# Copyright (c) Qualcomm Innovation Center, Inc. # All rights reserved # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import warnings from typing import cast, Dict, List import executorch.backends.qualcomm.python.PyQnnWrapperAdaptor as PyQnnWrapper import numpy as np import torch from executorch.backends.qualcomm.utils.constants import QCOM_DATA from .node_visitor import NodeVisitor, register_node_visitor from .qnn_constants import OpPoolMax2d, QNN_OP_PACKAGE_NAME_QTI_AISW @register_node_visitor class MaxPool2d(NodeVisitor): target = ["aten.max_pool2d_with_indices.default"] def __init__(self, *args) -> None: super().__init__(*args) def define_node( self, node: torch.fx.Node, nodes_to_wrappers: Dict[torch.fx.Node, PyQnnWrapper.TensorWrapper], ) -> PyQnnWrapper.PyQnnOpWrapper: input_node = node.args[0] input_tensor = self.get_tensor(input_node, node) input_tensor_wrapper = self.define_tensor( input_node, input_tensor, PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE, nodes_to_wrappers, is_input_tensor=True, ) users = list(node.users.keys()) for user in users: if user.target.__name__ == "getitem": getitem_index = user.args[1] if getitem_index != 0: warnings.warn( f"[QNN Delegate Op Builder]: Expected second argument of getitem node for {node.target.__name__ } to be 0, got {getitem_index}", stacklevel=1, ) return output_tensor = self.get_tensor(node, node, 0) output_tensor_wrapper = self.define_tensor( node, output_tensor, PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE, nodes_to_wrappers, is_input_tensor=False, ) # kernel info filter_size = cast(List[int], node.args[1]) if len(filter_size) == 1: filter_size = filter_size + filter_size filter_size_shape = [len(filter_size)] # stride info stride = cast(List[int], node.args[2]) if len(stride) == 1: stride = stride + stride stride_shape = [len(stride)] padding = [0, 0] if len(node.args) > 3: padding = cast(List[int], node.args[3]) if len(padding) == 1: padding = padding + padding padding_shape = [len(padding), len(padding)] # dilation info if len(node.args) > 4: dilation = cast(List[int], node.args[4]) if not (dilation == 1 or dilation == [1, 1]): warnings.warn( f"[QNN Delegate Op Builder]: Not support dilation argument for max pool2d, but got {dilation}", stacklevel=1, ) return # if cail mode is True, use ceil instead of floor to compute the output shape mode = OpPoolMax2d.RoundingMode.FLOOR if len(node.args) > 5: ceil_mode = cast(bool, node.args[5]) if ceil_mode: mode = OpPoolMax2d.RoundingMode.CEIL max_pool2d_op = PyQnnWrapper.PyQnnOpWrapper( node.name, QNN_OP_PACKAGE_NAME_QTI_AISW, OpPoolMax2d.op_name, ) max_pool2d_op.AddInputTensors([input_tensor_wrapper]) max_pool2d_op.AddOutputTensors([output_tensor_wrapper]) max_pool2d_op.AddTensorParam( OpPoolMax2d.param_filter_size, PyQnnWrapper.Qnn_DataType_t.QNN_DATATYPE_UINT_32, len(filter_size_shape), filter_size_shape, np.array( filter_size, dtype=np.uint32, ), True, ) max_pool2d_op.AddTensorParam( OpPoolMax2d.param_stride, PyQnnWrapper.Qnn_DataType_t.QNN_DATATYPE_UINT_32, len(stride_shape), stride_shape, np.array( stride, dtype=np.uint32, ), True, ) max_pool2d_op.AddTensorParam( OpPoolMax2d.param_pad_amount, PyQnnWrapper.Qnn_DataType_t.QNN_DATATYPE_UINT_32, len(padding_shape), padding_shape, np.array( [[padding[0], padding[0]], [padding[1], padding[1]]], dtype=np.uint32, ), True, ) max_pool2d_op.AddScalarParam( OpPoolMax2d.param_rounding_mode, PyQnnWrapper.Qnn_DataType_t.QNN_DATATYPE_UINT_32, {QCOM_DATA: np.uint32(mode)}, ) return max_pool2d_op