# Copyright 2024 Arm Limited and/or its affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import unittest from typing import Optional, Tuple import torch from executorch.backends.arm.test import common from executorch.backends.arm.test.tester.arm_tester import ArmTester from parameterized import parameterized test_data_suite = [ # (test_name, test_data, size, scale_factor, compare_outputs) ("rand_double_scale", torch.rand(2, 4, 8, 3), None, 2.0, True), ("rand_double_scale_one_dim", torch.rand(2, 4, 8, 3), None, (1.0, 2.0), True), ("rand_double_size", torch.rand(2, 4, 8, 3), (16, 6), None, True), ("rand_one_double_scale", torch.rand(2, 4, 1, 1), None, 2.0, True), ("rand_one_double_size", torch.rand(2, 4, 1, 1), (2, 2), None, True), ("rand_one_same_scale", torch.rand(2, 4, 1, 1), None, 1.0, True), ("rand_one_same_size", torch.rand(2, 4, 1, 1), (1, 1), None, True), # Can't compare outputs as the rounding when selecting the nearest pixel is # different between PyTorch and TOSA. Just check the legalization went well. # TODO Improve the test infrastructure to support more in depth verification # of the TOSA legalization results. ("rand_half_scale", torch.rand(2, 4, 8, 6), None, 0.5, False), ("rand_half_size", torch.rand(2, 4, 8, 6), (4, 3), None, False), ("rand_one_and_half_scale", torch.rand(2, 4, 8, 3), None, 1.5, False), ("rand_one_and_half_size", torch.rand(2, 4, 8, 3), (12, 4), None, False), ] class TestUpsampleNearest2d(unittest.TestCase): class UpsamplingNearest2d(torch.nn.Module): def __init__( self, size: Optional[Tuple[int]], scale_factor: Optional[float | Tuple[float]], ): super().__init__() self.upsample = torch.nn.UpsamplingNearest2d( # noqa: TOR101 size=size, scale_factor=scale_factor ) def forward(self, x): return self.upsample(x) class Upsample(torch.nn.Module): def __init__( self, size: Optional[Tuple[int]], scale_factor: Optional[float | Tuple[float]], ): super().__init__() self.upsample = torch.nn.Upsample( size=size, scale_factor=scale_factor, mode="nearest" ) def forward(self, x): return self.upsample(x) class Interpolate(torch.nn.Module): def __init__( self, size: Optional[Tuple[int]], scale_factor: Optional[float | Tuple[float]], ): super().__init__() self.upsample = lambda x: torch.nn.functional.interpolate( x, size=size, scale_factor=scale_factor, mode="nearest" ) def forward(self, x): return self.upsample(x) def _test_upsample_nearest_2d_tosa_MI_pipeline( self, module: torch.nn.Module, test_data: Tuple[torch.tensor], compare_outputs: bool, ): tester = ( ArmTester( module, example_inputs=test_data, compile_spec=common.get_tosa_compile_spec("TOSA-0.80.0+MI"), ) .export() .check(["torch.ops.aten.upsample_nearest2d.vec"]) .check_not(["torch.ops.quantized_decomposed"]) .to_edge_transform_and_lower() .check_not(["torch.ops.aten.upsample_nearest2d.vec"]) .check_count({"torch.ops.higher_order.executorch_call_delegate": 1}) .to_executorch() ) if compare_outputs: tester.run_method_and_compare_outputs(inputs=test_data) def _test_upsample_nearest_2d_tosa_BI_pipeline( self, module: torch.nn.Module, test_data: Tuple[torch.tensor], compare_outputs: bool, ): tester = ( ArmTester( module, example_inputs=test_data, compile_spec=common.get_tosa_compile_spec("TOSA-0.80.0+BI"), ) .quantize() .export() .check(["torch.ops.aten.upsample_nearest2d.vec"]) .check(["torch.ops.quantized_decomposed"]) .to_edge_transform_and_lower() .check_not(["torch.ops.aten.upsample_nearest2d.vec"]) .check_count({"torch.ops.higher_order.executorch_call_delegate": 1}) .to_executorch() ) if compare_outputs: tester.run_method_and_compare_outputs(inputs=test_data) @parameterized.expand(test_data_suite) def test_upsample_nearest_2d_tosa_MI( self, test_name: str, test_data: torch.Tensor, size: Optional[Tuple[int]], scale_factor: Optional[float | Tuple[float]], compare_outputs: bool, ): self._test_upsample_nearest_2d_tosa_MI_pipeline( self.UpsamplingNearest2d(size, scale_factor), (test_data,), compare_outputs ) self._test_upsample_nearest_2d_tosa_MI_pipeline( self.Upsample(size, scale_factor), (test_data,), compare_outputs ) self._test_upsample_nearest_2d_tosa_MI_pipeline( self.Interpolate(size, scale_factor), (test_data,), compare_outputs ) @parameterized.expand(test_data_suite) def test_upsample_nearest_2d_tosa_BI( self, test_name: str, test_data: torch.Tensor, size: Optional[Tuple[int]], scale_factor: Optional[float | Tuple[float]], compare_outputs: bool, ): self._test_upsample_nearest_2d_tosa_BI_pipeline( self.UpsamplingNearest2d(size, scale_factor), (test_data,), compare_outputs ) self._test_upsample_nearest_2d_tosa_BI_pipeline( self.Upsample(size, scale_factor), (test_data,), compare_outputs ) self._test_upsample_nearest_2d_tosa_BI_pipeline( self.Interpolate(size, scale_factor), (test_data,), compare_outputs )