/* * Copyright 2001-2016 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include #include #include "../../internal.h" #include "../bn/internal.h" #include "internal.h" // This file implements the wNAF-based interleaving multi-exponentiation method // at: // http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13 // http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf void ec_compute_wNAF(const EC_GROUP *group, int8_t *out, const EC_SCALAR *scalar, size_t bits, int w) { // 'int8_t' can represent integers with absolute values less than 2^7. assert(0 < w && w <= 7); assert(bits != 0); int bit = 1 << w; // 2^w, at most 128 int next_bit = bit << 1; // 2^(w+1), at most 256 int mask = next_bit - 1; // at most 255 int window_val = scalar->words[0] & mask; for (size_t j = 0; j < bits + 1; j++) { assert(0 <= window_val && window_val <= next_bit); int digit = 0; if (window_val & 1) { assert(0 < window_val && window_val < next_bit); if (window_val & bit) { digit = window_val - next_bit; // We know -next_bit < digit < 0 and window_val - digit = next_bit. // modified wNAF if (j + w + 1 >= bits) { // special case for generating modified wNAFs: // no new bits will be added into window_val, // so using a positive digit here will decrease // the total length of the representation digit = window_val & (mask >> 1); // We know 0 < digit < bit and window_val - digit = bit. } } else { digit = window_val; // We know 0 < digit < bit and window_val - digit = 0. } window_val -= digit; // Now window_val is 0 or 2^(w+1) in standard wNAF generation. // For modified window NAFs, it may also be 2^w. // // See the comments above for the derivation of each of these bounds. assert(window_val == 0 || window_val == next_bit || window_val == bit); assert(-bit < digit && digit < bit); // window_val was odd, so digit is also odd. assert(digit & 1); } out[j] = digit; // Incorporate the next bit. Previously, |window_val| <= |next_bit|, so if // we shift and add at most one copy of |bit|, this will continue to hold // afterwards. window_val >>= 1; window_val += bit * bn_is_bit_set_words(scalar->words, group->order.N.width, j + w + 1); assert(window_val <= next_bit); } // bits + 1 entries should be sufficient to consume all bits. assert(window_val == 0); } // compute_precomp sets |out[i]| to (2*i+1)*p, for i from 0 to |len|. static void compute_precomp(const EC_GROUP *group, EC_JACOBIAN *out, const EC_JACOBIAN *p, size_t len) { ec_GFp_simple_point_copy(&out[0], p); EC_JACOBIAN two_p; ec_GFp_mont_dbl(group, &two_p, p); for (size_t i = 1; i < len; i++) { ec_GFp_mont_add(group, &out[i], &out[i - 1], &two_p); } } static void lookup_precomp(const EC_GROUP *group, EC_JACOBIAN *out, const EC_JACOBIAN *precomp, int digit) { if (digit < 0) { digit = -digit; ec_GFp_simple_point_copy(out, &precomp[digit >> 1]); ec_GFp_simple_invert(group, out); } else { ec_GFp_simple_point_copy(out, &precomp[digit >> 1]); } } // EC_WNAF_WINDOW_BITS is the window size to use for |ec_GFp_mont_mul_public|. #define EC_WNAF_WINDOW_BITS 4 // EC_WNAF_TABLE_SIZE is the table size to use for |ec_GFp_mont_mul_public|. #define EC_WNAF_TABLE_SIZE (1 << (EC_WNAF_WINDOW_BITS - 1)) // EC_WNAF_STACK is the number of points worth of data to stack-allocate and // avoid a malloc. #define EC_WNAF_STACK 3 int ec_GFp_mont_mul_public_batch(const EC_GROUP *group, EC_JACOBIAN *r, const EC_SCALAR *g_scalar, const EC_JACOBIAN *points, const EC_SCALAR *scalars, size_t num) { size_t bits = EC_GROUP_order_bits(group); size_t wNAF_len = bits + 1; // Stack-allocated space, which will be used if the task is small enough. int8_t wNAF_stack[EC_WNAF_STACK][EC_MAX_BYTES * 8 + 1]; EC_JACOBIAN precomp_stack[EC_WNAF_STACK][EC_WNAF_TABLE_SIZE]; // Allocated pointers, which will remain NULL unless needed. EC_JACOBIAN(*precomp_alloc)[EC_WNAF_TABLE_SIZE] = NULL; int8_t(*wNAF_alloc)[EC_MAX_BYTES * 8 + 1] = NULL; // These fields point either to the stack or heap buffers of the same name. int8_t(*wNAF)[EC_MAX_BYTES * 8 + 1]; EC_JACOBIAN(*precomp)[EC_WNAF_TABLE_SIZE]; if (num <= EC_WNAF_STACK) { wNAF = wNAF_stack; precomp = precomp_stack; } else { wNAF_alloc = reinterpret_cast( OPENSSL_calloc(num, sizeof(wNAF_alloc[0]))); if (wNAF_alloc == NULL) { return 0; } precomp_alloc = reinterpret_cast( OPENSSL_calloc(num, sizeof(precomp_alloc[0]))); if (precomp_alloc == NULL) { OPENSSL_free(wNAF_alloc); return 0; } wNAF = wNAF_alloc; precomp = precomp_alloc; } int8_t g_wNAF[EC_MAX_BYTES * 8 + 1]; EC_JACOBIAN g_precomp[EC_WNAF_TABLE_SIZE]; assert(wNAF_len <= OPENSSL_ARRAY_SIZE(g_wNAF)); const EC_JACOBIAN *g = &group->generator.raw; if (g_scalar != NULL) { ec_compute_wNAF(group, g_wNAF, g_scalar, bits, EC_WNAF_WINDOW_BITS); compute_precomp(group, g_precomp, g, EC_WNAF_TABLE_SIZE); } for (size_t i = 0; i < num; i++) { assert(wNAF_len <= OPENSSL_ARRAY_SIZE(wNAF[i])); ec_compute_wNAF(group, wNAF[i], &scalars[i], bits, EC_WNAF_WINDOW_BITS); compute_precomp(group, precomp[i], &points[i], EC_WNAF_TABLE_SIZE); } EC_JACOBIAN tmp; int r_is_at_infinity = 1; for (size_t k = wNAF_len - 1; k < wNAF_len; k--) { if (!r_is_at_infinity) { ec_GFp_mont_dbl(group, r, r); } if (g_scalar != NULL && g_wNAF[k] != 0) { lookup_precomp(group, &tmp, g_precomp, g_wNAF[k]); if (r_is_at_infinity) { ec_GFp_simple_point_copy(r, &tmp); r_is_at_infinity = 0; } else { ec_GFp_mont_add(group, r, r, &tmp); } } for (size_t i = 0; i < num; i++) { if (wNAF[i][k] != 0) { lookup_precomp(group, &tmp, precomp[i], wNAF[i][k]); if (r_is_at_infinity) { ec_GFp_simple_point_copy(r, &tmp); r_is_at_infinity = 0; } else { ec_GFp_mont_add(group, r, r, &tmp); } } } } if (r_is_at_infinity) { ec_GFp_simple_point_set_to_infinity(group, r); } OPENSSL_free(wNAF_alloc); OPENSSL_free(precomp_alloc); return 1; }