# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass import torch from executorch.backends.example.example_operators.op_base import OpBase from executorch.backends.example.example_operators.utils import ( _annotate_nodes, _nodes_are_annotated, ) def _annotate_flatten(partitions, quant_config): """ This is what the graph of a simple add op looks like: add_tensor = torch.ops.aten.add.Tensor(arg0_1, arg1_1); arg0_1 = arg1_1 = None """ flatten_node = partitions[0].output_nodes[0] flatten_input = flatten_node.args[0] if _nodes_are_annotated([flatten_node]): return _annotate_nodes( [(flatten_node, flatten_input)], quant_config.input_quant_spec, input_node=True ) _annotate_nodes([(flatten_node,)], quant_config.output_quant_spec) @dataclass class FlattenNode(OpBase): def __init__(self): super().__init__( pattern=(torch.flatten,), annotate_handle=_annotate_flatten, )