# Copyright (c) Qualcomm Innovation Center, Inc. # All rights reserved # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import cast, Dict, List import executorch.backends.qualcomm.python.PyQnnWrapperAdaptor as PyQnnWrapper import numpy as np import torch from executorch.backends.qualcomm.utils.constants import QCOM_AXIS_ORDER, QCOM_DATA from .node_visitor import NodeVisitor, register_node_visitor from .qnn_constants import OpReduceMean, QNN_OP_PACKAGE_NAME_QTI_AISW @register_node_visitor class MeanDim(NodeVisitor): target = ["aten.mean.dim"] def __init__(self, *args) -> None: super().__init__(*args) def define_node( self, node: torch.fx.Node, nodes_to_wrappers: Dict[torch.fx.Node, PyQnnWrapper.TensorWrapper], ) -> PyQnnWrapper.PyQnnOpWrapper: input_node = node.args[0] input_tensor = self.get_tensor(input_node, node) input_tensor_wrapper = self.define_tensor( input_node, input_tensor, PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE, nodes_to_wrappers, is_input_tensor=True, ) # mean dims and keep dims mean_dims = cast(List[int], node.args[1]) mean_dims = [ mean_dim % len(input_node.meta["val"].shape) for mean_dim in mean_dims ] if QCOM_AXIS_ORDER in node.meta: mean_dims = [ node.meta[QCOM_AXIS_ORDER].index(mean_dim) for mean_dim in mean_dims ] mean_dims_shape = [len(mean_dims)] output_tensor = self.get_tensor(node, node) output_tensor_wrapper = self.define_tensor( node, output_tensor, PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE, nodes_to_wrappers, is_input_tensor=False, ) reduce_mean_op = PyQnnWrapper.PyQnnOpWrapper( node.name, QNN_OP_PACKAGE_NAME_QTI_AISW, OpReduceMean.op_name, ) reduce_mean_op.AddInputTensors([input_tensor_wrapper]) reduce_mean_op.AddOutputTensors([output_tensor_wrapper]) reduce_mean_op.AddTensorParam( OpReduceMean.param_axes, PyQnnWrapper.Qnn_DataType_t.QNN_DATATYPE_UINT_32, len(mean_dims_shape), mean_dims_shape, np.array(mean_dims, dtype=np.uint32), True, ) if len(node.args) > 2: keep_dims = cast(bool, node.args[2]) reduce_mean_op.AddScalarParam( OpReduceMean.param_keep_dims, PyQnnWrapper.Qnn_DataType_t.QNN_DATATYPE_BOOL_8, {QCOM_DATA: keep_dims}, ) return reduce_mean_op