/* * Copyright 2011-2016 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "internal.h" size_t ec_point_byte_len(const EC_GROUP *group, point_conversion_form_t form) { if (form != POINT_CONVERSION_COMPRESSED && form != POINT_CONVERSION_UNCOMPRESSED) { OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FORM); return 0; } const size_t field_len = BN_num_bytes(&group->field.N); size_t output_len = 1 /* type byte */ + field_len; if (form == POINT_CONVERSION_UNCOMPRESSED) { // Uncompressed points have a second coordinate. output_len += field_len; } return output_len; } size_t ec_point_to_bytes(const EC_GROUP *group, const EC_AFFINE *point, point_conversion_form_t form, uint8_t *buf, size_t max_out) { size_t output_len = ec_point_byte_len(group, form); if (max_out < output_len) { OPENSSL_PUT_ERROR(EC, EC_R_BUFFER_TOO_SMALL); return 0; } size_t field_len; ec_felem_to_bytes(group, buf + 1, &field_len, &point->X); assert(field_len == BN_num_bytes(&group->field.N)); if (form == POINT_CONVERSION_UNCOMPRESSED) { ec_felem_to_bytes(group, buf + 1 + field_len, &field_len, &point->Y); assert(field_len == BN_num_bytes(&group->field.N)); buf[0] = form; } else { uint8_t y_buf[EC_MAX_BYTES]; ec_felem_to_bytes(group, y_buf, &field_len, &point->Y); buf[0] = form + (y_buf[field_len - 1] & 1); } return output_len; } int ec_point_from_uncompressed(const EC_GROUP *group, EC_AFFINE *out, const uint8_t *in, size_t len) { const size_t field_len = BN_num_bytes(&group->field.N); if (len != 1 + 2 * field_len || in[0] != POINT_CONVERSION_UNCOMPRESSED) { OPENSSL_PUT_ERROR(EC, EC_R_INVALID_ENCODING); return 0; } EC_FELEM x, y; if (!ec_felem_from_bytes(group, &x, in + 1, field_len) || !ec_felem_from_bytes(group, &y, in + 1 + field_len, field_len) || !ec_point_set_affine_coordinates(group, out, &x, &y)) { return 0; } return 1; } static int ec_GFp_simple_oct2point(const EC_GROUP *group, EC_POINT *point, const uint8_t *buf, size_t len, BN_CTX *ctx) { if (len == 0) { OPENSSL_PUT_ERROR(EC, EC_R_BUFFER_TOO_SMALL); return 0; } uint8_t form = buf[0]; if (form == static_cast(POINT_CONVERSION_UNCOMPRESSED)) { EC_AFFINE affine; if (!ec_point_from_uncompressed(group, &affine, buf, len)) { // In the event of an error, defend against the caller not checking the // return value by setting a known safe value. ec_set_to_safe_point(group, &point->raw); return 0; } ec_affine_to_jacobian(group, &point->raw, &affine); return 1; } const int y_bit = form & 1; const size_t field_len = BN_num_bytes(&group->field.N); form = form & ~1u; if (form != static_cast(POINT_CONVERSION_COMPRESSED) || len != 1 /* type byte */ + field_len) { OPENSSL_PUT_ERROR(EC, EC_R_INVALID_ENCODING); return 0; } // TODO(davidben): Integrate compressed coordinates with the lower-level EC // abstractions. This requires a way to compute square roots, which is tricky // for primes which are not 3 (mod 4), namely P-224 and custom curves. P-224's // prime is particularly inconvenient for compressed coordinates. See // https://cr.yp.to/papers/sqroot.pdf BN_CTX *new_ctx = NULL; if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) { return 0; } } int ret = 0; BN_CTX_start(ctx); BIGNUM *x = BN_CTX_get(ctx); if (x == NULL || !BN_bin2bn(buf + 1, field_len, x)) { goto err; } if (BN_ucmp(x, &group->field.N) >= 0) { OPENSSL_PUT_ERROR(EC, EC_R_INVALID_ENCODING); goto err; } if (!EC_POINT_set_compressed_coordinates_GFp(group, point, x, y_bit, ctx)) { goto err; } ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; } int EC_POINT_oct2point(const EC_GROUP *group, EC_POINT *point, const uint8_t *buf, size_t len, BN_CTX *ctx) { if (EC_GROUP_cmp(group, point->group, NULL) != 0) { OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); return 0; } return ec_GFp_simple_oct2point(group, point, buf, len, ctx); } size_t EC_POINT_point2oct(const EC_GROUP *group, const EC_POINT *point, point_conversion_form_t form, uint8_t *buf, size_t max_out, BN_CTX *ctx) { if (EC_GROUP_cmp(group, point->group, NULL) != 0) { OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); return 0; } if (buf == NULL) { // When |buf| is NULL, just return the number of bytes that would be // written, without doing an expensive Jacobian-to-affine conversion. if (ec_GFp_simple_is_at_infinity(group, &point->raw)) { OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY); return 0; } return ec_point_byte_len(group, form); } EC_AFFINE affine; if (!ec_jacobian_to_affine(group, &affine, &point->raw)) { return 0; } return ec_point_to_bytes(group, &affine, form, buf, max_out); } size_t EC_POINT_point2buf(const EC_GROUP *group, const EC_POINT *point, point_conversion_form_t form, uint8_t **out_buf, BN_CTX *ctx) { *out_buf = NULL; size_t len = EC_POINT_point2oct(group, point, form, NULL, 0, ctx); if (len == 0) { return 0; } uint8_t *buf = reinterpret_cast(OPENSSL_malloc(len)); if (buf == NULL) { return 0; } len = EC_POINT_point2oct(group, point, form, buf, len, ctx); if (len == 0) { OPENSSL_free(buf); return 0; } *out_buf = buf; return len; } int EC_POINT_set_compressed_coordinates_GFp(const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, int y_bit, BN_CTX *ctx) { if (EC_GROUP_cmp(group, point->group, NULL) != 0) { OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); return 0; } const BIGNUM *field = &group->field.N; if (BN_is_negative(x) || BN_cmp(x, field) >= 0) { OPENSSL_PUT_ERROR(EC, EC_R_INVALID_COMPRESSED_POINT); return 0; } BN_CTX *new_ctx = NULL; int ret = 0; ERR_clear_error(); if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) { return 0; } } y_bit = (y_bit != 0); BN_CTX_start(ctx); BIGNUM *tmp1 = BN_CTX_get(ctx); BIGNUM *tmp2 = BN_CTX_get(ctx); BIGNUM *a = BN_CTX_get(ctx); BIGNUM *b = BN_CTX_get(ctx); BIGNUM *y = BN_CTX_get(ctx); if (y == NULL || !EC_GROUP_get_curve_GFp(group, NULL, a, b, ctx)) { goto err; } // Recover y. We have a Weierstrass equation // y^2 = x^3 + a*x + b, // so y is one of the square roots of x^3 + a*x + b. // tmp1 := x^3 if (!BN_mod_sqr(tmp2, x, field, ctx) || !BN_mod_mul(tmp1, tmp2, x, field, ctx)) { goto err; } // tmp1 := tmp1 + a*x if (group->a_is_minus3) { if (!bn_mod_lshift1_consttime(tmp2, x, field, ctx) || !bn_mod_add_consttime(tmp2, tmp2, x, field, ctx) || !bn_mod_sub_consttime(tmp1, tmp1, tmp2, field, ctx)) { goto err; } } else { if (!BN_mod_mul(tmp2, a, x, field, ctx) || !bn_mod_add_consttime(tmp1, tmp1, tmp2, field, ctx)) { goto err; } } // tmp1 := tmp1 + b if (!bn_mod_add_consttime(tmp1, tmp1, b, field, ctx)) { goto err; } if (!BN_mod_sqrt(y, tmp1, field, ctx)) { uint32_t err = ERR_peek_last_error(); if (ERR_GET_LIB(err) == ERR_LIB_BN && ERR_GET_REASON(err) == BN_R_NOT_A_SQUARE) { ERR_clear_error(); OPENSSL_PUT_ERROR(EC, EC_R_INVALID_COMPRESSED_POINT); } else { OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB); } goto err; } if (y_bit != BN_is_odd(y)) { if (BN_is_zero(y)) { OPENSSL_PUT_ERROR(EC, EC_R_INVALID_COMPRESSION_BIT); goto err; } if (!BN_usub(y, field, y)) { goto err; } } if (y_bit != BN_is_odd(y)) { OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); goto err; } if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) { goto err; } ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; }