# Copyright (c) Meta Platforms, Inc. and affiliates. # Copyright 2024 Arm Limited and/or its affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import logging import unittest from typing import Optional, Tuple, Union import torch from executorch.backends.arm.test import common from executorch.backends.arm.test.tester.arm_tester import ArmTester from parameterized import parameterized logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) test_data_suite = [ # (test_name, input, other, rounding_mode) See torch.div() for info ( "op_div_rank1_ones", torch.ones(5), torch.ones(5), None, ), ( "op_div_rank1_rand", torch.rand(5) * 5, torch.rand(5) * 5, None, ), ( "op_div_rank1_negative_ones", torch.ones(5) * (-1), torch.ones(5) * (-1), None, ), ( "op_div_rank4_ones", torch.ones(5, 10, 25, 20), torch.ones(5, 10, 25, 20), None, ), ( "op_div_rank4_negative_ones", (-1) * torch.ones(5, 10, 25, 20), torch.ones(5, 10, 25, 20), None, ), ( "op_div_rank4_ones_div_negative", torch.ones(5, 10, 25, 20), (-1) * torch.ones(5, 10, 25, 20), None, ), ( "op_div_rank4_large_rand", 200 * torch.rand(5, 10, 25, 20), torch.rand(5, 10, 25, 20), None, ), ( "op_div_rank4_negative_large_rand", (-200) * torch.rand(5, 10, 25, 20), torch.rand(5, 10, 25, 20), None, ), ( "op_div_rank4_large_randn", 200 * torch.randn(5, 10, 25, 20) + 1, torch.rand(5, 10, 25, 20) + 1, None, ), ] class TestDiv(unittest.TestCase): """Tests division""" class Div(torch.nn.Module): def forward( self, input_: Union[torch.Tensor, torch.types.Number], other_: Union[torch.Tensor, torch.types.Number], rounding_mode: Optional[str] = None, ): if rounding_mode is None: return torch.div(input=input_, other=other_) else: return torch.div( input=input_, other=other_, rounding_mode=rounding_mode ) def _test_div_tosa_MI_pipeline( self, module: torch.nn.Module, test_data: Tuple[torch.Tensor] ): ( ArmTester( module, example_inputs=test_data, compile_spec=common.get_tosa_compile_spec("TOSA-0.80.0+MI"), ) .export() .check_count({"torch.ops.aten.div.Tensor": 1}) .check_not(["torch.ops.quantized_decomposed"]) .to_edge() .partition() .check_count({"torch.ops.higher_order.executorch_call_delegate": 1}) .to_executorch() .run_method_and_compare_outputs(inputs=test_data) ) def _test_div_tosa_BI_pipeline( self, module: torch.nn.Module, test_data: Tuple[torch.Tensor] ): ( ArmTester( module, example_inputs=test_data, compile_spec=common.get_tosa_compile_spec("TOSA-0.80.0+BI"), ) .quantize() .export() .check_count( {"torch.ops.aten.reciprocal.default": 1, "torch.ops.aten.mul.Tensor": 1} ) .check(["torch.ops.quantized_decomposed"]) .to_edge() .partition() .check_count({"torch.ops.higher_order.executorch_call_delegate": 1}) .to_executorch() .run_method_and_compare_outputs(inputs=test_data, atol=1, rtol=0.1) ) def _test_div_u55_BI_pipeline( self, module: torch.nn.Module, test_data: Tuple[torch.Tensor] ): ( ArmTester( module, example_inputs=test_data, compile_spec=common.get_u55_compile_spec(), ) .quantize() .export() .check_count( {"torch.ops.aten.reciprocal.default": 1, "torch.ops.aten.mul.Tensor": 1} ) .check(["torch.ops.quantized_decomposed"]) .to_edge() .partition() .check_count({"torch.ops.higher_order.executorch_call_delegate": 1}) .to_executorch() ) @parameterized.expand(test_data_suite) def test_div_tosa_MI( self, test_name: str, input_: Union[torch.Tensor, torch.types.Number], other_: Union[torch.Tensor, torch.types.Number], rounding_mode: Optional[str] = None, ): test_data = (input_, other_) self._test_div_tosa_MI_pipeline(self.Div(), test_data) @parameterized.expand(test_data_suite) def test_div_tosa_BI( self, test_name: str, input_: Union[torch.Tensor, torch.types.Number], other_: Union[torch.Tensor, torch.types.Number], rounding_mode: Optional[str] = None, ): test_data = (input_, other_) self._test_div_tosa_BI_pipeline(self.Div(), test_data) @parameterized.expand(test_data_suite) def test_div_u55_BI( self, test_name: str, input_: Union[torch.Tensor, torch.types.Number], other_: Union[torch.Tensor, torch.types.Number], rounding_mode: Optional[str] = None, ): test_data = (input_, other_) self._test_div_u55_BI_pipeline(self.Div(), test_data)