# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass import torch from executorch.backends.example.example_operators.op_base import OpBase from executorch.backends.example.example_operators.utils import ( _annotate_nodes, _nodes_are_annotated, ) def _annotate_mean(partitions, quant_config): """ This is what the graph of a simple adaptive_avg_pool2d op looks like: fn_weight = self.fn_weight fn_bias = self.fn_bias permute_copy = torch.ops.aten.permute_copy.default(fn_weight, [1, 0]); fn_weight = None addmm = torch.ops.aten.addmm.default(fn_bias, arg2_1, permute_copy); fn_bias = arg2_1 = permute_copy = None """ print("parititioners: ", partitions) adaptive_avg_pool2d_node = partitions[0].output_nodes[0] adaptive_avg_pool2d_node_input = adaptive_avg_pool2d_node.args[0] print("adaptive_avg_pool2d_node: ", adaptive_avg_pool2d_node) if _nodes_are_annotated([adaptive_avg_pool2d_node]): return _annotate_nodes( [(adaptive_avg_pool2d_node, adaptive_avg_pool2d_node_input)], quant_config.input_quant_spec, input_node=True, ) _annotate_nodes([(adaptive_avg_pool2d_node,)], quant_config.output_quant_spec) @dataclass class AdaptiveAvgPool2dNode(OpBase): def __init__(self): super().__init__( pattern=(torch.nn.AdaptiveAvgPool2d,), annotate_handle=_annotate_mean, )