# Copyright 2024 Arm Limited and/or its affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import logging import unittest from typing import Tuple import torch from executorch.backends.arm.test import common from executorch.backends.arm.test.tester.arm_tester import ArmTester from executorch.exir.backend.backend_details import CompileSpec from parameterized import parameterized logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) torch.manual_seed(0) class TestMM(unittest.TestCase): """Tests MatMul""" class MM(torch.nn.Module): test_parameters = [ (torch.rand(3, 5), torch.rand(5, 2)), (torch.rand(1, 1), torch.rand(1, 1)), (torch.ones(55, 3), torch.ones(3, 44)), (10000 * torch.randn(1, 10), torch.randn(10, 5)), (-10 * torch.randn(32, 64), 5 + 5 * torch.randn(64, 32)), ] def forward(self, x, y): return torch.mm(x, y) class MMSingleInput(torch.nn.Module): test_parameters = [ (torch.rand(3, 3),), (torch.ones(128, 128),), (10000 * torch.randn(25, 25),), (5 + 5 * torch.randn(64, 64),), ] def forward(self, x): return torch.mm(x, x) def _test_mm_tosa_MI_pipeline( self, module: torch.nn.Module, test_data: Tuple[torch.Tensor] ): ( ArmTester( module, example_inputs=test_data, compile_spec=common.get_tosa_compile_spec("TOSA-0.80.0+MI"), ) .export() .check_count({"torch.ops.aten.mm.default": 1}) .check_not(["torch.ops.quantized_decomposed"]) .to_edge() .partition() .check_not(["executorch_exir_dialects_edge__ops_aten_mm_default"]) .check_count({"torch.ops.higher_order.executorch_call_delegate": 1}) .to_executorch() .run_method_and_compare_outputs(inputs=test_data) ) def _test_mm_tosa_BI_pipeline( self, module: torch.nn.Module, test_data: Tuple[torch.Tensor] ): ( ArmTester( module, example_inputs=test_data, compile_spec=common.get_tosa_compile_spec("TOSA-0.80.0+BI"), ) .quantize() .export() .check_count({"torch.ops.aten.mm.default": 1}) .check(["torch.ops.quantized_decomposed"]) .to_edge() .partition() .check_not(["executorch_exir_dialects_edge__ops_aten_mm_default"]) .check_count({"torch.ops.higher_order.executorch_call_delegate": 1}) .to_executorch() .run_method_and_compare_outputs(inputs=test_data) ) def _test_mm_ethosu_BI_pipeline( self, compile_spec: CompileSpec, module: torch.nn.Module, test_data: Tuple[torch.Tensor], ): ( ArmTester( module, example_inputs=test_data, compile_spec=compile_spec, ) .quantize() .export() .check_count({"torch.ops.aten.mm.default": 1}) .check(["torch.ops.quantized_decomposed"]) .to_edge() .partition() .check_count({"torch.ops.higher_order.executorch_call_delegate": 1}) .to_executorch() ) @parameterized.expand(MM.test_parameters) def test_mm_tosa_MI(self, operand1: torch.Tensor, operand2: torch.Tensor): test_data = (operand1, operand2) self._test_mm_tosa_MI_pipeline(self.MM(), test_data) @parameterized.expand(MMSingleInput.test_parameters) def test_mm_single_input_tosa_MI(self, operand1: torch.Tensor): test_data = (operand1,) self._test_mm_tosa_MI_pipeline(self.MMSingleInput(), test_data) @parameterized.expand(MM.test_parameters) def test_mm_tosa_BI(self, operand1: torch.Tensor, operand2: torch.Tensor): test_data = (operand1, operand2) self._test_mm_tosa_BI_pipeline(self.MM(), test_data) @parameterized.expand(MMSingleInput.test_parameters) def test_mm_single_input_tosa_BI(self, operand1: torch.Tensor): test_data = (operand1,) self._test_mm_tosa_BI_pipeline(self.MMSingleInput(), test_data) # Expected to fail with error: CPU performance estimation for "MatMul" not implemented @parameterized.expand(MM.test_parameters) @unittest.expectedFailure def test_mm_u55_BI(self, operand1: torch.Tensor, operand2: torch.Tensor): test_data = (operand1, operand2) self._test_mm_ethosu_BI_pipeline( common.get_u55_compile_spec(), self.MM(), test_data ) # Expected to fail with error: Warning, unsupported fusing of TOSA Rescale previous operator is of type: Memcpy @parameterized.expand(MMSingleInput.test_parameters) @unittest.expectedFailure def test_mm_single_input_u55_BI(self, operand1: torch.Tensor): test_data = (operand1,) self._test_mm_ethosu_BI_pipeline( common.get_u55_compile_spec(), self.MMSingleInput(), test_data ) @parameterized.expand(MM.test_parameters) def test_mm_u85_BI(self, operand1: torch.Tensor, operand2: torch.Tensor): test_data = (operand1, operand2) self._test_mm_ethosu_BI_pipeline( common.get_u85_compile_spec(), self.MM(), test_data ) @parameterized.expand(MMSingleInput.test_parameters) def test_mm_single_input_u85_BI(self, operand1: torch.Tensor): test_data = (operand1,) self._test_mm_ethosu_BI_pipeline( common.get_u85_compile_spec(), self.MMSingleInput(), test_data )