** ptr,const SkRasterPipeline_GatherCtx * ctx,F x,F y)1987 SI U32 ix_and_ptr(T** ptr, const SkRasterPipeline_GatherCtx* ctx, F x, F y) {
1988 // We use exclusive clamp so that our min value is > 0 because ULP subtraction using U32 would
1989 // produce a NaN if applied to +0.f.
1990 x = clamp_ex(x, ctx->width );
1991 y = clamp_ex(y, ctx->height);
1992 x = sk_bit_cast<F>(sk_bit_cast<U32>(x) - (uint32_t)ctx->roundDownAtInteger);
1993 y = sk_bit_cast<F>(sk_bit_cast<U32>(y) - (uint32_t)ctx->roundDownAtInteger);
1994 *ptr = (const T*)ctx->pixels;
1995 return trunc_(y)*ctx->stride + trunc_(x);
1996 }
1997
1998 // We often have a nominally [0,1] float value we need to scale and convert to an integer,
1999 // whether for a table lookup or to pack back down into bytes for storage.
2000 //
2001 // In practice, especially when dealing with interesting color spaces, that notionally
2002 // [0,1] float may be out of [0,1] range. Unorms cannot represent that, so we must clamp.
2003 //
2004 // You can adjust the expected input to [0,bias] by tweaking that parameter.
2005 SI U32 to_unorm(F v, float scale, float bias = 1.0f) {
2006 // Any time we use round() we probably want to use to_unorm().
2007 return round(min(max(0.0f, v), bias), F_(scale));
2008 }
2009
cond_to_mask(I32 cond)2010 SI I32 cond_to_mask(I32 cond) {
2011 #if defined(JUMPER_IS_SCALAR)
2012 // In scalar mode, conditions are bools (0 or 1), but we want to store and operate on masks
2013 // (eg, using bitwise operations to select values).
2014 return if_then_else(cond, I32(~0), I32(0));
2015 #else
2016 // In SIMD mode, our various instruction sets already represent conditions as masks.
2017 return cond;
2018 #endif
2019 }
2020
2021 #if defined(JUMPER_IS_SCALAR)
2022 // In scalar mode, `data` only contains a single lane.
select_lane(uint32_t data,int)2023 SI uint32_t select_lane(uint32_t data, int /*lane*/) { return data; }
select_lane(int32_t data,int)2024 SI int32_t select_lane( int32_t data, int /*lane*/) { return data; }
2025 #else
2026 // In SIMD mode, `data` contains a vector of lanes.
select_lane(U32 data,int lane)2027 SI uint32_t select_lane(U32 data, int lane) { return data[lane]; }
select_lane(I32 data,int lane)2028 SI int32_t select_lane(I32 data, int lane) { return data[lane]; }
2029 #endif
2030
2031 // Now finally, normal Stages!
2032
STAGE(seed_shader,NoCtx)2033 STAGE(seed_shader, NoCtx) {
2034 static constexpr float iota[] = {
2035 0.5f, 1.5f, 2.5f, 3.5f, 4.5f, 5.5f, 6.5f, 7.5f,
2036 8.5f, 9.5f,10.5f,11.5f,12.5f,13.5f,14.5f,15.5f,
2037 };
2038 static_assert(std::size(iota) >= SkRasterPipeline_kMaxStride_highp);
2039
2040 // It's important for speed to explicitly cast(dx) and cast(dy),
2041 // which has the effect of splatting them to vectors before converting to floats.
2042 // On Intel this breaks a data dependency on previous loop iterations' registers.
2043 r = cast(U32_(dx)) + sk_unaligned_load<F>(iota);
2044 g = cast(U32_(dy)) + 0.5f;
2045 b = F1; // This is w=1 for matrix multiplies by the device coords.
2046 a = F0;
2047 }
2048
STAGE(dither,const float * rate)2049 STAGE(dither, const float* rate) {
2050 // Get [(dx,dy), (dx+1,dy), (dx+2,dy), ...] loaded up in integer vectors.
2051 uint32_t iota[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
2052 static_assert(std::size(iota) >= SkRasterPipeline_kMaxStride_highp);
2053
2054 U32 X = U32_(dx) + sk_unaligned_load<U32>(iota),
2055 Y = U32_(dy);
2056
2057 // We're doing 8x8 ordered dithering, see https://en.wikipedia.org/wiki/Ordered_dithering.
2058 // In this case n=8 and we're using the matrix that looks like 1/64 x [ 0 48 12 60 ... ].
2059
2060 // We only need X and X^Y from here on, so it's easier to just think of that as "Y".
2061 Y ^= X;
2062
2063 // We'll mix the bottom 3 bits of each of X and Y to make 6 bits,
2064 // for 2^6 == 64 == 8x8 matrix values. If X=abc and Y=def, we make fcebda.
2065 U32 M = (Y & 1) << 5 | (X & 1) << 4
2066 | (Y & 2) << 2 | (X & 2) << 1
2067 | (Y & 4) >> 1 | (X & 4) >> 2;
2068
2069 // Scale that dither to [0,1), then (-0.5,+0.5), here using 63/128 = 0.4921875 as 0.5-epsilon.
2070 // We want to make sure our dither is less than 0.5 in either direction to keep exact values
2071 // like 0 and 1 unchanged after rounding.
2072 F dither = mad(cast(M), 2/128.0f, -63/128.0f);
2073
2074 r = mad(dither, *rate, r);
2075 g = mad(dither, *rate, g);
2076 b = mad(dither, *rate, b);
2077
2078 r = max(0.0f, min(r, a));
2079 g = max(0.0f, min(g, a));
2080 b = max(0.0f, min(b, a));
2081 }
2082
2083 // load 4 floats from memory, and splat them into r,g,b,a
STAGE(uniform_color,const SkRasterPipeline_UniformColorCtx * c)2084 STAGE(uniform_color, const SkRasterPipeline_UniformColorCtx* c) {
2085 r = F_(c->r);
2086 g = F_(c->g);
2087 b = F_(c->b);
2088 a = F_(c->a);
2089 }
STAGE(unbounded_uniform_color,const SkRasterPipeline_UniformColorCtx * c)2090 STAGE(unbounded_uniform_color, const SkRasterPipeline_UniformColorCtx* c) {
2091 r = F_(c->r);
2092 g = F_(c->g);
2093 b = F_(c->b);
2094 a = F_(c->a);
2095 }
2096 // load 4 floats from memory, and splat them into dr,dg,db,da
STAGE(uniform_color_dst,const SkRasterPipeline_UniformColorCtx * c)2097 STAGE(uniform_color_dst, const SkRasterPipeline_UniformColorCtx* c) {
2098 dr = F_(c->r);
2099 dg = F_(c->g);
2100 db = F_(c->b);
2101 da = F_(c->a);
2102 }
2103
2104 // splats opaque-black into r,g,b,a
STAGE(black_color,NoCtx)2105 STAGE(black_color, NoCtx) {
2106 r = g = b = F0;
2107 a = F1;
2108 }
2109
STAGE(white_color,NoCtx)2110 STAGE(white_color, NoCtx) {
2111 r = g = b = a = F1;
2112 }
2113
2114 // load registers r,g,b,a from context (mirrors store_src)
STAGE(load_src,const float * ptr)2115 STAGE(load_src, const float* ptr) {
2116 r = sk_unaligned_load<F>(ptr + 0*N);
2117 g = sk_unaligned_load<F>(ptr + 1*N);
2118 b = sk_unaligned_load<F>(ptr + 2*N);
2119 a = sk_unaligned_load<F>(ptr + 3*N);
2120 }
2121
2122 // store registers r,g,b,a into context (mirrors load_src)
STAGE(store_src,float * ptr)2123 STAGE(store_src, float* ptr) {
2124 sk_unaligned_store(ptr + 0*N, r);
2125 sk_unaligned_store(ptr + 1*N, g);
2126 sk_unaligned_store(ptr + 2*N, b);
2127 sk_unaligned_store(ptr + 3*N, a);
2128 }
2129 // store registers r,g into context
STAGE(store_src_rg,float * ptr)2130 STAGE(store_src_rg, float* ptr) {
2131 sk_unaligned_store(ptr + 0*N, r);
2132 sk_unaligned_store(ptr + 1*N, g);
2133 }
2134 // load registers r,g from context
STAGE(load_src_rg,float * ptr)2135 STAGE(load_src_rg, float* ptr) {
2136 r = sk_unaligned_load<F>(ptr + 0*N);
2137 g = sk_unaligned_load<F>(ptr + 1*N);
2138 }
2139 // store register a into context
STAGE(store_src_a,float * ptr)2140 STAGE(store_src_a, float* ptr) {
2141 sk_unaligned_store(ptr, a);
2142 }
2143
2144 // load registers dr,dg,db,da from context (mirrors store_dst)
STAGE(load_dst,const float * ptr)2145 STAGE(load_dst, const float* ptr) {
2146 dr = sk_unaligned_load<F>(ptr + 0*N);
2147 dg = sk_unaligned_load<F>(ptr + 1*N);
2148 db = sk_unaligned_load<F>(ptr + 2*N);
2149 da = sk_unaligned_load<F>(ptr + 3*N);
2150 }
2151
2152 // store registers dr,dg,db,da into context (mirrors load_dst)
STAGE(store_dst,float * ptr)2153 STAGE(store_dst, float* ptr) {
2154 sk_unaligned_store(ptr + 0*N, dr);
2155 sk_unaligned_store(ptr + 1*N, dg);
2156 sk_unaligned_store(ptr + 2*N, db);
2157 sk_unaligned_store(ptr + 3*N, da);
2158 }
2159
2160 // Most blend modes apply the same logic to each channel.
2161 #define BLEND_MODE(name) \
2162 SI F name##_channel(F s, F d, F sa, F da); \
2163 STAGE(name, NoCtx) { \
2164 r = name##_channel(r,dr,a,da); \
2165 g = name##_channel(g,dg,a,da); \
2166 b = name##_channel(b,db,a,da); \
2167 a = name##_channel(a,da,a,da); \
2168 } \
2169 SI F name##_channel(F s, F d, F sa, F da)
2170
inv(F x)2171 SI F inv(F x) { return 1.0f - x; }
two(F x)2172 SI F two(F x) { return x + x; }
2173
BLEND_MODE(clear)2174 BLEND_MODE(clear) { return F0; }
BLEND_MODE(srcatop)2175 BLEND_MODE(srcatop) { return mad(s, da, d*inv(sa)); }
BLEND_MODE(dstatop)2176 BLEND_MODE(dstatop) { return mad(d, sa, s*inv(da)); }
BLEND_MODE(srcin)2177 BLEND_MODE(srcin) { return s * da; }
BLEND_MODE(dstin)2178 BLEND_MODE(dstin) { return d * sa; }
BLEND_MODE(srcout)2179 BLEND_MODE(srcout) { return s * inv(da); }
BLEND_MODE(dstout)2180 BLEND_MODE(dstout) { return d * inv(sa); }
BLEND_MODE(srcover)2181 BLEND_MODE(srcover) { return mad(d, inv(sa), s); }
BLEND_MODE(dstover)2182 BLEND_MODE(dstover) { return mad(s, inv(da), d); }
2183
BLEND_MODE(modulate)2184 BLEND_MODE(modulate) { return s*d; }
BLEND_MODE(multiply)2185 BLEND_MODE(multiply) { return mad(s, d, mad(s, inv(da), d*inv(sa))); }
BLEND_MODE(plus_)2186 BLEND_MODE(plus_) { return min(s + d, 1.0f); } // We can clamp to either 1 or sa.
BLEND_MODE(screen)2187 BLEND_MODE(screen) { return nmad(s, d, s + d); }
BLEND_MODE(xor_)2188 BLEND_MODE(xor_) { return mad(s, inv(da), d*inv(sa)); }
2189 #undef BLEND_MODE
2190
2191 // Most other blend modes apply the same logic to colors, and srcover to alpha.
2192 #define BLEND_MODE(name) \
2193 SI F name##_channel(F s, F d, F sa, F da); \
2194 STAGE(name, NoCtx) { \
2195 r = name##_channel(r,dr,a,da); \
2196 g = name##_channel(g,dg,a,da); \
2197 b = name##_channel(b,db,a,da); \
2198 a = mad(da, inv(a), a); \
2199 } \
2200 SI F name##_channel(F s, F d, F sa, F da)
2201
BLEND_MODE(darken)2202 BLEND_MODE(darken) { return s + d - max(s*da, d*sa) ; }
BLEND_MODE(lighten)2203 BLEND_MODE(lighten) { return s + d - min(s*da, d*sa) ; }
BLEND_MODE(difference)2204 BLEND_MODE(difference) { return s + d - two(min(s*da, d*sa)); }
BLEND_MODE(exclusion)2205 BLEND_MODE(exclusion) { return s + d - two(s*d); }
2206
BLEND_MODE(colorburn)2207 BLEND_MODE(colorburn) {
2208 return if_then_else(d == da, d + s*inv(da),
2209 if_then_else(s == 0, /* s + */ d*inv(sa),
2210 sa*(da - min(da, (da-d)*sa*rcp_fast(s))) + s*inv(da) + d*inv(sa)));
2211 }
BLEND_MODE(colordodge)2212 BLEND_MODE(colordodge) {
2213 return if_then_else(d == 0, /* d + */ s*inv(da),
2214 if_then_else(s == sa, s + d*inv(sa),
2215 sa*min(da, (d*sa)*rcp_fast(sa - s)) + s*inv(da) + d*inv(sa)));
2216 }
BLEND_MODE(hardlight)2217 BLEND_MODE(hardlight) {
2218 return s*inv(da) + d*inv(sa)
2219 + if_then_else(two(s) <= sa, two(s*d), sa*da - two((da-d)*(sa-s)));
2220 }
BLEND_MODE(overlay)2221 BLEND_MODE(overlay) {
2222 return s*inv(da) + d*inv(sa)
2223 + if_then_else(two(d) <= da, two(s*d), sa*da - two((da-d)*(sa-s)));
2224 }
2225
BLEND_MODE(softlight)2226 BLEND_MODE(softlight) {
2227 F m = if_then_else(da > 0, d / da, 0.0f),
2228 s2 = two(s),
2229 m4 = two(two(m));
2230
2231 // The logic forks three ways:
2232 // 1. dark src?
2233 // 2. light src, dark dst?
2234 // 3. light src, light dst?
2235 F darkSrc = d*(sa + (s2 - sa)*(1.0f - m)), // Used in case 1.
2236 darkDst = (m4*m4 + m4)*(m - 1.0f) + 7.0f*m, // Used in case 2.
2237 liteDst = sqrt_(m) - m,
2238 liteSrc = d*sa + da*(s2 - sa) * if_then_else(two(two(d)) <= da, darkDst, liteDst); // 2 or 3?
2239 return s*inv(da) + d*inv(sa) + if_then_else(s2 <= sa, darkSrc, liteSrc); // 1 or (2 or 3)?
2240 }
2241 #undef BLEND_MODE
2242
2243 // We're basing our implemenation of non-separable blend modes on
2244 // https://www.w3.org/TR/compositing-1/#blendingnonseparable.
2245 // and
2246 // https://www.khronos.org/registry/OpenGL/specs/es/3.2/es_spec_3.2.pdf
2247 // They're equivalent, but ES' math has been better simplified.
2248 //
2249 // Anything extra we add beyond that is to make the math work with premul inputs.
2250
sat(F r,F g,F b)2251 SI F sat(F r, F g, F b) { return max(r, max(g,b)) - min(r, min(g,b)); }
lum(F r,F g,F b)2252 SI F lum(F r, F g, F b) { return mad(r, 0.30f, mad(g, 0.59f, b*0.11f)); }
2253
set_sat(F * r,F * g,F * b,F s)2254 SI void set_sat(F* r, F* g, F* b, F s) {
2255 F mn = min(*r, min(*g,*b)),
2256 mx = max(*r, max(*g,*b)),
2257 sat = mx - mn;
2258
2259 // Map min channel to 0, max channel to s, and scale the middle proportionally.
2260 s = if_then_else(sat == 0.0f, 0.0f, s * rcp_fast(sat));
2261 *r = (*r - mn) * s;
2262 *g = (*g - mn) * s;
2263 *b = (*b - mn) * s;
2264 }
set_lum(F * r,F * g,F * b,F l)2265 SI void set_lum(F* r, F* g, F* b, F l) {
2266 F diff = l - lum(*r, *g, *b);
2267 *r += diff;
2268 *g += diff;
2269 *b += diff;
2270 }
clip_channel(F c,F l,I32 clip_low,I32 clip_high,F mn_scale,F mx_scale)2271 SI F clip_channel(F c, F l, I32 clip_low, I32 clip_high, F mn_scale, F mx_scale) {
2272 c = if_then_else(clip_low, mad(mn_scale, c - l, l), c);
2273 c = if_then_else(clip_high, mad(mx_scale, c - l, l), c);
2274 c = max(c, 0.0f); // Sometimes without this we may dip just a little negative.
2275 return c;
2276 }
clip_color(F * r,F * g,F * b,F a)2277 SI void clip_color(F* r, F* g, F* b, F a) {
2278 F mn = min(*r, min(*g, *b)),
2279 mx = max(*r, max(*g, *b)),
2280 l = lum(*r, *g, *b),
2281 mn_scale = ( l) * rcp_fast(l - mn),
2282 mx_scale = (a - l) * rcp_fast(mx - l);
2283 I32 clip_low = cond_to_mask(mn < 0 && l != mn),
2284 clip_high = cond_to_mask(mx > a && l != mx);
2285
2286 *r = clip_channel(*r, l, clip_low, clip_high, mn_scale, mx_scale);
2287 *g = clip_channel(*g, l, clip_low, clip_high, mn_scale, mx_scale);
2288 *b = clip_channel(*b, l, clip_low, clip_high, mn_scale, mx_scale);
2289 }
2290
STAGE(hue,NoCtx)2291 STAGE(hue, NoCtx) {
2292 F R = r*a,
2293 G = g*a,
2294 B = b*a;
2295
2296 set_sat(&R, &G, &B, sat(dr,dg,db)*a);
2297 set_lum(&R, &G, &B, lum(dr,dg,db)*a);
2298 clip_color(&R,&G,&B, a*da);
2299
2300 r = mad(r, inv(da), mad(dr, inv(a), R));
2301 g = mad(g, inv(da), mad(dg, inv(a), G));
2302 b = mad(b, inv(da), mad(db, inv(a), B));
2303 a = a + nmad(a, da, da);
2304 }
STAGE(saturation,NoCtx)2305 STAGE(saturation, NoCtx) {
2306 F R = dr*a,
2307 G = dg*a,
2308 B = db*a;
2309
2310 set_sat(&R, &G, &B, sat( r, g, b)*da);
2311 set_lum(&R, &G, &B, lum(dr,dg,db)* a); // (This is not redundant.)
2312 clip_color(&R,&G,&B, a*da);
2313
2314 r = mad(r, inv(da), mad(dr, inv(a), R));
2315 g = mad(g, inv(da), mad(dg, inv(a), G));
2316 b = mad(b, inv(da), mad(db, inv(a), B));
2317 a = a + nmad(a, da, da);
2318 }
STAGE(color,NoCtx)2319 STAGE(color, NoCtx) {
2320 F R = r*da,
2321 G = g*da,
2322 B = b*da;
2323
2324 set_lum(&R, &G, &B, lum(dr,dg,db)*a);
2325 clip_color(&R,&G,&B, a*da);
2326
2327 r = mad(r, inv(da), mad(dr, inv(a), R));
2328 g = mad(g, inv(da), mad(dg, inv(a), G));
2329 b = mad(b, inv(da), mad(db, inv(a), B));
2330 a = a + nmad(a, da, da);
2331 }
STAGE(luminosity,NoCtx)2332 STAGE(luminosity, NoCtx) {
2333 F R = dr*a,
2334 G = dg*a,
2335 B = db*a;
2336
2337 set_lum(&R, &G, &B, lum(r,g,b)*da);
2338 clip_color(&R,&G,&B, a*da);
2339
2340 r = mad(r, inv(da), mad(dr, inv(a), R));
2341 g = mad(g, inv(da), mad(dg, inv(a), G));
2342 b = mad(b, inv(da), mad(db, inv(a), B));
2343 a = a + nmad(a, da, da);
2344 }
2345
STAGE(srcover_rgba_8888,const SkRasterPipeline_MemoryCtx * ctx)2346 STAGE(srcover_rgba_8888, const SkRasterPipeline_MemoryCtx* ctx) {
2347 auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
2348
2349 U32 dst = load<U32>(ptr);
2350 dr = cast((dst ) & 0xff);
2351 dg = cast((dst >> 8) & 0xff);
2352 db = cast((dst >> 16) & 0xff);
2353 da = cast((dst >> 24) );
2354 // {dr,dg,db,da} are in [0,255]
2355 // { r, g, b, a} are in [0, 1] (but may be out of gamut)
2356
2357 r = mad(dr, inv(a), r*255.0f);
2358 g = mad(dg, inv(a), g*255.0f);
2359 b = mad(db, inv(a), b*255.0f);
2360 a = mad(da, inv(a), a*255.0f);
2361 // { r, g, b, a} are now in [0,255] (but may be out of gamut)
2362
2363 // to_unorm() clamps back to gamut. Scaling by 1 since we're already 255-biased.
2364 dst = to_unorm(r, 1, 255)
2365 | to_unorm(g, 1, 255) << 8
2366 | to_unorm(b, 1, 255) << 16
2367 | to_unorm(a, 1, 255) << 24;
2368 store(ptr, dst);
2369 }
2370
clamp_01_(F v)2371 SI F clamp_01_(F v) { return min(max(0.0f, v), 1.0f); }
2372
STAGE(clamp_01,NoCtx)2373 STAGE(clamp_01, NoCtx) {
2374 r = clamp_01_(r);
2375 g = clamp_01_(g);
2376 b = clamp_01_(b);
2377 a = clamp_01_(a);
2378 }
2379
STAGE(clamp_gamut,NoCtx)2380 STAGE(clamp_gamut, NoCtx) {
2381 a = min(max(a, 0.0f), 1.0f);
2382 r = min(max(r, 0.0f), a);
2383 g = min(max(g, 0.0f), a);
2384 b = min(max(b, 0.0f), a);
2385 }
2386
STAGE(set_rgb,const float * rgb)2387 STAGE(set_rgb, const float* rgb) {
2388 r = F_(rgb[0]);
2389 g = F_(rgb[1]);
2390 b = F_(rgb[2]);
2391 }
2392
STAGE(unbounded_set_rgb,const float * rgb)2393 STAGE(unbounded_set_rgb, const float* rgb) {
2394 r = F_(rgb[0]);
2395 g = F_(rgb[1]);
2396 b = F_(rgb[2]);
2397 }
2398
STAGE(swap_rb,NoCtx)2399 STAGE(swap_rb, NoCtx) {
2400 auto tmp = r;
2401 r = b;
2402 b = tmp;
2403 }
STAGE(swap_rb_dst,NoCtx)2404 STAGE(swap_rb_dst, NoCtx) {
2405 auto tmp = dr;
2406 dr = db;
2407 db = tmp;
2408 }
2409
STAGE(move_src_dst,NoCtx)2410 STAGE(move_src_dst, NoCtx) {
2411 dr = r;
2412 dg = g;
2413 db = b;
2414 da = a;
2415 }
STAGE(move_dst_src,NoCtx)2416 STAGE(move_dst_src, NoCtx) {
2417 r = dr;
2418 g = dg;
2419 b = db;
2420 a = da;
2421 }
STAGE(swap_src_dst,NoCtx)2422 STAGE(swap_src_dst, NoCtx) {
2423 std::swap(r, dr);
2424 std::swap(g, dg);
2425 std::swap(b, db);
2426 std::swap(a, da);
2427 }
2428
STAGE(premul,NoCtx)2429 STAGE(premul, NoCtx) {
2430 r = r * a;
2431 g = g * a;
2432 b = b * a;
2433 }
STAGE(premul_dst,NoCtx)2434 STAGE(premul_dst, NoCtx) {
2435 dr = dr * da;
2436 dg = dg * da;
2437 db = db * da;
2438 }
STAGE(unpremul,NoCtx)2439 STAGE(unpremul, NoCtx) {
2440 float inf = sk_bit_cast<float>(0x7f800000);
2441 auto scale = if_then_else(1.0f/a < inf, 1.0f/a, 0.0f);
2442 r *= scale;
2443 g *= scale;
2444 b *= scale;
2445 }
STAGE(unpremul_polar,NoCtx)2446 STAGE(unpremul_polar, NoCtx) {
2447 float inf = sk_bit_cast<float>(0x7f800000);
2448 auto scale = if_then_else(1.0f/a < inf, 1.0f/a, 0.0f);
2449 g *= scale;
2450 b *= scale;
2451 }
2452
STAGE(force_opaque,NoCtx)2453 STAGE(force_opaque , NoCtx) { a = F1; }
STAGE(force_opaque_dst,NoCtx)2454 STAGE(force_opaque_dst, NoCtx) { da = F1; }
2455
STAGE(rgb_to_hsl,NoCtx)2456 STAGE(rgb_to_hsl, NoCtx) {
2457 F mx = max(r, max(g,b)),
2458 mn = min(r, min(g,b)),
2459 d = mx - mn,
2460 d_rcp = 1.0f / d;
2461
2462 F h = (1/6.0f) *
2463 if_then_else(mx == mn, 0.0f,
2464 if_then_else(mx == r, (g-b)*d_rcp + if_then_else(g < b, 6.0f, 0.0f),
2465 if_then_else(mx == g, (b-r)*d_rcp + 2.0f,
2466 (r-g)*d_rcp + 4.0f)));
2467
2468 F l = (mx + mn) * 0.5f;
2469 F s = if_then_else(mx == mn, 0.0f,
2470 d / if_then_else(l > 0.5f, 2.0f-mx-mn, mx+mn));
2471
2472 r = h;
2473 g = s;
2474 b = l;
2475 }
STAGE(hsl_to_rgb,NoCtx)2476 STAGE(hsl_to_rgb, NoCtx) {
2477 // See GrRGBToHSLFilterEffect.fp
2478
2479 F h = r,
2480 s = g,
2481 l = b,
2482 c = (1.0f - abs_(2.0f * l - 1)) * s;
2483
2484 auto hue_to_rgb = [&](F hue) {
2485 F q = clamp_01_(abs_(fract(hue) * 6.0f - 3.0f) - 1.0f);
2486 return (q - 0.5f) * c + l;
2487 };
2488
2489 r = hue_to_rgb(h + 0.0f/3.0f);
2490 g = hue_to_rgb(h + 2.0f/3.0f);
2491 b = hue_to_rgb(h + 1.0f/3.0f);
2492 }
2493
2494 // Color conversion functions used in gradient interpolation, based on
2495 // https://www.w3.org/TR/css-color-4/#color-conversion-code
STAGE(css_lab_to_xyz,NoCtx)2496 STAGE(css_lab_to_xyz, NoCtx) {
2497 constexpr float k = 24389 / 27.0f;
2498 constexpr float e = 216 / 24389.0f;
2499
2500 F f[3];
2501 f[1] = (r + 16) * (1 / 116.0f);
2502 f[0] = (g * (1 / 500.0f)) + f[1];
2503 f[2] = f[1] - (b * (1 / 200.0f));
2504
2505 F f_cubed[3] = { f[0]*f[0]*f[0], f[1]*f[1]*f[1], f[2]*f[2]*f[2] };
2506
2507 F xyz[3] = {
2508 if_then_else(f_cubed[0] > e, f_cubed[0], (116 * f[0] - 16) * (1 / k)),
2509 if_then_else(r > k * e, f_cubed[1], r * (1 / k)),
2510 if_then_else(f_cubed[2] > e, f_cubed[2], (116 * f[2] - 16) * (1 / k))
2511 };
2512
2513 constexpr float D50[3] = { 0.3457f / 0.3585f, 1.0f, (1.0f - 0.3457f - 0.3585f) / 0.3585f };
2514 r = xyz[0]*D50[0];
2515 g = xyz[1]*D50[1];
2516 b = xyz[2]*D50[2];
2517 }
2518
STAGE(css_oklab_to_linear_srgb,NoCtx)2519 STAGE(css_oklab_to_linear_srgb, NoCtx) {
2520 F l_ = r + 0.3963377774f * g + 0.2158037573f * b,
2521 m_ = r - 0.1055613458f * g - 0.0638541728f * b,
2522 s_ = r - 0.0894841775f * g - 1.2914855480f * b;
2523
2524 F l = l_*l_*l_,
2525 m = m_*m_*m_,
2526 s = s_*s_*s_;
2527
2528 r = +4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s;
2529 g = -1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s;
2530 b = -0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s;
2531 }
2532
STAGE(css_oklab_gamut_map_to_linear_srgb,NoCtx)2533 STAGE(css_oklab_gamut_map_to_linear_srgb, NoCtx) {
2534 // TODO(https://crbug.com/1508329): Add support for gamut mapping.
2535 // Return a greyscale value, so that accidental use is obvious.
2536 F l_ = r,
2537 m_ = r,
2538 s_ = r;
2539
2540 F l = l_*l_*l_,
2541 m = m_*m_*m_,
2542 s = s_*s_*s_;
2543
2544 r = +4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s;
2545 g = -1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s;
2546 b = -0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s;
2547 }
2548
2549 // Skia stores all polar colors with hue in the first component, so this "LCH -> Lab" transform
2550 // actually takes "HCL". This is also used to do the same polar transform for OkHCL to OkLAB.
2551 // See similar comments & logic in SkGradientBaseShader.cpp.
STAGE(css_hcl_to_lab,NoCtx)2552 STAGE(css_hcl_to_lab, NoCtx) {
2553 F H = r,
2554 C = g,
2555 L = b;
2556
2557 F hueRadians = H * (SK_FloatPI / 180);
2558
2559 r = L;
2560 g = C * cos_(hueRadians);
2561 b = C * sin_(hueRadians);
2562 }
2563
mod_(F x,float y)2564 SI F mod_(F x, float y) {
2565 return nmad(y, floor_(x * (1 / y)), x);
2566 }
2567
2568 struct RGB { F r, g, b; };
2569
css_hsl_to_srgb_(F h,F s,F l)2570 SI RGB css_hsl_to_srgb_(F h, F s, F l) {
2571 h = mod_(h, 360);
2572
2573 s *= 0.01f;
2574 l *= 0.01f;
2575
2576 F k[3] = {
2577 mod_(0 + h * (1 / 30.0f), 12),
2578 mod_(8 + h * (1 / 30.0f), 12),
2579 mod_(4 + h * (1 / 30.0f), 12)
2580 };
2581 F a = s * min(l, 1 - l);
2582 return {
2583 l - a * max(-1.0f, min(min(k[0] - 3.0f, 9.0f - k[0]), 1.0f)),
2584 l - a * max(-1.0f, min(min(k[1] - 3.0f, 9.0f - k[1]), 1.0f)),
2585 l - a * max(-1.0f, min(min(k[2] - 3.0f, 9.0f - k[2]), 1.0f))
2586 };
2587 }
2588
STAGE(css_hsl_to_srgb,NoCtx)2589 STAGE(css_hsl_to_srgb, NoCtx) {
2590 RGB rgb = css_hsl_to_srgb_(r, g, b);
2591 r = rgb.r;
2592 g = rgb.g;
2593 b = rgb.b;
2594 }
2595
STAGE(css_hwb_to_srgb,NoCtx)2596 STAGE(css_hwb_to_srgb, NoCtx) {
2597 g *= 0.01f;
2598 b *= 0.01f;
2599
2600 F gray = g / (g + b);
2601
2602 RGB rgb = css_hsl_to_srgb_(r, F_(100.0f), F_(50.0f));
2603 rgb.r = rgb.r * (1 - g - b) + g;
2604 rgb.g = rgb.g * (1 - g - b) + g;
2605 rgb.b = rgb.b * (1 - g - b) + g;
2606
2607 auto isGray = (g + b) >= 1;
2608
2609 r = if_then_else(isGray, gray, rgb.r);
2610 g = if_then_else(isGray, gray, rgb.g);
2611 b = if_then_else(isGray, gray, rgb.b);
2612 }
2613
2614 // Derive alpha's coverage from rgb coverage and the values of src and dst alpha.
alpha_coverage_from_rgb_coverage(F a,F da,F cr,F cg,F cb)2615 SI F alpha_coverage_from_rgb_coverage(F a, F da, F cr, F cg, F cb) {
2616 return if_then_else(a < da, min(cr, min(cg,cb))
2617 , max(cr, max(cg,cb)));
2618 }
2619
STAGE(scale_1_float,const float * c)2620 STAGE(scale_1_float, const float* c) {
2621 r = r * *c;
2622 g = g * *c;
2623 b = b * *c;
2624 a = a * *c;
2625 }
STAGE(scale_u8,const SkRasterPipeline_MemoryCtx * ctx)2626 STAGE(scale_u8, const SkRasterPipeline_MemoryCtx* ctx) {
2627 auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
2628
2629 auto scales = load<U8>(ptr);
2630 auto c = from_byte(scales);
2631
2632 r = r * c;
2633 g = g * c;
2634 b = b * c;
2635 a = a * c;
2636 }
STAGE(scale_565,const SkRasterPipeline_MemoryCtx * ctx)2637 STAGE(scale_565, const SkRasterPipeline_MemoryCtx* ctx) {
2638 auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
2639
2640 F cr,cg,cb;
2641 from_565(load<U16>(ptr), &cr, &cg, &cb);
2642
2643 F ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
2644
2645 r = r * cr;
2646 g = g * cg;
2647 b = b * cb;
2648 a = a * ca;
2649 }
2650
lerp(F from,F to,F t)2651 SI F lerp(F from, F to, F t) {
2652 return mad(to-from, t, from);
2653 }
2654
STAGE(lerp_1_float,const float * c)2655 STAGE(lerp_1_float, const float* c) {
2656 r = lerp(dr, r, F_(*c));
2657 g = lerp(dg, g, F_(*c));
2658 b = lerp(db, b, F_(*c));
2659 a = lerp(da, a, F_(*c));
2660 }
STAGE(scale_native,const float scales[])2661 STAGE(scale_native, const float scales[]) {
2662 auto c = sk_unaligned_load<F>(scales);
2663 r = r * c;
2664 g = g * c;
2665 b = b * c;
2666 a = a * c;
2667 }
STAGE(lerp_native,const float scales[])2668 STAGE(lerp_native, const float scales[]) {
2669 auto c = sk_unaligned_load<F>(scales);
2670 r = lerp(dr, r, c);
2671 g = lerp(dg, g, c);
2672 b = lerp(db, b, c);
2673 a = lerp(da, a, c);
2674 }
STAGE(lerp_u8,const SkRasterPipeline_MemoryCtx * ctx)2675 STAGE(lerp_u8, const SkRasterPipeline_MemoryCtx* ctx) {
2676 auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
2677
2678 auto scales = load<U8>(ptr);
2679 auto c = from_byte(scales);
2680
2681 r = lerp(dr, r, c);
2682 g = lerp(dg, g, c);
2683 b = lerp(db, b, c);
2684 a = lerp(da, a, c);
2685 }
STAGE(lerp_565,const SkRasterPipeline_MemoryCtx * ctx)2686 STAGE(lerp_565, const SkRasterPipeline_MemoryCtx* ctx) {
2687 auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
2688
2689 F cr,cg,cb;
2690 from_565(load<U16>(ptr), &cr, &cg, &cb);
2691
2692 F ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
2693
2694 r = lerp(dr, r, cr);
2695 g = lerp(dg, g, cg);
2696 b = lerp(db, b, cb);
2697 a = lerp(da, a, ca);
2698 }
2699
STAGE(emboss,const SkRasterPipeline_EmbossCtx * ctx)2700 STAGE(emboss, const SkRasterPipeline_EmbossCtx* ctx) {
2701 auto mptr = ptr_at_xy<const uint8_t>(&ctx->mul, dx,dy),
2702 aptr = ptr_at_xy<const uint8_t>(&ctx->add, dx,dy);
2703
2704 F mul = from_byte(load<U8>(mptr)),
2705 add = from_byte(load<U8>(aptr));
2706
2707 r = mad(r, mul, add);
2708 g = mad(g, mul, add);
2709 b = mad(b, mul, add);
2710 }
2711
STAGE(byte_tables,const SkRasterPipeline_TablesCtx * tables)2712 STAGE(byte_tables, const SkRasterPipeline_TablesCtx* tables) {
2713 r = from_byte(gather(tables->r, to_unorm(r, 255)));
2714 g = from_byte(gather(tables->g, to_unorm(g, 255)));
2715 b = from_byte(gather(tables->b, to_unorm(b, 255)));
2716 a = from_byte(gather(tables->a, to_unorm(a, 255)));
2717 }
2718
strip_sign(F x,U32 * sign)2719 SI F strip_sign(F x, U32* sign) {
2720 U32 bits = sk_bit_cast<U32>(x);
2721 *sign = bits & 0x80000000;
2722 return sk_bit_cast<F>(bits ^ *sign);
2723 }
2724
apply_sign(F x,U32 sign)2725 SI F apply_sign(F x, U32 sign) {
2726 return sk_bit_cast<F>(sign | sk_bit_cast<U32>(x));
2727 }
2728
STAGE(parametric,const skcms_TransferFunction * ctx)2729 STAGE(parametric, const skcms_TransferFunction* ctx) {
2730 auto fn = [&](F v) {
2731 U32 sign;
2732 v = strip_sign(v, &sign);
2733
2734 F r = if_then_else(v <= ctx->d, mad(ctx->c, v, ctx->f)
2735 , approx_powf(mad(ctx->a, v, ctx->b), ctx->g) + ctx->e);
2736 return apply_sign(r, sign);
2737 };
2738 r = fn(r);
2739 g = fn(g);
2740 b = fn(b);
2741 }
2742
STAGE(gamma_,const float * G)2743 STAGE(gamma_, const float* G) {
2744 auto fn = [&](F v) {
2745 U32 sign;
2746 v = strip_sign(v, &sign);
2747 return apply_sign(approx_powf(v, *G), sign);
2748 };
2749 r = fn(r);
2750 g = fn(g);
2751 b = fn(b);
2752 }
2753
STAGE(PQish,const skcms_TransferFunction * ctx)2754 STAGE(PQish, const skcms_TransferFunction* ctx) {
2755 auto fn = [&](F v) {
2756 U32 sign;
2757 v = strip_sign(v, &sign);
2758
2759 F r = approx_powf(max(mad(ctx->b, approx_powf(v, ctx->c), ctx->a), 0.0f)
2760 / (mad(ctx->e, approx_powf(v, ctx->c), ctx->d)),
2761 ctx->f);
2762
2763 return apply_sign(r, sign);
2764 };
2765 r = fn(r);
2766 g = fn(g);
2767 b = fn(b);
2768 }
2769
STAGE(HLGish,const skcms_TransferFunction * ctx)2770 STAGE(HLGish, const skcms_TransferFunction* ctx) {
2771 auto fn = [&](F v) {
2772 U32 sign;
2773 v = strip_sign(v, &sign);
2774
2775 const float R = ctx->a, G = ctx->b,
2776 a = ctx->c, b = ctx->d, c = ctx->e,
2777 K = ctx->f + 1.0f;
2778
2779 F r = if_then_else(v*R <= 1, approx_powf(v*R, G)
2780 , approx_exp((v-c)*a) + b);
2781
2782 return K * apply_sign(r, sign);
2783 };
2784 r = fn(r);
2785 g = fn(g);
2786 b = fn(b);
2787 }
2788
STAGE(HLGinvish,const skcms_TransferFunction * ctx)2789 STAGE(HLGinvish, const skcms_TransferFunction* ctx) {
2790 auto fn = [&](F v) {
2791 U32 sign;
2792 v = strip_sign(v, &sign);
2793
2794 const float R = ctx->a, G = ctx->b,
2795 a = ctx->c, b = ctx->d, c = ctx->e,
2796 K = ctx->f + 1.0f;
2797
2798 v /= K;
2799 F r = if_then_else(v <= 1, R * approx_powf(v, G)
2800 , a * approx_log(v - b) + c);
2801
2802 return apply_sign(r, sign);
2803 };
2804 r = fn(r);
2805 g = fn(g);
2806 b = fn(b);
2807 }
2808
STAGE(load_a8,const SkRasterPipeline_MemoryCtx * ctx)2809 STAGE(load_a8, const SkRasterPipeline_MemoryCtx* ctx) {
2810 auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
2811
2812 r = g = b = F0;
2813 a = from_byte(load<U8>(ptr));
2814 }
STAGE(load_a8_dst,const SkRasterPipeline_MemoryCtx * ctx)2815 STAGE(load_a8_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2816 auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
2817
2818 dr = dg = db = F0;
2819 da = from_byte(load<U8>(ptr));
2820 }
STAGE(gather_a8,const SkRasterPipeline_GatherCtx * ctx)2821 STAGE(gather_a8, const SkRasterPipeline_GatherCtx* ctx) {
2822 const uint8_t* ptr;
2823 U32 ix = ix_and_ptr(&ptr, ctx, r,g);
2824 r = g = b = F0;
2825 a = from_byte(gather(ptr, ix));
2826 }
STAGE(store_a8,const SkRasterPipeline_MemoryCtx * ctx)2827 STAGE(store_a8, const SkRasterPipeline_MemoryCtx* ctx) {
2828 auto ptr = ptr_at_xy<uint8_t>(ctx, dx,dy);
2829
2830 U8 packed = pack(pack(to_unorm(a, 255)));
2831 store(ptr, packed);
2832 }
STAGE(store_r8,const SkRasterPipeline_MemoryCtx * ctx)2833 STAGE(store_r8, const SkRasterPipeline_MemoryCtx* ctx) {
2834 auto ptr = ptr_at_xy<uint8_t>(ctx, dx,dy);
2835
2836 U8 packed = pack(pack(to_unorm(r, 255)));
2837 store(ptr, packed);
2838 }
2839
STAGE(load_565,const SkRasterPipeline_MemoryCtx * ctx)2840 STAGE(load_565, const SkRasterPipeline_MemoryCtx* ctx) {
2841 auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
2842
2843 from_565(load<U16>(ptr), &r,&g,&b);
2844 a = F1;
2845 }
STAGE(load_565_dst,const SkRasterPipeline_MemoryCtx * ctx)2846 STAGE(load_565_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2847 auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
2848
2849 from_565(load<U16>(ptr), &dr,&dg,&db);
2850 da = F1;
2851 }
STAGE(gather_565,const SkRasterPipeline_GatherCtx * ctx)2852 STAGE(gather_565, const SkRasterPipeline_GatherCtx* ctx) {
2853 const uint16_t* ptr;
2854 U32 ix = ix_and_ptr(&ptr, ctx, r,g);
2855 from_565(gather(ptr, ix), &r,&g,&b);
2856 a = F1;
2857 }
STAGE(store_565,const SkRasterPipeline_MemoryCtx * ctx)2858 STAGE(store_565, const SkRasterPipeline_MemoryCtx* ctx) {
2859 auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy);
2860
2861 U16 px = pack( to_unorm(r, 31) << 11
2862 | to_unorm(g, 63) << 5
2863 | to_unorm(b, 31) );
2864 store(ptr, px);
2865 }
2866
STAGE(load_4444,const SkRasterPipeline_MemoryCtx * ctx)2867 STAGE(load_4444, const SkRasterPipeline_MemoryCtx* ctx) {
2868 auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
2869 from_4444(load<U16>(ptr), &r,&g,&b,&a);
2870 }
STAGE(load_4444_dst,const SkRasterPipeline_MemoryCtx * ctx)2871 STAGE(load_4444_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2872 auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
2873 from_4444(load<U16>(ptr), &dr,&dg,&db,&da);
2874 }
STAGE(gather_4444,const SkRasterPipeline_GatherCtx * ctx)2875 STAGE(gather_4444, const SkRasterPipeline_GatherCtx* ctx) {
2876 const uint16_t* ptr;
2877 U32 ix = ix_and_ptr(&ptr, ctx, r,g);
2878 from_4444(gather(ptr, ix), &r,&g,&b,&a);
2879 }
STAGE(store_4444,const SkRasterPipeline_MemoryCtx * ctx)2880 STAGE(store_4444, const SkRasterPipeline_MemoryCtx* ctx) {
2881 auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy);
2882 U16 px = pack( to_unorm(r, 15) << 12
2883 | to_unorm(g, 15) << 8
2884 | to_unorm(b, 15) << 4
2885 | to_unorm(a, 15) );
2886 store(ptr, px);
2887 }
2888
STAGE(load_8888,const SkRasterPipeline_MemoryCtx * ctx)2889 STAGE(load_8888, const SkRasterPipeline_MemoryCtx* ctx) {
2890 auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
2891 from_8888(load<U32>(ptr), &r,&g,&b,&a);
2892 }
STAGE(load_8888_dst,const SkRasterPipeline_MemoryCtx * ctx)2893 STAGE(load_8888_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2894 auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
2895 from_8888(load<U32>(ptr), &dr,&dg,&db,&da);
2896 }
STAGE(gather_8888,const SkRasterPipeline_GatherCtx * ctx)2897 STAGE(gather_8888, const SkRasterPipeline_GatherCtx* ctx) {
2898 const uint32_t* ptr;
2899 U32 ix = ix_and_ptr(&ptr, ctx, r,g);
2900 from_8888(gather(ptr, ix), &r,&g,&b,&a);
2901 }
STAGE(store_8888,const SkRasterPipeline_MemoryCtx * ctx)2902 STAGE(store_8888, const SkRasterPipeline_MemoryCtx* ctx) {
2903 auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
2904
2905 U32 px = to_unorm(r, 255)
2906 | to_unorm(g, 255) << 8
2907 | to_unorm(b, 255) << 16
2908 | to_unorm(a, 255) << 24;
2909 store(ptr, px);
2910 }
2911
STAGE(load_rg88,const SkRasterPipeline_MemoryCtx * ctx)2912 STAGE(load_rg88, const SkRasterPipeline_MemoryCtx* ctx) {
2913 auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy);
2914 from_88(load<U16>(ptr), &r, &g);
2915 b = F0;
2916 a = F1;
2917 }
STAGE(load_rg88_dst,const SkRasterPipeline_MemoryCtx * ctx)2918 STAGE(load_rg88_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2919 auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy);
2920 from_88(load<U16>(ptr), &dr, &dg);
2921 db = F0;
2922 da = F1;
2923 }
STAGE(gather_rg88,const SkRasterPipeline_GatherCtx * ctx)2924 STAGE(gather_rg88, const SkRasterPipeline_GatherCtx* ctx) {
2925 const uint16_t* ptr;
2926 U32 ix = ix_and_ptr(&ptr, ctx, r, g);
2927 from_88(gather(ptr, ix), &r, &g);
2928 b = F0;
2929 a = F1;
2930 }
STAGE(store_rg88,const SkRasterPipeline_MemoryCtx * ctx)2931 STAGE(store_rg88, const SkRasterPipeline_MemoryCtx* ctx) {
2932 auto ptr = ptr_at_xy<uint16_t>(ctx, dx, dy);
2933 U16 px = pack( to_unorm(r, 255) | to_unorm(g, 255) << 8 );
2934 store(ptr, px);
2935 }
2936
STAGE(load_a16,const SkRasterPipeline_MemoryCtx * ctx)2937 STAGE(load_a16, const SkRasterPipeline_MemoryCtx* ctx) {
2938 auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
2939 r = g = b = F0;
2940 a = from_short(load<U16>(ptr));
2941 }
STAGE(load_a16_dst,const SkRasterPipeline_MemoryCtx * ctx)2942 STAGE(load_a16_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2943 auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy);
2944 dr = dg = db = F0;
2945 da = from_short(load<U16>(ptr));
2946 }
STAGE(gather_a16,const SkRasterPipeline_GatherCtx * ctx)2947 STAGE(gather_a16, const SkRasterPipeline_GatherCtx* ctx) {
2948 const uint16_t* ptr;
2949 U32 ix = ix_and_ptr(&ptr, ctx, r, g);
2950 r = g = b = F0;
2951 a = from_short(gather(ptr, ix));
2952 }
STAGE(store_a16,const SkRasterPipeline_MemoryCtx * ctx)2953 STAGE(store_a16, const SkRasterPipeline_MemoryCtx* ctx) {
2954 auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy);
2955
2956 U16 px = pack(to_unorm(a, 65535));
2957 store(ptr, px);
2958 }
2959
STAGE(load_rg1616,const SkRasterPipeline_MemoryCtx * ctx)2960 STAGE(load_rg1616, const SkRasterPipeline_MemoryCtx* ctx) {
2961 auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy);
2962 b = F0;
2963 a = F1;
2964 from_1616(load<U32>(ptr), &r,&g);
2965 }
STAGE(load_rg1616_dst,const SkRasterPipeline_MemoryCtx * ctx)2966 STAGE(load_rg1616_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2967 auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy);
2968 from_1616(load<U32>(ptr), &dr, &dg);
2969 db = F0;
2970 da = F1;
2971 }
STAGE(gather_rg1616,const SkRasterPipeline_GatherCtx * ctx)2972 STAGE(gather_rg1616, const SkRasterPipeline_GatherCtx* ctx) {
2973 const uint32_t* ptr;
2974 U32 ix = ix_and_ptr(&ptr, ctx, r, g);
2975 from_1616(gather(ptr, ix), &r, &g);
2976 b = F0;
2977 a = F1;
2978 }
STAGE(store_rg1616,const SkRasterPipeline_MemoryCtx * ctx)2979 STAGE(store_rg1616, const SkRasterPipeline_MemoryCtx* ctx) {
2980 auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
2981
2982 U32 px = to_unorm(r, 65535)
2983 | to_unorm(g, 65535) << 16;
2984 store(ptr, px);
2985 }
2986
STAGE(load_16161616,const SkRasterPipeline_MemoryCtx * ctx)2987 STAGE(load_16161616, const SkRasterPipeline_MemoryCtx* ctx) {
2988 auto ptr = ptr_at_xy<const uint64_t>(ctx, dx, dy);
2989 from_16161616(load<U64>(ptr), &r,&g, &b, &a);
2990 }
STAGE(load_16161616_dst,const SkRasterPipeline_MemoryCtx * ctx)2991 STAGE(load_16161616_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2992 auto ptr = ptr_at_xy<const uint64_t>(ctx, dx, dy);
2993 from_16161616(load<U64>(ptr), &dr, &dg, &db, &da);
2994 }
STAGE(gather_16161616,const SkRasterPipeline_GatherCtx * ctx)2995 STAGE(gather_16161616, const SkRasterPipeline_GatherCtx* ctx) {
2996 const uint64_t* ptr;
2997 U32 ix = ix_and_ptr(&ptr, ctx, r, g);
2998 from_16161616(gather(ptr, ix), &r, &g, &b, &a);
2999 }
STAGE(store_16161616,const SkRasterPipeline_MemoryCtx * ctx)3000 STAGE(store_16161616, const SkRasterPipeline_MemoryCtx* ctx) {
3001 auto ptr = ptr_at_xy<uint16_t>(ctx, 4*dx,4*dy);
3002
3003 U16 R = pack(to_unorm(r, 65535)),
3004 G = pack(to_unorm(g, 65535)),
3005 B = pack(to_unorm(b, 65535)),
3006 A = pack(to_unorm(a, 65535));
3007
3008 store4(ptr, R,G,B,A);
3009 }
3010
STAGE(load_10x6,const SkRasterPipeline_MemoryCtx * ctx)3011 STAGE(load_10x6, const SkRasterPipeline_MemoryCtx* ctx) {
3012 auto ptr = ptr_at_xy<const uint64_t>(ctx, dx, dy);
3013 from_10x6(load<U64>(ptr), &r,&g, &b, &a);
3014 }
STAGE(load_10x6_dst,const SkRasterPipeline_MemoryCtx * ctx)3015 STAGE(load_10x6_dst, const SkRasterPipeline_MemoryCtx* ctx) {
3016 auto ptr = ptr_at_xy<const uint64_t>(ctx, dx, dy);
3017 from_10x6(load<U64>(ptr), &dr, &dg, &db, &da);
3018 }
STAGE(gather_10x6,const SkRasterPipeline_GatherCtx * ctx)3019 STAGE(gather_10x6, const SkRasterPipeline_GatherCtx* ctx) {
3020 const uint64_t* ptr;
3021 U32 ix = ix_and_ptr(&ptr, ctx, r, g);
3022 from_10x6(gather(ptr, ix), &r, &g, &b, &a);
3023 }
STAGE(store_10x6,const SkRasterPipeline_MemoryCtx * ctx)3024 STAGE(store_10x6, const SkRasterPipeline_MemoryCtx* ctx) {
3025 auto ptr = ptr_at_xy<uint16_t>(ctx, 4*dx,4*dy);
3026
3027 U16 R = pack(to_unorm(r, 1023)) << 6,
3028 G = pack(to_unorm(g, 1023)) << 6,
3029 B = pack(to_unorm(b, 1023)) << 6,
3030 A = pack(to_unorm(a, 1023)) << 6;
3031
3032 store4(ptr, R,G,B,A);
3033 }
3034
3035
STAGE(load_1010102,const SkRasterPipeline_MemoryCtx * ctx)3036 STAGE(load_1010102, const SkRasterPipeline_MemoryCtx* ctx) {
3037 auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
3038 from_1010102(load<U32>(ptr), &r,&g,&b,&a);
3039 }
STAGE(load_1010102_dst,const SkRasterPipeline_MemoryCtx * ctx)3040 STAGE(load_1010102_dst, const SkRasterPipeline_MemoryCtx* ctx) {
3041 auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
3042 from_1010102(load<U32>(ptr), &dr,&dg,&db,&da);
3043 }
STAGE(load_1010102_xr,const SkRasterPipeline_MemoryCtx * ctx)3044 STAGE(load_1010102_xr, const SkRasterPipeline_MemoryCtx* ctx) {
3045 auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
3046 from_1010102_xr(load<U32>(ptr), &r,&g,&b,&a);
3047 }
STAGE(load_1010102_xr_dst,const SkRasterPipeline_MemoryCtx * ctx)3048 STAGE(load_1010102_xr_dst, const SkRasterPipeline_MemoryCtx* ctx) {
3049 auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
3050 from_1010102_xr(load<U32>(ptr), &dr,&dg,&db,&da);
3051 }
STAGE(gather_1010102,const SkRasterPipeline_GatherCtx * ctx)3052 STAGE(gather_1010102, const SkRasterPipeline_GatherCtx* ctx) {
3053 const uint32_t* ptr;
3054 U32 ix = ix_and_ptr(&ptr, ctx, r,g);
3055 from_1010102(gather(ptr, ix), &r,&g,&b,&a);
3056 }
STAGE(gather_1010102_xr,const SkRasterPipeline_GatherCtx * ctx)3057 STAGE(gather_1010102_xr, const SkRasterPipeline_GatherCtx* ctx) {
3058 const uint32_t* ptr;
3059 U32 ix = ix_and_ptr(&ptr, ctx, r, g);
3060 from_1010102_xr(gather(ptr, ix), &r,&g,&b,&a);
3061 }
STAGE(gather_10101010_xr,const SkRasterPipeline_GatherCtx * ctx)3062 STAGE(gather_10101010_xr, const SkRasterPipeline_GatherCtx* ctx) {
3063 const uint64_t* ptr;
3064 U32 ix = ix_and_ptr(&ptr, ctx, r, g);
3065 from_10101010_xr(gather(ptr, ix), &r, &g, &b, &a);
3066 }
STAGE(load_10101010_xr,const SkRasterPipeline_MemoryCtx * ctx)3067 STAGE(load_10101010_xr, const SkRasterPipeline_MemoryCtx* ctx) {
3068 auto ptr = ptr_at_xy<const uint64_t>(ctx, dx, dy);
3069 from_10101010_xr(load<U64>(ptr), &r,&g, &b, &a);
3070 }
STAGE(load_10101010_xr_dst,const SkRasterPipeline_MemoryCtx * ctx)3071 STAGE(load_10101010_xr_dst, const SkRasterPipeline_MemoryCtx* ctx) {
3072 auto ptr = ptr_at_xy<const uint64_t>(ctx, dx, dy);
3073 from_10101010_xr(load<U64>(ptr), &dr, &dg, &db, &da);
3074 }
STAGE(store_10101010_xr,const SkRasterPipeline_MemoryCtx * ctx)3075 STAGE(store_10101010_xr, const SkRasterPipeline_MemoryCtx* ctx) {
3076 static constexpr float min = -0.752941f;
3077 static constexpr float max = 1.25098f;
3078 static constexpr float range = max - min;
3079 auto ptr = ptr_at_xy<uint16_t>(ctx, 4*dx,4*dy);
3080
3081 U16 R = pack(to_unorm((r - min) / range, 1023)) << 6,
3082 G = pack(to_unorm((g - min) / range, 1023)) << 6,
3083 B = pack(to_unorm((b - min) / range, 1023)) << 6,
3084 A = pack(to_unorm((a - min) / range, 1023)) << 6;
3085
3086 store4(ptr, R,G,B,A);
3087 }
STAGE(store_1010102,const SkRasterPipeline_MemoryCtx * ctx)3088 STAGE(store_1010102, const SkRasterPipeline_MemoryCtx* ctx) {
3089 auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
3090
3091 U32 px = to_unorm(r, 1023)
3092 | to_unorm(g, 1023) << 10
3093 | to_unorm(b, 1023) << 20
3094 | to_unorm(a, 3) << 30;
3095 store(ptr, px);
3096 }
STAGE(store_1010102_xr,const SkRasterPipeline_MemoryCtx * ctx)3097 STAGE(store_1010102_xr, const SkRasterPipeline_MemoryCtx* ctx) {
3098 auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
3099 static constexpr float min = -0.752941f;
3100 static constexpr float max = 1.25098f;
3101 static constexpr float range = max - min;
3102 U32 px = to_unorm((r - min) / range, 1023)
3103 | to_unorm((g - min) / range, 1023) << 10
3104 | to_unorm((b - min) / range, 1023) << 20
3105 | to_unorm(a, 3) << 30;
3106 store(ptr, px);
3107 }
3108
STAGE(load_f16,const SkRasterPipeline_MemoryCtx * ctx)3109 STAGE(load_f16, const SkRasterPipeline_MemoryCtx* ctx) {
3110 auto ptr = ptr_at_xy<const uint64_t>(ctx, dx,dy);
3111
3112 U16 R,G,B,A;
3113 load4((const uint16_t*)ptr, &R,&G,&B,&A);
3114 r = from_half(R);
3115 g = from_half(G);
3116 b = from_half(B);
3117 a = from_half(A);
3118 }
STAGE(load_f16_dst,const SkRasterPipeline_MemoryCtx * ctx)3119 STAGE(load_f16_dst, const SkRasterPipeline_MemoryCtx* ctx) {
3120 auto ptr = ptr_at_xy<const uint64_t>(ctx, dx,dy);
3121
3122 U16 R,G,B,A;
3123 load4((const uint16_t*)ptr, &R,&G,&B,&A);
3124 dr = from_half(R);
3125 dg = from_half(G);
3126 db = from_half(B);
3127 da = from_half(A);
3128 }
STAGE(gather_f16,const SkRasterPipeline_GatherCtx * ctx)3129 STAGE(gather_f16, const SkRasterPipeline_GatherCtx* ctx) {
3130 const uint64_t* ptr;
3131 U32 ix = ix_and_ptr(&ptr, ctx, r,g);
3132 auto px = gather(ptr, ix);
3133
3134 U16 R,G,B,A;
3135 load4((const uint16_t*)&px, &R,&G,&B,&A);
3136 r = from_half(R);
3137 g = from_half(G);
3138 b = from_half(B);
3139 a = from_half(A);
3140 }
STAGE(store_f16,const SkRasterPipeline_MemoryCtx * ctx)3141 STAGE(store_f16, const SkRasterPipeline_MemoryCtx* ctx) {
3142 auto ptr = ptr_at_xy<uint64_t>(ctx, dx,dy);
3143 store4((uint16_t*)ptr, to_half(r)
3144 , to_half(g)
3145 , to_half(b)
3146 , to_half(a));
3147 }
3148
STAGE(load_af16,const SkRasterPipeline_MemoryCtx * ctx)3149 STAGE(load_af16, const SkRasterPipeline_MemoryCtx* ctx) {
3150 auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
3151
3152 U16 A = load<U16>((const uint16_t*)ptr);
3153 r = F0;
3154 g = F0;
3155 b = F0;
3156 a = from_half(A);
3157 }
STAGE(load_af16_dst,const SkRasterPipeline_MemoryCtx * ctx)3158 STAGE(load_af16_dst, const SkRasterPipeline_MemoryCtx* ctx) {
3159 auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy);
3160
3161 U16 A = load<U16>((const uint16_t*)ptr);
3162 dr = dg = db = F0;
3163 da = from_half(A);
3164 }
STAGE(gather_af16,const SkRasterPipeline_GatherCtx * ctx)3165 STAGE(gather_af16, const SkRasterPipeline_GatherCtx* ctx) {
3166 const uint16_t* ptr;
3167 U32 ix = ix_and_ptr(&ptr, ctx, r, g);
3168 r = g = b = F0;
3169 a = from_half(gather(ptr, ix));
3170 }
STAGE(store_af16,const SkRasterPipeline_MemoryCtx * ctx)3171 STAGE(store_af16, const SkRasterPipeline_MemoryCtx* ctx) {
3172 auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy);
3173 store(ptr, to_half(a));
3174 }
3175
STAGE(load_rgf16,const SkRasterPipeline_MemoryCtx * ctx)3176 STAGE(load_rgf16, const SkRasterPipeline_MemoryCtx* ctx) {
3177 auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy);
3178
3179 U16 R,G;
3180 load2((const uint16_t*)ptr, &R, &G);
3181 r = from_half(R);
3182 g = from_half(G);
3183 b = F0;
3184 a = F1;
3185 }
STAGE(load_rgf16_dst,const SkRasterPipeline_MemoryCtx * ctx)3186 STAGE(load_rgf16_dst, const SkRasterPipeline_MemoryCtx* ctx) {
3187 auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy);
3188
3189 U16 R,G;
3190 load2((const uint16_t*)ptr, &R, &G);
3191 dr = from_half(R);
3192 dg = from_half(G);
3193 db = F0;
3194 da = F1;
3195 }
STAGE(gather_rgf16,const SkRasterPipeline_GatherCtx * ctx)3196 STAGE(gather_rgf16, const SkRasterPipeline_GatherCtx* ctx) {
3197 const uint32_t* ptr;
3198 U32 ix = ix_and_ptr(&ptr, ctx, r, g);
3199 auto px = gather(ptr, ix);
3200
3201 U16 R,G;
3202 load2((const uint16_t*)&px, &R, &G);
3203 r = from_half(R);
3204 g = from_half(G);
3205 b = F0;
3206 a = F1;
3207 }
STAGE(store_rgf16,const SkRasterPipeline_MemoryCtx * ctx)3208 STAGE(store_rgf16, const SkRasterPipeline_MemoryCtx* ctx) {
3209 auto ptr = ptr_at_xy<uint32_t>(ctx, dx, dy);
3210 store2((uint16_t*)ptr, to_half(r)
3211 , to_half(g));
3212 }
3213
STAGE(load_f32,const SkRasterPipeline_MemoryCtx * ctx)3214 STAGE(load_f32, const SkRasterPipeline_MemoryCtx* ctx) {
3215 auto ptr = ptr_at_xy<const float>(ctx, 4*dx,4*dy);
3216 load4(ptr, &r,&g,&b,&a);
3217 }
STAGE(load_f32_dst,const SkRasterPipeline_MemoryCtx * ctx)3218 STAGE(load_f32_dst, const SkRasterPipeline_MemoryCtx* ctx) {
3219 auto ptr = ptr_at_xy<const float>(ctx, 4*dx,4*dy);
3220 load4(ptr, &dr,&dg,&db,&da);
3221 }
STAGE(gather_f32,const SkRasterPipeline_GatherCtx * ctx)3222 STAGE(gather_f32, const SkRasterPipeline_GatherCtx* ctx) {
3223 const float* ptr;
3224 U32 ix = ix_and_ptr(&ptr, ctx, r,g);
3225 r = gather(ptr, 4*ix + 0);
3226 g = gather(ptr, 4*ix + 1);
3227 b = gather(ptr, 4*ix + 2);
3228 a = gather(ptr, 4*ix + 3);
3229 }
STAGE(store_f32,const SkRasterPipeline_MemoryCtx * ctx)3230 STAGE(store_f32, const SkRasterPipeline_MemoryCtx* ctx) {
3231 auto ptr = ptr_at_xy<float>(ctx, 4*dx,4*dy);
3232 store4(ptr, r,g,b,a);
3233 }
3234
exclusive_repeat(F v,const SkRasterPipeline_TileCtx * ctx)3235 SI F exclusive_repeat(F v, const SkRasterPipeline_TileCtx* ctx) {
3236 return v - floor_(v*ctx->invScale)*ctx->scale;
3237 }
exclusive_mirror(F v,const SkRasterPipeline_TileCtx * ctx)3238 SI F exclusive_mirror(F v, const SkRasterPipeline_TileCtx* ctx) {
3239 auto limit = ctx->scale;
3240 auto invLimit = ctx->invScale;
3241
3242 // This is "repeat" over the range 0..2*limit
3243 auto u = v - floor_(v*invLimit*0.5f)*2*limit;
3244 // s will be 0 when moving forward (e.g. [0, limit)) and 1 when moving backward (e.g.
3245 // [limit, 2*limit)).
3246 auto s = floor_(u*invLimit);
3247 // This is the mirror result.
3248 auto m = u - 2*s*(u - limit);
3249 // Apply a bias to m if moving backwards so that we snap consistently at exact integer coords in
3250 // the logical infinite image. This is tested by mirror_tile GM. Note that all values
3251 // that have a non-zero bias applied are > 0.
3252 auto biasInUlps = trunc_(s);
3253 return sk_bit_cast<F>(sk_bit_cast<U32>(m) + ctx->mirrorBiasDir*biasInUlps);
3254 }
3255 // Tile x or y to [0,limit) == [0,limit - 1 ulp] (think, sampling from images).
3256 // The gather stages will hard clamp the output of these stages to [0,limit)...
3257 // we just need to do the basic repeat or mirroring.
STAGE(repeat_x,const SkRasterPipeline_TileCtx * ctx)3258 STAGE(repeat_x, const SkRasterPipeline_TileCtx* ctx) { r = exclusive_repeat(r, ctx); }
STAGE(repeat_y,const SkRasterPipeline_TileCtx * ctx)3259 STAGE(repeat_y, const SkRasterPipeline_TileCtx* ctx) { g = exclusive_repeat(g, ctx); }
STAGE(mirror_x,const SkRasterPipeline_TileCtx * ctx)3260 STAGE(mirror_x, const SkRasterPipeline_TileCtx* ctx) { r = exclusive_mirror(r, ctx); }
STAGE(mirror_y,const SkRasterPipeline_TileCtx * ctx)3261 STAGE(mirror_y, const SkRasterPipeline_TileCtx* ctx) { g = exclusive_mirror(g, ctx); }
3262
STAGE(clamp_x_1,NoCtx)3263 STAGE( clamp_x_1, NoCtx) { r = clamp_01_(r); }
STAGE(repeat_x_1,NoCtx)3264 STAGE(repeat_x_1, NoCtx) { r = clamp_01_(r - floor_(r)); }
STAGE(mirror_x_1,NoCtx)3265 STAGE(mirror_x_1, NoCtx) { r = clamp_01_(abs_( (r-1.0f) - two(floor_((r-1.0f)*0.5f)) - 1.0f )); }
3266
STAGE(clamp_x_and_y,const SkRasterPipeline_CoordClampCtx * ctx)3267 STAGE(clamp_x_and_y, const SkRasterPipeline_CoordClampCtx* ctx) {
3268 r = min(ctx->max_x, max(ctx->min_x, r));
3269 g = min(ctx->max_y, max(ctx->min_y, g));
3270 }
3271
3272 // Decal stores a 32bit mask after checking the coordinate (x and/or y) against its domain:
3273 // mask == 0x00000000 if the coordinate(s) are out of bounds
3274 // mask == 0xFFFFFFFF if the coordinate(s) are in bounds
3275 // After the gather stage, the r,g,b,a values are AND'd with this mask, setting them to 0
3276 // if either of the coordinates were out of bounds.
3277
STAGE(decal_x,SkRasterPipeline_DecalTileCtx * ctx)3278 STAGE(decal_x, SkRasterPipeline_DecalTileCtx* ctx) {
3279 auto w = ctx->limit_x;
3280 auto e = ctx->inclusiveEdge_x;
3281 auto cond = ((0 < r) & (r < w)) | (r == e);
3282 sk_unaligned_store(ctx->mask, cond_to_mask(cond));
3283 }
STAGE(decal_y,SkRasterPipeline_DecalTileCtx * ctx)3284 STAGE(decal_y, SkRasterPipeline_DecalTileCtx* ctx) {
3285 auto h = ctx->limit_y;
3286 auto e = ctx->inclusiveEdge_y;
3287 auto cond = ((0 < g) & (g < h)) | (g == e);
3288 sk_unaligned_store(ctx->mask, cond_to_mask(cond));
3289 }
STAGE(decal_x_and_y,SkRasterPipeline_DecalTileCtx * ctx)3290 STAGE(decal_x_and_y, SkRasterPipeline_DecalTileCtx* ctx) {
3291 auto w = ctx->limit_x;
3292 auto h = ctx->limit_y;
3293 auto ex = ctx->inclusiveEdge_x;
3294 auto ey = ctx->inclusiveEdge_y;
3295 auto cond = (((0 < r) & (r < w)) | (r == ex))
3296 & (((0 < g) & (g < h)) | (g == ey));
3297 sk_unaligned_store(ctx->mask, cond_to_mask(cond));
3298 }
STAGE(check_decal_mask,SkRasterPipeline_DecalTileCtx * ctx)3299 STAGE(check_decal_mask, SkRasterPipeline_DecalTileCtx* ctx) {
3300 auto mask = sk_unaligned_load<U32>(ctx->mask);
3301 r = sk_bit_cast<F>(sk_bit_cast<U32>(r) & mask);
3302 g = sk_bit_cast<F>(sk_bit_cast<U32>(g) & mask);
3303 b = sk_bit_cast<F>(sk_bit_cast<U32>(b) & mask);
3304 a = sk_bit_cast<F>(sk_bit_cast<U32>(a) & mask);
3305 }
3306
STAGE(alpha_to_gray,NoCtx)3307 STAGE(alpha_to_gray, NoCtx) {
3308 r = g = b = a;
3309 a = F1;
3310 }
STAGE(alpha_to_gray_dst,NoCtx)3311 STAGE(alpha_to_gray_dst, NoCtx) {
3312 dr = dg = db = da;
3313 da = F1;
3314 }
STAGE(alpha_to_red,NoCtx)3315 STAGE(alpha_to_red, NoCtx) {
3316 r = a;
3317 a = F1;
3318 }
STAGE(alpha_to_red_dst,NoCtx)3319 STAGE(alpha_to_red_dst, NoCtx) {
3320 dr = da;
3321 da = F1;
3322 }
3323
STAGE(bt709_luminance_or_luma_to_alpha,NoCtx)3324 STAGE(bt709_luminance_or_luma_to_alpha, NoCtx) {
3325 a = r*0.2126f + g*0.7152f + b*0.0722f;
3326 r = g = b = F0;
3327 }
STAGE(bt709_luminance_or_luma_to_rgb,NoCtx)3328 STAGE(bt709_luminance_or_luma_to_rgb, NoCtx) {
3329 r = g = b = r*0.2126f + g*0.7152f + b*0.0722f;
3330 }
3331
STAGE(matrix_translate,const float * m)3332 STAGE(matrix_translate, const float* m) {
3333 r += m[0];
3334 g += m[1];
3335 }
STAGE(matrix_scale_translate,const float * m)3336 STAGE(matrix_scale_translate, const float* m) {
3337 r = mad(r,m[0], m[2]);
3338 g = mad(g,m[1], m[3]);
3339 }
STAGE(matrix_2x3,const float * m)3340 STAGE(matrix_2x3, const float* m) {
3341 auto R = mad(r,m[0], mad(g,m[1], m[2])),
3342 G = mad(r,m[3], mad(g,m[4], m[5]));
3343 r = R;
3344 g = G;
3345 }
STAGE(matrix_3x3,const float * m)3346 STAGE(matrix_3x3, const float* m) {
3347 auto R = mad(r,m[0], mad(g,m[3], b*m[6])),
3348 G = mad(r,m[1], mad(g,m[4], b*m[7])),
3349 B = mad(r,m[2], mad(g,m[5], b*m[8]));
3350 r = R;
3351 g = G;
3352 b = B;
3353 }
STAGE(matrix_3x4,const float * m)3354 STAGE(matrix_3x4, const float* m) {
3355 auto R = mad(r,m[0], mad(g,m[3], mad(b,m[6], m[ 9]))),
3356 G = mad(r,m[1], mad(g,m[4], mad(b,m[7], m[10]))),
3357 B = mad(r,m[2], mad(g,m[5], mad(b,m[8], m[11])));
3358 r = R;
3359 g = G;
3360 b = B;
3361 }
STAGE(matrix_4x5,const float * m)3362 STAGE(matrix_4x5, const float* m) {
3363 auto R = mad(r,m[ 0], mad(g,m[ 1], mad(b,m[ 2], mad(a,m[ 3], m[ 4])))),
3364 G = mad(r,m[ 5], mad(g,m[ 6], mad(b,m[ 7], mad(a,m[ 8], m[ 9])))),
3365 B = mad(r,m[10], mad(g,m[11], mad(b,m[12], mad(a,m[13], m[14])))),
3366 A = mad(r,m[15], mad(g,m[16], mad(b,m[17], mad(a,m[18], m[19]))));
3367 r = R;
3368 g = G;
3369 b = B;
3370 a = A;
3371 }
STAGE(matrix_4x3,const float * m)3372 STAGE(matrix_4x3, const float* m) {
3373 auto X = r,
3374 Y = g;
3375
3376 r = mad(X, m[0], mad(Y, m[4], m[ 8]));
3377 g = mad(X, m[1], mad(Y, m[5], m[ 9]));
3378 b = mad(X, m[2], mad(Y, m[6], m[10]));
3379 a = mad(X, m[3], mad(Y, m[7], m[11]));
3380 }
STAGE(matrix_perspective,const float * m)3381 STAGE(matrix_perspective, const float* m) {
3382 // N.B. Unlike the other matrix_ stages, this matrix is row-major.
3383 auto R = mad(r,m[0], mad(g,m[1], m[2])),
3384 G = mad(r,m[3], mad(g,m[4], m[5])),
3385 Z = mad(r,m[6], mad(g,m[7], m[8]));
3386 r = R * rcp_precise(Z);
3387 g = G * rcp_precise(Z);
3388 }
3389
gradient_lookup(const SkRasterPipeline_GradientCtx * c,U32 idx,F t,F * r,F * g,F * b,F * a)3390 SI void gradient_lookup(const SkRasterPipeline_GradientCtx* c, U32 idx, F t,
3391 F* r, F* g, F* b, F* a) {
3392 F fr, br, fg, bg, fb, bb, fa, ba;
3393 #if defined(JUMPER_IS_HSW)
3394 if (c->stopCount <=8) {
3395 fr = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), (__m256i)idx);
3396 br = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), (__m256i)idx);
3397 fg = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), (__m256i)idx);
3398 bg = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), (__m256i)idx);
3399 fb = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), (__m256i)idx);
3400 bb = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), (__m256i)idx);
3401 fa = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), (__m256i)idx);
3402 ba = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), (__m256i)idx);
3403 } else
3404 #elif defined(JUMPER_IS_LASX)
3405 if (c->stopCount <= 8) {
3406 fr = (__m256)__lasx_xvperm_w(__lasx_xvld(c->fs[0], 0), idx);
3407 br = (__m256)__lasx_xvperm_w(__lasx_xvld(c->bs[0], 0), idx);
3408 fg = (__m256)__lasx_xvperm_w(__lasx_xvld(c->fs[1], 0), idx);
3409 bg = (__m256)__lasx_xvperm_w(__lasx_xvld(c->bs[1], 0), idx);
3410 fb = (__m256)__lasx_xvperm_w(__lasx_xvld(c->fs[2], 0), idx);
3411 bb = (__m256)__lasx_xvperm_w(__lasx_xvld(c->bs[2], 0), idx);
3412 fa = (__m256)__lasx_xvperm_w(__lasx_xvld(c->fs[3], 0), idx);
3413 ba = (__m256)__lasx_xvperm_w(__lasx_xvld(c->bs[3], 0), idx);
3414 } else
3415 #elif defined(JUMPER_IS_LSX)
3416 if (c->stopCount <= 4) {
3417 __m128i zero = __lsx_vldi(0);
3418 fr = (__m128)__lsx_vshuf_w(idx, zero, __lsx_vld(c->fs[0], 0));
3419 br = (__m128)__lsx_vshuf_w(idx, zero, __lsx_vld(c->bs[0], 0));
3420 fg = (__m128)__lsx_vshuf_w(idx, zero, __lsx_vld(c->fs[1], 0));
3421 bg = (__m128)__lsx_vshuf_w(idx, zero, __lsx_vld(c->bs[1], 0));
3422 fb = (__m128)__lsx_vshuf_w(idx, zero, __lsx_vld(c->fs[2], 0));
3423 bb = (__m128)__lsx_vshuf_w(idx, zero, __lsx_vld(c->bs[2], 0));
3424 fa = (__m128)__lsx_vshuf_w(idx, zero, __lsx_vld(c->fs[3], 0));
3425 ba = (__m128)__lsx_vshuf_w(idx, zero, __lsx_vld(c->bs[3], 0));
3426 } else
3427 #endif
3428 {
3429 fr = gather(c->fs[0], idx);
3430 br = gather(c->bs[0], idx);
3431 fg = gather(c->fs[1], idx);
3432 bg = gather(c->bs[1], idx);
3433 fb = gather(c->fs[2], idx);
3434 bb = gather(c->bs[2], idx);
3435 fa = gather(c->fs[3], idx);
3436 ba = gather(c->bs[3], idx);
3437 }
3438
3439 *r = mad(t, fr, br);
3440 *g = mad(t, fg, bg);
3441 *b = mad(t, fb, bb);
3442 *a = mad(t, fa, ba);
3443 }
3444
STAGE(evenly_spaced_gradient,const SkRasterPipeline_GradientCtx * c)3445 STAGE(evenly_spaced_gradient, const SkRasterPipeline_GradientCtx* c) {
3446 auto t = r;
3447 auto idx = trunc_(t * static_cast<float>(c->stopCount-1));
3448 gradient_lookup(c, idx, t, &r, &g, &b, &a);
3449 }
3450
STAGE(gradient,const SkRasterPipeline_GradientCtx * c)3451 STAGE(gradient, const SkRasterPipeline_GradientCtx* c) {
3452 auto t = r;
3453 U32 idx = U32_(0);
3454
3455 // N.B. The loop starts at 1 because idx 0 is the color to use before the first stop.
3456 for (size_t i = 1; i < c->stopCount; i++) {
3457 idx += (U32)if_then_else(t >= c->ts[i], I32_(1), I32_(0));
3458 }
3459
3460 gradient_lookup(c, idx, t, &r, &g, &b, &a);
3461 }
3462
STAGE(evenly_spaced_2_stop_gradient,const SkRasterPipeline_EvenlySpaced2StopGradientCtx * c)3463 STAGE(evenly_spaced_2_stop_gradient, const SkRasterPipeline_EvenlySpaced2StopGradientCtx* c) {
3464 auto t = r;
3465 r = mad(t, c->f[0], c->b[0]);
3466 g = mad(t, c->f[1], c->b[1]);
3467 b = mad(t, c->f[2], c->b[2]);
3468 a = mad(t, c->f[3], c->b[3]);
3469 }
3470
STAGE(xy_to_unit_angle,NoCtx)3471 STAGE(xy_to_unit_angle, NoCtx) {
3472 F X = r,
3473 Y = g;
3474 F xabs = abs_(X),
3475 yabs = abs_(Y);
3476
3477 F slope = min(xabs, yabs)/max(xabs, yabs);
3478 F s = slope * slope;
3479
3480 // Use a 7th degree polynomial to approximate atan.
3481 // This was generated using sollya.gforge.inria.fr.
3482 // A float optimized polynomial was generated using the following command.
3483 // P1 = fpminimax((1/(2*Pi))*atan(x),[|1,3,5,7|],[|24...|],[2^(-40),1],relative);
3484 F phi = slope
3485 * (0.15912117063999176025390625f + s
3486 * (-5.185396969318389892578125e-2f + s
3487 * (2.476101927459239959716796875e-2f + s
3488 * (-7.0547382347285747528076171875e-3f))));
3489
3490 phi = if_then_else(xabs < yabs, 1.0f/4.0f - phi, phi);
3491 phi = if_then_else(X < 0.0f , 1.0f/2.0f - phi, phi);
3492 phi = if_then_else(Y < 0.0f , 1.0f - phi , phi);
3493 phi = if_then_else(phi != phi , 0.0f , phi); // Check for NaN.
3494 r = phi;
3495 }
3496
STAGE(xy_to_radius,NoCtx)3497 STAGE(xy_to_radius, NoCtx) {
3498 F X2 = r * r,
3499 Y2 = g * g;
3500 r = sqrt_(X2 + Y2);
3501 }
3502
3503 // Please see https://skia.org/dev/design/conical for how our 2pt conical shader works.
3504
STAGE(negate_x,NoCtx)3505 STAGE(negate_x, NoCtx) { r = -r; }
3506
STAGE(xy_to_2pt_conical_strip,const SkRasterPipeline_2PtConicalCtx * ctx)3507 STAGE(xy_to_2pt_conical_strip, const SkRasterPipeline_2PtConicalCtx* ctx) {
3508 F x = r, y = g, &t = r;
3509 t = x + sqrt_(ctx->fP0 - y*y); // ctx->fP0 = r0 * r0
3510 }
3511
STAGE(xy_to_2pt_conical_focal_on_circle,NoCtx)3512 STAGE(xy_to_2pt_conical_focal_on_circle, NoCtx) {
3513 F x = r, y = g, &t = r;
3514 t = x + y*y / x; // (x^2 + y^2) / x
3515 }
3516
STAGE(xy_to_2pt_conical_well_behaved,const SkRasterPipeline_2PtConicalCtx * ctx)3517 STAGE(xy_to_2pt_conical_well_behaved, const SkRasterPipeline_2PtConicalCtx* ctx) {
3518 F x = r, y = g, &t = r;
3519 t = sqrt_(x*x + y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1
3520 }
3521
STAGE(xy_to_2pt_conical_greater,const SkRasterPipeline_2PtConicalCtx * ctx)3522 STAGE(xy_to_2pt_conical_greater, const SkRasterPipeline_2PtConicalCtx* ctx) {
3523 F x = r, y = g, &t = r;
3524 t = sqrt_(x*x - y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1
3525 }
3526
STAGE(xy_to_2pt_conical_smaller,const SkRasterPipeline_2PtConicalCtx * ctx)3527 STAGE(xy_to_2pt_conical_smaller, const SkRasterPipeline_2PtConicalCtx* ctx) {
3528 F x = r, y = g, &t = r;
3529 t = -sqrt_(x*x - y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1
3530 }
3531
STAGE(alter_2pt_conical_compensate_focal,const SkRasterPipeline_2PtConicalCtx * ctx)3532 STAGE(alter_2pt_conical_compensate_focal, const SkRasterPipeline_2PtConicalCtx* ctx) {
3533 F& t = r;
3534 t = t + ctx->fP1; // ctx->fP1 = f
3535 }
3536
STAGE(alter_2pt_conical_unswap,NoCtx)3537 STAGE(alter_2pt_conical_unswap, NoCtx) {
3538 F& t = r;
3539 t = 1 - t;
3540 }
3541
STAGE(mask_2pt_conical_nan,SkRasterPipeline_2PtConicalCtx * c)3542 STAGE(mask_2pt_conical_nan, SkRasterPipeline_2PtConicalCtx* c) {
3543 F& t = r;
3544 auto is_degenerate = (t != t); // NaN
3545 t = if_then_else(is_degenerate, F0, t);
3546 sk_unaligned_store(&c->fMask, cond_to_mask(!is_degenerate));
3547 }
3548
STAGE(mask_2pt_conical_degenerates,SkRasterPipeline_2PtConicalCtx * c)3549 STAGE(mask_2pt_conical_degenerates, SkRasterPipeline_2PtConicalCtx* c) {
3550 F& t = r;
3551 auto is_degenerate = (t <= 0) | (t != t);
3552 t = if_then_else(is_degenerate, F0, t);
3553 sk_unaligned_store(&c->fMask, cond_to_mask(!is_degenerate));
3554 }
3555
STAGE(apply_vector_mask,const uint32_t * ctx)3556 STAGE(apply_vector_mask, const uint32_t* ctx) {
3557 const U32 mask = sk_unaligned_load<U32>(ctx);
3558 r = sk_bit_cast<F>(sk_bit_cast<U32>(r) & mask);
3559 g = sk_bit_cast<F>(sk_bit_cast<U32>(g) & mask);
3560 b = sk_bit_cast<F>(sk_bit_cast<U32>(b) & mask);
3561 a = sk_bit_cast<F>(sk_bit_cast<U32>(a) & mask);
3562 }
3563
save_xy(F * r,F * g,SkRasterPipeline_SamplerCtx * c)3564 SI void save_xy(F* r, F* g, SkRasterPipeline_SamplerCtx* c) {
3565 // Whether bilinear or bicubic, all sample points are at the same fractional offset (fx,fy).
3566 // They're either the 4 corners of a logical 1x1 pixel or the 16 corners of a 3x3 grid
3567 // surrounding (x,y) at (0.5,0.5) off-center.
3568 F fx = fract(*r + 0.5f),
3569 fy = fract(*g + 0.5f);
3570
3571 // Samplers will need to load x and fx, or y and fy.
3572 sk_unaligned_store(c->x, *r);
3573 sk_unaligned_store(c->y, *g);
3574 sk_unaligned_store(c->fx, fx);
3575 sk_unaligned_store(c->fy, fy);
3576 }
3577
STAGE(accumulate,const SkRasterPipeline_SamplerCtx * c)3578 STAGE(accumulate, const SkRasterPipeline_SamplerCtx* c) {
3579 // Bilinear and bicubic filters are both separable, so we produce independent contributions
3580 // from x and y, multiplying them together here to get each pixel's total scale factor.
3581 auto scale = sk_unaligned_load<F>(c->scalex)
3582 * sk_unaligned_load<F>(c->scaley);
3583 dr = mad(scale, r, dr);
3584 dg = mad(scale, g, dg);
3585 db = mad(scale, b, db);
3586 da = mad(scale, a, da);
3587 }
3588
3589 // In bilinear interpolation, the 4 pixels at +/- 0.5 offsets from the sample pixel center
3590 // are combined in direct proportion to their area overlapping that logical query pixel.
3591 // At positive offsets, the x-axis contribution to that rectangle is fx, or (1-fx) at negative x.
3592 // The y-axis is symmetric.
3593
3594 template <int kScale>
bilinear_x(SkRasterPipeline_SamplerCtx * ctx,F * x)3595 SI void bilinear_x(SkRasterPipeline_SamplerCtx* ctx, F* x) {
3596 *x = sk_unaligned_load<F>(ctx->x) + (kScale * 0.5f);
3597 F fx = sk_unaligned_load<F>(ctx->fx);
3598
3599 F scalex;
3600 if (kScale == -1) { scalex = 1.0f - fx; }
3601 if (kScale == +1) { scalex = fx; }
3602 sk_unaligned_store(ctx->scalex, scalex);
3603 }
3604 template <int kScale>
bilinear_y(SkRasterPipeline_SamplerCtx * ctx,F * y)3605 SI void bilinear_y(SkRasterPipeline_SamplerCtx* ctx, F* y) {
3606 *y = sk_unaligned_load<F>(ctx->y) + (kScale * 0.5f);
3607 F fy = sk_unaligned_load<F>(ctx->fy);
3608
3609 F scaley;
3610 if (kScale == -1) { scaley = 1.0f - fy; }
3611 if (kScale == +1) { scaley = fy; }
3612 sk_unaligned_store(ctx->scaley, scaley);
3613 }
3614
STAGE(bilinear_setup,SkRasterPipeline_SamplerCtx * ctx)3615 STAGE(bilinear_setup, SkRasterPipeline_SamplerCtx* ctx) {
3616 save_xy(&r, &g, ctx);
3617 // Init for accumulate
3618 dr = dg = db = da = F0;
3619 }
3620
STAGE(bilinear_nx,SkRasterPipeline_SamplerCtx * ctx)3621 STAGE(bilinear_nx, SkRasterPipeline_SamplerCtx* ctx) { bilinear_x<-1>(ctx, &r); }
STAGE(bilinear_px,SkRasterPipeline_SamplerCtx * ctx)3622 STAGE(bilinear_px, SkRasterPipeline_SamplerCtx* ctx) { bilinear_x<+1>(ctx, &r); }
STAGE(bilinear_ny,SkRasterPipeline_SamplerCtx * ctx)3623 STAGE(bilinear_ny, SkRasterPipeline_SamplerCtx* ctx) { bilinear_y<-1>(ctx, &g); }
STAGE(bilinear_py,SkRasterPipeline_SamplerCtx * ctx)3624 STAGE(bilinear_py, SkRasterPipeline_SamplerCtx* ctx) { bilinear_y<+1>(ctx, &g); }
3625
3626
3627 // In bicubic interpolation, the 16 pixels and +/- 0.5 and +/- 1.5 offsets from the sample
3628 // pixel center are combined with a non-uniform cubic filter, with higher values near the center.
3629 //
3630 // This helper computes the total weight along one axis (our bicubic filter is separable), given one
3631 // column of the sampling matrix, and a fractional pixel offset. See SkCubicResampler for details.
3632
bicubic_wts(F t,float A,float B,float C,float D)3633 SI F bicubic_wts(F t, float A, float B, float C, float D) {
3634 return mad(t, mad(t, mad(t, D, C), B), A);
3635 }
3636
3637 template <int kScale>
bicubic_x(SkRasterPipeline_SamplerCtx * ctx,F * x)3638 SI void bicubic_x(SkRasterPipeline_SamplerCtx* ctx, F* x) {
3639 *x = sk_unaligned_load<F>(ctx->x) + (kScale * 0.5f);
3640
3641 F scalex;
3642 if (kScale == -3) { scalex = sk_unaligned_load<F>(ctx->wx[0]); }
3643 if (kScale == -1) { scalex = sk_unaligned_load<F>(ctx->wx[1]); }
3644 if (kScale == +1) { scalex = sk_unaligned_load<F>(ctx->wx[2]); }
3645 if (kScale == +3) { scalex = sk_unaligned_load<F>(ctx->wx[3]); }
3646 sk_unaligned_store(ctx->scalex, scalex);
3647 }
3648 template <int kScale>
bicubic_y(SkRasterPipeline_SamplerCtx * ctx,F * y)3649 SI void bicubic_y(SkRasterPipeline_SamplerCtx* ctx, F* y) {
3650 *y = sk_unaligned_load<F>(ctx->y) + (kScale * 0.5f);
3651
3652 F scaley;
3653 if (kScale == -3) { scaley = sk_unaligned_load<F>(ctx->wy[0]); }
3654 if (kScale == -1) { scaley = sk_unaligned_load<F>(ctx->wy[1]); }
3655 if (kScale == +1) { scaley = sk_unaligned_load<F>(ctx->wy[2]); }
3656 if (kScale == +3) { scaley = sk_unaligned_load<F>(ctx->wy[3]); }
3657 sk_unaligned_store(ctx->scaley, scaley);
3658 }
3659
STAGE(bicubic_setup,SkRasterPipeline_SamplerCtx * ctx)3660 STAGE(bicubic_setup, SkRasterPipeline_SamplerCtx* ctx) {
3661 save_xy(&r, &g, ctx);
3662
3663 const float* w = ctx->weights;
3664
3665 F fx = sk_unaligned_load<F>(ctx->fx);
3666 sk_unaligned_store(ctx->wx[0], bicubic_wts(fx, w[0], w[4], w[ 8], w[12]));
3667 sk_unaligned_store(ctx->wx[1], bicubic_wts(fx, w[1], w[5], w[ 9], w[13]));
3668 sk_unaligned_store(ctx->wx[2], bicubic_wts(fx, w[2], w[6], w[10], w[14]));
3669 sk_unaligned_store(ctx->wx[3], bicubic_wts(fx, w[3], w[7], w[11], w[15]));
3670
3671 F fy = sk_unaligned_load<F>(ctx->fy);
3672 sk_unaligned_store(ctx->wy[0], bicubic_wts(fy, w[0], w[4], w[ 8], w[12]));
3673 sk_unaligned_store(ctx->wy[1], bicubic_wts(fy, w[1], w[5], w[ 9], w[13]));
3674 sk_unaligned_store(ctx->wy[2], bicubic_wts(fy, w[2], w[6], w[10], w[14]));
3675 sk_unaligned_store(ctx->wy[3], bicubic_wts(fy, w[3], w[7], w[11], w[15]));
3676
3677 // Init for accumulate
3678 dr = dg = db = da = F0;
3679 }
3680
STAGE(bicubic_n3x,SkRasterPipeline_SamplerCtx * ctx)3681 STAGE(bicubic_n3x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<-3>(ctx, &r); }
STAGE(bicubic_n1x,SkRasterPipeline_SamplerCtx * ctx)3682 STAGE(bicubic_n1x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<-1>(ctx, &r); }
STAGE(bicubic_p1x,SkRasterPipeline_SamplerCtx * ctx)3683 STAGE(bicubic_p1x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<+1>(ctx, &r); }
STAGE(bicubic_p3x,SkRasterPipeline_SamplerCtx * ctx)3684 STAGE(bicubic_p3x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<+3>(ctx, &r); }
3685
STAGE(bicubic_n3y,SkRasterPipeline_SamplerCtx * ctx)3686 STAGE(bicubic_n3y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<-3>(ctx, &g); }
STAGE(bicubic_n1y,SkRasterPipeline_SamplerCtx * ctx)3687 STAGE(bicubic_n1y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<-1>(ctx, &g); }
STAGE(bicubic_p1y,SkRasterPipeline_SamplerCtx * ctx)3688 STAGE(bicubic_p1y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<+1>(ctx, &g); }
STAGE(bicubic_p3y,SkRasterPipeline_SamplerCtx * ctx)3689 STAGE(bicubic_p3y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<+3>(ctx, &g); }
3690
compute_perlin_vector(U32 sample,F x,F y)3691 SI F compute_perlin_vector(U32 sample, F x, F y) {
3692 // We're relying on the packing of uint16s within a uint32, which will vary based on endianness.
3693 #ifdef SK_CPU_BENDIAN
3694 U32 sampleLo = sample >> 16;
3695 U32 sampleHi = sample & 0xFFFF;
3696 #else
3697 U32 sampleLo = sample & 0xFFFF;
3698 U32 sampleHi = sample >> 16;
3699 #endif
3700
3701 // Convert 32-bit sample value into two floats in the [-1..1] range.
3702 F vecX = mad(cast(sampleLo), 2.0f / 65535.0f, -1.0f);
3703 F vecY = mad(cast(sampleHi), 2.0f / 65535.0f, -1.0f);
3704
3705 // Return the dot of the sample and the passed-in vector.
3706 return mad(vecX, x,
3707 vecY * y);
3708 }
3709
STAGE(perlin_noise,SkRasterPipeline_PerlinNoiseCtx * ctx)3710 STAGE(perlin_noise, SkRasterPipeline_PerlinNoiseCtx* ctx) {
3711 F noiseVecX = (r + 0.5) * ctx->baseFrequencyX;
3712 F noiseVecY = (g + 0.5) * ctx->baseFrequencyY;
3713 r = g = b = a = F0;
3714 F stitchDataX = F_(ctx->stitchDataInX);
3715 F stitchDataY = F_(ctx->stitchDataInY);
3716 F ratio = F1;
3717
3718 for (int octave = 0; octave < ctx->numOctaves; ++octave) {
3719 // Calculate noise coordinates. (Roughly $noise_helper in Graphite)
3720 F floorValX = floor_(noiseVecX);
3721 F floorValY = floor_(noiseVecY);
3722 F ceilValX = floorValX + 1.0f;
3723 F ceilValY = floorValY + 1.0f;
3724 F fractValX = noiseVecX - floorValX;
3725 F fractValY = noiseVecY - floorValY;
3726
3727 if (ctx->stitching) {
3728 // If we are stitching, wrap the coordinates to the stitch position.
3729 floorValX -= sk_bit_cast<F>(cond_to_mask(floorValX >= stitchDataX) &
3730 sk_bit_cast<I32>(stitchDataX));
3731 floorValY -= sk_bit_cast<F>(cond_to_mask(floorValY >= stitchDataY) &
3732 sk_bit_cast<I32>(stitchDataY));
3733 ceilValX -= sk_bit_cast<F>(cond_to_mask(ceilValX >= stitchDataX) &
3734 sk_bit_cast<I32>(stitchDataX));
3735 ceilValY -= sk_bit_cast<F>(cond_to_mask(ceilValY >= stitchDataY) &
3736 sk_bit_cast<I32>(stitchDataY));
3737 }
3738
3739 U32 latticeLookup = (U32)(iround(floorValX)) & 0xFF;
3740 F latticeIdxX = cast(expand(gather(ctx->latticeSelector, latticeLookup)));
3741 latticeLookup = (U32)(iround(ceilValX)) & 0xFF;
3742 F latticeIdxY = cast(expand(gather(ctx->latticeSelector, latticeLookup)));
3743
3744 U32 b00 = (U32)(iround(latticeIdxX + floorValY)) & 0xFF;
3745 U32 b10 = (U32)(iround(latticeIdxY + floorValY)) & 0xFF;
3746 U32 b01 = (U32)(iround(latticeIdxX + ceilValY)) & 0xFF;
3747 U32 b11 = (U32)(iround(latticeIdxY + ceilValY)) & 0xFF;
3748
3749 // Calculate noise colors. (Roughly $noise_function in Graphite)
3750 // Apply Hermite interpolation to the fractional value.
3751 F smoothX = fractValX * fractValX * (3.0f - 2.0f * fractValX);
3752 F smoothY = fractValY * fractValY * (3.0f - 2.0f * fractValY);
3753
3754 F color[4];
3755 const uint32_t* channelNoiseData = reinterpret_cast<const uint32_t*>(ctx->noiseData);
3756 for (int channel = 0; channel < 4; ++channel) {
3757 U32 sample00 = gather(channelNoiseData, b00);
3758 U32 sample10 = gather(channelNoiseData, b10);
3759 U32 sample01 = gather(channelNoiseData, b01);
3760 U32 sample11 = gather(channelNoiseData, b11);
3761 channelNoiseData += 256;
3762
3763 F u = compute_perlin_vector(sample00, fractValX, fractValY);
3764 F v = compute_perlin_vector(sample10, fractValX - 1.0f, fractValY);
3765 F A = lerp(u, v, smoothX);
3766
3767 u = compute_perlin_vector(sample01, fractValX, fractValY - 1.0f);
3768 v = compute_perlin_vector(sample11, fractValX - 1.0f, fractValY - 1.0f);
3769 F B = lerp(u, v, smoothX);
3770
3771 color[channel] = lerp(A, B, smoothY);
3772 }
3773
3774 if (ctx->noiseType != SkPerlinNoiseShaderType::kFractalNoise) {
3775 // For kTurbulence the result is: abs(noise[-1,1])
3776 color[0] = abs_(color[0]);
3777 color[1] = abs_(color[1]);
3778 color[2] = abs_(color[2]);
3779 color[3] = abs_(color[3]);
3780 }
3781
3782 r = mad(color[0], ratio, r);
3783 g = mad(color[1], ratio, g);
3784 b = mad(color[2], ratio, b);
3785 a = mad(color[3], ratio, a);
3786
3787 // Scale inputs for the next round.
3788 noiseVecX *= 2.0f;
3789 noiseVecY *= 2.0f;
3790 stitchDataX *= 2.0f;
3791 stitchDataY *= 2.0f;
3792 ratio *= 0.5f;
3793 }
3794
3795 if (ctx->noiseType == SkPerlinNoiseShaderType::kFractalNoise) {
3796 // For kFractalNoise the result is: noise[-1,1] * 0.5 + 0.5
3797 r = mad(r, 0.5f, 0.5f);
3798 g = mad(g, 0.5f, 0.5f);
3799 b = mad(b, 0.5f, 0.5f);
3800 a = mad(a, 0.5f, 0.5f);
3801 }
3802
3803 r = clamp_01_(r) * a;
3804 g = clamp_01_(g) * a;
3805 b = clamp_01_(b) * a;
3806 a = clamp_01_(a);
3807 }
3808
STAGE(mipmap_linear_init,SkRasterPipeline_MipmapCtx * ctx)3809 STAGE(mipmap_linear_init, SkRasterPipeline_MipmapCtx* ctx) {
3810 sk_unaligned_store(ctx->x, r);
3811 sk_unaligned_store(ctx->y, g);
3812 }
3813
STAGE(mipmap_linear_update,SkRasterPipeline_MipmapCtx * ctx)3814 STAGE(mipmap_linear_update, SkRasterPipeline_MipmapCtx* ctx) {
3815 sk_unaligned_store(ctx->r, r);
3816 sk_unaligned_store(ctx->g, g);
3817 sk_unaligned_store(ctx->b, b);
3818 sk_unaligned_store(ctx->a, a);
3819
3820 r = sk_unaligned_load<F>(ctx->x) * ctx->scaleX;
3821 g = sk_unaligned_load<F>(ctx->y) * ctx->scaleY;
3822 }
3823
STAGE(mipmap_linear_finish,SkRasterPipeline_MipmapCtx * ctx)3824 STAGE(mipmap_linear_finish, SkRasterPipeline_MipmapCtx* ctx) {
3825 r = lerp(sk_unaligned_load<F>(ctx->r), r, F_(ctx->lowerWeight));
3826 g = lerp(sk_unaligned_load<F>(ctx->g), g, F_(ctx->lowerWeight));
3827 b = lerp(sk_unaligned_load<F>(ctx->b), b, F_(ctx->lowerWeight));
3828 a = lerp(sk_unaligned_load<F>(ctx->a), a, F_(ctx->lowerWeight));
3829 }
3830
STAGE(callback,SkRasterPipeline_CallbackCtx * c)3831 STAGE(callback, SkRasterPipeline_CallbackCtx* c) {
3832 store4(c->rgba, r,g,b,a);
3833 c->fn(c, N);
3834 load4(c->read_from, &r,&g,&b,&a);
3835 }
3836
STAGE_TAIL(set_base_pointer,std::byte * p)3837 STAGE_TAIL(set_base_pointer, std::byte* p) {
3838 base = p;
3839 }
3840
3841 // All control flow stages used by SkSL maintain some state in the common registers:
3842 // r: condition mask
3843 // g: loop mask
3844 // b: return mask
3845 // a: execution mask (intersection of all three masks)
3846 // After updating r/g/b, you must invoke update_execution_mask().
3847 #define execution_mask() sk_bit_cast<I32>(a)
3848 #define update_execution_mask() a = sk_bit_cast<F>(sk_bit_cast<I32>(r) & \
3849 sk_bit_cast<I32>(g) & \
3850 sk_bit_cast<I32>(b))
3851
STAGE_TAIL(init_lane_masks,SkRasterPipeline_InitLaneMasksCtx * ctx)3852 STAGE_TAIL(init_lane_masks, SkRasterPipeline_InitLaneMasksCtx* ctx) {
3853 uint32_t iota[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
3854 static_assert(std::size(iota) >= SkRasterPipeline_kMaxStride_highp);
3855
3856 I32 mask = cond_to_mask(sk_unaligned_load<U32>(iota) < *ctx->tail);
3857 r = g = b = a = sk_bit_cast<F>(mask);
3858 }
3859
STAGE_TAIL(store_device_xy01,F * dst)3860 STAGE_TAIL(store_device_xy01, F* dst) {
3861 // This is very similar to `seed_shader + store_src`, but b/a are backwards.
3862 // (sk_FragCoord actually puts w=1 in the w slot.)
3863 static constexpr float iota[] = {
3864 0.5f, 1.5f, 2.5f, 3.5f, 4.5f, 5.5f, 6.5f, 7.5f,
3865 8.5f, 9.5f,10.5f,11.5f,12.5f,13.5f,14.5f,15.5f,
3866 };
3867 static_assert(std::size(iota) >= SkRasterPipeline_kMaxStride_highp);
3868
3869 dst[0] = cast(U32_(dx)) + sk_unaligned_load<F>(iota);
3870 dst[1] = cast(U32_(dy)) + 0.5f;
3871 dst[2] = F0;
3872 dst[3] = F1;
3873 }
3874
STAGE_TAIL(exchange_src,F * rgba)3875 STAGE_TAIL(exchange_src, F* rgba) {
3876 // Swaps r,g,b,a registers with the values at `rgba`.
3877 F temp[4] = {r, g, b, a};
3878 r = rgba[0];
3879 rgba[0] = temp[0];
3880 g = rgba[1];
3881 rgba[1] = temp[1];
3882 b = rgba[2];
3883 rgba[2] = temp[2];
3884 a = rgba[3];
3885 rgba[3] = temp[3];
3886 }
3887
STAGE_TAIL(load_condition_mask,F * ctx)3888 STAGE_TAIL(load_condition_mask, F* ctx) {
3889 r = sk_unaligned_load<F>(ctx);
3890 update_execution_mask();
3891 }
3892
STAGE_TAIL(store_condition_mask,F * ctx)3893 STAGE_TAIL(store_condition_mask, F* ctx) {
3894 sk_unaligned_store(ctx, r);
3895 }
3896
STAGE_TAIL(merge_condition_mask,I32 * ptr)3897 STAGE_TAIL(merge_condition_mask, I32* ptr) {
3898 // Set the condition-mask to the intersection of two adjacent masks at the pointer.
3899 r = sk_bit_cast<F>(ptr[0] & ptr[1]);
3900 update_execution_mask();
3901 }
3902
STAGE_TAIL(merge_inv_condition_mask,I32 * ptr)3903 STAGE_TAIL(merge_inv_condition_mask, I32* ptr) {
3904 // Set the condition-mask to the intersection of the first mask and the inverse of the second.
3905 r = sk_bit_cast<F>(ptr[0] & ~ptr[1]);
3906 update_execution_mask();
3907 }
3908
STAGE_TAIL(load_loop_mask,F * ctx)3909 STAGE_TAIL(load_loop_mask, F* ctx) {
3910 g = sk_unaligned_load<F>(ctx);
3911 update_execution_mask();
3912 }
3913
STAGE_TAIL(store_loop_mask,F * ctx)3914 STAGE_TAIL(store_loop_mask, F* ctx) {
3915 sk_unaligned_store(ctx, g);
3916 }
3917
STAGE_TAIL(mask_off_loop_mask,NoCtx)3918 STAGE_TAIL(mask_off_loop_mask, NoCtx) {
3919 // We encountered a break statement. If a lane was active, it should be masked off now, and stay
3920 // masked-off until the termination of the loop.
3921 g = sk_bit_cast<F>(sk_bit_cast<I32>(g) & ~execution_mask());
3922 update_execution_mask();
3923 }
3924
STAGE_TAIL(reenable_loop_mask,I32 * ptr)3925 STAGE_TAIL(reenable_loop_mask, I32* ptr) {
3926 // Set the loop-mask to the union of the current loop-mask with the mask at the pointer.
3927 g = sk_bit_cast<F>(sk_bit_cast<I32>(g) | ptr[0]);
3928 update_execution_mask();
3929 }
3930
STAGE_TAIL(merge_loop_mask,I32 * ptr)3931 STAGE_TAIL(merge_loop_mask, I32* ptr) {
3932 // Set the loop-mask to the intersection of the current loop-mask with the mask at the pointer.
3933 // (Note: this behavior subtly differs from merge_condition_mask!)
3934 g = sk_bit_cast<F>(sk_bit_cast<I32>(g) & ptr[0]);
3935 update_execution_mask();
3936 }
3937
STAGE_TAIL(continue_op,I32 * continueMask)3938 STAGE_TAIL(continue_op, I32* continueMask) {
3939 // Set any currently-executing lanes in the continue-mask to true.
3940 *continueMask |= execution_mask();
3941
3942 // Disable any currently-executing lanes from the loop mask. (Just like `mask_off_loop_mask`.)
3943 g = sk_bit_cast<F>(sk_bit_cast<I32>(g) & ~execution_mask());
3944 update_execution_mask();
3945 }
3946
STAGE_TAIL(case_op,SkRasterPipeline_CaseOpCtx * packed)3947 STAGE_TAIL(case_op, SkRasterPipeline_CaseOpCtx* packed) {
3948 auto ctx = SkRPCtxUtils::Unpack(packed);
3949
3950 // Check each lane to see if the case value matches the expectation.
3951 I32* actualValue = (I32*)(base + ctx.offset);
3952 I32 caseMatches = cond_to_mask(*actualValue == ctx.expectedValue);
3953
3954 // In lanes where we found a match, enable the loop mask...
3955 g = sk_bit_cast<F>(sk_bit_cast<I32>(g) | caseMatches);
3956 update_execution_mask();
3957
3958 // ... and clear the default-case mask.
3959 I32* defaultMask = actualValue + 1;
3960 *defaultMask &= ~caseMatches;
3961 }
3962
STAGE_TAIL(load_return_mask,F * ctx)3963 STAGE_TAIL(load_return_mask, F* ctx) {
3964 b = sk_unaligned_load<F>(ctx);
3965 update_execution_mask();
3966 }
3967
STAGE_TAIL(store_return_mask,F * ctx)3968 STAGE_TAIL(store_return_mask, F* ctx) {
3969 sk_unaligned_store(ctx, b);
3970 }
3971
STAGE_TAIL(mask_off_return_mask,NoCtx)3972 STAGE_TAIL(mask_off_return_mask, NoCtx) {
3973 // We encountered a return statement. If a lane was active, it should be masked off now, and
3974 // stay masked-off until the end of the function.
3975 b = sk_bit_cast<F>(sk_bit_cast<I32>(b) & ~execution_mask());
3976 update_execution_mask();
3977 }
3978
STAGE_BRANCH(branch_if_all_lanes_active,SkRasterPipeline_BranchIfAllLanesActiveCtx * ctx)3979 STAGE_BRANCH(branch_if_all_lanes_active, SkRasterPipeline_BranchIfAllLanesActiveCtx* ctx) {
3980 uint32_t iota[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
3981 static_assert(std::size(iota) >= SkRasterPipeline_kMaxStride_highp);
3982
3983 I32 tailLanes = cond_to_mask(*ctx->tail <= sk_unaligned_load<U32>(iota));
3984 return all(execution_mask() | tailLanes) ? ctx->offset : 1;
3985 }
3986
STAGE_BRANCH(branch_if_any_lanes_active,SkRasterPipeline_BranchCtx * ctx)3987 STAGE_BRANCH(branch_if_any_lanes_active, SkRasterPipeline_BranchCtx* ctx) {
3988 return any(execution_mask()) ? ctx->offset : 1;
3989 }
3990
STAGE_BRANCH(branch_if_no_lanes_active,SkRasterPipeline_BranchCtx * ctx)3991 STAGE_BRANCH(branch_if_no_lanes_active, SkRasterPipeline_BranchCtx* ctx) {
3992 return any(execution_mask()) ? 1 : ctx->offset;
3993 }
3994
STAGE_BRANCH(jump,SkRasterPipeline_BranchCtx * ctx)3995 STAGE_BRANCH(jump, SkRasterPipeline_BranchCtx* ctx) {
3996 return ctx->offset;
3997 }
3998
STAGE_BRANCH(branch_if_no_active_lanes_eq,SkRasterPipeline_BranchIfEqualCtx * ctx)3999 STAGE_BRANCH(branch_if_no_active_lanes_eq, SkRasterPipeline_BranchIfEqualCtx* ctx) {
4000 // Compare each lane against the expected value...
4001 I32 match = cond_to_mask(*(const I32*)ctx->ptr == ctx->value);
4002 // ... but mask off lanes that aren't executing.
4003 match &= execution_mask();
4004 // If any lanes matched, don't take the branch.
4005 return any(match) ? 1 : ctx->offset;
4006 }
4007
STAGE_TAIL(trace_line,SkRasterPipeline_TraceLineCtx * ctx)4008 STAGE_TAIL(trace_line, SkRasterPipeline_TraceLineCtx* ctx) {
4009 const I32* traceMask = (const I32*)ctx->traceMask;
4010 if (any(execution_mask() & *traceMask)) {
4011 ctx->traceHook->line(ctx->lineNumber);
4012 }
4013 }
4014
STAGE_TAIL(trace_enter,SkRasterPipeline_TraceFuncCtx * ctx)4015 STAGE_TAIL(trace_enter, SkRasterPipeline_TraceFuncCtx* ctx) {
4016 const I32* traceMask = (const I32*)ctx->traceMask;
4017 if (any(execution_mask() & *traceMask)) {
4018 ctx->traceHook->enter(ctx->funcIdx);
4019 }
4020 }
4021
STAGE_TAIL(trace_exit,SkRasterPipeline_TraceFuncCtx * ctx)4022 STAGE_TAIL(trace_exit, SkRasterPipeline_TraceFuncCtx* ctx) {
4023 const I32* traceMask = (const I32*)ctx->traceMask;
4024 if (any(execution_mask() & *traceMask)) {
4025 ctx->traceHook->exit(ctx->funcIdx);
4026 }
4027 }
4028
STAGE_TAIL(trace_scope,SkRasterPipeline_TraceScopeCtx * ctx)4029 STAGE_TAIL(trace_scope, SkRasterPipeline_TraceScopeCtx* ctx) {
4030 // Note that trace_scope intentionally does not incorporate the execution mask. Otherwise, the
4031 // scopes would become unbalanced if the execution mask changed in the middle of a block. The
4032 // caller is responsible for providing a combined trace- and execution-mask.
4033 const I32* traceMask = (const I32*)ctx->traceMask;
4034 if (any(*traceMask)) {
4035 ctx->traceHook->scope(ctx->delta);
4036 }
4037 }
4038
STAGE_TAIL(trace_var,SkRasterPipeline_TraceVarCtx * ctx)4039 STAGE_TAIL(trace_var, SkRasterPipeline_TraceVarCtx* ctx) {
4040 const I32* traceMask = (const I32*)ctx->traceMask;
4041 I32 mask = execution_mask() & *traceMask;
4042 if (any(mask)) {
4043 for (size_t lane = 0; lane < N; ++lane) {
4044 if (select_lane(mask, lane)) {
4045 const I32* data = (const I32*)ctx->data;
4046 int slotIdx = ctx->slotIdx, numSlots = ctx->numSlots;
4047 if (ctx->indirectOffset) {
4048 // If this was an indirect store, apply the indirect-offset to the data pointer.
4049 uint32_t indirectOffset = select_lane(*(const U32*)ctx->indirectOffset, lane);
4050 indirectOffset = std::min<uint32_t>(indirectOffset, ctx->indirectLimit);
4051 data += indirectOffset;
4052 slotIdx += indirectOffset;
4053 }
4054 while (numSlots--) {
4055 ctx->traceHook->var(slotIdx, select_lane(*data, lane));
4056 ++slotIdx;
4057 ++data;
4058 }
4059 break;
4060 }
4061 }
4062 }
4063 }
4064
STAGE_TAIL(copy_uniform,SkRasterPipeline_UniformCtx * ctx)4065 STAGE_TAIL(copy_uniform, SkRasterPipeline_UniformCtx* ctx) {
4066 const int* src = ctx->src;
4067 I32* dst = (I32*)ctx->dst;
4068 dst[0] = I32_(src[0]);
4069 }
STAGE_TAIL(copy_2_uniforms,SkRasterPipeline_UniformCtx * ctx)4070 STAGE_TAIL(copy_2_uniforms, SkRasterPipeline_UniformCtx* ctx) {
4071 const int* src = ctx->src;
4072 I32* dst = (I32*)ctx->dst;
4073 dst[0] = I32_(src[0]);
4074 dst[1] = I32_(src[1]);
4075 }
STAGE_TAIL(copy_3_uniforms,SkRasterPipeline_UniformCtx * ctx)4076 STAGE_TAIL(copy_3_uniforms, SkRasterPipeline_UniformCtx* ctx) {
4077 const int* src = ctx->src;
4078 I32* dst = (I32*)ctx->dst;
4079 dst[0] = I32_(src[0]);
4080 dst[1] = I32_(src[1]);
4081 dst[2] = I32_(src[2]);
4082 }
STAGE_TAIL(copy_4_uniforms,SkRasterPipeline_UniformCtx * ctx)4083 STAGE_TAIL(copy_4_uniforms, SkRasterPipeline_UniformCtx* ctx) {
4084 const int* src = ctx->src;
4085 I32* dst = (I32*)ctx->dst;
4086 dst[0] = I32_(src[0]);
4087 dst[1] = I32_(src[1]);
4088 dst[2] = I32_(src[2]);
4089 dst[3] = I32_(src[3]);
4090 }
4091
STAGE_TAIL(copy_constant,SkRasterPipeline_ConstantCtx * packed)4092 STAGE_TAIL(copy_constant, SkRasterPipeline_ConstantCtx* packed) {
4093 auto ctx = SkRPCtxUtils::Unpack(packed);
4094 I32* dst = (I32*)(base + ctx.dst);
4095 I32 value = I32_(ctx.value);
4096 dst[0] = value;
4097 }
STAGE_TAIL(splat_2_constants,SkRasterPipeline_ConstantCtx * packed)4098 STAGE_TAIL(splat_2_constants, SkRasterPipeline_ConstantCtx* packed) {
4099 auto ctx = SkRPCtxUtils::Unpack(packed);
4100 I32* dst = (I32*)(base + ctx.dst);
4101 I32 value = I32_(ctx.value);
4102 dst[0] = dst[1] = value;
4103 }
STAGE_TAIL(splat_3_constants,SkRasterPipeline_ConstantCtx * packed)4104 STAGE_TAIL(splat_3_constants, SkRasterPipeline_ConstantCtx* packed) {
4105 auto ctx = SkRPCtxUtils::Unpack(packed);
4106 I32* dst = (I32*)(base + ctx.dst);
4107 I32 value = I32_(ctx.value);
4108 dst[0] = dst[1] = dst[2] = value;
4109 }
STAGE_TAIL(splat_4_constants,SkRasterPipeline_ConstantCtx * packed)4110 STAGE_TAIL(splat_4_constants, SkRasterPipeline_ConstantCtx* packed) {
4111 auto ctx = SkRPCtxUtils::Unpack(packed);
4112 I32* dst = (I32*)(base + ctx.dst);
4113 I32 value = I32_(ctx.value);
4114 dst[0] = dst[1] = dst[2] = dst[3] = value;
4115 }
4116
4117 template <int NumSlots>
copy_n_slots_unmasked_fn(SkRasterPipeline_BinaryOpCtx * packed,std::byte * base)4118 SI void copy_n_slots_unmasked_fn(SkRasterPipeline_BinaryOpCtx* packed, std::byte* base) {
4119 auto ctx = SkRPCtxUtils::Unpack(packed);
4120 F* dst = (F*)(base + ctx.dst);
4121 F* src = (F*)(base + ctx.src);
4122 memcpy(dst, src, sizeof(F) * NumSlots);
4123 }
4124
STAGE_TAIL(copy_slot_unmasked,SkRasterPipeline_BinaryOpCtx * packed)4125 STAGE_TAIL(copy_slot_unmasked, SkRasterPipeline_BinaryOpCtx* packed) {
4126 copy_n_slots_unmasked_fn<1>(packed, base);
4127 }
STAGE_TAIL(copy_2_slots_unmasked,SkRasterPipeline_BinaryOpCtx * packed)4128 STAGE_TAIL(copy_2_slots_unmasked, SkRasterPipeline_BinaryOpCtx* packed) {
4129 copy_n_slots_unmasked_fn<2>(packed, base);
4130 }
STAGE_TAIL(copy_3_slots_unmasked,SkRasterPipeline_BinaryOpCtx * packed)4131 STAGE_TAIL(copy_3_slots_unmasked, SkRasterPipeline_BinaryOpCtx* packed) {
4132 copy_n_slots_unmasked_fn<3>(packed, base);
4133 }
STAGE_TAIL(copy_4_slots_unmasked,SkRasterPipeline_BinaryOpCtx * packed)4134 STAGE_TAIL(copy_4_slots_unmasked, SkRasterPipeline_BinaryOpCtx* packed) {
4135 copy_n_slots_unmasked_fn<4>(packed, base);
4136 }
4137
4138 template <int NumSlots>
copy_n_immutable_unmasked_fn(SkRasterPipeline_BinaryOpCtx * packed,std::byte * base)4139 SI void copy_n_immutable_unmasked_fn(SkRasterPipeline_BinaryOpCtx* packed, std::byte* base) {
4140 auto ctx = SkRPCtxUtils::Unpack(packed);
4141
4142 // Load the scalar values.
4143 float* src = (float*)(base + ctx.src);
4144 float values[NumSlots];
4145 SK_UNROLL for (int index = 0; index < NumSlots; ++index) {
4146 values[index] = src[index];
4147 }
4148 // Broadcast the scalars into the destination.
4149 F* dst = (F*)(base + ctx.dst);
4150 SK_UNROLL for (int index = 0; index < NumSlots; ++index) {
4151 dst[index] = F_(values[index]);
4152 }
4153 }
4154
STAGE_TAIL(copy_immutable_unmasked,SkRasterPipeline_BinaryOpCtx * packed)4155 STAGE_TAIL(copy_immutable_unmasked, SkRasterPipeline_BinaryOpCtx* packed) {
4156 copy_n_immutable_unmasked_fn<1>(packed, base);
4157 }
STAGE_TAIL(copy_2_immutables_unmasked,SkRasterPipeline_BinaryOpCtx * packed)4158 STAGE_TAIL(copy_2_immutables_unmasked, SkRasterPipeline_BinaryOpCtx* packed) {
4159 copy_n_immutable_unmasked_fn<2>(packed, base);
4160 }
STAGE_TAIL(copy_3_immutables_unmasked,SkRasterPipeline_BinaryOpCtx * packed)4161 STAGE_TAIL(copy_3_immutables_unmasked, SkRasterPipeline_BinaryOpCtx* packed) {
4162 copy_n_immutable_unmasked_fn<3>(packed, base);
4163 }
STAGE_TAIL(copy_4_immutables_unmasked,SkRasterPipeline_BinaryOpCtx * packed)4164 STAGE_TAIL(copy_4_immutables_unmasked, SkRasterPipeline_BinaryOpCtx* packed) {
4165 copy_n_immutable_unmasked_fn<4>(packed, base);
4166 }
4167
4168 template <int NumSlots>
copy_n_slots_masked_fn(SkRasterPipeline_BinaryOpCtx * packed,std::byte * base,I32 mask)4169 SI void copy_n_slots_masked_fn(SkRasterPipeline_BinaryOpCtx* packed, std::byte* base, I32 mask) {
4170 auto ctx = SkRPCtxUtils::Unpack(packed);
4171 I32* dst = (I32*)(base + ctx.dst);
4172 I32* src = (I32*)(base + ctx.src);
4173 SK_UNROLL for (int count = 0; count < NumSlots; ++count) {
4174 *dst = if_then_else(mask, *src, *dst);
4175 dst += 1;
4176 src += 1;
4177 }
4178 }
4179
STAGE_TAIL(copy_slot_masked,SkRasterPipeline_BinaryOpCtx * packed)4180 STAGE_TAIL(copy_slot_masked, SkRasterPipeline_BinaryOpCtx* packed) {
4181 copy_n_slots_masked_fn<1>(packed, base, execution_mask());
4182 }
STAGE_TAIL(copy_2_slots_masked,SkRasterPipeline_BinaryOpCtx * packed)4183 STAGE_TAIL(copy_2_slots_masked, SkRasterPipeline_BinaryOpCtx* packed) {
4184 copy_n_slots_masked_fn<2>(packed, base, execution_mask());
4185 }
STAGE_TAIL(copy_3_slots_masked,SkRasterPipeline_BinaryOpCtx * packed)4186 STAGE_TAIL(copy_3_slots_masked, SkRasterPipeline_BinaryOpCtx* packed) {
4187 copy_n_slots_masked_fn<3>(packed, base, execution_mask());
4188 }
STAGE_TAIL(copy_4_slots_masked,SkRasterPipeline_BinaryOpCtx * packed)4189 STAGE_TAIL(copy_4_slots_masked, SkRasterPipeline_BinaryOpCtx* packed) {
4190 copy_n_slots_masked_fn<4>(packed, base, execution_mask());
4191 }
4192
4193 template <int LoopCount, typename OffsetType>
shuffle_fn(std::byte * ptr,OffsetType * offsets,int numSlots)4194 SI void shuffle_fn(std::byte* ptr, OffsetType* offsets, int numSlots) {
4195 F scratch[16];
4196 SK_UNROLL for (int count = 0; count < LoopCount; ++count) {
4197 scratch[count] = *(F*)(ptr + offsets[count]);
4198 }
4199 // Surprisingly, this switch generates significantly better code than a memcpy (on x86-64) when
4200 // the number of slots is unknown at compile time, and generates roughly identical code when the
4201 // number of slots is hardcoded. Using a switch allows `scratch` to live in ymm0-ymm15 instead
4202 // of being written out to the stack and then read back in. Also, the intrinsic memcpy assumes
4203 // that `numSlots` could be arbitrarily large, and so it emits more code than we need.
4204 F* dst = (F*)ptr;
4205 switch (numSlots) {
4206 case 16: dst[15] = scratch[15]; [[fallthrough]];
4207 case 15: dst[14] = scratch[14]; [[fallthrough]];
4208 case 14: dst[13] = scratch[13]; [[fallthrough]];
4209 case 13: dst[12] = scratch[12]; [[fallthrough]];
4210 case 12: dst[11] = scratch[11]; [[fallthrough]];
4211 case 11: dst[10] = scratch[10]; [[fallthrough]];
4212 case 10: dst[ 9] = scratch[ 9]; [[fallthrough]];
4213 case 9: dst[ 8] = scratch[ 8]; [[fallthrough]];
4214 case 8: dst[ 7] = scratch[ 7]; [[fallthrough]];
4215 case 7: dst[ 6] = scratch[ 6]; [[fallthrough]];
4216 case 6: dst[ 5] = scratch[ 5]; [[fallthrough]];
4217 case 5: dst[ 4] = scratch[ 4]; [[fallthrough]];
4218 case 4: dst[ 3] = scratch[ 3]; [[fallthrough]];
4219 case 3: dst[ 2] = scratch[ 2]; [[fallthrough]];
4220 case 2: dst[ 1] = scratch[ 1]; [[fallthrough]];
4221 case 1: dst[ 0] = scratch[ 0];
4222 }
4223 }
4224
4225 template <int N>
small_swizzle_fn(SkRasterPipeline_SwizzleCtx * packed,std::byte * base)4226 SI void small_swizzle_fn(SkRasterPipeline_SwizzleCtx* packed, std::byte* base) {
4227 auto ctx = SkRPCtxUtils::Unpack(packed);
4228 shuffle_fn<N>(base + ctx.dst, ctx.offsets, N);
4229 }
4230
STAGE_TAIL(swizzle_1,SkRasterPipeline_SwizzleCtx * packed)4231 STAGE_TAIL(swizzle_1, SkRasterPipeline_SwizzleCtx* packed) {
4232 small_swizzle_fn<1>(packed, base);
4233 }
STAGE_TAIL(swizzle_2,SkRasterPipeline_SwizzleCtx * packed)4234 STAGE_TAIL(swizzle_2, SkRasterPipeline_SwizzleCtx* packed) {
4235 small_swizzle_fn<2>(packed, base);
4236 }
STAGE_TAIL(swizzle_3,SkRasterPipeline_SwizzleCtx * packed)4237 STAGE_TAIL(swizzle_3, SkRasterPipeline_SwizzleCtx* packed) {
4238 small_swizzle_fn<3>(packed, base);
4239 }
STAGE_TAIL(swizzle_4,SkRasterPipeline_SwizzleCtx * packed)4240 STAGE_TAIL(swizzle_4, SkRasterPipeline_SwizzleCtx* packed) {
4241 small_swizzle_fn<4>(packed, base);
4242 }
STAGE_TAIL(shuffle,SkRasterPipeline_ShuffleCtx * ctx)4243 STAGE_TAIL(shuffle, SkRasterPipeline_ShuffleCtx* ctx) {
4244 shuffle_fn<16>((std::byte*)ctx->ptr, ctx->offsets, ctx->count);
4245 }
4246
4247 template <int NumSlots>
swizzle_copy_masked_fn(I32 * dst,const I32 * src,uint16_t * offsets,I32 mask)4248 SI void swizzle_copy_masked_fn(I32* dst, const I32* src, uint16_t* offsets, I32 mask) {
4249 std::byte* dstB = (std::byte*)dst;
4250 SK_UNROLL for (int count = 0; count < NumSlots; ++count) {
4251 I32* dstS = (I32*)(dstB + *offsets);
4252 *dstS = if_then_else(mask, *src, *dstS);
4253 offsets += 1;
4254 src += 1;
4255 }
4256 }
4257
STAGE_TAIL(swizzle_copy_slot_masked,SkRasterPipeline_SwizzleCopyCtx * ctx)4258 STAGE_TAIL(swizzle_copy_slot_masked, SkRasterPipeline_SwizzleCopyCtx* ctx) {
4259 swizzle_copy_masked_fn<1>((I32*)ctx->dst, (const I32*)ctx->src, ctx->offsets, execution_mask());
4260 }
STAGE_TAIL(swizzle_copy_2_slots_masked,SkRasterPipeline_SwizzleCopyCtx * ctx)4261 STAGE_TAIL(swizzle_copy_2_slots_masked, SkRasterPipeline_SwizzleCopyCtx* ctx) {
4262 swizzle_copy_masked_fn<2>((I32*)ctx->dst, (const I32*)ctx->src, ctx->offsets, execution_mask());
4263 }
STAGE_TAIL(swizzle_copy_3_slots_masked,SkRasterPipeline_SwizzleCopyCtx * ctx)4264 STAGE_TAIL(swizzle_copy_3_slots_masked, SkRasterPipeline_SwizzleCopyCtx* ctx) {
4265 swizzle_copy_masked_fn<3>((I32*)ctx->dst, (const I32*)ctx->src, ctx->offsets, execution_mask());
4266 }
STAGE_TAIL(swizzle_copy_4_slots_masked,SkRasterPipeline_SwizzleCopyCtx * ctx)4267 STAGE_TAIL(swizzle_copy_4_slots_masked, SkRasterPipeline_SwizzleCopyCtx* ctx) {
4268 swizzle_copy_masked_fn<4>((I32*)ctx->dst, (const I32*)ctx->src, ctx->offsets, execution_mask());
4269 }
4270
STAGE_TAIL(copy_from_indirect_unmasked,SkRasterPipeline_CopyIndirectCtx * ctx)4271 STAGE_TAIL(copy_from_indirect_unmasked, SkRasterPipeline_CopyIndirectCtx* ctx) {
4272 // Clamp the indirect offsets to stay within the limit.
4273 U32 offsets = *(const U32*)ctx->indirectOffset;
4274 offsets = min(offsets, U32_(ctx->indirectLimit));
4275
4276 // Scale up the offsets to account for the N lanes per value.
4277 offsets *= N;
4278
4279 // Adjust the offsets forward so that they fetch from the correct lane.
4280 static constexpr uint32_t iota[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
4281 static_assert(std::size(iota) >= SkRasterPipeline_kMaxStride_highp);
4282 offsets += sk_unaligned_load<U32>(iota);
4283
4284 // Use gather to perform indirect lookups; write the results into `dst`.
4285 const int* src = ctx->src;
4286 I32* dst = (I32*)ctx->dst;
4287 I32* end = dst + ctx->slots;
4288 do {
4289 *dst = gather(src, offsets);
4290 dst += 1;
4291 src += N;
4292 } while (dst != end);
4293 }
4294
STAGE_TAIL(copy_from_indirect_uniform_unmasked,SkRasterPipeline_CopyIndirectCtx * ctx)4295 STAGE_TAIL(copy_from_indirect_uniform_unmasked, SkRasterPipeline_CopyIndirectCtx* ctx) {
4296 // Clamp the indirect offsets to stay within the limit.
4297 U32 offsets = *(const U32*)ctx->indirectOffset;
4298 offsets = min(offsets, U32_(ctx->indirectLimit));
4299
4300 // Use gather to perform indirect lookups; write the results into `dst`.
4301 const int* src = ctx->src;
4302 I32* dst = (I32*)ctx->dst;
4303 I32* end = dst + ctx->slots;
4304 do {
4305 *dst = gather(src, offsets);
4306 dst += 1;
4307 src += 1;
4308 } while (dst != end);
4309 }
4310
STAGE_TAIL(copy_to_indirect_masked,SkRasterPipeline_CopyIndirectCtx * ctx)4311 STAGE_TAIL(copy_to_indirect_masked, SkRasterPipeline_CopyIndirectCtx* ctx) {
4312 // Clamp the indirect offsets to stay within the limit.
4313 U32 offsets = *(const U32*)ctx->indirectOffset;
4314 offsets = min(offsets, U32_(ctx->indirectLimit));
4315
4316 // Scale up the offsets to account for the N lanes per value.
4317 offsets *= N;
4318
4319 // Adjust the offsets forward so that they store into the correct lane.
4320 static constexpr uint32_t iota[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
4321 static_assert(std::size(iota) >= SkRasterPipeline_kMaxStride_highp);
4322 offsets += sk_unaligned_load<U32>(iota);
4323
4324 // Perform indirect, masked writes into `dst`.
4325 const I32* src = (const I32*)ctx->src;
4326 const I32* end = src + ctx->slots;
4327 int* dst = ctx->dst;
4328 I32 mask = execution_mask();
4329 do {
4330 scatter_masked(*src, dst, offsets, mask);
4331 dst += N;
4332 src += 1;
4333 } while (src != end);
4334 }
4335
STAGE_TAIL(swizzle_copy_to_indirect_masked,SkRasterPipeline_SwizzleCopyIndirectCtx * ctx)4336 STAGE_TAIL(swizzle_copy_to_indirect_masked, SkRasterPipeline_SwizzleCopyIndirectCtx* ctx) {
4337 // Clamp the indirect offsets to stay within the limit.
4338 U32 offsets = *(const U32*)ctx->indirectOffset;
4339 offsets = min(offsets, U32_(ctx->indirectLimit));
4340
4341 // Scale up the offsets to account for the N lanes per value.
4342 offsets *= N;
4343
4344 // Adjust the offsets forward so that they store into the correct lane.
4345 static constexpr uint32_t iota[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
4346 static_assert(std::size(iota) >= SkRasterPipeline_kMaxStride_highp);
4347 offsets += sk_unaligned_load<U32>(iota);
4348
4349 // Perform indirect, masked, swizzled writes into `dst`.
4350 const I32* src = (const I32*)ctx->src;
4351 const I32* end = src + ctx->slots;
4352 std::byte* dstB = (std::byte*)ctx->dst;
4353 const uint16_t* swizzle = ctx->offsets;
4354 I32 mask = execution_mask();
4355 do {
4356 int* dst = (int*)(dstB + *swizzle);
4357 scatter_masked(*src, dst, offsets, mask);
4358 swizzle += 1;
4359 src += 1;
4360 } while (src != end);
4361 }
4362
4363 // Unary operations take a single input, and overwrite it with their output.
4364 // Unlike binary or ternary operations, we provide variations of 1-4 slots, but don't provide
4365 // an arbitrary-width "n-slot" variation; the Builder can chain together longer sequences manually.
4366 template <typename T, void (*ApplyFn)(T*)>
apply_adjacent_unary(T * dst,T * end)4367 SI void apply_adjacent_unary(T* dst, T* end) {
4368 do {
4369 ApplyFn(dst);
4370 dst += 1;
4371 } while (dst != end);
4372 }
4373
4374 #if defined(JUMPER_IS_SCALAR)
4375 template <typename T>
cast_to_float_from_fn(T * dst)4376 SI void cast_to_float_from_fn(T* dst) {
4377 *dst = sk_bit_cast<T>((F)*dst);
4378 }
cast_to_int_from_fn(F * dst)4379 SI void cast_to_int_from_fn(F* dst) {
4380 *dst = sk_bit_cast<F>((I32)*dst);
4381 }
cast_to_uint_from_fn(F * dst)4382 SI void cast_to_uint_from_fn(F* dst) {
4383 *dst = sk_bit_cast<F>((U32)*dst);
4384 }
4385 #else
4386 template <typename T>
cast_to_float_from_fn(T * dst)4387 SI void cast_to_float_from_fn(T* dst) {
4388 *dst = sk_bit_cast<T>(__builtin_convertvector(*dst, F));
4389 }
cast_to_int_from_fn(F * dst)4390 SI void cast_to_int_from_fn(F* dst) {
4391 *dst = sk_bit_cast<F>(__builtin_convertvector(*dst, I32));
4392 }
cast_to_uint_from_fn(F * dst)4393 SI void cast_to_uint_from_fn(F* dst) {
4394 *dst = sk_bit_cast<F>(__builtin_convertvector(*dst, U32));
4395 }
4396 #endif
4397
abs_fn(I32 * dst)4398 SI void abs_fn(I32* dst) {
4399 *dst = abs_(*dst);
4400 }
4401
floor_fn(F * dst)4402 SI void floor_fn(F* dst) {
4403 *dst = floor_(*dst);
4404 }
4405
ceil_fn(F * dst)4406 SI void ceil_fn(F* dst) {
4407 *dst = ceil_(*dst);
4408 }
4409
invsqrt_fn(F * dst)4410 SI void invsqrt_fn(F* dst) {
4411 *dst = rsqrt(*dst);
4412 }
4413
4414 #define DECLARE_UNARY_FLOAT(name) \
4415 STAGE_TAIL(name##_float, F* dst) { apply_adjacent_unary<F, &name##_fn>(dst, dst + 1); } \
4416 STAGE_TAIL(name##_2_floats, F* dst) { apply_adjacent_unary<F, &name##_fn>(dst, dst + 2); } \
4417 STAGE_TAIL(name##_3_floats, F* dst) { apply_adjacent_unary<F, &name##_fn>(dst, dst + 3); } \
4418 STAGE_TAIL(name##_4_floats, F* dst) { apply_adjacent_unary<F, &name##_fn>(dst, dst + 4); }
4419
4420 #define DECLARE_UNARY_INT(name) \
4421 STAGE_TAIL(name##_int, I32* dst) { apply_adjacent_unary<I32, &name##_fn>(dst, dst + 1); } \
4422 STAGE_TAIL(name##_2_ints, I32* dst) { apply_adjacent_unary<I32, &name##_fn>(dst, dst + 2); } \
4423 STAGE_TAIL(name##_3_ints, I32* dst) { apply_adjacent_unary<I32, &name##_fn>(dst, dst + 3); } \
4424 STAGE_TAIL(name##_4_ints, I32* dst) { apply_adjacent_unary<I32, &name##_fn>(dst, dst + 4); }
4425
4426 #define DECLARE_UNARY_UINT(name) \
4427 STAGE_TAIL(name##_uint, U32* dst) { apply_adjacent_unary<U32, &name##_fn>(dst, dst + 1); } \
4428 STAGE_TAIL(name##_2_uints, U32* dst) { apply_adjacent_unary<U32, &name##_fn>(dst, dst + 2); } \
4429 STAGE_TAIL(name##_3_uints, U32* dst) { apply_adjacent_unary<U32, &name##_fn>(dst, dst + 3); } \
4430 STAGE_TAIL(name##_4_uints, U32* dst) { apply_adjacent_unary<U32, &name##_fn>(dst, dst + 4); }
4431
DECLARE_UNARY_UINT(cast_to_float_from)4432 DECLARE_UNARY_INT(cast_to_float_from) DECLARE_UNARY_UINT(cast_to_float_from)
4433 DECLARE_UNARY_FLOAT(cast_to_int_from)
4434 DECLARE_UNARY_FLOAT(cast_to_uint_from)
4435 DECLARE_UNARY_FLOAT(floor)
4436 DECLARE_UNARY_FLOAT(ceil)
4437 DECLARE_UNARY_FLOAT(invsqrt)
4438 DECLARE_UNARY_INT(abs)
4439
4440 #undef DECLARE_UNARY_FLOAT
4441 #undef DECLARE_UNARY_INT
4442 #undef DECLARE_UNARY_UINT
4443
4444 // For complex unary ops, we only provide a 1-slot version to reduce code bloat.
4445 STAGE_TAIL(sin_float, F* dst) { *dst = sin_(*dst); }
STAGE_TAIL(cos_float,F * dst)4446 STAGE_TAIL(cos_float, F* dst) { *dst = cos_(*dst); }
STAGE_TAIL(tan_float,F * dst)4447 STAGE_TAIL(tan_float, F* dst) { *dst = tan_(*dst); }
STAGE_TAIL(asin_float,F * dst)4448 STAGE_TAIL(asin_float, F* dst) { *dst = asin_(*dst); }
STAGE_TAIL(acos_float,F * dst)4449 STAGE_TAIL(acos_float, F* dst) { *dst = acos_(*dst); }
STAGE_TAIL(atan_float,F * dst)4450 STAGE_TAIL(atan_float, F* dst) { *dst = atan_(*dst); }
STAGE_TAIL(sqrt_float,F * dst)4451 STAGE_TAIL(sqrt_float, F* dst) { *dst = sqrt_(*dst); }
STAGE_TAIL(exp_float,F * dst)4452 STAGE_TAIL(exp_float, F* dst) { *dst = approx_exp(*dst); }
STAGE_TAIL(exp2_float,F * dst)4453 STAGE_TAIL(exp2_float, F* dst) { *dst = approx_pow2(*dst); }
STAGE_TAIL(log_float,F * dst)4454 STAGE_TAIL(log_float, F* dst) { *dst = approx_log(*dst); }
STAGE_TAIL(log2_float,F * dst)4455 STAGE_TAIL(log2_float, F* dst) { *dst = approx_log2(*dst); }
4456
STAGE_TAIL(inverse_mat2,F * dst)4457 STAGE_TAIL(inverse_mat2, F* dst) {
4458 F a00 = dst[0], a01 = dst[1],
4459 a10 = dst[2], a11 = dst[3];
4460 F det = nmad(a01, a10, a00 * a11),
4461 invdet = rcp_precise(det);
4462 dst[0] = invdet * a11;
4463 dst[1] = -invdet * a01;
4464 dst[2] = -invdet * a10;
4465 dst[3] = invdet * a00;
4466 }
4467
STAGE_TAIL(inverse_mat3,F * dst)4468 STAGE_TAIL(inverse_mat3, F* dst) {
4469 F a00 = dst[0], a01 = dst[1], a02 = dst[2],
4470 a10 = dst[3], a11 = dst[4], a12 = dst[5],
4471 a20 = dst[6], a21 = dst[7], a22 = dst[8];
4472 F b01 = nmad(a12, a21, a22 * a11),
4473 b11 = nmad(a22, a10, a12 * a20),
4474 b21 = nmad(a11, a20, a21 * a10);
4475 F det = mad(a00, b01, mad(a01, b11, a02 * b21)),
4476 invdet = rcp_precise(det);
4477 dst[0] = invdet * b01;
4478 dst[1] = invdet * nmad(a22, a01, a02 * a21);
4479 dst[2] = invdet * nmad(a02, a11, a12 * a01);
4480 dst[3] = invdet * b11;
4481 dst[4] = invdet * nmad(a02, a20, a22 * a00);
4482 dst[5] = invdet * nmad(a12, a00, a02 * a10);
4483 dst[6] = invdet * b21;
4484 dst[7] = invdet * nmad(a21, a00, a01 * a20);
4485 dst[8] = invdet * nmad(a01, a10, a11 * a00);
4486 }
4487
STAGE_TAIL(inverse_mat4,F * dst)4488 STAGE_TAIL(inverse_mat4, F* dst) {
4489 F a00 = dst[0], a01 = dst[1], a02 = dst[2], a03 = dst[3],
4490 a10 = dst[4], a11 = dst[5], a12 = dst[6], a13 = dst[7],
4491 a20 = dst[8], a21 = dst[9], a22 = dst[10], a23 = dst[11],
4492 a30 = dst[12], a31 = dst[13], a32 = dst[14], a33 = dst[15];
4493 F b00 = nmad(a01, a10, a00 * a11),
4494 b01 = nmad(a02, a10, a00 * a12),
4495 b02 = nmad(a03, a10, a00 * a13),
4496 b03 = nmad(a02, a11, a01 * a12),
4497 b04 = nmad(a03, a11, a01 * a13),
4498 b05 = nmad(a03, a12, a02 * a13),
4499 b06 = nmad(a21, a30, a20 * a31),
4500 b07 = nmad(a22, a30, a20 * a32),
4501 b08 = nmad(a23, a30, a20 * a33),
4502 b09 = nmad(a22, a31, a21 * a32),
4503 b10 = nmad(a23, a31, a21 * a33),
4504 b11 = nmad(a23, a32, a22 * a33),
4505 det = mad(b00, b11, b05 * b06) + mad(b02, b09, b03 * b08) - mad(b01, b10, b04 * b07),
4506 invdet = rcp_precise(det);
4507 b00 *= invdet;
4508 b01 *= invdet;
4509 b02 *= invdet;
4510 b03 *= invdet;
4511 b04 *= invdet;
4512 b05 *= invdet;
4513 b06 *= invdet;
4514 b07 *= invdet;
4515 b08 *= invdet;
4516 b09 *= invdet;
4517 b10 *= invdet;
4518 b11 *= invdet;
4519 dst[0] = mad(a13, b09, nmad(a12, b10, a11*b11));
4520 dst[1] = nmad(a03, b09, nmad(a01, b11, a02*b10));
4521 dst[2] = mad(a33, b03, nmad(a32, b04, a31*b05));
4522 dst[3] = nmad(a23, b03, nmad(a21, b05, a22*b04));
4523 dst[4] = nmad(a13, b07, nmad(a10, b11, a12*b08));
4524 dst[5] = mad(a03, b07, nmad(a02, b08, a00*b11));
4525 dst[6] = nmad(a33, b01, nmad(a30, b05, a32*b02));
4526 dst[7] = mad(a23, b01, nmad(a22, b02, a20*b05));
4527 dst[8] = mad(a13, b06, nmad(a11, b08, a10*b10));
4528 dst[9] = nmad(a03, b06, nmad(a00, b10, a01*b08));
4529 dst[10] = mad(a33, b00, nmad(a31, b02, a30*b04));
4530 dst[11] = nmad(a23, b00, nmad(a20, b04, a21*b02));
4531 dst[12] = nmad(a12, b06, nmad(a10, b09, a11*b07));
4532 dst[13] = mad(a02, b06, nmad(a01, b07, a00*b09));
4533 dst[14] = nmad(a32, b00, nmad(a30, b03, a31*b01));
4534 dst[15] = mad(a22, b00, nmad(a21, b01, a20*b03));
4535 }
4536
4537 // Binary operations take two adjacent inputs, and write their output in the first position.
4538 template <typename T, void (*ApplyFn)(T*, T*)>
apply_adjacent_binary(T * dst,T * src)4539 SI void apply_adjacent_binary(T* dst, T* src) {
4540 T* end = src;
4541 do {
4542 ApplyFn(dst, src);
4543 dst += 1;
4544 src += 1;
4545 } while (dst != end);
4546 }
4547
4548 template <typename T, void (*ApplyFn)(T*, T*)>
apply_adjacent_binary_packed(SkRasterPipeline_BinaryOpCtx * packed,std::byte * base)4549 SI void apply_adjacent_binary_packed(SkRasterPipeline_BinaryOpCtx* packed, std::byte* base) {
4550 auto ctx = SkRPCtxUtils::Unpack(packed);
4551 std::byte* dst = base + ctx.dst;
4552 std::byte* src = base + ctx.src;
4553 apply_adjacent_binary<T, ApplyFn>((T*)dst, (T*)src);
4554 }
4555
4556 template <int N, typename V, typename S, void (*ApplyFn)(V*, V*)>
apply_binary_immediate(SkRasterPipeline_ConstantCtx * packed,std::byte * base)4557 SI void apply_binary_immediate(SkRasterPipeline_ConstantCtx* packed, std::byte* base) {
4558 auto ctx = SkRPCtxUtils::Unpack(packed);
4559 V* dst = (V*)(base + ctx.dst); // get a pointer to the destination
4560 S scalar = sk_bit_cast<S>(ctx.value); // bit-pun the constant value as desired
4561 V src = scalar - V(); // broadcast the constant value into a vector
4562 SK_UNROLL for (int index = 0; index < N; ++index) {
4563 ApplyFn(dst, &src); // perform the operation
4564 dst += 1;
4565 }
4566 }
4567
4568 template <typename T>
add_fn(T * dst,T * src)4569 SI void add_fn(T* dst, T* src) {
4570 *dst += *src;
4571 }
4572
4573 template <typename T>
sub_fn(T * dst,T * src)4574 SI void sub_fn(T* dst, T* src) {
4575 *dst -= *src;
4576 }
4577
4578 template <typename T>
mul_fn(T * dst,T * src)4579 SI void mul_fn(T* dst, T* src) {
4580 *dst *= *src;
4581 }
4582
4583 template <typename T>
div_fn(T * dst,T * src)4584 SI void div_fn(T* dst, T* src) {
4585 T divisor = *src;
4586 if constexpr (!std::is_same_v<T, F>) {
4587 // We will crash if we integer-divide against zero. Convert 0 to ~0 to avoid this.
4588 divisor |= (T)cond_to_mask(divisor == 0);
4589 }
4590 *dst /= divisor;
4591 }
4592
bitwise_and_fn(I32 * dst,I32 * src)4593 SI void bitwise_and_fn(I32* dst, I32* src) {
4594 *dst &= *src;
4595 }
4596
bitwise_or_fn(I32 * dst,I32 * src)4597 SI void bitwise_or_fn(I32* dst, I32* src) {
4598 *dst |= *src;
4599 }
4600
bitwise_xor_fn(I32 * dst,I32 * src)4601 SI void bitwise_xor_fn(I32* dst, I32* src) {
4602 *dst ^= *src;
4603 }
4604
4605 template <typename T>
max_fn(T * dst,T * src)4606 SI void max_fn(T* dst, T* src) {
4607 *dst = max(*dst, *src);
4608 }
4609
4610 template <typename T>
min_fn(T * dst,T * src)4611 SI void min_fn(T* dst, T* src) {
4612 *dst = min(*dst, *src);
4613 }
4614
4615 template <typename T>
cmplt_fn(T * dst,T * src)4616 SI void cmplt_fn(T* dst, T* src) {
4617 static_assert(sizeof(T) == sizeof(I32));
4618 I32 result = cond_to_mask(*dst < *src);
4619 memcpy(dst, &result, sizeof(I32));
4620 }
4621
4622 template <typename T>
cmple_fn(T * dst,T * src)4623 SI void cmple_fn(T* dst, T* src) {
4624 static_assert(sizeof(T) == sizeof(I32));
4625 I32 result = cond_to_mask(*dst <= *src);
4626 memcpy(dst, &result, sizeof(I32));
4627 }
4628
4629 template <typename T>
cmpeq_fn(T * dst,T * src)4630 SI void cmpeq_fn(T* dst, T* src) {
4631 static_assert(sizeof(T) == sizeof(I32));
4632 I32 result = cond_to_mask(*dst == *src);
4633 memcpy(dst, &result, sizeof(I32));
4634 }
4635
4636 template <typename T>
cmpne_fn(T * dst,T * src)4637 SI void cmpne_fn(T* dst, T* src) {
4638 static_assert(sizeof(T) == sizeof(I32));
4639 I32 result = cond_to_mask(*dst != *src);
4640 memcpy(dst, &result, sizeof(I32));
4641 }
4642
atan2_fn(F * dst,F * src)4643 SI void atan2_fn(F* dst, F* src) {
4644 *dst = atan2_(*dst, *src);
4645 }
4646
pow_fn(F * dst,F * src)4647 SI void pow_fn(F* dst, F* src) {
4648 *dst = approx_powf(*dst, *src);
4649 }
4650
mod_fn(F * dst,F * src)4651 SI void mod_fn(F* dst, F* src) {
4652 *dst = nmad(*src, floor_(*dst / *src), *dst);
4653 }
4654
4655 #define DECLARE_N_WAY_BINARY_FLOAT(name) \
4656 STAGE_TAIL(name##_n_floats, SkRasterPipeline_BinaryOpCtx* packed) { \
4657 apply_adjacent_binary_packed<F, &name##_fn>(packed, base); \
4658 }
4659
4660 #define DECLARE_BINARY_FLOAT(name) \
4661 STAGE_TAIL(name##_float, F* dst) { apply_adjacent_binary<F, &name##_fn>(dst, dst + 1); } \
4662 STAGE_TAIL(name##_2_floats, F* dst) { apply_adjacent_binary<F, &name##_fn>(dst, dst + 2); } \
4663 STAGE_TAIL(name##_3_floats, F* dst) { apply_adjacent_binary<F, &name##_fn>(dst, dst + 3); } \
4664 STAGE_TAIL(name##_4_floats, F* dst) { apply_adjacent_binary<F, &name##_fn>(dst, dst + 4); } \
4665 DECLARE_N_WAY_BINARY_FLOAT(name)
4666
4667 #define DECLARE_N_WAY_BINARY_INT(name) \
4668 STAGE_TAIL(name##_n_ints, SkRasterPipeline_BinaryOpCtx* packed) { \
4669 apply_adjacent_binary_packed<I32, &name##_fn>(packed, base); \
4670 }
4671
4672 #define DECLARE_BINARY_INT(name) \
4673 STAGE_TAIL(name##_int, I32* dst) { apply_adjacent_binary<I32, &name##_fn>(dst, dst + 1); } \
4674 STAGE_TAIL(name##_2_ints, I32* dst) { apply_adjacent_binary<I32, &name##_fn>(dst, dst + 2); } \
4675 STAGE_TAIL(name##_3_ints, I32* dst) { apply_adjacent_binary<I32, &name##_fn>(dst, dst + 3); } \
4676 STAGE_TAIL(name##_4_ints, I32* dst) { apply_adjacent_binary<I32, &name##_fn>(dst, dst + 4); } \
4677 DECLARE_N_WAY_BINARY_INT(name)
4678
4679 #define DECLARE_N_WAY_BINARY_UINT(name) \
4680 STAGE_TAIL(name##_n_uints, SkRasterPipeline_BinaryOpCtx* packed) { \
4681 apply_adjacent_binary_packed<U32, &name##_fn>(packed, base); \
4682 }
4683
4684 #define DECLARE_BINARY_UINT(name) \
4685 STAGE_TAIL(name##_uint, U32* dst) { apply_adjacent_binary<U32, &name##_fn>(dst, dst + 1); } \
4686 STAGE_TAIL(name##_2_uints, U32* dst) { apply_adjacent_binary<U32, &name##_fn>(dst, dst + 2); } \
4687 STAGE_TAIL(name##_3_uints, U32* dst) { apply_adjacent_binary<U32, &name##_fn>(dst, dst + 3); } \
4688 STAGE_TAIL(name##_4_uints, U32* dst) { apply_adjacent_binary<U32, &name##_fn>(dst, dst + 4); } \
4689 DECLARE_N_WAY_BINARY_UINT(name)
4690
4691 // Many ops reuse the int stages when performing uint arithmetic, since they're equivalent on a
4692 // two's-complement machine. (Even multiplication is equivalent in the lower 32 bits.)
DECLARE_BINARY_INT(add)4693 DECLARE_BINARY_FLOAT(add) DECLARE_BINARY_INT(add)
4694 DECLARE_BINARY_FLOAT(sub) DECLARE_BINARY_INT(sub)
4695 DECLARE_BINARY_FLOAT(mul) DECLARE_BINARY_INT(mul)
4696 DECLARE_BINARY_FLOAT(div) DECLARE_BINARY_INT(div) DECLARE_BINARY_UINT(div)
4697 DECLARE_BINARY_INT(bitwise_and)
4698 DECLARE_BINARY_INT(bitwise_or)
4699 DECLARE_BINARY_INT(bitwise_xor)
4700 DECLARE_BINARY_FLOAT(mod)
4701 DECLARE_BINARY_FLOAT(min) DECLARE_BINARY_INT(min) DECLARE_BINARY_UINT(min)
4702 DECLARE_BINARY_FLOAT(max) DECLARE_BINARY_INT(max) DECLARE_BINARY_UINT(max)
4703 DECLARE_BINARY_FLOAT(cmplt) DECLARE_BINARY_INT(cmplt) DECLARE_BINARY_UINT(cmplt)
4704 DECLARE_BINARY_FLOAT(cmple) DECLARE_BINARY_INT(cmple) DECLARE_BINARY_UINT(cmple)
4705 DECLARE_BINARY_FLOAT(cmpeq) DECLARE_BINARY_INT(cmpeq)
4706 DECLARE_BINARY_FLOAT(cmpne) DECLARE_BINARY_INT(cmpne)
4707
4708 // Sufficiently complex ops only provide an N-way version, to avoid code bloat from the dedicated
4709 // 1-4 slot versions.
4710 DECLARE_N_WAY_BINARY_FLOAT(atan2)
4711 DECLARE_N_WAY_BINARY_FLOAT(pow)
4712
4713 // Some ops have an optimized version when the right-side is an immediate value.
4714 #define DECLARE_IMM_BINARY_FLOAT(name) \
4715 STAGE_TAIL(name##_imm_float, SkRasterPipeline_ConstantCtx* packed) { \
4716 apply_binary_immediate<1, F, float, &name##_fn>(packed, base); \
4717 }
4718 #define DECLARE_IMM_BINARY_INT(name) \
4719 STAGE_TAIL(name##_imm_int, SkRasterPipeline_ConstantCtx* packed) { \
4720 apply_binary_immediate<1, I32, int32_t, &name##_fn>(packed, base); \
4721 }
4722 #define DECLARE_MULTI_IMM_BINARY_INT(name) \
4723 STAGE_TAIL(name##_imm_int, SkRasterPipeline_ConstantCtx* packed) { \
4724 apply_binary_immediate<1, I32, int32_t, &name##_fn>(packed, base); \
4725 } \
4726 STAGE_TAIL(name##_imm_2_ints, SkRasterPipeline_ConstantCtx* packed) { \
4727 apply_binary_immediate<2, I32, int32_t, &name##_fn>(packed, base); \
4728 } \
4729 STAGE_TAIL(name##_imm_3_ints, SkRasterPipeline_ConstantCtx* packed) { \
4730 apply_binary_immediate<3, I32, int32_t, &name##_fn>(packed, base); \
4731 } \
4732 STAGE_TAIL(name##_imm_4_ints, SkRasterPipeline_ConstantCtx* packed) { \
4733 apply_binary_immediate<4, I32, int32_t, &name##_fn>(packed, base); \
4734 }
4735 #define DECLARE_IMM_BINARY_UINT(name) \
4736 STAGE_TAIL(name##_imm_uint, SkRasterPipeline_ConstantCtx* packed) { \
4737 apply_binary_immediate<1, U32, uint32_t, &name##_fn>(packed, base); \
4738 }
4739
4740 DECLARE_IMM_BINARY_FLOAT(add) DECLARE_IMM_BINARY_INT(add)
4741 DECLARE_IMM_BINARY_FLOAT(mul) DECLARE_IMM_BINARY_INT(mul)
4742 DECLARE_MULTI_IMM_BINARY_INT(bitwise_and)
4743 DECLARE_IMM_BINARY_FLOAT(max)
4744 DECLARE_IMM_BINARY_FLOAT(min)
4745 DECLARE_IMM_BINARY_INT(bitwise_xor)
4746 DECLARE_IMM_BINARY_FLOAT(cmplt) DECLARE_IMM_BINARY_INT(cmplt) DECLARE_IMM_BINARY_UINT(cmplt)
4747 DECLARE_IMM_BINARY_FLOAT(cmple) DECLARE_IMM_BINARY_INT(cmple) DECLARE_IMM_BINARY_UINT(cmple)
4748 DECLARE_IMM_BINARY_FLOAT(cmpeq) DECLARE_IMM_BINARY_INT(cmpeq)
4749 DECLARE_IMM_BINARY_FLOAT(cmpne) DECLARE_IMM_BINARY_INT(cmpne)
4750
4751 #undef DECLARE_MULTI_IMM_BINARY_INT
4752 #undef DECLARE_IMM_BINARY_FLOAT
4753 #undef DECLARE_IMM_BINARY_INT
4754 #undef DECLARE_IMM_BINARY_UINT
4755 #undef DECLARE_BINARY_FLOAT
4756 #undef DECLARE_BINARY_INT
4757 #undef DECLARE_BINARY_UINT
4758 #undef DECLARE_N_WAY_BINARY_FLOAT
4759 #undef DECLARE_N_WAY_BINARY_INT
4760 #undef DECLARE_N_WAY_BINARY_UINT
4761
4762 // Dots can be represented with multiply and add ops, but they are so foundational that it's worth
4763 // having dedicated ops.
4764 STAGE_TAIL(dot_2_floats, F* dst) {
4765 dst[0] = mad(dst[0], dst[2],
4766 dst[1] * dst[3]);
4767 }
4768
STAGE_TAIL(dot_3_floats,F * dst)4769 STAGE_TAIL(dot_3_floats, F* dst) {
4770 dst[0] = mad(dst[0], dst[3],
4771 mad(dst[1], dst[4],
4772 dst[2] * dst[5]));
4773 }
4774
STAGE_TAIL(dot_4_floats,F * dst)4775 STAGE_TAIL(dot_4_floats, F* dst) {
4776 dst[0] = mad(dst[0], dst[4],
4777 mad(dst[1], dst[5],
4778 mad(dst[2], dst[6],
4779 dst[3] * dst[7])));
4780 }
4781
4782 // MxM, VxM and MxV multiplication all use matrix_multiply. Vectors are treated like a matrix with a
4783 // single column or row.
4784 template <int N>
matrix_multiply(SkRasterPipeline_MatrixMultiplyCtx * packed,std::byte * base)4785 SI void matrix_multiply(SkRasterPipeline_MatrixMultiplyCtx* packed, std::byte* base) {
4786 auto ctx = SkRPCtxUtils::Unpack(packed);
4787
4788 int outColumns = ctx.rightColumns,
4789 outRows = ctx.leftRows;
4790
4791 SkASSERT(outColumns >= 1);
4792 SkASSERT(outRows >= 1);
4793 SkASSERT(outColumns <= 4);
4794 SkASSERT(outRows <= 4);
4795
4796 SkASSERT(ctx.leftColumns == ctx.rightRows);
4797 SkASSERT(N == ctx.leftColumns); // N should match the result width
4798
4799 #if !defined(JUMPER_IS_SCALAR)
4800 // This prevents Clang from generating early-out checks for zero-sized matrices.
4801 SK_ASSUME(outColumns >= 1);
4802 SK_ASSUME(outRows >= 1);
4803 SK_ASSUME(outColumns <= 4);
4804 SK_ASSUME(outRows <= 4);
4805 #endif
4806
4807 // Get pointers to the adjacent left- and right-matrices.
4808 F* resultMtx = (F*)(base + ctx.dst);
4809 F* leftMtx = &resultMtx[ctx.rightColumns * ctx.leftRows];
4810 F* rightMtx = &leftMtx[N * ctx.leftRows];
4811
4812 // Emit each matrix element.
4813 for (int c = 0; c < outColumns; ++c) {
4814 for (int r = 0; r < outRows; ++r) {
4815 // Dot a vector from leftMtx[*][r] with rightMtx[c][*].
4816 F* leftRow = &leftMtx [r];
4817 F* rightColumn = &rightMtx[c * N];
4818
4819 F element = *leftRow * *rightColumn;
4820 for (int idx = 1; idx < N; ++idx) {
4821 leftRow += outRows;
4822 rightColumn += 1;
4823 element = mad(*leftRow, *rightColumn, element);
4824 }
4825
4826 *resultMtx++ = element;
4827 }
4828 }
4829 }
4830
STAGE_TAIL(matrix_multiply_2,SkRasterPipeline_MatrixMultiplyCtx * packed)4831 STAGE_TAIL(matrix_multiply_2, SkRasterPipeline_MatrixMultiplyCtx* packed) {
4832 matrix_multiply<2>(packed, base);
4833 }
4834
STAGE_TAIL(matrix_multiply_3,SkRasterPipeline_MatrixMultiplyCtx * packed)4835 STAGE_TAIL(matrix_multiply_3, SkRasterPipeline_MatrixMultiplyCtx* packed) {
4836 matrix_multiply<3>(packed, base);
4837 }
4838
STAGE_TAIL(matrix_multiply_4,SkRasterPipeline_MatrixMultiplyCtx * packed)4839 STAGE_TAIL(matrix_multiply_4, SkRasterPipeline_MatrixMultiplyCtx* packed) {
4840 matrix_multiply<4>(packed, base);
4841 }
4842
4843 // Refract always operates on 4-wide incident and normal vectors; for narrower inputs, the code
4844 // generator fills in the input columns with zero, and discards the extra output columns.
STAGE_TAIL(refract_4_floats,F * dst)4845 STAGE_TAIL(refract_4_floats, F* dst) {
4846 // Algorithm adapted from https://registry.khronos.org/OpenGL-Refpages/gl4/html/refract.xhtml
4847 F *incident = dst + 0;
4848 F *normal = dst + 4;
4849 F eta = dst[8];
4850
4851 F dotNI = mad(normal[0], incident[0],
4852 mad(normal[1], incident[1],
4853 mad(normal[2], incident[2],
4854 normal[3] * incident[3])));
4855
4856 F k = 1.0 - eta * eta * (1.0 - dotNI * dotNI);
4857 F sqrt_k = sqrt_(k);
4858
4859 for (int idx = 0; idx < 4; ++idx) {
4860 dst[idx] = if_then_else(k >= 0,
4861 eta * incident[idx] - (eta * dotNI + sqrt_k) * normal[idx],
4862 0.0);
4863 }
4864 }
4865
4866 // Ternary operations work like binary ops (see immediately above) but take two source inputs.
4867 template <typename T, void (*ApplyFn)(T*, T*, T*)>
apply_adjacent_ternary(T * dst,T * src0,T * src1)4868 SI void apply_adjacent_ternary(T* dst, T* src0, T* src1) {
4869 int count = src0 - dst;
4870 #if !defined(JUMPER_IS_SCALAR)
4871 SK_ASSUME(count >= 1);
4872 #endif
4873
4874 for (int index = 0; index < count; ++index) {
4875 ApplyFn(dst, src0, src1);
4876 dst += 1;
4877 src0 += 1;
4878 src1 += 1;
4879 }
4880 }
4881
4882 template <typename T, void (*ApplyFn)(T*, T*, T*)>
apply_adjacent_ternary_packed(SkRasterPipeline_TernaryOpCtx * packed,std::byte * base)4883 SI void apply_adjacent_ternary_packed(SkRasterPipeline_TernaryOpCtx* packed, std::byte* base) {
4884 auto ctx = SkRPCtxUtils::Unpack(packed);
4885 std::byte* dst = base + ctx.dst;
4886 std::byte* src0 = dst + ctx.delta;
4887 std::byte* src1 = src0 + ctx.delta;
4888 apply_adjacent_ternary<T, ApplyFn>((T*)dst, (T*)src0, (T*)src1);
4889 }
4890
mix_fn(F * a,F * x,F * y)4891 SI void mix_fn(F* a, F* x, F* y) {
4892 // We reorder the arguments here to match lerp's GLSL-style order (interpolation point last).
4893 *a = lerp(*x, *y, *a);
4894 }
4895
mix_fn(I32 * a,I32 * x,I32 * y)4896 SI void mix_fn(I32* a, I32* x, I32* y) {
4897 // We reorder the arguments here to match if_then_else's expected order (y before x).
4898 *a = if_then_else(*a, *y, *x);
4899 }
4900
smoothstep_fn(F * edge0,F * edge1,F * x)4901 SI void smoothstep_fn(F* edge0, F* edge1, F* x) {
4902 F t = clamp_01_((*x - *edge0) / (*edge1 - *edge0));
4903 *edge0 = t * t * (3.0 - 2.0 * t);
4904 }
4905
4906 #define DECLARE_N_WAY_TERNARY_FLOAT(name) \
4907 STAGE_TAIL(name##_n_floats, SkRasterPipeline_TernaryOpCtx* packed) { \
4908 apply_adjacent_ternary_packed<F, &name##_fn>(packed, base); \
4909 }
4910
4911 #define DECLARE_TERNARY_FLOAT(name) \
4912 STAGE_TAIL(name##_float, F* p) { apply_adjacent_ternary<F, &name##_fn>(p, p+1, p+2); } \
4913 STAGE_TAIL(name##_2_floats, F* p) { apply_adjacent_ternary<F, &name##_fn>(p, p+2, p+4); } \
4914 STAGE_TAIL(name##_3_floats, F* p) { apply_adjacent_ternary<F, &name##_fn>(p, p+3, p+6); } \
4915 STAGE_TAIL(name##_4_floats, F* p) { apply_adjacent_ternary<F, &name##_fn>(p, p+4, p+8); } \
4916 DECLARE_N_WAY_TERNARY_FLOAT(name)
4917
4918 #define DECLARE_TERNARY_INT(name) \
4919 STAGE_TAIL(name##_int, I32* p) { apply_adjacent_ternary<I32, &name##_fn>(p, p+1, p+2); } \
4920 STAGE_TAIL(name##_2_ints, I32* p) { apply_adjacent_ternary<I32, &name##_fn>(p, p+2, p+4); } \
4921 STAGE_TAIL(name##_3_ints, I32* p) { apply_adjacent_ternary<I32, &name##_fn>(p, p+3, p+6); } \
4922 STAGE_TAIL(name##_4_ints, I32* p) { apply_adjacent_ternary<I32, &name##_fn>(p, p+4, p+8); } \
4923 STAGE_TAIL(name##_n_ints, SkRasterPipeline_TernaryOpCtx* packed) { \
4924 apply_adjacent_ternary_packed<I32, &name##_fn>(packed, base); \
4925 }
4926
4927 DECLARE_N_WAY_TERNARY_FLOAT(smoothstep)
DECLARE_TERNARY_FLOAT(mix)4928 DECLARE_TERNARY_FLOAT(mix)
4929 DECLARE_TERNARY_INT(mix)
4930
4931 #undef DECLARE_N_WAY_TERNARY_FLOAT
4932 #undef DECLARE_TERNARY_FLOAT
4933 #undef DECLARE_TERNARY_INT
4934
4935 STAGE(gauss_a_to_rgba, NoCtx) {
4936 // x = 1 - x;
4937 // exp(-x * x * 4) - 0.018f;
4938 // ... now approximate with quartic
4939 //
4940 const float c4 = -2.26661229133605957031f;
4941 const float c3 = 2.89795351028442382812f;
4942 const float c2 = 0.21345567703247070312f;
4943 const float c1 = 0.15489584207534790039f;
4944 const float c0 = 0.00030726194381713867f;
4945 a = mad(a, mad(a, mad(a, mad(a, c4, c3), c2), c1), c0);
4946 r = a;
4947 g = a;
4948 b = a;
4949 }
4950
4951 // A specialized fused image shader for clamp-x, clamp-y, non-sRGB sampling.
STAGE(bilerp_clamp_8888,const SkRasterPipeline_GatherCtx * ctx)4952 STAGE(bilerp_clamp_8888, const SkRasterPipeline_GatherCtx* ctx) {
4953 // (cx,cy) are the center of our sample.
4954 F cx = r,
4955 cy = g;
4956
4957 // All sample points are at the same fractional offset (fx,fy).
4958 // They're the 4 corners of a logical 1x1 pixel surrounding (x,y) at (0.5,0.5) offsets.
4959 F fx = fract(cx + 0.5f),
4960 fy = fract(cy + 0.5f);
4961
4962 // We'll accumulate the color of all four samples into {r,g,b,a} directly.
4963 r = g = b = a = F0;
4964
4965 for (float py = -0.5f; py <= +0.5f; py += 1.0f)
4966 for (float px = -0.5f; px <= +0.5f; px += 1.0f) {
4967 // (x,y) are the coordinates of this sample point.
4968 F x = cx + px,
4969 y = cy + py;
4970
4971 // ix_and_ptr() will clamp to the image's bounds for us.
4972 const uint32_t* ptr;
4973 U32 ix = ix_and_ptr(&ptr, ctx, x,y);
4974
4975 F sr,sg,sb,sa;
4976 from_8888(gather(ptr, ix), &sr,&sg,&sb,&sa);
4977
4978 // In bilinear interpolation, the 4 pixels at +/- 0.5 offsets from the sample pixel center
4979 // are combined in direct proportion to their area overlapping that logical query pixel.
4980 // At positive offsets, the x-axis contribution to that rectangle is fx,
4981 // or (1-fx) at negative x. Same deal for y.
4982 F sx = (px > 0) ? fx : 1.0f - fx,
4983 sy = (py > 0) ? fy : 1.0f - fy,
4984 area = sx * sy;
4985
4986 r += sr * area;
4987 g += sg * area;
4988 b += sb * area;
4989 a += sa * area;
4990 }
4991 }
4992
4993 // A specialized fused image shader for clamp-x, clamp-y, non-sRGB sampling.
STAGE(bicubic_clamp_8888,const SkRasterPipeline_GatherCtx * ctx)4994 STAGE(bicubic_clamp_8888, const SkRasterPipeline_GatherCtx* ctx) {
4995 // (cx,cy) are the center of our sample.
4996 F cx = r,
4997 cy = g;
4998
4999 // All sample points are at the same fractional offset (fx,fy).
5000 // They're the 4 corners of a logical 1x1 pixel surrounding (x,y) at (0.5,0.5) offsets.
5001 F fx = fract(cx + 0.5f),
5002 fy = fract(cy + 0.5f);
5003
5004 // We'll accumulate the color of all four samples into {r,g,b,a} directly.
5005 r = g = b = a = F0;
5006
5007 const float* w = ctx->weights;
5008 const F scaley[4] = {bicubic_wts(fy, w[0], w[4], w[ 8], w[12]),
5009 bicubic_wts(fy, w[1], w[5], w[ 9], w[13]),
5010 bicubic_wts(fy, w[2], w[6], w[10], w[14]),
5011 bicubic_wts(fy, w[3], w[7], w[11], w[15])};
5012 const F scalex[4] = {bicubic_wts(fx, w[0], w[4], w[ 8], w[12]),
5013 bicubic_wts(fx, w[1], w[5], w[ 9], w[13]),
5014 bicubic_wts(fx, w[2], w[6], w[10], w[14]),
5015 bicubic_wts(fx, w[3], w[7], w[11], w[15])};
5016
5017 F sample_y = cy - 1.5f;
5018 for (int yy = 0; yy <= 3; ++yy) {
5019 F sample_x = cx - 1.5f;
5020 for (int xx = 0; xx <= 3; ++xx) {
5021 F scale = scalex[xx] * scaley[yy];
5022
5023 // ix_and_ptr() will clamp to the image's bounds for us.
5024 const uint32_t* ptr;
5025 U32 ix = ix_and_ptr(&ptr, ctx, sample_x, sample_y);
5026
5027 F sr,sg,sb,sa;
5028 from_8888(gather(ptr, ix), &sr,&sg,&sb,&sa);
5029
5030 r = mad(scale, sr, r);
5031 g = mad(scale, sg, g);
5032 b = mad(scale, sb, b);
5033 a = mad(scale, sa, a);
5034
5035 sample_x += 1;
5036 }
5037 sample_y += 1;
5038 }
5039 }
5040
5041 // ~~~~~~ skgpu::Swizzle stage ~~~~~~ //
5042
STAGE(swizzle,void * ctx)5043 STAGE(swizzle, void* ctx) {
5044 auto ir = r, ig = g, ib = b, ia = a;
5045 F* o[] = {&r, &g, &b, &a};
5046 char swiz[4];
5047 memcpy(swiz, &ctx, sizeof(swiz));
5048
5049 for (int i = 0; i < 4; ++i) {
5050 switch (swiz[i]) {
5051 case 'r': *o[i] = ir; break;
5052 case 'g': *o[i] = ig; break;
5053 case 'b': *o[i] = ib; break;
5054 case 'a': *o[i] = ia; break;
5055 case '0': *o[i] = F0; break;
5056 case '1': *o[i] = F1; break;
5057 default: break;
5058 }
5059 }
5060 }
5061
5062 namespace lowp {
5063 #if defined(JUMPER_IS_SCALAR) || defined(SK_ENABLE_OPTIMIZE_SIZE) || \
5064 defined(SK_BUILD_FOR_GOOGLE3) || defined(SK_DISABLE_LOWP_RASTER_PIPELINE)
5065 // We don't bother generating the lowp stages if we are:
5066 // - ... in scalar mode (MSVC, old clang, etc...)
5067 // - ... trying to save code size
5068 // - ... building for Google3. (No justification for this, but changing it would be painful).
5069 // - ... explicitly disabling it. This is currently just used by Flutter.
5070 //
5071 // Having nullptr for every stage will cause SkRasterPipeline to always use the highp stages.
5072 #define M(st) static void (*st)(void) = nullptr;
5073 SK_RASTER_PIPELINE_OPS_LOWP(M)
5074 #undef M
5075 static void (*just_return)(void) = nullptr;
5076
start_pipeline(size_t,size_t,size_t,size_t,SkRasterPipelineStage *,SkSpan<SkRasterPipeline_MemoryCtxPatch>,uint8_t * tailPointer)5077 static void start_pipeline(size_t,size_t,size_t,size_t, SkRasterPipelineStage*,
5078 SkSpan<SkRasterPipeline_MemoryCtxPatch>,
5079 uint8_t* tailPointer) {}
5080
5081 #else // We are compiling vector code with Clang... let's make some lowp stages!
5082
5083 #if defined(JUMPER_IS_SKX) || defined(JUMPER_IS_HSW) || defined(JUMPER_IS_LASX)
5084 template <typename T> using V = Vec<16, T>;
5085 #else
5086 template <typename T> using V = Vec<8, T>;
5087 #endif
5088
5089 using U8 = V<uint8_t >;
5090 using U16 = V<uint16_t>;
5091 using I16 = V< int16_t>;
5092 using I32 = V< int32_t>;
5093 using U32 = V<uint32_t>;
5094 using I64 = V< int64_t>;
5095 using U64 = V<uint64_t>;
5096 using F = V<float >;
5097
5098 static constexpr size_t N = sizeof(U16) / sizeof(uint16_t);
5099
5100 // Promotion helpers (for GCC)
5101 #if defined(__clang__)
5102 SI constexpr U16 U16_(uint16_t x) { return x; }
5103 SI constexpr I32 I32_( int32_t x) { return x; }
5104 SI constexpr U32 U32_(uint32_t x) { return x; }
5105 SI constexpr F F_ (float x) { return x; }
5106 #else
5107 SI constexpr U16 U16_(uint16_t x) { return x + U16(); }
5108 SI constexpr I32 I32_( int32_t x) { return x + I32(); }
5109 SI constexpr U32 U32_(uint32_t x) { return x + U32(); }
5110 SI constexpr F F_ (float x) { return x - F (); }
5111 #endif
5112
5113 static constexpr U16 U16_0 = U16_(0),
5114 U16_255 = U16_(255);
5115
5116 // Once again, some platforms benefit from a restricted Stage calling convention,
5117 // but others can pass tons and tons of registers and we're happy to exploit that.
5118 // It's exactly the same decision and implementation strategy as the F stages above.
5119 #if JUMPER_NARROW_STAGES
5120 struct Params {
5121 size_t dx, dy;
5122 U16 dr,dg,db,da;
5123 };
5124 using Stage = void (ABI*)(Params*, SkRasterPipelineStage* program, U16 r, U16 g, U16 b, U16 a);
5125 #else
5126 using Stage = void (ABI*)(SkRasterPipelineStage* program,
5127 size_t dx, size_t dy,
5128 U16 r, U16 g, U16 b, U16 a,
5129 U16 dr, U16 dg, U16 db, U16 da);
5130 #endif
5131
5132 static void start_pipeline(size_t x0, size_t y0,
5133 size_t xlimit, size_t ylimit,
5134 SkRasterPipelineStage* program,
5135 SkSpan<SkRasterPipeline_MemoryCtxPatch> memoryCtxPatches,
5136 uint8_t* tailPointer) {
5137 uint8_t unreferencedTail;
5138 if (!tailPointer) {
5139 tailPointer = &unreferencedTail;
5140 }
5141 auto start = (Stage)program->fn;
5142 for (size_t dy = y0; dy < ylimit; dy++) {
5143 #if JUMPER_NARROW_STAGES
5144 Params params = { x0,dy, U16_0,U16_0,U16_0,U16_0 };
5145 for (; params.dx + N <= xlimit; params.dx += N) {
5146 start(¶ms, program, U16_0,U16_0,U16_0,U16_0);
5147 }
5148 if (size_t tail = xlimit - params.dx) {
5149 *tailPointer = tail;
5150 patch_memory_contexts(memoryCtxPatches, params.dx, dy, tail);
5151 start(¶ms, program, U16_0,U16_0,U16_0,U16_0);
5152 restore_memory_contexts(memoryCtxPatches, params.dx, dy, tail);
5153 *tailPointer = 0xFF;
5154 }
5155 #else
5156 size_t dx = x0;
5157 for (; dx + N <= xlimit; dx += N) {
5158 start(program, dx,dy, U16_0,U16_0,U16_0,U16_0, U16_0,U16_0,U16_0,U16_0);
5159 }
5160 if (size_t tail = xlimit - dx) {
5161 *tailPointer = tail;
5162 patch_memory_contexts(memoryCtxPatches, dx, dy, tail);
5163 start(program, dx,dy, U16_0,U16_0,U16_0,U16_0, U16_0,U16_0,U16_0,U16_0);
5164 restore_memory_contexts(memoryCtxPatches, dx, dy, tail);
5165 *tailPointer = 0xFF;
5166 }
5167 #endif
5168 }
5169 }
5170
5171 #if JUMPER_NARROW_STAGES
5172 static void ABI just_return(Params*, SkRasterPipelineStage*, U16,U16,U16,U16) {}
5173 #else
5174 static void ABI just_return(SkRasterPipelineStage*, size_t,size_t,
5175 U16,U16,U16,U16, U16,U16,U16,U16) {}
5176 #endif
5177
5178 // All stages use the same function call ABI to chain into each other, but there are three types:
5179 // GG: geometry in, geometry out -- think, a matrix
5180 // GP: geometry in, pixels out. -- think, a memory gather
5181 // PP: pixels in, pixels out. -- think, a blend mode
5182 //
5183 // (Some stages ignore their inputs or produce no logical output. That's perfectly fine.)
5184 //
5185 // These three STAGE_ macros let you define each type of stage,
5186 // and will have (x,y) geometry and/or (r,g,b,a, dr,dg,db,da) pixel arguments as appropriate.
5187
5188 #if JUMPER_NARROW_STAGES
5189 #define STAGE_GG(name, ARG) \
5190 SI void name##_k(ARG, size_t dx, size_t dy, F& x, F& y); \
5191 static void ABI name(Params* params, SkRasterPipelineStage* program, \
5192 U16 r, U16 g, U16 b, U16 a) { \
5193 auto x = join<F>(r,g), \
5194 y = join<F>(b,a); \
5195 name##_k(Ctx{program}, params->dx,params->dy, x,y); \
5196 split(x, &r,&g); \
5197 split(y, &b,&a); \
5198 auto fn = (Stage)(++program)->fn; \
5199 fn(params, program, r,g,b,a); \
5200 } \
5201 SI void name##_k(ARG, size_t dx, size_t dy, F& x, F& y)
5202
5203 #define STAGE_GP(name, ARG) \
5204 SI void name##_k(ARG, size_t dx, size_t dy, F x, F y, \
5205 U16& r, U16& g, U16& b, U16& a, \
5206 U16& dr, U16& dg, U16& db, U16& da); \
5207 static void ABI name(Params* params, SkRasterPipelineStage* program, \
5208 U16 r, U16 g, U16 b, U16 a) { \
5209 auto x = join<F>(r,g), \
5210 y = join<F>(b,a); \
5211 name##_k(Ctx{program}, params->dx,params->dy, x,y, r,g,b,a, \
5212 params->dr,params->dg,params->db,params->da); \
5213 auto fn = (Stage)(++program)->fn; \
5214 fn(params, program, r,g,b,a); \
5215 } \
5216 SI void name##_k(ARG, size_t dx, size_t dy, F x, F y, \
5217 U16& r, U16& g, U16& b, U16& a, \
5218 U16& dr, U16& dg, U16& db, U16& da)
5219
5220 #define STAGE_PP(name, ARG) \
5221 SI void name##_k(ARG, size_t dx, size_t dy, \
5222 U16& r, U16& g, U16& b, U16& a, \
5223 U16& dr, U16& dg, U16& db, U16& da); \
5224 static void ABI name(Params* params, SkRasterPipelineStage* program, \
5225 U16 r, U16 g, U16 b, U16 a) { \
5226 name##_k(Ctx{program}, params->dx,params->dy, r,g,b,a, \
5227 params->dr,params->dg,params->db,params->da); \
5228 auto fn = (Stage)(++program)->fn; \
5229 fn(params, program, r,g,b,a); \
5230 } \
5231 SI void name##_k(ARG, size_t dx, size_t dy, \
5232 U16& r, U16& g, U16& b, U16& a, \
5233 U16& dr, U16& dg, U16& db, U16& da)
5234 #else
5235 #define STAGE_GG(name, ARG) \
5236 SI void name##_k(ARG, size_t dx, size_t dy, F& x, F& y); \
5237 static void ABI name(SkRasterPipelineStage* program, \
5238 size_t dx, size_t dy, \
5239 U16 r, U16 g, U16 b, U16 a, \
5240 U16 dr, U16 dg, U16 db, U16 da) { \
5241 auto x = join<F>(r,g), \
5242 y = join<F>(b,a); \
5243 name##_k(Ctx{program}, dx,dy, x,y); \
5244 split(x, &r,&g); \
5245 split(y, &b,&a); \
5246 auto fn = (Stage)(++program)->fn; \
5247 fn(program, dx,dy, r,g,b,a, dr,dg,db,da); \
5248 } \
5249 SI void name##_k(ARG, size_t dx, size_t dy, F& x, F& y)
5250
5251 #define STAGE_GP(name, ARG) \
5252 SI void name##_k(ARG, size_t dx, size_t dy, F x, F y, \
5253 U16& r, U16& g, U16& b, U16& a, \
5254 U16& dr, U16& dg, U16& db, U16& da); \
5255 static void ABI name(SkRasterPipelineStage* program, \
5256 size_t dx, size_t dy, \
5257 U16 r, U16 g, U16 b, U16 a, \
5258 U16 dr, U16 dg, U16 db, U16 da) { \
5259 auto x = join<F>(r,g), \
5260 y = join<F>(b,a); \
5261 name##_k(Ctx{program}, dx,dy, x,y, r,g,b,a, dr,dg,db,da); \
5262 auto fn = (Stage)(++program)->fn; \
5263 fn(program, dx,dy, r,g,b,a, dr,dg,db,da); \
5264 } \
5265 SI void name##_k(ARG, size_t dx, size_t dy, F x, F y, \
5266 U16& r, U16& g, U16& b, U16& a, \
5267 U16& dr, U16& dg, U16& db, U16& da)
5268
5269 #define STAGE_PP(name, ARG) \
5270 SI void name##_k(ARG, size_t dx, size_t dy, \
5271 U16& r, U16& g, U16& b, U16& a, \
5272 U16& dr, U16& dg, U16& db, U16& da); \
5273 static void ABI name(SkRasterPipelineStage* program, \
5274 size_t dx, size_t dy, \
5275 U16 r, U16 g, U16 b, U16 a, \
5276 U16 dr, U16 dg, U16 db, U16 da) { \
5277 name##_k(Ctx{program}, dx,dy, r,g,b,a, dr,dg,db,da); \
5278 auto fn = (Stage)(++program)->fn; \
5279 fn(program, dx,dy, r,g,b,a, dr,dg,db,da); \
5280 } \
5281 SI void name##_k(ARG, size_t dx, size_t dy, \
5282 U16& r, U16& g, U16& b, U16& a, \
5283 U16& dr, U16& dg, U16& db, U16& da)
5284 #endif
5285
5286 // ~~~~~~ Commonly used helper functions ~~~~~~ //
5287
5288 /**
5289 * Helpers to to properly rounded division (by 255). The ideal answer we want to compute is slow,
5290 * thanks to a division by a non-power of two:
5291 * [1] (v + 127) / 255
5292 *
5293 * There is a two-step process that computes the correct answer for all inputs:
5294 * [2] (v + 128 + ((v + 128) >> 8)) >> 8
5295 *
5296 * There is also a single iteration approximation, but it's wrong (+-1) ~25% of the time:
5297 * [3] (v + 255) >> 8;
5298 *
5299 * We offer two different implementations here, depending on the requirements of the calling stage.
5300 */
5301
5302 /**
5303 * div255 favors speed over accuracy. It uses formula [2] on NEON (where we can compute it as fast
5304 * as [3]), and uses [3] elsewhere.
5305 */
5306 SI U16 div255(U16 v) {
5307 #if defined(JUMPER_IS_NEON)
5308 // With NEON we can compute [2] just as fast as [3], so let's be correct.
5309 // First we compute v + ((v+128)>>8), then one more round of (...+128)>>8 to finish up:
5310 return vrshrq_n_u16(vrsraq_n_u16(v, v, 8), 8);
5311 #else
5312 // Otherwise, use [3], which is never wrong by more than 1:
5313 return (v+255)/256;
5314 #endif
5315 }
5316
5317 /**
5318 * div255_accurate guarantees the right answer on all platforms, at the expense of performance.
5319 */
5320 SI U16 div255_accurate(U16 v) {
5321 #if defined(JUMPER_IS_NEON)
5322 // Our NEON implementation of div255 is already correct for all inputs:
5323 return div255(v);
5324 #else
5325 // This is [2] (the same formulation as NEON), but written without the benefit of intrinsics:
5326 v += 128;
5327 return (v+(v/256))/256;
5328 #endif
5329 }
5330
5331 SI U16 inv(U16 v) { return 255-v; }
5332
5333 SI U16 if_then_else(I16 c, U16 t, U16 e) {
5334 return (t & sk_bit_cast<U16>(c)) | (e & sk_bit_cast<U16>(~c));
5335 }
5336 SI U32 if_then_else(I32 c, U32 t, U32 e) {
5337 return (t & sk_bit_cast<U32>(c)) | (e & sk_bit_cast<U32>(~c));
5338 }
5339
5340 SI U16 max(U16 x, U16 y) { return if_then_else(x < y, y, x); }
5341 SI U16 min(U16 x, U16 y) { return if_then_else(x < y, x, y); }
5342
5343 SI U16 max(U16 a, uint16_t b) { return max( a , U16_(b)); }
5344 SI U16 max(uint16_t a, U16 b) { return max(U16_(a), b ); }
5345 SI U16 min(U16 a, uint16_t b) { return min( a , U16_(b)); }
5346 SI U16 min(uint16_t a, U16 b) { return min(U16_(a), b ); }
5347
5348 SI U16 from_float(float f) { return U16_(f * 255.0f + 0.5f); }
5349
5350 SI U16 lerp(U16 from, U16 to, U16 t) { return div255( from*inv(t) + to*t ); }
5351
5352 template <typename D, typename S>
5353 SI D cast(S src) {
5354 return __builtin_convertvector(src, D);
5355 }
5356
5357 template <typename D, typename S>
5358 SI void split(S v, D* lo, D* hi) {
5359 static_assert(2*sizeof(D) == sizeof(S), "");
5360 memcpy(lo, (const char*)&v + 0*sizeof(D), sizeof(D));
5361 memcpy(hi, (const char*)&v + 1*sizeof(D), sizeof(D));
5362 }
5363 template <typename D, typename S>
5364 SI D join(S lo, S hi) {
5365 static_assert(sizeof(D) == 2*sizeof(S), "");
5366 D v;
5367 memcpy((char*)&v + 0*sizeof(S), &lo, sizeof(S));
5368 memcpy((char*)&v + 1*sizeof(S), &hi, sizeof(S));
5369 return v;
5370 }
5371
5372 SI F if_then_else(I32 c, F t, F e) {
5373 return sk_bit_cast<F>( (sk_bit_cast<I32>(t) & c) | (sk_bit_cast<I32>(e) & ~c) );
5374 }
5375 SI F if_then_else(I32 c, F t, float e) { return if_then_else(c, t , F_(e)); }
5376 SI F if_then_else(I32 c, float t, F e) { return if_then_else(c, F_(t), e ); }
5377
5378 SI F max(F x, F y) { return if_then_else(x < y, y, x); }
5379 SI F min(F x, F y) { return if_then_else(x < y, x, y); }
5380
5381 SI F max(F a, float b) { return max( a , F_(b)); }
5382 SI F max(float a, F b) { return max(F_(a), b ); }
5383 SI F min(F a, float b) { return min( a , F_(b)); }
5384 SI F min(float a, F b) { return min(F_(a), b ); }
5385
5386 SI I32 if_then_else(I32 c, I32 t, I32 e) {
5387 return (t & c) | (e & ~c);
5388 }
5389 SI I32 max(I32 x, I32 y) { return if_then_else(x < y, y, x); }
5390 SI I32 min(I32 x, I32 y) { return if_then_else(x < y, x, y); }
5391
5392 SI I32 max(I32 a, int32_t b) { return max( a , I32_(b)); }
5393 SI I32 max(int32_t a, I32 b) { return max(I32_(a), b ); }
5394 SI I32 min(I32 a, int32_t b) { return min( a , I32_(b)); }
5395 SI I32 min(int32_t a, I32 b) { return min(I32_(a), b ); }
5396
5397 SI F mad(F f, F m, F a) { return a+f*m; }
5398 SI F mad(F f, F m, float a) { return mad( f , m , F_(a)); }
5399 SI F mad(F f, float m, F a) { return mad( f , F_(m), a ); }
5400 SI F mad(F f, float m, float a) { return mad( f , F_(m), F_(a)); }
5401 SI F mad(float f, F m, F a) { return mad(F_(f), m , a ); }
5402 SI F mad(float f, F m, float a) { return mad(F_(f), m , F_(a)); }
5403 SI F mad(float f, float m, F a) { return mad(F_(f), F_(m), a ); }
5404
5405 SI F nmad(F f, F m, F a) { return a-f*m; }
5406 SI F nmad(F f, F m, float a) { return nmad( f , m , F_(a)); }
5407 SI F nmad(F f, float m, F a) { return nmad( f , F_(m), a ); }
5408 SI F nmad(F f, float m, float a) { return nmad( f , F_(m), F_(a)); }
5409 SI F nmad(float f, F m, F a) { return nmad(F_(f), m , a ); }
5410 SI F nmad(float f, F m, float a) { return nmad(F_(f), m , F_(a)); }
5411 SI F nmad(float f, float m, F a) { return nmad(F_(f), F_(m), a ); }
5412
5413 SI U32 trunc_(F x) { return (U32)cast<I32>(x); }
5414
5415 // Use approximate instructions and one Newton-Raphson step to calculate 1/x.
5416 SI F rcp_precise(F x) {
5417 #if defined(JUMPER_IS_SKX)
5418 F e = _mm512_rcp14_ps(x);
5419 return _mm512_fnmadd_ps(x, e, _mm512_set1_ps(2.0f)) * e;
5420 #elif defined(JUMPER_IS_HSW)
5421 __m256 lo,hi;
5422 split(x, &lo,&hi);
5423 return join<F>(SK_OPTS_NS::rcp_precise(lo), SK_OPTS_NS::rcp_precise(hi));
5424 #elif defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
5425 __m128 lo,hi;
5426 split(x, &lo,&hi);
5427 return join<F>(SK_OPTS_NS::rcp_precise(lo), SK_OPTS_NS::rcp_precise(hi));
5428 #elif defined(JUMPER_IS_NEON)
5429 float32x4_t lo,hi;
5430 split(x, &lo,&hi);
5431 return join<F>(SK_OPTS_NS::rcp_precise(lo), SK_OPTS_NS::rcp_precise(hi));
5432 #elif defined(JUMPER_IS_LASX)
5433 __m256 lo,hi;
5434 split(x, &lo,&hi);
5435 return join<F>(__lasx_xvfrecip_s(lo), __lasx_xvfrecip_s(hi));
5436 #elif defined(JUMPER_IS_LSX)
5437 __m128 lo,hi;
5438 split(x, &lo,&hi);
5439 return join<F>(__lsx_vfrecip_s(lo), __lsx_vfrecip_s(hi));
5440 #else
5441 return 1.0f / x;
5442 #endif
5443 }
5444 SI F sqrt_(F x) {
5445 #if defined(JUMPER_IS_SKX)
5446 return _mm512_sqrt_ps(x);
5447 #elif defined(JUMPER_IS_HSW)
5448 __m256 lo,hi;
5449 split(x, &lo,&hi);
5450 return join<F>(_mm256_sqrt_ps(lo), _mm256_sqrt_ps(hi));
5451 #elif defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
5452 __m128 lo,hi;
5453 split(x, &lo,&hi);
5454 return join<F>(_mm_sqrt_ps(lo), _mm_sqrt_ps(hi));
5455 #elif defined(SK_CPU_ARM64)
5456 float32x4_t lo,hi;
5457 split(x, &lo,&hi);
5458 return join<F>(vsqrtq_f32(lo), vsqrtq_f32(hi));
5459 #elif defined(JUMPER_IS_NEON)
5460 auto sqrt = [](float32x4_t v) {
5461 auto est = vrsqrteq_f32(v); // Estimate and two refinement steps for est = rsqrt(v).
5462 est *= vrsqrtsq_f32(v,est*est);
5463 est *= vrsqrtsq_f32(v,est*est);
5464 return v*est; // sqrt(v) == v*rsqrt(v).
5465 };
5466 float32x4_t lo,hi;
5467 split(x, &lo,&hi);
5468 return join<F>(sqrt(lo), sqrt(hi));
5469 #elif defined(JUMPER_IS_LASX)
5470 __m256 lo,hi;
5471 split(x, &lo,&hi);
5472 return join<F>(__lasx_xvfsqrt_s(lo), __lasx_xvfsqrt_s(hi));
5473 #elif defined(JUMPER_IS_LSX)
5474 __m128 lo,hi;
5475 split(x, &lo,&hi);
5476 return join<F>(__lsx_vfsqrt_s(lo), __lsx_vfsqrt_s(hi));
5477 #else
5478 return F{
5479 sqrtf(x[0]), sqrtf(x[1]), sqrtf(x[2]), sqrtf(x[3]),
5480 sqrtf(x[4]), sqrtf(x[5]), sqrtf(x[6]), sqrtf(x[7]),
5481 };
5482 #endif
5483 }
5484
5485 SI F floor_(F x) {
5486 #if defined(SK_CPU_ARM64)
5487 float32x4_t lo,hi;
5488 split(x, &lo,&hi);
5489 return join<F>(vrndmq_f32(lo), vrndmq_f32(hi));
5490 #elif defined(JUMPER_IS_SKX)
5491 return _mm512_floor_ps(x);
5492 #elif defined(JUMPER_IS_HSW)
5493 __m256 lo,hi;
5494 split(x, &lo,&hi);
5495 return join<F>(_mm256_floor_ps(lo), _mm256_floor_ps(hi));
5496 #elif defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
5497 __m128 lo,hi;
5498 split(x, &lo,&hi);
5499 return join<F>(_mm_floor_ps(lo), _mm_floor_ps(hi));
5500 #elif defined(JUMPER_IS_LASX)
5501 __m256 lo,hi;
5502 split(x, &lo,&hi);
5503 return join<F>(__lasx_xvfrintrm_s(lo), __lasx_xvfrintrm_s(hi));
5504 #elif defined(JUMPER_IS_LSX)
5505 __m128 lo,hi;
5506 split(x, &lo,&hi);
5507 return join<F>(__lsx_vfrintrm_s(lo), __lsx_vfrintrm_s(hi));
5508 #else
5509 F roundtrip = cast<F>(cast<I32>(x));
5510 return roundtrip - if_then_else(roundtrip > x, F_(1), F_(0));
5511 #endif
5512 }
5513
5514 // scaled_mult interprets a and b as number on [-1, 1) which are numbers in Q15 format. Functionally
5515 // this multiply is:
5516 // (2 * a * b + (1 << 15)) >> 16
5517 // The result is a number on [-1, 1).
5518 // Note: on neon this is a saturating multiply while the others are not.
5519 SI I16 scaled_mult(I16 a, I16 b) {
5520 #if defined(JUMPER_IS_SKX)
5521 return (I16)_mm256_mulhrs_epi16((__m256i)a, (__m256i)b);
5522 #elif defined(JUMPER_IS_HSW)
5523 return (I16)_mm256_mulhrs_epi16((__m256i)a, (__m256i)b);
5524 #elif defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
5525 return (I16)_mm_mulhrs_epi16((__m128i)a, (__m128i)b);
5526 #elif defined(SK_CPU_ARM64)
5527 return vqrdmulhq_s16(a, b);
5528 #elif defined(JUMPER_IS_NEON)
5529 return vqrdmulhq_s16(a, b);
5530 #elif defined(JUMPER_IS_LASX)
5531 I16 res = __lasx_xvmuh_h(a, b);
5532 return __lasx_xvslli_h(res, 1);
5533 #elif defined(JUMPER_IS_LSX)
5534 I16 res = __lsx_vmuh_h(a, b);
5535 return __lsx_vslli_h(res, 1);
5536 #else
5537 const I32 roundingTerm = I32_(1 << 14);
5538 return cast<I16>((cast<I32>(a) * cast<I32>(b) + roundingTerm) >> 15);
5539 #endif
5540 }
5541
5542 // This sum is to support lerp where the result will always be a positive number. In general,
5543 // a sum like this would require an additional bit, but because we know the range of the result
5544 // we know that the extra bit will always be zero.
5545 SI U16 constrained_add(I16 a, U16 b) {
5546 #if defined(SK_DEBUG)
5547 for (size_t i = 0; i < N; i++) {
5548 // Ensure that a + b is on the interval [0, UINT16_MAX]
5549 int ia = a[i],
5550 ib = b[i];
5551 // Use 65535 here because fuchsia's compiler evaluates UINT16_MAX - ib, which is
5552 // 65536U - ib, as an uint32_t instead of an int32_t. This was forcing ia to be
5553 // interpreted as an uint32_t.
5554 SkASSERT(-ib <= ia && ia <= 65535 - ib);
5555 }
5556 #endif
5557 return b + sk_bit_cast<U16>(a);
5558 }
5559
5560 SI F fract(F x) { return x - floor_(x); }
5561 SI F abs_(F x) { return sk_bit_cast<F>( sk_bit_cast<I32>(x) & 0x7fffffff ); }
5562
5563 // ~~~~~~ Basic / misc. stages ~~~~~~ //
5564
5565 STAGE_GG(seed_shader, NoCtx) {
5566 static constexpr float iota[] = {
5567 0.5f, 1.5f, 2.5f, 3.5f, 4.5f, 5.5f, 6.5f, 7.5f,
5568 8.5f, 9.5f,10.5f,11.5f,12.5f,13.5f,14.5f,15.5f,
5569 };
5570 static_assert(std::size(iota) >= SkRasterPipeline_kMaxStride);
5571
5572 x = cast<F>(I32_(dx)) + sk_unaligned_load<F>(iota);
5573 y = cast<F>(I32_(dy)) + 0.5f;
5574 }
5575
5576 STAGE_GG(matrix_translate, const float* m) {
5577 x += m[0];
5578 y += m[1];
5579 }
5580 STAGE_GG(matrix_scale_translate, const float* m) {
5581 x = mad(x,m[0], m[2]);
5582 y = mad(y,m[1], m[3]);
5583 }
5584 STAGE_GG(matrix_2x3, const float* m) {
5585 auto X = mad(x,m[0], mad(y,m[1], m[2])),
5586 Y = mad(x,m[3], mad(y,m[4], m[5]));
5587 x = X;
5588 y = Y;
5589 }
5590 STAGE_GG(matrix_perspective, const float* m) {
5591 // N.B. Unlike the other matrix_ stages, this matrix is row-major.
5592 auto X = mad(x,m[0], mad(y,m[1], m[2])),
5593 Y = mad(x,m[3], mad(y,m[4], m[5])),
5594 Z = mad(x,m[6], mad(y,m[7], m[8]));
5595 x = X * rcp_precise(Z);
5596 y = Y * rcp_precise(Z);
5597 }
5598
5599 STAGE_PP(uniform_color, const SkRasterPipeline_UniformColorCtx* c) {
5600 r = U16_(c->rgba[0]);
5601 g = U16_(c->rgba[1]);
5602 b = U16_(c->rgba[2]);
5603 a = U16_(c->rgba[3]);
5604 }
5605 STAGE_PP(uniform_color_dst, const SkRasterPipeline_UniformColorCtx* c) {
5606 dr = U16_(c->rgba[0]);
5607 dg = U16_(c->rgba[1]);
5608 db = U16_(c->rgba[2]);
5609 da = U16_(c->rgba[3]);
5610 }
5611 STAGE_PP(black_color, NoCtx) { r = g = b = U16_0; a = U16_255; }
5612 STAGE_PP(white_color, NoCtx) { r = g = b = U16_255; a = U16_255; }
5613
5614 STAGE_PP(set_rgb, const float rgb[3]) {
5615 r = from_float(rgb[0]);
5616 g = from_float(rgb[1]);
5617 b = from_float(rgb[2]);
5618 }
5619
5620 // No need to clamp against 0 here (values are unsigned)
5621 STAGE_PP(clamp_01, NoCtx) {
5622 r = min(r, 255);
5623 g = min(g, 255);
5624 b = min(b, 255);
5625 a = min(a, 255);
5626 }
5627
5628 STAGE_PP(clamp_gamut, NoCtx) {
5629 a = min(a, 255);
5630 r = min(r, a);
5631 g = min(g, a);
5632 b = min(b, a);
5633 }
5634
5635 STAGE_PP(premul, NoCtx) {
5636 r = div255_accurate(r * a);
5637 g = div255_accurate(g * a);
5638 b = div255_accurate(b * a);
5639 }
5640 STAGE_PP(premul_dst, NoCtx) {
5641 dr = div255_accurate(dr * da);
5642 dg = div255_accurate(dg * da);
5643 db = div255_accurate(db * da);
5644 }
5645
5646 STAGE_PP(force_opaque , NoCtx) { a = U16_255; }
5647 STAGE_PP(force_opaque_dst, NoCtx) { da = U16_255; }
5648
5649 STAGE_PP(swap_rb, NoCtx) {
5650 auto tmp = r;
5651 r = b;
5652 b = tmp;
5653 }
5654 STAGE_PP(swap_rb_dst, NoCtx) {
5655 auto tmp = dr;
5656 dr = db;
5657 db = tmp;
5658 }
5659
5660 STAGE_PP(move_src_dst, NoCtx) {
5661 dr = r;
5662 dg = g;
5663 db = b;
5664 da = a;
5665 }
5666
5667 STAGE_PP(move_dst_src, NoCtx) {
5668 r = dr;
5669 g = dg;
5670 b = db;
5671 a = da;
5672 }
5673
5674 STAGE_PP(swap_src_dst, NoCtx) {
5675 std::swap(r, dr);
5676 std::swap(g, dg);
5677 std::swap(b, db);
5678 std::swap(a, da);
5679 }
5680
5681 // ~~~~~~ Blend modes ~~~~~~ //
5682
5683 // The same logic applied to all 4 channels.
5684 #define BLEND_MODE(name) \
5685 SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da); \
5686 STAGE_PP(name, NoCtx) { \
5687 r = name##_channel(r,dr,a,da); \
5688 g = name##_channel(g,dg,a,da); \
5689 b = name##_channel(b,db,a,da); \
5690 a = name##_channel(a,da,a,da); \
5691 } \
5692 SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da)
5693
5694 #if defined(SK_USE_INACCURATE_DIV255_IN_BLEND)
5695 BLEND_MODE(clear) { return U16_0; }
5696 BLEND_MODE(srcatop) { return div255( s*da + d*inv(sa) ); }
5697 BLEND_MODE(dstatop) { return div255( d*sa + s*inv(da) ); }
5698 BLEND_MODE(srcin) { return div255( s*da ); }
5699 BLEND_MODE(dstin) { return div255( d*sa ); }
5700 BLEND_MODE(srcout) { return div255( s*inv(da) ); }
5701 BLEND_MODE(dstout) { return div255( d*inv(sa) ); }
5702 BLEND_MODE(srcover) { return s + div255( d*inv(sa) ); }
5703 BLEND_MODE(dstover) { return d + div255( s*inv(da) ); }
5704 BLEND_MODE(modulate) { return div255( s*d ); }
5705 BLEND_MODE(multiply) { return div255( s*inv(da) + d*inv(sa) + s*d ); }
5706 BLEND_MODE(plus_) { return min(s+d, 255); }
5707 BLEND_MODE(screen) { return s + d - div255( s*d ); }
5708 BLEND_MODE(xor_) { return div255( s*inv(da) + d*inv(sa) ); }
5709 #else
5710 BLEND_MODE(clear) { return U16_0; }
5711 BLEND_MODE(srcatop) { return div255( s*da + d*inv(sa) ); }
5712 BLEND_MODE(dstatop) { return div255( d*sa + s*inv(da) ); }
5713 BLEND_MODE(srcin) { return div255_accurate( s*da ); }
5714 BLEND_MODE(dstin) { return div255_accurate( d*sa ); }
5715 BLEND_MODE(srcout) { return div255_accurate( s*inv(da) ); }
5716 BLEND_MODE(dstout) { return div255_accurate( d*inv(sa) ); }
5717 BLEND_MODE(srcover) { return s + div255_accurate( d*inv(sa) ); }
5718 BLEND_MODE(dstover) { return d + div255_accurate( s*inv(da) ); }
5719 BLEND_MODE(modulate) { return div255_accurate( s*d ); }
5720 BLEND_MODE(multiply) { return div255( s*inv(da) + d*inv(sa) + s*d ); }
5721 BLEND_MODE(plus_) { return min(s+d, 255); }
5722 BLEND_MODE(screen) { return s + d - div255_accurate( s*d ); }
5723 BLEND_MODE(xor_) { return div255( s*inv(da) + d*inv(sa) ); }
5724 #endif
5725 #undef BLEND_MODE
5726
5727 // The same logic applied to color, and srcover for alpha.
5728 #define BLEND_MODE(name) \
5729 SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da); \
5730 STAGE_PP(name, NoCtx) { \
5731 r = name##_channel(r,dr,a,da); \
5732 g = name##_channel(g,dg,a,da); \
5733 b = name##_channel(b,db,a,da); \
5734 a = a + div255( da*inv(a) ); \
5735 } \
5736 SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da)
5737
5738 BLEND_MODE(darken) { return s + d - div255( max(s*da, d*sa) ); }
5739 BLEND_MODE(lighten) { return s + d - div255( min(s*da, d*sa) ); }
5740 BLEND_MODE(difference) { return s + d - 2*div255( min(s*da, d*sa) ); }
5741 BLEND_MODE(exclusion) { return s + d - 2*div255( s*d ); }
5742
5743 BLEND_MODE(hardlight) {
5744 return div255( s*inv(da) + d*inv(sa) +
5745 if_then_else(2*s <= sa, 2*s*d, sa*da - 2*(sa-s)*(da-d)) );
5746 }
5747 BLEND_MODE(overlay) {
5748 return div255( s*inv(da) + d*inv(sa) +
5749 if_then_else(2*d <= da, 2*s*d, sa*da - 2*(sa-s)*(da-d)) );
5750 }
5751 #undef BLEND_MODE
5752
5753 // ~~~~~~ Helpers for interacting with memory ~~~~~~ //
5754
5755 template <typename T>
5756 SI T* ptr_at_xy(const SkRasterPipeline_MemoryCtx* ctx, size_t dx, size_t dy) {
5757 return (T*)ctx->pixels + dy*ctx->stride + dx;
5758 }
5759
5760 template <typename T>
5761 SI U32 ix_and_ptr(T** ptr, const SkRasterPipeline_GatherCtx* ctx, F x, F y) {
5762 // Exclusive -> inclusive.
5763 const F w = F_(sk_bit_cast<float>( sk_bit_cast<uint32_t>(ctx->width ) - 1)),
5764 h = F_(sk_bit_cast<float>( sk_bit_cast<uint32_t>(ctx->height) - 1));
5765
5766 const F z = F_(std::numeric_limits<float>::min());
5767
5768 x = min(max(z, x), w);
5769 y = min(max(z, y), h);
5770
5771 x = sk_bit_cast<F>(sk_bit_cast<U32>(x) - (uint32_t)ctx->roundDownAtInteger);
5772 y = sk_bit_cast<F>(sk_bit_cast<U32>(y) - (uint32_t)ctx->roundDownAtInteger);
5773
5774 *ptr = (const T*)ctx->pixels;
5775 return trunc_(y)*ctx->stride + trunc_(x);
5776 }
5777
5778 template <typename T>
5779 SI U32 ix_and_ptr(T** ptr, const SkRasterPipeline_GatherCtx* ctx, I32 x, I32 y) {
5780 // This flag doesn't make sense when the coords are integers.
5781 SkASSERT(ctx->roundDownAtInteger == 0);
5782 // Exclusive -> inclusive.
5783 const I32 w = I32_( ctx->width - 1),
5784 h = I32_(ctx->height - 1);
5785
5786 U32 ax = cast<U32>(min(max(0, x), w)),
5787 ay = cast<U32>(min(max(0, y), h));
5788
5789 *ptr = (const T*)ctx->pixels;
5790 return ay * ctx->stride + ax;
5791 }
5792
5793 template <typename V, typename T>
5794 SI V load(const T* ptr) {
5795 V v;
5796 memcpy(&v, ptr, sizeof(v));
5797 return v;
5798 }
5799 template <typename V, typename T>
5800 SI void store(T* ptr, V v) {
5801 memcpy(ptr, &v, sizeof(v));
5802 }
5803
5804 #if defined(JUMPER_IS_SKX)
5805 template <typename V, typename T>
5806 SI V gather(const T* ptr, U32 ix) {
5807 return V{ ptr[ix[ 0]], ptr[ix[ 1]], ptr[ix[ 2]], ptr[ix[ 3]],
5808 ptr[ix[ 4]], ptr[ix[ 5]], ptr[ix[ 6]], ptr[ix[ 7]],
5809 ptr[ix[ 8]], ptr[ix[ 9]], ptr[ix[10]], ptr[ix[11]],
5810 ptr[ix[12]], ptr[ix[13]], ptr[ix[14]], ptr[ix[15]], };
5811 }
5812
5813 template<>
5814 F gather(const float* ptr, U32 ix) {
5815 return _mm512_i32gather_ps((__m512i)ix, ptr, 4);
5816 }
5817
5818 template<>
5819 U32 gather(const uint32_t* ptr, U32 ix) {
5820 return (U32)_mm512_i32gather_epi32((__m512i)ix, ptr, 4);
5821 }
5822
5823 #elif defined(JUMPER_IS_HSW)
5824 template <typename V, typename T>
5825 SI V gather(const T* ptr, U32 ix) {
5826 return V{ ptr[ix[ 0]], ptr[ix[ 1]], ptr[ix[ 2]], ptr[ix[ 3]],
5827 ptr[ix[ 4]], ptr[ix[ 5]], ptr[ix[ 6]], ptr[ix[ 7]],
5828 ptr[ix[ 8]], ptr[ix[ 9]], ptr[ix[10]], ptr[ix[11]],
5829 ptr[ix[12]], ptr[ix[13]], ptr[ix[14]], ptr[ix[15]], };
5830 }
5831
5832 template<>
5833 F gather(const float* ptr, U32 ix) {
5834 __m256i lo, hi;
5835 split(ix, &lo, &hi);
5836
5837 return join<F>(_mm256_i32gather_ps(ptr, lo, 4),
5838 _mm256_i32gather_ps(ptr, hi, 4));
5839 }
5840
5841 template<>
5842 U32 gather(const uint32_t* ptr, U32 ix) {
5843 __m256i lo, hi;
5844 split(ix, &lo, &hi);
5845
5846 return join<U32>(_mm256_i32gather_epi32((const int*)ptr, lo, 4),
5847 _mm256_i32gather_epi32((const int*)ptr, hi, 4));
5848 }
5849 #elif defined(JUMPER_IS_LASX)
5850 template <typename V, typename T>
5851 SI V gather(const T* ptr, U32 ix) {
5852 return V{ ptr[ix[ 0]], ptr[ix[ 1]], ptr[ix[ 2]], ptr[ix[ 3]],
5853 ptr[ix[ 4]], ptr[ix[ 5]], ptr[ix[ 6]], ptr[ix[ 7]],
5854 ptr[ix[ 8]], ptr[ix[ 9]], ptr[ix[10]], ptr[ix[11]],
5855 ptr[ix[12]], ptr[ix[13]], ptr[ix[14]], ptr[ix[15]], };
5856 }
5857 #else
5858 template <typename V, typename T>
5859 SI V gather(const T* ptr, U32 ix) {
5860 return V{ ptr[ix[ 0]], ptr[ix[ 1]], ptr[ix[ 2]], ptr[ix[ 3]],
5861 ptr[ix[ 4]], ptr[ix[ 5]], ptr[ix[ 6]], ptr[ix[ 7]], };
5862 }
5863 #endif
5864
5865
5866 // ~~~~~~ 32-bit memory loads and stores ~~~~~~ //
5867
5868 SI void from_8888(U32 rgba, U16* r, U16* g, U16* b, U16* a) {
5869 #if defined(JUMPER_IS_SKX)
5870 rgba = (U32)_mm512_permutexvar_epi64(_mm512_setr_epi64(0,1,4,5,2,3,6,7), (__m512i)rgba);
5871 auto cast_U16 = [](U32 v) -> U16 {
5872 return (U16)_mm256_packus_epi32(_mm512_castsi512_si256((__m512i)v),
5873 _mm512_extracti64x4_epi64((__m512i)v, 1));
5874 };
5875 #elif defined(JUMPER_IS_HSW)
5876 // Swap the middle 128-bit lanes to make _mm256_packus_epi32() in cast_U16() work out nicely.
5877 __m256i _01,_23;
5878 split(rgba, &_01, &_23);
5879 __m256i _02 = _mm256_permute2x128_si256(_01,_23, 0x20),
5880 _13 = _mm256_permute2x128_si256(_01,_23, 0x31);
5881 rgba = join<U32>(_02, _13);
5882
5883 auto cast_U16 = [](U32 v) -> U16 {
5884 __m256i _02,_13;
5885 split(v, &_02,&_13);
5886 return (U16)_mm256_packus_epi32(_02,_13);
5887 };
5888 #elif defined(JUMPER_IS_LASX)
5889 __m256i _01, _23;
5890 split(rgba, &_01, &_23);
5891 __m256i _02 = __lasx_xvpermi_q(_01, _23, 0x02),
5892 _13 = __lasx_xvpermi_q(_01, _23, 0x13);
5893 rgba = join<U32>(_02, _13);
5894
5895 auto cast_U16 = [](U32 v) -> U16 {
5896 __m256i _02,_13;
5897 split(v, &_02,&_13);
5898 __m256i tmp0 = __lasx_xvsat_wu(_02, 15);
5899 __m256i tmp1 = __lasx_xvsat_wu(_13, 15);
5900 return __lasx_xvpickev_h(tmp1, tmp0);
5901 };
5902 #else
5903 auto cast_U16 = [](U32 v) -> U16 {
5904 return cast<U16>(v);
5905 };
5906 #endif
5907 *r = cast_U16(rgba & 65535) & 255;
5908 *g = cast_U16(rgba & 65535) >> 8;
5909 *b = cast_U16(rgba >> 16) & 255;
5910 *a = cast_U16(rgba >> 16) >> 8;
5911 }
5912
5913 SI void load_8888_(const uint32_t* ptr, U16* r, U16* g, U16* b, U16* a) {
5914 #if 1 && defined(JUMPER_IS_NEON)
5915 uint8x8x4_t rgba = vld4_u8((const uint8_t*)(ptr));
5916 *r = cast<U16>(rgba.val[0]);
5917 *g = cast<U16>(rgba.val[1]);
5918 *b = cast<U16>(rgba.val[2]);
5919 *a = cast<U16>(rgba.val[3]);
5920 #else
5921 from_8888(load<U32>(ptr), r,g,b,a);
5922 #endif
5923 }
5924 SI void store_8888_(uint32_t* ptr, U16 r, U16 g, U16 b, U16 a) {
5925 r = min(r, 255);
5926 g = min(g, 255);
5927 b = min(b, 255);
5928 a = min(a, 255);
5929
5930 #if 1 && defined(JUMPER_IS_NEON)
5931 uint8x8x4_t rgba = {{
5932 cast<U8>(r),
5933 cast<U8>(g),
5934 cast<U8>(b),
5935 cast<U8>(a),
5936 }};
5937 vst4_u8((uint8_t*)(ptr), rgba);
5938 #else
5939 store(ptr, cast<U32>(r | (g<<8)) << 0
5940 | cast<U32>(b | (a<<8)) << 16);
5941 #endif
5942 }
5943
5944 STAGE_PP(load_8888, const SkRasterPipeline_MemoryCtx* ctx) {
5945 load_8888_(ptr_at_xy<const uint32_t>(ctx, dx,dy), &r,&g,&b,&a);
5946 }
5947 STAGE_PP(load_8888_dst, const SkRasterPipeline_MemoryCtx* ctx) {
5948 load_8888_(ptr_at_xy<const uint32_t>(ctx, dx,dy), &dr,&dg,&db,&da);
5949 }
5950 STAGE_PP(store_8888, const SkRasterPipeline_MemoryCtx* ctx) {
5951 store_8888_(ptr_at_xy<uint32_t>(ctx, dx,dy), r,g,b,a);
5952 }
5953 STAGE_GP(gather_8888, const SkRasterPipeline_GatherCtx* ctx) {
5954 const uint32_t* ptr;
5955 U32 ix = ix_and_ptr(&ptr, ctx, x,y);
5956 from_8888(gather<U32>(ptr, ix), &r, &g, &b, &a);
5957 }
5958
5959 // ~~~~~~ 16-bit memory loads and stores ~~~~~~ //
5960
5961 SI void from_565(U16 rgb, U16* r, U16* g, U16* b) {
5962 // Format for 565 buffers: 15|rrrrr gggggg bbbbb|0
5963 U16 R = (rgb >> 11) & 31,
5964 G = (rgb >> 5) & 63,
5965 B = (rgb >> 0) & 31;
5966
5967 // These bit replications are the same as multiplying by 255/31 or 255/63 to scale to 8-bit.
5968 *r = (R << 3) | (R >> 2);
5969 *g = (G << 2) | (G >> 4);
5970 *b = (B << 3) | (B >> 2);
5971 }
5972 SI void load_565_(const uint16_t* ptr, U16* r, U16* g, U16* b) {
5973 from_565(load<U16>(ptr), r,g,b);
5974 }
5975 SI void store_565_(uint16_t* ptr, U16 r, U16 g, U16 b) {
5976 r = min(r, 255);
5977 g = min(g, 255);
5978 b = min(b, 255);
5979
5980 // Round from [0,255] to [0,31] or [0,63], as if x * (31/255.0f) + 0.5f.
5981 // (Don't feel like you need to find some fundamental truth in these...
5982 // they were brute-force searched.)
5983 U16 R = (r * 9 + 36) / 74, // 9/74 ≈ 31/255, plus 36/74, about half.
5984 G = (g * 21 + 42) / 85, // 21/85 = 63/255 exactly.
5985 B = (b * 9 + 36) / 74;
5986 // Pack them back into 15|rrrrr gggggg bbbbb|0.
5987 store(ptr, R << 11
5988 | G << 5
5989 | B << 0);
5990 }
5991
5992 STAGE_PP(load_565, const SkRasterPipeline_MemoryCtx* ctx) {
5993 load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), &r,&g,&b);
5994 a = U16_255;
5995 }
5996 STAGE_PP(load_565_dst, const SkRasterPipeline_MemoryCtx* ctx) {
5997 load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), &dr,&dg,&db);
5998 da = U16_255;
5999 }
6000 STAGE_PP(store_565, const SkRasterPipeline_MemoryCtx* ctx) {
6001 store_565_(ptr_at_xy<uint16_t>(ctx, dx,dy), r,g,b);
6002 }
6003 STAGE_GP(gather_565, const SkRasterPipeline_GatherCtx* ctx) {
6004 const uint16_t* ptr;
6005 U32 ix = ix_and_ptr(&ptr, ctx, x,y);
6006 from_565(gather<U16>(ptr, ix), &r, &g, &b);
6007 a = U16_255;
6008 }
6009
6010 SI void from_4444(U16 rgba, U16* r, U16* g, U16* b, U16* a) {
6011 // Format for 4444 buffers: 15|rrrr gggg bbbb aaaa|0.
6012 U16 R = (rgba >> 12) & 15,
6013 G = (rgba >> 8) & 15,
6014 B = (rgba >> 4) & 15,
6015 A = (rgba >> 0) & 15;
6016
6017 // Scale [0,15] to [0,255].
6018 *r = (R << 4) | R;
6019 *g = (G << 4) | G;
6020 *b = (B << 4) | B;
6021 *a = (A << 4) | A;
6022 }
6023 SI void load_4444_(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) {
6024 from_4444(load<U16>(ptr), r,g,b,a);
6025 }
6026 SI void store_4444_(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) {
6027 r = min(r, 255);
6028 g = min(g, 255);
6029 b = min(b, 255);
6030 a = min(a, 255);
6031
6032 // Round from [0,255] to [0,15], producing the same value as (x*(15/255.0f) + 0.5f).
6033 U16 R = (r + 8) / 17,
6034 G = (g + 8) / 17,
6035 B = (b + 8) / 17,
6036 A = (a + 8) / 17;
6037 // Pack them back into 15|rrrr gggg bbbb aaaa|0.
6038 store(ptr, R << 12
6039 | G << 8
6040 | B << 4
6041 | A << 0);
6042 }
6043
6044 STAGE_PP(load_4444, const SkRasterPipeline_MemoryCtx* ctx) {
6045 load_4444_(ptr_at_xy<const uint16_t>(ctx, dx,dy), &r,&g,&b,&a);
6046 }
6047 STAGE_PP(load_4444_dst, const SkRasterPipeline_MemoryCtx* ctx) {
6048 load_4444_(ptr_at_xy<const uint16_t>(ctx, dx,dy), &dr,&dg,&db,&da);
6049 }
6050 STAGE_PP(store_4444, const SkRasterPipeline_MemoryCtx* ctx) {
6051 store_4444_(ptr_at_xy<uint16_t>(ctx, dx,dy), r,g,b,a);
6052 }
6053 STAGE_GP(gather_4444, const SkRasterPipeline_GatherCtx* ctx) {
6054 const uint16_t* ptr;
6055 U32 ix = ix_and_ptr(&ptr, ctx, x,y);
6056 from_4444(gather<U16>(ptr, ix), &r,&g,&b,&a);
6057 }
6058
6059 SI void from_88(U16 rg, U16* r, U16* g) {
6060 *r = (rg & 0xFF);
6061 *g = (rg >> 8);
6062 }
6063
6064 SI void load_88_(const uint16_t* ptr, U16* r, U16* g) {
6065 #if 1 && defined(JUMPER_IS_NEON)
6066 uint8x8x2_t rg = vld2_u8((const uint8_t*)(ptr));
6067 *r = cast<U16>(rg.val[0]);
6068 *g = cast<U16>(rg.val[1]);
6069 #else
6070 from_88(load<U16>(ptr), r,g);
6071 #endif
6072 }
6073
6074 SI void store_88_(uint16_t* ptr, U16 r, U16 g) {
6075 r = min(r, 255);
6076 g = min(g, 255);
6077
6078 #if 1 && defined(JUMPER_IS_NEON)
6079 uint8x8x2_t rg = {{
6080 cast<U8>(r),
6081 cast<U8>(g),
6082 }};
6083 vst2_u8((uint8_t*)(ptr), rg);
6084 #else
6085 store(ptr, cast<U16>(r | (g<<8)) << 0);
6086 #endif
6087 }
6088
6089 STAGE_PP(load_rg88, const SkRasterPipeline_MemoryCtx* ctx) {
6090 load_88_(ptr_at_xy<const uint16_t>(ctx, dx, dy), &r, &g);
6091 b = U16_0;
6092 a = U16_255;
6093 }
6094 STAGE_PP(load_rg88_dst, const SkRasterPipeline_MemoryCtx* ctx) {
6095 load_88_(ptr_at_xy<const uint16_t>(ctx, dx, dy), &dr, &dg);
6096 db = U16_0;
6097 da = U16_255;
6098 }
6099 STAGE_PP(store_rg88, const SkRasterPipeline_MemoryCtx* ctx) {
6100 store_88_(ptr_at_xy<uint16_t>(ctx, dx, dy), r, g);
6101 }
6102 STAGE_GP(gather_rg88, const SkRasterPipeline_GatherCtx* ctx) {
6103 const uint16_t* ptr;
6104 U32 ix = ix_and_ptr(&ptr, ctx, x, y);
6105 from_88(gather<U16>(ptr, ix), &r, &g);
6106 b = U16_0;
6107 a = U16_255;
6108 }
6109
6110 // ~~~~~~ 8-bit memory loads and stores ~~~~~~ //
6111
6112 SI U16 load_8(const uint8_t* ptr) {
6113 return cast<U16>(load<U8>(ptr));
6114 }
6115 SI void store_8(uint8_t* ptr, U16 v) {
6116 v = min(v, 255);
6117 store(ptr, cast<U8>(v));
6118 }
6119
6120 STAGE_PP(load_a8, const SkRasterPipeline_MemoryCtx* ctx) {
6121 r = g = b = U16_0;
6122 a = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy));
6123 }
6124 STAGE_PP(load_a8_dst, const SkRasterPipeline_MemoryCtx* ctx) {
6125 dr = dg = db = U16_0;
6126 da = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy));
6127 }
6128 STAGE_PP(store_a8, const SkRasterPipeline_MemoryCtx* ctx) {
6129 store_8(ptr_at_xy<uint8_t>(ctx, dx,dy), a);
6130 }
6131 STAGE_GP(gather_a8, const SkRasterPipeline_GatherCtx* ctx) {
6132 const uint8_t* ptr;
6133 U32 ix = ix_and_ptr(&ptr, ctx, x,y);
6134 r = g = b = U16_0;
6135 a = cast<U16>(gather<U8>(ptr, ix));
6136 }
6137 STAGE_PP(store_r8, const SkRasterPipeline_MemoryCtx* ctx) {
6138 store_8(ptr_at_xy<uint8_t>(ctx, dx,dy), r);
6139 }
6140
6141 STAGE_PP(alpha_to_gray, NoCtx) {
6142 r = g = b = a;
6143 a = U16_255;
6144 }
6145 STAGE_PP(alpha_to_gray_dst, NoCtx) {
6146 dr = dg = db = da;
6147 da = U16_255;
6148 }
6149 STAGE_PP(alpha_to_red, NoCtx) {
6150 r = a;
6151 a = U16_255;
6152 }
6153 STAGE_PP(alpha_to_red_dst, NoCtx) {
6154 dr = da;
6155 da = U16_255;
6156 }
6157
6158 STAGE_PP(bt709_luminance_or_luma_to_alpha, NoCtx) {
6159 a = (r*54 + g*183 + b*19)/256; // 0.2126, 0.7152, 0.0722 with 256 denominator.
6160 r = g = b = U16_0;
6161 }
6162 STAGE_PP(bt709_luminance_or_luma_to_rgb, NoCtx) {
6163 r = g = b =(r*54 + g*183 + b*19)/256; // 0.2126, 0.7152, 0.0722 with 256 denominator.
6164 }
6165
6166 // ~~~~~~ Coverage scales / lerps ~~~~~~ //
6167
6168 STAGE_PP(load_src, const uint16_t* ptr) {
6169 r = sk_unaligned_load<U16>(ptr + 0*N);
6170 g = sk_unaligned_load<U16>(ptr + 1*N);
6171 b = sk_unaligned_load<U16>(ptr + 2*N);
6172 a = sk_unaligned_load<U16>(ptr + 3*N);
6173 }
6174 STAGE_PP(store_src, uint16_t* ptr) {
6175 sk_unaligned_store(ptr + 0*N, r);
6176 sk_unaligned_store(ptr + 1*N, g);
6177 sk_unaligned_store(ptr + 2*N, b);
6178 sk_unaligned_store(ptr + 3*N, a);
6179 }
6180 STAGE_PP(store_src_a, uint16_t* ptr) {
6181 sk_unaligned_store(ptr, a);
6182 }
6183 STAGE_PP(load_dst, const uint16_t* ptr) {
6184 dr = sk_unaligned_load<U16>(ptr + 0*N);
6185 dg = sk_unaligned_load<U16>(ptr + 1*N);
6186 db = sk_unaligned_load<U16>(ptr + 2*N);
6187 da = sk_unaligned_load<U16>(ptr + 3*N);
6188 }
6189 STAGE_PP(store_dst, uint16_t* ptr) {
6190 sk_unaligned_store(ptr + 0*N, dr);
6191 sk_unaligned_store(ptr + 1*N, dg);
6192 sk_unaligned_store(ptr + 2*N, db);
6193 sk_unaligned_store(ptr + 3*N, da);
6194 }
6195
6196 // ~~~~~~ Coverage scales / lerps ~~~~~~ //
6197
6198 STAGE_PP(scale_1_float, const float* f) {
6199 U16 c = from_float(*f);
6200 r = div255( r * c );
6201 g = div255( g * c );
6202 b = div255( b * c );
6203 a = div255( a * c );
6204 }
6205 STAGE_PP(lerp_1_float, const float* f) {
6206 U16 c = from_float(*f);
6207 r = lerp(dr, r, c);
6208 g = lerp(dg, g, c);
6209 b = lerp(db, b, c);
6210 a = lerp(da, a, c);
6211 }
6212 STAGE_PP(scale_native, const uint16_t scales[]) {
6213 auto c = sk_unaligned_load<U16>(scales);
6214 r = div255( r * c );
6215 g = div255( g * c );
6216 b = div255( b * c );
6217 a = div255( a * c );
6218 }
6219
6220 STAGE_PP(lerp_native, const uint16_t scales[]) {
6221 auto c = sk_unaligned_load<U16>(scales);
6222 r = lerp(dr, r, c);
6223 g = lerp(dg, g, c);
6224 b = lerp(db, b, c);
6225 a = lerp(da, a, c);
6226 }
6227
6228 STAGE_PP(scale_u8, const SkRasterPipeline_MemoryCtx* ctx) {
6229 U16 c = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy));
6230 r = div255( r * c );
6231 g = div255( g * c );
6232 b = div255( b * c );
6233 a = div255( a * c );
6234 }
6235 STAGE_PP(lerp_u8, const SkRasterPipeline_MemoryCtx* ctx) {
6236 U16 c = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy));
6237 r = lerp(dr, r, c);
6238 g = lerp(dg, g, c);
6239 b = lerp(db, b, c);
6240 a = lerp(da, a, c);
6241 }
6242
6243 // Derive alpha's coverage from rgb coverage and the values of src and dst alpha.
6244 SI U16 alpha_coverage_from_rgb_coverage(U16 a, U16 da, U16 cr, U16 cg, U16 cb) {
6245 return if_then_else(a < da, min(cr, min(cg,cb))
6246 , max(cr, max(cg,cb)));
6247 }
6248 STAGE_PP(scale_565, const SkRasterPipeline_MemoryCtx* ctx) {
6249 U16 cr,cg,cb;
6250 load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), &cr,&cg,&cb);
6251 U16 ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
6252
6253 r = div255( r * cr );
6254 g = div255( g * cg );
6255 b = div255( b * cb );
6256 a = div255( a * ca );
6257 }
6258 STAGE_PP(lerp_565, const SkRasterPipeline_MemoryCtx* ctx) {
6259 U16 cr,cg,cb;
6260 load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), &cr,&cg,&cb);
6261 U16 ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
6262
6263 r = lerp(dr, r, cr);
6264 g = lerp(dg, g, cg);
6265 b = lerp(db, b, cb);
6266 a = lerp(da, a, ca);
6267 }
6268
6269 STAGE_PP(emboss, const SkRasterPipeline_EmbossCtx* ctx) {
6270 U16 mul = load_8(ptr_at_xy<const uint8_t>(&ctx->mul, dx,dy)),
6271 add = load_8(ptr_at_xy<const uint8_t>(&ctx->add, dx,dy));
6272
6273 r = min(div255(r*mul) + add, a);
6274 g = min(div255(g*mul) + add, a);
6275 b = min(div255(b*mul) + add, a);
6276 }
6277
6278
6279 // ~~~~~~ Gradient stages ~~~~~~ //
6280
6281 // Clamp x to [0,1], both sides inclusive (think, gradients).
6282 // Even repeat and mirror funnel through a clamp to handle bad inputs like +Inf, NaN.
6283 SI F clamp_01_(F v) { return min(max(0, v), 1); }
6284
6285 STAGE_GG(clamp_x_1 , NoCtx) { x = clamp_01_(x); }
6286 STAGE_GG(repeat_x_1, NoCtx) { x = clamp_01_(x - floor_(x)); }
6287 STAGE_GG(mirror_x_1, NoCtx) {
6288 auto two = [](F x){ return x+x; };
6289 x = clamp_01_(abs_( (x-1.0f) - two(floor_((x-1.0f)*0.5f)) - 1.0f ));
6290 }
6291
6292 SI I16 cond_to_mask_16(I32 cond) { return cast<I16>(cond); }
6293
6294 STAGE_GG(decal_x, SkRasterPipeline_DecalTileCtx* ctx) {
6295 auto w = ctx->limit_x;
6296 sk_unaligned_store(ctx->mask, cond_to_mask_16((0 <= x) & (x < w)));
6297 }
6298 STAGE_GG(decal_y, SkRasterPipeline_DecalTileCtx* ctx) {
6299 auto h = ctx->limit_y;
6300 sk_unaligned_store(ctx->mask, cond_to_mask_16((0 <= y) & (y < h)));
6301 }
6302 STAGE_GG(decal_x_and_y, SkRasterPipeline_DecalTileCtx* ctx) {
6303 auto w = ctx->limit_x;
6304 auto h = ctx->limit_y;
6305 sk_unaligned_store(ctx->mask, cond_to_mask_16((0 <= x) & (x < w) & (0 <= y) & (y < h)));
6306 }
6307 STAGE_GG(clamp_x_and_y, SkRasterPipeline_CoordClampCtx* ctx) {
6308 x = min(ctx->max_x, max(ctx->min_x, x));
6309 y = min(ctx->max_y, max(ctx->min_y, y));
6310 }
6311 STAGE_PP(check_decal_mask, SkRasterPipeline_DecalTileCtx* ctx) {
6312 auto mask = sk_unaligned_load<U16>(ctx->mask);
6313 r = r & mask;
6314 g = g & mask;
6315 b = b & mask;
6316 a = a & mask;
6317 }
6318
6319 SI void round_F_to_U16(F R, F G, F B, F A, U16* r, U16* g, U16* b, U16* a) {
6320 auto round_color = [](F x) { return cast<U16>(x * 255.0f + 0.5f); };
6321
6322 *r = round_color(min(max(0, R), 1));
6323 *g = round_color(min(max(0, G), 1));
6324 *b = round_color(min(max(0, B), 1));
6325 *a = round_color(A); // we assume alpha is already in [0,1].
6326 }
6327
6328 SI void gradient_lookup(const SkRasterPipeline_GradientCtx* c, U32 idx, F t,
6329 U16* r, U16* g, U16* b, U16* a) {
6330
6331 F fr, fg, fb, fa, br, bg, bb, ba;
6332 #if defined(JUMPER_IS_HSW)
6333 if (c->stopCount <=8) {
6334 __m256i lo, hi;
6335 split(idx, &lo, &hi);
6336
6337 fr = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), lo),
6338 _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), hi));
6339 br = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), lo),
6340 _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), hi));
6341 fg = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), lo),
6342 _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), hi));
6343 bg = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), lo),
6344 _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), hi));
6345 fb = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), lo),
6346 _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), hi));
6347 bb = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), lo),
6348 _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), hi));
6349 fa = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), lo),
6350 _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), hi));
6351 ba = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), lo),
6352 _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), hi));
6353 } else
6354 #elif defined(JUMPER_IS_LASX)
6355 if (c->stopCount <= 8) {
6356 __m256i lo, hi;
6357 split(idx, &lo, &hi);
6358
6359 fr = join<F>((__m256)__lasx_xvperm_w(__lasx_xvld(c->fs[0], 0), lo),
6360 (__m256)__lasx_xvperm_w(__lasx_xvld(c->fs[0], 0), hi));
6361 br = join<F>((__m256)__lasx_xvperm_w(__lasx_xvld(c->bs[0], 0), lo),
6362 (__m256)__lasx_xvperm_w(__lasx_xvld(c->bs[0], 0), hi));
6363 fg = join<F>((__m256)__lasx_xvperm_w(__lasx_xvld(c->fs[1], 0), lo),
6364 (__m256)__lasx_xvperm_w(__lasx_xvld(c->fs[1], 0), hi));
6365 bg = join<F>((__m256)__lasx_xvperm_w(__lasx_xvld(c->bs[1], 0), lo),
6366 (__m256)__lasx_xvperm_w(__lasx_xvld(c->bs[1], 0), hi));
6367 fb = join<F>((__m256)__lasx_xvperm_w(__lasx_xvld(c->fs[2], 0), lo),
6368 (__m256)__lasx_xvperm_w(__lasx_xvld(c->fs[2], 0), hi));
6369 bb = join<F>((__m256)__lasx_xvperm_w(__lasx_xvld(c->bs[2], 0), lo),
6370 (__m256)__lasx_xvperm_w(__lasx_xvld(c->bs[2], 0), hi));
6371 fa = join<F>((__m256)__lasx_xvperm_w(__lasx_xvld(c->fs[3], 0), lo),
6372 (__m256)__lasx_xvperm_w(__lasx_xvld(c->fs[3], 0), hi));
6373 ba = join<F>((__m256)__lasx_xvperm_w(__lasx_xvld(c->bs[3], 0), lo),
6374 (__m256)__lasx_xvperm_w(__lasx_xvld(c->bs[3], 0), hi));
6375 } else
6376 #elif defined(JUMPER_IS_LSX)
6377 if (c->stopCount <= 4) {
6378 __m128i lo, hi;
6379 split(idx, &lo, &hi);
6380 __m128i zero = __lsx_vldi(0);
6381 fr = join<F>((__m128)__lsx_vshuf_w(lo, zero, __lsx_vld(c->fs[0], 0)),
6382 (__m128)__lsx_vshuf_w(hi, zero, __lsx_vld(c->fs[0], 0)));
6383 br = join<F>((__m128)__lsx_vshuf_w(lo, zero, __lsx_vld(c->bs[0], 0)),
6384 (__m128)__lsx_vshuf_w(hi, zero, __lsx_vld(c->bs[0], 0)));
6385 fg = join<F>((__m128)__lsx_vshuf_w(lo, zero, __lsx_vld(c->fs[1], 0)),
6386 (__m128)__lsx_vshuf_w(hi, zero, __lsx_vld(c->fs[1], 0)));
6387 bg = join<F>((__m128)__lsx_vshuf_w(lo, zero, __lsx_vld(c->bs[1], 0)),
6388 (__m128)__lsx_vshuf_w(hi, zero, __lsx_vld(c->bs[1], 0)));
6389 fb = join<F>((__m128)__lsx_vshuf_w(lo, zero, __lsx_vld(c->fs[2], 0)),
6390 (__m128)__lsx_vshuf_w(hi, zero, __lsx_vld(c->fs[2], 0)));
6391 bb = join<F>((__m128)__lsx_vshuf_w(lo, zero, __lsx_vld(c->bs[2], 0)),
6392 (__m128)__lsx_vshuf_w(hi, zero, __lsx_vld(c->bs[2], 0)));
6393 fa = join<F>((__m128)__lsx_vshuf_w(lo, zero, __lsx_vld(c->fs[3], 0)),
6394 (__m128)__lsx_vshuf_w(hi, zero, __lsx_vld(c->fs[3], 0)));
6395 ba = join<F>((__m128)__lsx_vshuf_w(lo, zero, __lsx_vld(c->bs[3], 0)),
6396 (__m128)__lsx_vshuf_w(hi, zero, __lsx_vld(c->bs[3], 0)));
6397 } else
6398 #endif
6399 {
6400 fr = gather<F>(c->fs[0], idx);
6401 fg = gather<F>(c->fs[1], idx);
6402 fb = gather<F>(c->fs[2], idx);
6403 fa = gather<F>(c->fs[3], idx);
6404 br = gather<F>(c->bs[0], idx);
6405 bg = gather<F>(c->bs[1], idx);
6406 bb = gather<F>(c->bs[2], idx);
6407 ba = gather<F>(c->bs[3], idx);
6408 }
6409 round_F_to_U16(mad(t, fr, br),
6410 mad(t, fg, bg),
6411 mad(t, fb, bb),
6412 mad(t, fa, ba),
6413 r,g,b,a);
6414 }
6415
6416 STAGE_GP(gradient, const SkRasterPipeline_GradientCtx* c) {
6417 auto t = x;
6418 U32 idx = U32_(0);
6419
6420 // N.B. The loop starts at 1 because idx 0 is the color to use before the first stop.
6421 for (size_t i = 1; i < c->stopCount; i++) {
6422 idx += if_then_else(t >= c->ts[i], U32_(1), U32_(0));
6423 }
6424
6425 gradient_lookup(c, idx, t, &r, &g, &b, &a);
6426 }
6427
6428 STAGE_GP(evenly_spaced_gradient, const SkRasterPipeline_GradientCtx* c) {
6429 auto t = x;
6430 auto idx = trunc_(t * static_cast<float>(c->stopCount-1));
6431 gradient_lookup(c, idx, t, &r, &g, &b, &a);
6432 }
6433
6434 STAGE_GP(evenly_spaced_2_stop_gradient, const SkRasterPipeline_EvenlySpaced2StopGradientCtx* c) {
6435 auto t = x;
6436 round_F_to_U16(mad(t, c->f[0], c->b[0]),
6437 mad(t, c->f[1], c->b[1]),
6438 mad(t, c->f[2], c->b[2]),
6439 mad(t, c->f[3], c->b[3]),
6440 &r,&g,&b,&a);
6441 }
6442
6443 STAGE_GP(bilerp_clamp_8888, const SkRasterPipeline_GatherCtx* ctx) {
6444 // Quantize sample point and transform into lerp coordinates converting them to 16.16 fixed
6445 // point number.
6446 I32 qx = cast<I32>(floor_(65536.0f * x + 0.5f)) - 32768,
6447 qy = cast<I32>(floor_(65536.0f * y + 0.5f)) - 32768;
6448
6449 // Calculate screen coordinates sx & sy by flooring qx and qy.
6450 I32 sx = qx >> 16,
6451 sy = qy >> 16;
6452
6453 // We are going to perform a change of parameters for qx on [0, 1) to tx on [-1, 1).
6454 // This will put tx in Q15 format for use with q_mult.
6455 // Calculate tx and ty on the interval of [-1, 1). Give {qx} and {qy} are on the interval
6456 // [0, 1), where {v} is fract(v), we can transform to tx in the following manner ty follows
6457 // the same math:
6458 // tx = 2 * {qx} - 1, so
6459 // {qx} = (tx + 1) / 2.
6460 // Calculate {qx} - 1 and {qy} - 1 where the {} operation is handled by the cast, and the - 1
6461 // is handled by the ^ 0x8000, dividing by 2 is deferred and handled in lerpX and lerpY in
6462 // order to use the full 16-bit resolution.
6463 I16 tx = cast<I16>(qx ^ 0x8000),
6464 ty = cast<I16>(qy ^ 0x8000);
6465
6466 // Substituting the {qx} by the equation for tx from above into the lerp equation where v is
6467 // the lerped value:
6468 // v = {qx}*(R - L) + L,
6469 // v = 1/2*(tx + 1)*(R - L) + L
6470 // 2 * v = (tx + 1)*(R - L) + 2*L
6471 // = tx*R - tx*L + R - L + 2*L
6472 // = tx*(R - L) + (R + L).
6473 // Since R and L are on [0, 255] we need them on the interval [0, 1/2] to get them into form
6474 // for Q15_mult. If L and R where in 16.16 format, this would be done by dividing by 2^9. In
6475 // code, we can multiply by 2^7 to get the value directly.
6476 // 2 * v = tx*(R - L) + (R + L)
6477 // 2^-9 * 2 * v = tx*(R - L)*2^-9 + (R + L)*2^-9
6478 // 2^-8 * v = 2^-9 * (tx*(R - L) + (R + L))
6479 // v = 1/2 * (tx*(R - L) + (R + L))
6480 auto lerpX = [&](U16 left, U16 right) -> U16 {
6481 I16 width = (I16)(right - left) << 7;
6482 U16 middle = (right + left) << 7;
6483 // The constrained_add is the most subtle part of lerp. The first term is on the interval
6484 // [-1, 1), and the second term is on the interval is on the interval [0, 1) because
6485 // both terms are too high by a factor of 2 which will be handled below. (Both R and L are
6486 // on [0, 1/2), but the sum R + L is on the interval [0, 1).) Generally, the sum below
6487 // should overflow, but because we know that sum produces an output on the
6488 // interval [0, 1) we know that the extra bit that would be needed will always be 0. So
6489 // we need to be careful to treat this sum as an unsigned positive number in the divide
6490 // by 2 below. Add +1 for rounding.
6491 U16 v2 = constrained_add(scaled_mult(tx, width), middle) + 1;
6492 // Divide by 2 to calculate v and at the same time bring the intermediate value onto the
6493 // interval [0, 1/2] to set up for the lerpY.
6494 return v2 >> 1;
6495 };
6496
6497 const uint32_t* ptr;
6498 U32 ix = ix_and_ptr(&ptr, ctx, sx, sy);
6499 U16 leftR, leftG, leftB, leftA;
6500 from_8888(gather<U32>(ptr, ix), &leftR,&leftG,&leftB,&leftA);
6501
6502 ix = ix_and_ptr(&ptr, ctx, sx+1, sy);
6503 U16 rightR, rightG, rightB, rightA;
6504 from_8888(gather<U32>(ptr, ix), &rightR,&rightG,&rightB,&rightA);
6505
6506 U16 topR = lerpX(leftR, rightR),
6507 topG = lerpX(leftG, rightG),
6508 topB = lerpX(leftB, rightB),
6509 topA = lerpX(leftA, rightA);
6510
6511 ix = ix_and_ptr(&ptr, ctx, sx, sy+1);
6512 from_8888(gather<U32>(ptr, ix), &leftR,&leftG,&leftB,&leftA);
6513
6514 ix = ix_and_ptr(&ptr, ctx, sx+1, sy+1);
6515 from_8888(gather<U32>(ptr, ix), &rightR,&rightG,&rightB,&rightA);
6516
6517 U16 bottomR = lerpX(leftR, rightR),
6518 bottomG = lerpX(leftG, rightG),
6519 bottomB = lerpX(leftB, rightB),
6520 bottomA = lerpX(leftA, rightA);
6521
6522 // lerpY plays the same mathematical tricks as lerpX, but the final divide is by 256 resulting
6523 // in a value on [0, 255].
6524 auto lerpY = [&](U16 top, U16 bottom) -> U16 {
6525 I16 width = (I16)bottom - (I16)top;
6526 U16 middle = bottom + top;
6527 // Add + 0x80 for rounding.
6528 U16 blend = constrained_add(scaled_mult(ty, width), middle) + 0x80;
6529
6530 return blend >> 8;
6531 };
6532
6533 r = lerpY(topR, bottomR);
6534 g = lerpY(topG, bottomG);
6535 b = lerpY(topB, bottomB);
6536 a = lerpY(topA, bottomA);
6537 }
6538
6539 STAGE_GG(xy_to_unit_angle, NoCtx) {
6540 F xabs = abs_(x),
6541 yabs = abs_(y);
6542
6543 F slope = min(xabs, yabs)/max(xabs, yabs);
6544 F s = slope * slope;
6545
6546 // Use a 7th degree polynomial to approximate atan.
6547 // This was generated using sollya.gforge.inria.fr.
6548 // A float optimized polynomial was generated using the following command.
6549 // P1 = fpminimax((1/(2*Pi))*atan(x),[|1,3,5,7|],[|24...|],[2^(-40),1],relative);
6550 F phi = slope
6551 * (0.15912117063999176025390625f + s
6552 * (-5.185396969318389892578125e-2f + s
6553 * (2.476101927459239959716796875e-2f + s
6554 * (-7.0547382347285747528076171875e-3f))));
6555
6556 phi = if_then_else(xabs < yabs, 1.0f/4.0f - phi, phi);
6557 phi = if_then_else(x < 0.0f , 1.0f/2.0f - phi, phi);
6558 phi = if_then_else(y < 0.0f , 1.0f - phi , phi);
6559 phi = if_then_else(phi != phi , 0 , phi); // Check for NaN.
6560 x = phi;
6561 }
6562 STAGE_GG(xy_to_radius, NoCtx) {
6563 x = sqrt_(x*x + y*y);
6564 }
6565
6566 // ~~~~~~ Compound stages ~~~~~~ //
6567
6568 STAGE_PP(srcover_rgba_8888, const SkRasterPipeline_MemoryCtx* ctx) {
6569 auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
6570
6571 load_8888_(ptr, &dr,&dg,&db,&da);
6572 r = r + div255( dr*inv(a) );
6573 g = g + div255( dg*inv(a) );
6574 b = b + div255( db*inv(a) );
6575 a = a + div255( da*inv(a) );
6576 store_8888_(ptr, r,g,b,a);
6577 }
6578
6579 // ~~~~~~ skgpu::Swizzle stage ~~~~~~ //
6580
6581 STAGE_PP(swizzle, void* ctx) {
6582 auto ir = r, ig = g, ib = b, ia = a;
6583 U16* o[] = {&r, &g, &b, &a};
6584 char swiz[4];
6585 memcpy(swiz, &ctx, sizeof(swiz));
6586
6587 for (int i = 0; i < 4; ++i) {
6588 switch (swiz[i]) {
6589 case 'r': *o[i] = ir; break;
6590 case 'g': *o[i] = ig; break;
6591 case 'b': *o[i] = ib; break;
6592 case 'a': *o[i] = ia; break;
6593 case '0': *o[i] = U16_0; break;
6594 case '1': *o[i] = U16_255; break;
6595 default: break;
6596 }
6597 }
6598 }
6599
6600 #endif//defined(JUMPER_IS_SCALAR) controlling whether we build lowp stages
6601 } // namespace lowp
6602
6603 /* This gives us SK_OPTS::lowp::N if lowp::N has been set, or SK_OPTS::N if it hasn't. */
6604 namespace lowp { static constexpr size_t lowp_N = N; }
6605
6606 /** Allow outside code to access the Raster Pipeline pixel stride. */
raster_pipeline_lowp_stride()6607 constexpr size_t raster_pipeline_lowp_stride() { return lowp::lowp_N; }
raster_pipeline_highp_stride()6608 constexpr size_t raster_pipeline_highp_stride() { return N; }
6609
6610 } // namespace SK_OPTS_NS
6611
6612 #undef SI
6613
6614 #endif//SkRasterPipeline_opts_DEFINED
6615