# Copyright (c) Qualcomm Innovation Center, Inc. # All rights reserved # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import warnings from typing import cast, Dict, List import executorch.backends.qualcomm.python.PyQnnWrapperAdaptor as PyQnnWrapper import numpy as np import torch from executorch.backends.qualcomm.utils.constants import QCOM_DATA from .node_visitor import NodeVisitor, register_node_visitor from .qnn_constants import OpPoolAvg2d, QNN_OP_PACKAGE_NAME_QTI_AISW @register_node_visitor class AvgPool2d(NodeVisitor): target = ["aten.avg_pool2d.default"] def __init__(self, *args) -> None: super().__init__(*args) def define_node( self, node: torch.fx.Node, nodes_to_wrappers: Dict[torch.fx.Node, PyQnnWrapper.TensorWrapper], ) -> PyQnnWrapper.PyQnnOpWrapper: input_node = node.args[0] input_tensor = self.get_tensor(input_node, node) input_tensor_wrapper = self.define_tensor( input_node, input_tensor, PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE, nodes_to_wrappers, is_input_tensor=True, ) output_tensor = self.get_tensor(node, node) output_tensor_wrapper = self.define_tensor( node, output_tensor, PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE, nodes_to_wrappers, is_input_tensor=False, ) # kernel info filter_size = cast(List[int], node.args[1]) if len(filter_size) == 1: filter_size = filter_size + filter_size filter_size_shape = [len(filter_size)] # stride info - default to kernel_size if not given stride = cast(List[int], node.args[2]) if len(node.args) > 2 else filter_size if len(stride) == 1: stride = stride + stride stride_shape = [len(stride)] padding = [0, 0] if len(node.args) > 3: padding = cast(List[int], node.args[3]) if len(padding) == 1: padding = padding + padding padding_shape = [len(padding), len(padding)] # if ceil mode is True, use ceil instead of floor to compute the output shape mode = OpPoolAvg2d.RoundingMode.FLOOR if len(node.args) > 4: ceil_mode = cast(bool, node.args[4]) if ceil_mode: mode = OpPoolAvg2d.RoundingMode.CEIL count_include_pad = True if len(node.args) > 5: count_include_pad = cast(bool, node.args[5]) # TODO: If count_include_pad = False, it seems not to compute average with padding in Qnn. # But it still compute average with padding value, and change divisor in torch # if not count_include_pad: # print("Not support count_include_pad = False.") # return pooling_region = filter_size[0] * filter_size[1] divisor_override = pooling_region # Default divisor is pooling_region if len(node.args) > 6: divisor_override = cast(int, node.args[6]) if divisor_override != pooling_region: warnings.warn( "[QNN Delegate Op Builder]: Not support divisor_override which is not equal to pooling region.", stacklevel=1, ) return avg_pool2d_op = PyQnnWrapper.PyQnnOpWrapper( node.name, QNN_OP_PACKAGE_NAME_QTI_AISW, OpPoolAvg2d.op_name, ) avg_pool2d_op.AddInputTensors([input_tensor_wrapper]) avg_pool2d_op.AddOutputTensors([output_tensor_wrapper]) avg_pool2d_op.AddTensorParam( OpPoolAvg2d.param_filter_size, PyQnnWrapper.Qnn_DataType_t.QNN_DATATYPE_UINT_32, len(filter_size_shape), filter_size_shape, np.array( filter_size, dtype=np.uint32, ), True, ) avg_pool2d_op.AddTensorParam( OpPoolAvg2d.param_stride, PyQnnWrapper.Qnn_DataType_t.QNN_DATATYPE_UINT_32, len(stride_shape), stride_shape, np.array( stride, dtype=np.uint32, ), True, ) avg_pool2d_op.AddTensorParam( OpPoolAvg2d.param_pad_amount, PyQnnWrapper.Qnn_DataType_t.QNN_DATATYPE_UINT_32, len(padding_shape), padding_shape, np.array( [[padding[0], padding[0]], [padding[1], padding[1]]], dtype=np.uint32, ), True, ) avg_pool2d_op.AddScalarParam( OpPoolAvg2d.param_rounding_mode, PyQnnWrapper.Qnn_DataType_t.QNN_DATATYPE_UINT_32, {QCOM_DATA: np.uint32(mode)}, ) avg_pool2d_op.AddScalarParam( OpPoolAvg2d.param_count_pad_for_edges, PyQnnWrapper.Qnn_DataType_t.QNN_DATATYPE_BOOL_8, {QCOM_DATA: count_include_pad}, ) return avg_pool2d_op