# Copyright (c) Meta Platforms, Inc. and affiliates. # Copyright 2024 Arm Limited and/or its affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import unittest from typing import Tuple import torch from executorch.backends.arm.test import common from executorch.backends.arm.test.tester.arm_tester import ArmTester from executorch.exir.backend.compile_spec_schema import CompileSpec from parameterized import parameterized class TestCat(unittest.TestCase): class Cat(torch.nn.Module): test_parameters = [ ((torch.ones(1), torch.ones(1)), 0), ((torch.ones(1, 2), torch.randn(1, 5), torch.randn(1, 1)), 1), ( ( torch.ones(1, 2, 5), torch.randn(1, 2, 4), torch.randn(1, 2, 2), torch.randn(1, 2, 1), ), -1, ), ((torch.randn(2, 2, 4, 4), torch.randn(2, 2, 4, 1)), 3), ( ( 10000 * torch.randn(2, 3, 1, 4), torch.randn(2, 7, 1, 4), torch.randn(2, 1, 1, 4), ), -3, ), ] def __init__(self): super().__init__() def forward(self, tensors: tuple[torch.Tensor, ...], dim: int) -> torch.Tensor: return torch.cat(tensors, dim=dim) def _test_cat_tosa_MI_pipeline( self, module: torch.nn.Module, test_data: Tuple[tuple[torch.Tensor, ...], int] ): ( ArmTester( module, example_inputs=test_data, compile_spec=common.get_tosa_compile_spec("TOSA-0.80.0+MI"), ) .export() .check_count({"torch.ops.aten.cat.default": 1}) .check_not(["torch.ops.quantized_decomposed"]) .to_edge() .partition() .check_not(["executorch_exir_dialects_edge__ops_aten_cat_default"]) .check_count({"torch.ops.higher_order.executorch_call_delegate": 1}) .to_executorch() .run_method_and_compare_outputs(inputs=test_data) ) def _test_cat_tosa_BI_pipeline( self, module: torch.nn.Module, test_data: Tuple[tuple[torch.Tensor, ...], int] ): ( ArmTester( module, example_inputs=test_data, compile_spec=common.get_tosa_compile_spec("TOSA-0.80.0+BI"), ) .quantize() .export() .check_count({"torch.ops.aten.cat.default": 1}) .check(["torch.ops.quantized_decomposed"]) .to_edge() .partition() .check_not(["executorch_exir_dialects_edge__ops_aten_cat_default"]) .check_count({"torch.ops.higher_order.executorch_call_delegate": 1}) .to_executorch() .run_method_and_compare_outputs(inputs=test_data, qtol=1) ) def _test_cat_ethosu_BI_pipeline( self, module: torch.nn.Module, compile_spec: CompileSpec, test_data: Tuple[tuple[torch.Tensor, ...], int], ): ( ArmTester( module, example_inputs=test_data, compile_spec=compile_spec, ) .quantize() .export() .check_count({"torch.ops.aten.cat.default": 1}) .check(["torch.ops.quantized_decomposed"]) .to_edge() .partition() .check_not(["executorch_exir_dialects_edge__ops_aten_cat_default"]) .check_count({"torch.ops.higher_order.executorch_call_delegate": 1}) .to_executorch() ) @parameterized.expand(Cat.test_parameters) def test_cat_tosa_MI(self, operands: tuple[torch.Tensor, ...], dim: int): test_data = (operands, dim) self._test_cat_tosa_MI_pipeline(self.Cat(), test_data) def test_cat_4d_tosa_MI(self): square = torch.ones((2, 2, 2, 2)) for dim in range(-3, 3): test_data = ((square, square), dim) self._test_cat_tosa_MI_pipeline(self.Cat(), test_data) @parameterized.expand(Cat.test_parameters) def test_cat_tosa_BI(self, operands: tuple[torch.Tensor, ...], dim: int): test_data = (operands, dim) self._test_cat_tosa_BI_pipeline(self.Cat(), test_data) @parameterized.expand(Cat.test_parameters) def test_cat_u55_BI(self, operands: tuple[torch.Tensor, ...], dim: int): test_data = (operands, dim) self._test_cat_ethosu_BI_pipeline( self.Cat(), common.get_u55_compile_spec(), test_data ) @parameterized.expand(Cat.test_parameters) def test_cat_u85_BI(self, operands: tuple[torch.Tensor, ...], dim: int): test_data = (operands, dim) self._test_cat_ethosu_BI_pipeline( self.Cat(), common.get_u85_compile_spec(), test_data )