# Copyright 2024 Arm Limited and/or its affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import unittest from typing import List, Tuple, Union import torch from executorch.backends.arm.test import common from executorch.backends.arm.test.tester.arm_tester import ArmTester from executorch.exir.backend.backend_details import CompileSpec from parameterized import parameterized test_data_suite = [ # (test_name, test_data, [normalized_shape, eps, elementwise_affine, has_bias] ) ("randn_last_dim", torch.randn(1, 5, 5, 5), [[5]]), ("rand_last_two_dims", torch.rand(1, 5, 5, 5), [[5, 5]]), ( "rand_last_two_dims_not_elementwise_affine", torch.rand(1, 5, 5, 5), [[5, 5], 1e-5, False], ), ( "rand_last_two_dims_not_elementwise_affine_no_bias", torch.rand(1, 5, 5, 5), [[5, 5], 1e-5, False, False], ), ("randn_last_three_dims", torch.randn(1, 15, 10, 5), [[15, 10, 5]]), ( "randn_last_three_dims_no_bias", torch.randn(1, 15, 10, 5), [[15, 10, 5], 1e-2, False, False], ), ] class TestLayerNorm(unittest.TestCase): class LayerNorm(torch.nn.Module): def __init__( self, normalized_shape: Union[int, List[int]], eps: float = 1e-5, elementwise_affine: bool = True, has_bias: bool = True, ): super().__init__() self.layer_norm = torch.nn.LayerNorm( normalized_shape, eps=eps, elementwise_affine=elementwise_affine, bias=has_bias, ) if elementwise_affine: self.layer_norm.weight = torch.nn.Parameter( torch.ones(normalized_shape) ) if has_bias: self.layer_norm.bias = torch.nn.Parameter( torch.rand(normalized_shape) ) def forward(self, x): return self.layer_norm(x) def _test_layernorm_tosa_MI_pipeline( self, module: torch.nn.Module, test_data: Tuple[torch.Tensor] ): ( ArmTester( model=module, example_inputs=test_data, compile_spec=common.get_tosa_compile_spec( "TOSA-0.80.0+MI", permute_memory_to_nhwc=True ), ) .export() .check(["torch.ops.aten.layer_norm.default"]) .to_edge() .partition() .check_count({"torch.ops.higher_order.executorch_call_delegate": 1}) .check_not(["torch.ops.aten.layer_norm.default"]) .to_executorch() .run_method_and_compare_outputs(inputs=test_data) ) def _test_layernorm_tosa_BI_pipeline( self, module: torch.nn.Module, test_data: Tuple[torch.Tensor] ): ( ArmTester( model=module, example_inputs=test_data, compile_spec=common.get_tosa_compile_spec( "TOSA-0.80.0+BI", permute_memory_to_nhwc=True ), ) .quantize() .check_not(["torch.ops.aten.layer_norm.default"]) .export() .to_edge() .partition() .check_count({"torch.ops.higher_order.executorch_call_delegate": 1}) .to_executorch() .run_method_and_compare_outputs(inputs=test_data) ) def _test_layernorm_ethosu_BI_pipeline( self, module: torch.nn.Module, compile_spec: CompileSpec, test_data: Tuple[torch.Tensor], ): ( ArmTester( model=module, example_inputs=test_data, compile_spec=compile_spec, ) .quantize() .check_not(["torch.ops.aten.layer_norm.default"]) .export() .to_edge() .partition() .check_count({"torch.ops.higher_order.executorch_call_delegate": 1}) .to_executorch() ) @parameterized.expand(test_data_suite) def test_layer_norm_tosa_MI( self, test_name: str, test_data: torch.Tensor, model_params, ): self._test_layernorm_tosa_MI_pipeline( self.LayerNorm(*model_params), (test_data,) ) @parameterized.expand(test_data_suite) def test_layer_norm_tosa_BI( self, test_name: str, test_data: torch.Tensor, model_params, ): self._test_layernorm_tosa_BI_pipeline( self.LayerNorm(*model_params), (test_data,) ) # Skip tests that require transposes. @parameterized.expand(test_data_suite[:-2]) def test_layer_norm_u55_BI( self, test_name: str, test_data: torch.Tensor, model_params, ): self._test_layernorm_ethosu_BI_pipeline( self.LayerNorm(*model_params), common.get_u55_compile_spec(), (test_data,) ) @parameterized.expand(test_data_suite) def test_layer_norm_u85_BI( self, test_name: str, test_data: torch.Tensor, model_params, ): self._test_layernorm_ethosu_BI_pipeline( self.LayerNorm(*model_params), common.get_u85_compile_spec(), (test_data,) )