# Copyright 2024 Arm Limited and/or its affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # # Tests the unsqueeze op which copies the data of the input tensor (possibly with new data format) # import unittest from typing import Sequence, Tuple import torch from executorch.backends.arm.test import common from executorch.backends.arm.test.tester.arm_tester import ArmTester from executorch.exir.backend.compile_spec_schema import CompileSpec from parameterized import parameterized class TestSimpleUnsqueeze(unittest.TestCase): class Unsqueeze(torch.nn.Module): shapes: list[int | Sequence[int]] = [5, (5, 5), (5, 4), (5, 4, 3)] test_parameters: list[tuple[torch.Tensor]] = [(torch.randn(n),) for n in shapes] def forward(self, x: torch.Tensor, dim): return x.unsqueeze(dim) def _test_unsqueeze_tosa_MI_pipeline( self, module: torch.nn.Module, test_data: Tuple[torch.Tensor, int] ): ( ArmTester( module, example_inputs=test_data, compile_spec=common.get_tosa_compile_spec("TOSA-0.80.0+MI"), ) .export() .check_count({"torch.ops.aten.unsqueeze.default": 1}) .to_edge() .partition() .check_count({"torch.ops.higher_order.executorch_call_delegate": 1}) .to_executorch() .run_method_and_compare_outputs(inputs=test_data) ) def _test_unsqueeze_tosa_BI_pipeline( self, module: torch.nn.Module, test_data: Tuple[torch.Tensor, int] ): ( ArmTester( module, example_inputs=test_data, compile_spec=common.get_tosa_compile_spec("TOSA-0.80.0+BI"), ) .quantize() .export() .check_count({"torch.ops.aten.unsqueeze.default": 1}) .to_edge() .partition() .check_count({"torch.ops.higher_order.executorch_call_delegate": 1}) .to_executorch() .run_method_and_compare_outputs(inputs=test_data, qtol=1) ) def _test_unsqueeze_ethosu_BI_pipeline( self, compile_spec: CompileSpec, module: torch.nn.Module, test_data: Tuple[torch.Tensor, int], ): ( ArmTester( module, example_inputs=test_data, compile_spec=compile_spec, ) .quantize() .export() .check_count({"torch.ops.aten.unsqueeze.default": 1}) .to_edge() .partition() .check_count({"torch.ops.higher_order.executorch_call_delegate": 1}) .to_executorch() ) @parameterized.expand(Unsqueeze.test_parameters) def test_unsqueeze_tosa_MI(self, test_tensor: torch.Tensor): for i in range(-test_tensor.dim() - 1, test_tensor.dim() + 1): self._test_unsqueeze_tosa_MI_pipeline(self.Unsqueeze(), (test_tensor, i)) @parameterized.expand(Unsqueeze.test_parameters) def test_unsqueeze_tosa_BI(self, test_tensor: torch.Tensor): self._test_unsqueeze_tosa_BI_pipeline(self.Unsqueeze(), (test_tensor, 0)) @parameterized.expand(Unsqueeze.test_parameters[:-1]) def test_unsqueeze_u55_BI(self, test_tensor: torch.Tensor): self._test_unsqueeze_ethosu_BI_pipeline( common.get_u55_compile_spec(), self.Unsqueeze(), (test_tensor, 0), ) @parameterized.expand(Unsqueeze.test_parameters) def test_unsqueeze_u85_BI(self, test_tensor: torch.Tensor): self._test_unsqueeze_ethosu_BI_pipeline( common.get_u85_compile_spec(), self.Unsqueeze(), (test_tensor, 0), )